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Mechanism(s) that control whether individual human primor-
dial ovarian follicles (PFs) remain dormant, or begin to grow,
are all but unknown. One of our groups has recently shown that
activation of the Integrated Stress Response (ISR) pathway can
slow follicular granulosa cell proliferation by activating cell cy-
cle checkpoints. Those data suggest that the ISR is active and
fluctuates according to local conditions in dormant PFs. Be-
cause cell cycle entry of (pre)granulosa cells is required for PF
growth activation (PFGA), we propose that rare ISR checkpoint
resolution allows individual PFs to begin to grow. Fluctuating
ISR activity within individual PFs can be described by a ran-
dom process. In this paper, we model ISR activity of individual
PFs by one-dimensional random walks (RWs) and monitor the
rate at which simulated checkpoint resolution and thus PFGA
threshold crossing occurs. We show that that the simultaneous
recapitulation of i) the loss of PFs over time within simulated
subjects, and ii) the timing of PF depletion in populations of sim-
ulated subjects equivalent to the distribution of the human age
of natural menopause can be produced using this approach. In
the RW model, the probability that individual PFs grow is influ-
enced by regionally fluctuating conditions, that over time man-
ifests in the known pattern of PFGA. Considered at the level of
the ovary, randomness appears to be a key, purposeful feature
of human ovarian aging.
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Introduction
Human ovarian aging depends upon the rate of loss of a
dormant reserve of primordial follicles (PFs) to a growth
phase (1–3). Individual PFs consist of a single immature egg
cell (oocyte) surrounded by a layer of non-proliferative so-
matic pregranulosa cells. PF growth activation (PFGA) con-
sists of pregranulosa cells entering into a slow but active cell
cycle, and they are now termed granulosa cells (4). PF com-
mitment to growth and therefore loss from the reserve (also
referred to as “decay") is thought to be irreversible.
Follicle numbers across the lifespan from the time of their

development during fetal life (5, 6) through postmenopausal

life have been assessed directly in histological preparations
(3; validated by 7, 8). Of the hundreds of thousands of PFs
in the human PF reserve, most are destined to die some time
after PFGA in a process termed atresia, and only a very small
fraction survives to ovulate a mature egg once per menstrual
cycle. Human menopause occurs when the number of ar-
rested PFs drops below a threshold of hundreds to perhaps
a thousand (1, 9–12). At this time, the supply of growing
follicles essentially ceases, leading to the loss of menstrual
cyclicity. The age at natural menopause (ANM) is such that
approximately 1 in 250 women reach it at or before age 35,
and 1 in 100 at or before age 40. The median ANM is 51, and
very few women reach menopause after age 62 (13). A cen-
tral goal in reproductive biology and medicine is the determi-
nation of mechanisms that dictate the decision of individual
PFs to undergo PFGA, and how this results in the patterns of
decline seen in individual women (e.g., "subjects") in order
to give rise to the known ANM distribution.

Cellular stress and particularly oxidative damage have long
been associated with ovarian aging (14–17), and one of our
groups is probing how endogenous physiological stress and
damage impact PFs directly. Using a combination of wet
laboratory and bioinformatics approaches, we have recently
identified the stress-and-damage-regulated Integrated Stress
Response (ISR) pathway (18, 19) as a new potential key regu-
lator of ovarian aging throughout the ovary and at the level of
individual PFs (20). In that work we showed that the PFGA
stimulator Tnfα leads to a rapid ISR response, including the
upregulation of the translation of proteins involved in cellular
repair. As its name suggests, the ISR coordinates responses
to a variety of cellular insults, integrating them so that con-
served cellular machinery can respond to and repair induced
damage. Successful cellular repair can result in ISR check-
point resolution and a return to the active cell cycle. Based
upon this, we have developed a model (summarized in the
Graphical Abstract, Figure i) based upon physiological re-
gional fluctuations (Fig. ia) of ISR activity that occur in gran-
ulosa cells during normal ovarian function (20). We hypoth-
esize that it is checkpoint resolution of physiological stress
and DNA damage that allows a switch to an active cell cycle
and PFGA (21–25).

Quantitative descriptions of the pattern of loss of PFs from
the ovarian reserve have a long history (9, 26–30). Histo-
logical specimen-derived numbers of PFs across the lifespan
were fit using a variety of types of equations (i.e., power, dif-
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ferential equation, biphasic, etc.). In one report, the accuracy
of fit of different equations was evaluated, and a differen-
tial equation model was found to generate a curve that best
matched human PF decay (30). In a separate simulation-
based approach, we evaluated probabilities of PFGA over
time that can result in PF reserve loss that can match pat-
terns seen in nature (bioRxiv preprint, 31). While these
approaches described follicle loss quite accurately, and can
be interpreted post hoc in terms of how known regulators of
PFGA are likely to function, none of them can be considered
a mechanistic “forward" derivation of patterns of follicle loss.

We reasoned that if the biological mechanisms at work in in-
dividual PFs that dictate the probabilities of arrest or growth
over time can be clarified, we might be able to predict and
simulate PFGA over time in a way that recapitulates the natu-
ral pattern. Our ISR data and proposed model (20) suggested
that individual PFs experiencing regionally fluctuating stress
and damage (and thus ISR activity) over time might reflect a
situation analogous to a random walk (RW; 32, 33) relative to
a threshold of growth activation (Fig. ib). In this case, thresh-
old crossing would occur randomly for individual PFs over
(simulated) time. RW models consist of simulated conditions
that exhibit change over time such that a positional value of
X varies by "walking," taking steps of size ∆x, and the di-
rection of each step is random (33). In continuous RWs, the
size of stochastic fluctuations is referred to as "Diffusivity"
(variable D), and deterministic (i.e., a degree of nonrandom)
motion is referred to as "Drift" (V ). When Drift is present in
a one-dimensional RW with two possible directions of move-
ment, the probability of movement in either direction is not
equal. We hypothesized that when all PFs within the ovary
are considered in terms of the local signals they receive, the
resulting pattern of PFGA over time will reflect the output of
a one-dimensional RW that includes a growth threshold. To
our knowledge, that ovarian aging might involve RW behav-
ior has not been previously considered, and modeling along
these lines has not been previously reported.

In this study, we used RWs (34) to model the behavior
of the PF reserve and monitored how random movement of
simulated PFs relative to a PFGA threshold might relate to
patterns of ovarian aging in subjects and in populations of
simulated women. Formal mathematical analysis produces
continuous RWs as seen when determined by Brownian mo-
tion/diffusion (35). A corresponding discrete step (e.g., non-
continuous) RW model was developed using the R statistical
programming language R (36), and conditions were estab-
lished where PFs executed RW steps representing fluctuat-
ing ISR activity over a time course of the discrete simulated
months of the human postnatal lifespan.

Different approaches were used to model plausible varia-
tion between subjects, and to evaluate the impact on simu-
lated ovarian aging and the population ANM. These included
i. the impact of the known distribution of initial PF num-
ber (a subject’s "Starting Supply" (37)), ii. homogenous vs.
heterogeneous ISR action (modeled as "Drift" V within the
RW, graphical abstract, double-headed arrow) in simulated
subjects within populations and iii. time-invariant vs. time-

variant Drift in simulated subjects within populations. In all
cases, model output was compared to a benchmark dataset
of actual PF numbers reflective of decay over time (3) and
the known distribution of the human ANM. Annotated code
for re-analysis and reproduction of output is provided. When
ISR activity within PFs is simulated using RWs that occur
relative to a threshold, output can be seen to closely match
natural patterns of ovarian aging in subjects and in popula-
tion(s) of women.

Results
Our identification of the ISR as a potential regulatory mech-
anism rests upon the concept that ISR activity fluctuates over
time within PFs due to physiological processes that fluctuate
over time regionally within the ovary (Fig. i, data evaluat-
ing mouse PFs in 20). We hypothesized that modeling ISR
activity as a one-dimensional RW would generate patterns of
follicle growth activation (and thus loss from the ovarian re-
serve) if that RW included a threshold for the state change
between dormancy and growth.

Mathematical model of fluctuating ISR activity and
PFGA. For a single PF in a given woman, we model fluctuat-
ing ISR activity by a RW. PFGA occurs when the ISR activity
of this PF crosses a threshold. Crossing that threshold results
in a PF’s subtraction from the ovarian reserve.
To describe our mathematical model precisely, let X(t) de-

note the ISR activity of a single PF at time t≥ 0. Here, time
t is the age of the woman so that time t = 0 corresponds to
her birth. To model ISR fluctuations as in 20 (see also Figure
i), suppose that the ISR activity in this PF either increases
or decreases by an amount ∆x > 0 over a time step ∆t > 0.
Mathematically, this is expressed as

X((n+ 1)∆t) =
{
X(n∆t) + ∆x with probability p,
X(n∆t)−∆x with probability 1−p,

(1)

where p is the probability that ISR activity increases. The
lefthand side of Eq. (1) is the ISR activity after n+ 1 time
steps, which is given by the ISR activity after n time steps
(i.e. X(n∆t)) plus or minus the amount ∆x. This type
of model is called a random walk because the value of X
"walks" by taking steps of size ∆x, and the direction of each
step (either up or down) is random (32).
If the steps ∆t and ∆x are small, then the discrete random

walk in Eq. (1) is equivalent to the continuous random walk
whose dynamics are described by the stochastic differential
equation (35),

dX =−V dt+
√

2DdW, (2)

where W (t) is a standard Brownian motion and

D = (∆x)2

2∆t , V = 2∆x
∆t

(1
2 −p

)
. (3)

The equivalence of the discrete model Eq. (1) and the contin-
uous model Eq. (2) for small steps ∆t and ∆x is shown in
the Appendix.
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In words, Eq. (2) means that over an infinitesimal time
dt, the ISR activity X changes by an amount dX equal to
a deterministic amount −V dt plus a stochastic fluctuation√

2DdW , where dW is normally distributed with mean zero
and variance dt. The parameter D is called the "Diffusiv-
ity" as it describes the size of the stochastic fluctuations, and
V is called the "Drift" as it describes the deterministic (i.e.
nonrandom) motion. Biologically, the Drift V represents the
efficiency of cellular repair in our model. Notice that V > 0
if p < 1/2, which means that X tends to decrease.
We suppose that a PF begins to grow when its ISR activity

drops below some "growth" threshold. We also suppose that a
PF dies before it begins to grow if its ISR activity rises above
some "death" threshold. Without loss of generality, we take
the growth threshold to be at X = 0 and the death threshold
at X = L> 0. Hence, a PF leaves the reserve at the first time
τ such that X(τ) /∈ (0,L). Since paths of X are random, this
reserve exit time τ is random.
Let N be the number of PFs in a given woman’s reserve at

birth, which we refer to as her Starting Supply. Let F (t) de-
notes the number of PFs in a given woman’s reserve at time t
(and thus F (0) = N ). We assume that the reserve exit times
for each of the N PFs are independent and identically dis-
tributed, and thus the expected number of PFs in the reserve
at time t is

E[F (t)] =NP(τ > t), (4)

where E denotes averaging over the reserve exit times.

Random walk model recapitulates PF decay. PF Data
from -0.25 years to 0.1 years in Wallace and Kelsey (3) were
selected in order to establish the Starting Supply distribution
(Supplemental Figure S1). The median Starting Supply was
found to be

N = 3.23×105. (5)

For this median Starting Supply value Eq. (5), we sought pa-
rameter values for the random walk model to make the ex-
pected PF decay curve in Eq. (4) fit the PF counts reported by
Wallace and Kelsey (3). Since we can always rescale the ISR
activity, without loss of generality we set the initial ISR ac-
tivity to unity, X(0) = 1. This parameter search then yielded
the following values for the Diffusivity and Drift,

D = 0.004year−1, V = 0.051year−1, (6)

and any value of the death threshold L ≥ 2. By taking the
limit of a large death threshold (i.e. L→∞), we obtain the
following formula for the expected follicle decay curve,

E[F (t)] = N

2

[
1 + erf

(1−V t√
4Dt

)
−eV/D

(
1− erf

(1 +V t√
4Dt

))]
,

(7)

where erf(z) := 2√
π

∫ z
0 e
−y2

dy is the Gauss error function.
In the Appendix, we derive Eq. (7) and show that the differ-
ence between Eq. (7) and the expected follicle decay curve
for any L≥ 2 is negligible for D and V in Eq. (6).

The formula Eq. (7) with the median Starting Supply value
N in Eq. (5) and D and V in Eq. (6) yields the solid blue
curve in Figure 1a. In particular, by tuning only two param-
eters (D and V in Eq. (6)), this mathematical mathematical
model yields a follicle decay curve in Eq. (7) that closely fits
the human follicle decay data reported by Wallace and Kelsey
(3).
In fact, the model curve in Eq. (7) fits the PF data nearly

as well as the non-mechanistic curve used in Wallace and
Kelsey (3). More precisely, Wallace and Kelsey (3) posited
a flexible functional form (the so-called asymmetric double-
Gaussian cumulative (ADC) curve), and then chose 5 free
parameters in this phenomenological function so that the re-
sulting curve fit this same PF count data, plus some prena-
tal PF counts. Here, “fit” is defined in terms of the sum of
squared errors between the curve and the logarithm of the PF
counts. By this measure of fit, our model curve in Eq. (7) is
only 3% worse than this prior curve.

Random walk model recapitulates human ANM distri-
bution. Human menopause occurs when the number of PFs
in the ovarian reserve drops below a threshold of approx-
imately 1000 (38). Hence, we can use our mathematical
model of PF decay to study menopause timing.
The solid blue PF decay curve in Figure 1a crosses the 1000

PF threshold (horizontal black line) at age 51 years. Hence,
this curve corresponds to an ANM equal to 51 years. How-
ever, there is considerable population variability in the Start-
ing Supply N of PFs at birth. All else being equal, women
with starting supplies higher (respectively, lower) than the
median Starting Supply will tend to reach menopause later
(respectively, earlier) than age 51.
To understand how Starting Supply population variability

translates into ANM population variability, we first charac-
terize the Starting Supply population distribution. As our
Starting Supply data, we use the 30 PF counts in (3) taken
from women within a few months of birth. We show in the
Appendix that these data are well-described by a log-normal
distribution with parameters

µ= 12.686, σ = 0.497. (8)

That is, we model the distribution of the Starting Supply as

N = exp(µ+σZ), (9)

where Z is a standard normal random variable and µ and σ
are in Eq. (8). The median of this Starting Supply distribu-
tion in Eq. (9) is exp(µ) = 3.23× 105 given in Eq. (5). As
pointed out above, the solid blue PF decay curve in Figure 1a
that starts from this median Starting Supply yields an ANM
equal to 51 years. Interestingly, the median ANM across a
population is also approximately 51 years (39–41). Hence,
this solid blue curve in Figure 1a can be understood as de-
scribing the “median woman.” The dashed blue curves in
Figure 1a show the PF decay curves for different quantiles
of the Starting Supply distribution in Eq. (9) (namely, the
1,5,25,75,95,99% quantiles).
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Model ANM output is compared with available information
about the human ANM distribution as follows. First, the
ANM distribution across a population of women who only
vary in their Starting Supply N (as in 1a) is considered. In
particular, the blue dashed curve in Figure 1c was generated
by simulating the PF decay dynamics of 104 women, where
each woman begins with a Starting Supply N sampled inde-
pendently from the log-normal distribution in Eq. (9), and the
ANM for each of the 104 simulated women is the time when
their PF reserve drops below 1000. The PF decay dynamics
for each woman follow the RW model described above, with
Diffusivity D and Drift V in Eq. (6). The blue diamonds in
Figure 1c is the ANM distribution reported by Weinstein et al.
(39). When only variable Starting Supply was present in the
RW model and Drift was fixed, model output (blue dashed
line) and the empirical Weinstein et al. ANM distribution
(blue diamonds) were in close agreement. We emphasize that
this agreement follows merely from combining the empirical
Starting Supply distribution in Eq. (9) with our RW model,
where the two free parameters in the RW model (D and V in
Eq. (6)) were chosen to fit PF decay data.
The agreement between the model and the ANM data Wein-

stein et al. (39) in Figure 1c is compelling, but there are some
caveats. First, the ANM data from McKinlay et al. (41) in
Figure 1c (black squares) is evidently more variable than the
ANM data from Weinstein et al. (39) (blue diamonds). Sec-
ond, the only source of population variability in the model
for the blue curve in Figure 1c is in Starting Supply. That
is, each of the 104 simulated women has identical Diffusivity
and Drift parameters D and V in Eq. (6). However, it is not
plausible that all intrinsic (e.g., genetic, epigenetic) and ex-
trinsic (environmental) conditions that determine PFGA tim-
ing are entirely identical between women.
To address these two issues, we introduce an additional

source of population heterogeneity into our model by allow-
ing the Drift parameter V to vary between simulated women
in addition to the Starting Supply N . There are many possi-
ble choices that we could make for the population distribution
of V , but for concreteness and we allow V to vary between
women according to

V = V (1 + cY ), (10)

where V = 0.051year−1 as in Eq. (6), c = 0.03, and Y
is a standard normal random variable independent of N in
Eq. (9). In words, Eq. (10) simply means that the Drift pa-
rameter V for each woman is normally distributed with mean
(and median) V and 3% coefficient of variation.
The solid blue PF decay curve in Figure 1b is identical to

the “median woman” solid blue curve in Figure 1a, since it
is for the median Starting Supply in Eq. (5) and the median
of the Drift distribution in Eq. (10). The dashed blue curves
in Figure 1b are for the same quantiles of the Starting Sup-
ply distribution as in Figure 1a, but the Drift parameters for
each of these 6 curves are sampled from the distribution in
Eq. (10). Notice that these dashed curves sometimes cross,
which means that a woman with a large Starting Supply may
at some point have less PFs in her reserve than a woman with

a smaller Starting Supply, due to differences in their Drift pa-
rameters. Biologically, this represents individual differences
in the rate of follicle loss over time as might be influenced by
genetics or environmental exposures.
The black dotted curve in Figure 1c shows the ANM distri-

bution resulting from a variable Starting Supply and a vari-
able Drift. This ANM distribution was generated from the
model analogous to the blue curve in Figure 1c, except the
Drift parameter for each simulated woman varied according
to Eq. (10). This plot shows that by introducing popula-
tion heterogeneity into the Drift parameter, the model yields
an ANM distribution in line with the McKinlay et al. (41)
data. Histograms depicting the ANM distributions produced
by each of the RW conditions are shown in Supplemental
Figure S2.

RW model flexibility. The analysis above shows that a sim-
ple RW model can recapitulate some prominent features of
ovarian aging seen in nature. However, ovarian aging is a
complex, multi-faceted process involving a variety of dy-
namic components. The purpose of this section is to show
how our RW framework can be adapted to model different
aspects of ovarian biology.
For example, the RW modeling framework can be used

to investigate the effects of an acute drop in PF number.
Such acute drops are common effects of certain cancer treat-
ments (42–45). In Figure 2a, RW traces for 50 simulated
subjects are shown when Subject-Variable Drift (identical to
that shown in Figure 1b) is applied, but PF Starting Supply
is fixed at the reported median. The impact of an acute drop
in PF number at approximately simulated age 12 is shown
(asterisk, after 10). After PF number is adjusted in this way,
RW traces are again shown for 50 simulated subjects, and an
acceleration in the times that the ANM threshold is crossed
is apparent when compared to uninterrupted decay.
The RW modeling framework can also be used to investi-

gate the purported acceleration of PF loss during human ovar-
ian aging (46) thought to arise due to declining levels of An-
timullerian hormone (AMH) late in the third decade. While
definitive experimental evidence that AMH slows PFGA and
ovarian aging in other mammals is available (47, 48), it is
less clear that AMH has this same role during ovarian aging
in women in vivo (49).
Acceleration in PF loss as might be seen in response to de-

clining AMH levels can be incorporated into the model by
allowing the Drift parameter to increase over time. To illus-
trate, we let the mean Drift parameter in Eq. (10) change at
age 38 according to

V =
{

0.024year−1 before age 38,
0.033year−1 after age 38.

(11)

Given that the acceleration in PF loss around this time is more
likely to be continuous, as the decline in AMH levels can be
seen to be continuous in this window of time (50), we also
tested more continuous Drift modifications, but the difference
between those and the simple stepwise Drift modification was
negligible (not shown). Figure 2b shows example PF decay
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trajectories for women with different starting supplies (equal
to the quantiles in Figure 1a) and whose Drift parameters var-
ied in time according to Eq. (11) and varied between women
according to Eq. (10).
When Subject-Variable Drift was applied and stepwise ac-

celeration occurred (Fig. 2b), an ANM distribution was pro-
duced that again greatly resembles the actual ANM distri-
bution (Supplemental Fig. S2). In addition to a direct vi-
sualization of the impact of accelerating Drift as might be
expected due to declining AMH levels as women approach
their forties, this approach demonstrates the flexibility of the
RW model as it can be modified in order to begin to address
these questions.

Software for further investigation. As illustrated above, a
variety of biological factors can be investigated using the RW
modeling framework. We therefore developed user-friendly
R code for RW simulations with detailed documentation so
that we ourselves and other interested parties can modify con-
ditions, and, can add additional conditions that might influ-
ence PF loss (code available in a public repository, see Meth-
ods section). This code allows one to alter a variety of condi-
tions along possible degrees of freedom (e.g., variables like
Starting Supply, acute follicle loss as shown in Figure 2a,
Drift acceleration as in 2b, etc.) to investigate how such vari-
ables impact ovarian aging. Users can modify these condi-
tions and add additional variables, perhaps as informed by
their own experimental results.

Discussion
The ISR pathway responds to cellular damage and stress by
upregulating the translation of factors that can repair dam-
age, possibly allowing checkpoint resolution and the resump-
tion of growth. Our prior work demonstrates that widespread
and constitutive activation of the ISR in ovarian follicles con-
tributes to blocked or very slow growth due to checkpoint
activation. In the case of PFs, only those whose pregranu-
losa cells are able to achieve ISR checkpoint resolution be-
gin to grow, and this would be favored within permissive re-
gional “microenvironments" in the ovary. We describe this
model of PFGA and subsequent patterns of follicle develop-
ment and death as reminiscent of a ‘gauntlet,’ because fol-
licles must overcome continuously changing regional stres-
sors, and repair incurred damage in order to grow and sur-
vive. Consideration of how patterns of checkpoint resolution
might be established given dynamic, regional changes in the
ovary over time, and the stochastic nature of the ISR led us
to consider whether ovarian aging could be described mathe-
matically by a random process. Following through with this
logic, RW modeling of PF behavior (similar to Diffusion De-
cision Modeling as described by 51, 52) recapitulated ovarian
aging at the level of simulated subjects and across popula-
tions in terms of the ANM. This mechanistic RW determina-
tion of primordial follicle decay and ANM distribution is dis-
tinct from non-mechanistic approaches where a curve is con-
structed mathematically in order to fit a series of data points.
Unlike curve fitting approaches (as assessed in 30), the simu-

lation approach used in this study generates synthetic data de
novo which can be seen to recapitulate actual ovarian aging
data. We next consider advantages and limitations of our use
of RWs to model ovarian aging.

Advantages. The RW approach is quite simple. Our model
in its simplest form was able to fit both cross-sectional fol-
licle decay data and an ANM distribution by choosing only
two free parameters. The pattern of PFGA can be considered
a by-product consequence of physiologically fluctuating ISR
activity relative to a growth threshold, without the need for
complex signaling or sensing that dictates whether an indi-
vidual PF begins to grow or stays dormant. It may be that
a more complex mechanism(s) ultimately dictates this deci-
sion, but the RW process appears capable of giving rise to the
natural pattern of follicle loss.
Importantly, this interpretation in no way contradicts ex-

isting data on genetic and environmental factors that influ-
ence the overall rate of PFGA. For example, genetic model
systems and large scale Genome Wide Association Studies
(GWAS) have revealed genes and pathways that influence
the rate of ovarian aging and the ANM (53, 54). For ex-
ample, Antimüllerian hormone (AMH) negatively regulates
the PFGA rate (47, 48), and Phosphatase and tensin homolog
deleted on chromosome ten (PTEN; 55–57) also negatively
regulates PFGA as seen in accelerated loss of the PF reserve
in mouse knockouts. Loss of Tumor necrosis factor alpha
(Tnfα, 58), or, Tumor necrosis factor receptor 2 (Tnfr2, 59)
has the opposite effect, where PFGA is significantly slowed
and the duration of ovarian function is extended. Down-
stream NFκB signaling also has been implicated in ovarian
aging (53), and disruption of NFκB inhibitory proteins IκBα
and IκBβ also significantly slows the rate of PFGA (60). In
addition to key protein signals, micro RNAs (miRNAs) and
longer noncoding RNA species (ncRNAs) have been shown
to regulate PFGA (61–65). In the case of ncRNAs let-7/H19,
this occurs due to their regulation of AMH levels (66). It has
not been clear, however, how these and other signaling path-
ways combine in their action in order to determine known
patterns of PF loss (2, 4, 67–69). We now hypothesize that
it is the combined action of all such identified factors that
ultimately influence ISR activity, and that this integration of
stress, damage, and signaling events gives rise to patterns of
ovarian aging.
The recapitulation of ovarian aging patterns by RWs also il-

luminates several features that are fascinating but have been
difficult to explain. First, it is well-known that growing (pre-
antral) follicles are present during prepubertal life in the hu-
man ovary, but insight as to what controls their numbers has
been lacking. The RW approach provides a reasonable ex-
planation for the onset and continuation of PFGA prior to
puberty, and also the characteristic "plateau" in PF numbers
during this time. This is because, if the RW process begins
around the time of birth, there is a delay before the first fol-
licles can engage in RWs for enough time such that they can
cross the PFGA threshold in appreciable numbers. As pre-
sented here, appreciable numbers of PFs begin to be avail-
able in the window of time corresponding to menarche on-
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set. Next, the supply of growing follicles between puberty
and late in the third decade of life is consistent. The RW
model gives rise to this stable supply of PFs in this window
of (simulated) time, given the application of Drift. It is also
well-known that PFs and occasionally, growing follicles are
present in the postmenopausal ovary. The RW model favors
the continued presence and decay of PFs after menopause,
and given a reasonably stable rate of PFGA, the rare commit-
ment to growth would still occur in these later years. Mecha-
nisms that control the maximum ANM can also be considered
in new ways. Because some simulated subjects have nearly
an order of magnitude greater Starting Supply of PFs, one or
more mechanism must be in place that limits the ANM at ap-
proximately 62 years. Following along the results presented
here, either a high PF Starting Supply must correspond to
accelerated follicle loss compared to lower PF starting sup-
plies, or the loss of the PFGA-slowing action of factors like
AMH leads to acceleration in PFGA such that women almost
never have more than 1000 PFs remaining by age 62. These
possibilities can be modeled as alterations in Drift.
Our provision of the formal mathematical treatment of con-

tinuous and discrete-step models, and also user-modifiable
code for discrete-step modeling makes it possible for inter-
ested parties to both reproduce our results, and also to test the
effects of modifying the models upon patterns of PFGA and
ovarian aging. Users can "tune" their modeling conditions as
we did in cases of Starting Supply, Drift, and Diffusivity, with
additional conditions that may better reflect actual signaling
within the ovary, including mechanisms that have yet to be
identified. Especially in the case of the discrete step RW R
code, tuning can be performed by non-mathematics profes-
sionals. A final advantage of such tuning is evident in the
way that inter-subject variability relates to patterns of ovarian
aging and population-level ANM. While our results support
Starting Supply as a plausible central factor in determining
how the ANM differs between women (consistent with 37),
modeling output is improved when both Starting Supply and
Subject-Variable Drift are applied. The RW approach can
be refined (and compared to alternative approaches) as bio-
logical mechanisms are revealed and higher quality female
reproductive aging datasets become available.

Limitations. Despite what we consider compelling advan-
tages, our approach has several limitations. First, we must
acknowledge that the decades-long time scale of the process
makes the normal behavior of individual PFs very difficult
to track for direct follicle-by-follicle comparison to model-
ing results. In terms of the RW approach, while it is true
that we only needed two free parameters to fit available folli-
cle decay data and the known human ANM distribution, we
acknowledge that there are many possible parameters (e.g,
degrees of freedom) that could be tuned in order to produce
RWs that faithfully reproduce these natural patterns. The tun-
ing that we performed was justifiable in terms of known bi-
ological measurements (Starting Supply) and the action of
biological signaling factors (as in the modeling of accelerat-
ing PFGA due to declining AMH as the stepwise alteration
of RW Drift). However, the mathematical treatment of those

biological features was done with the defined goal in mind of
matching patterns of ovarian aging. Even so, it is satisfying
that the action of a RW can so closely match PF loss and the
ANM distribution when constructed in a logical fashion and
subject to so few model variables.
We also acknowledge limitations with the best-available

datasets used for RW modeling. As the authors that com-
piled the dataset(s) of histological PF numbers over time
noted, how ovarian specimens were procured may influence
the evaluated pattern of PF decline (3). It is reasonable to ex-
pect that ovaries collected during autopsy are mostly repre-
sentative of a random sampling from the general population.
However, especially at later ages, ovary removal during elec-
tive surgery is less likely to be representative of the general
population. Until non-invasive and accurate methods of PF
number estimation become available, we and others will re-
main limited to cross-sectional data of PF numbers such as
these. There are also caveats related to available datasets for
the human ANM distribution. These are related to impreci-
sion due to patient self-reporting their timing of menopause
(defined as a year without menses; 39–41), and also to the
fixed, artificial threshold of 1000 PFs (38) used to define
menopause onset in simulated women.
Next, despite expression of core ISR machinery in pregran-

ulosa and granulosa cells, we have limited direct experimen-
tal evidence that ISR activity varies relative to a threshold
in the pregranulosa cells of human PFs in vivo. We have
generated immunofluorescence data that shows variable lev-
els of the core ISR regulatory factor P-eIF2α in mouse PF
pregranulosa cells and oocytes (Hagen-Lillevik, submitted,
preprint available at https://www.researchsquare.
com/article/rs-1682172/v1). However, despite
our prior detection of P-eIF2α in human nongrowing folli-
cles (20), a study comparing P-eIF2α levels in nongrowing
follicles in multiple replicate human ovary specimens has not
yet been performed. While it is highly likely that regional
differences in stress and damage occur similarly between the
mouse and human ovary, it may be that mechanisms that re-
spond to these dynamic local conditions differ between the
species. As mentioned, stochastic ISR checkpoint resolution
is our favored model of the switch that activates PFGA, but
the proposed RW could be greatly influenced by signals that
function separately, or parallel, to the ISR.

Final considerations. RWs appear to provide a useful
framework for the modeling of human ovarian aging. We
consider the following final points the major implications of
this model. First and foremost, the recapitulation of ovarian
aging by RWs suggests that random action may be an evo-
lutionary strategy used to ensure that a minimum duration of
ovarian function occurs in almost all women. It may be that
more strict PFGA control mechanisms would be more sus-
ceptible to dysregulation, and that randomness is protective
against catastrophic PF loss. Next, our main model variables,
PF Starting Supply and RW Drift, are likely to be determined
both by genetic/inherited factors in individuals and by en-
vironmental exposures. Genes identified in loss-of-function
experimental studies and GWAS approaches may influence
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Starting Supply and/or Drift. In the case of Drift, these would
likely be genes involved in the resolution of stress and cellu-
lar damage as at least in our model, these would modulate
the probability of checkpoint resolution and cell cycle entry.
Similarly, exposure to factors like chemotherapeutic agents
could be acting at the level of Drift, as the acute cellular re-
sponse to damage would be upregulation of repair factors that
again should impact the probability of checkpoint resolution,
cell cycle entry, or death. Future experiments may be able to
address these questions directly.

In the current model we treat the decision to undergo PFGA
as if a single unit enters the cell cycle. As more information
becomes available, we can more precisely model the multiple
pregranulosa cells in human PFs, and how interactions be-
tween pregranulosa cells and with the oocyte influence RW
behavior. We do not suggest that individual PFs behave in
unpredictable ways. Instead, PFs likely respond to their lo-
cal conditions in regulated, nonrandom ways, as dictated by
known signaling pathways. However, PFs are exposed to
conditions that change over time within the ovary, and sim-
ple, random processes are shown here to closely recapitulate
the pattern of PFGA over time. We can therefore consider the
mammalian ovary as a non-trivial, emergent, self-organizing
system, with limited adaptive capacity. The ovary’s critical
functions as the transmitting organ of the female germline
as well as its support of female health and well-being prior
to menopause are clearly non-trivial. That the simple sys-
tem can deliver a consistent supply of maturing follicles that
meets reproductive and endocrinological needs for decades
is suggestive of emergent self-organization. Last, the ovary’s
adaptive capacity is limited by the requirement that eggs pro-
duced can support reproduction by that subject. Adaptation
can thus occur that alters ovarian function, but not in a way
that compromises reproductive potential. Diverse future ap-
proaches including direct experimentation and further model
refinement can be used to investigate how the pattern of ovar-
ian aging in individual subjects and across populations of
mammals, including women, is influenced by random behav-
ior of ovarian follicles.

Materials and Methods

Data sourcing and definitions. We performed a literature
review of reports of numbers of primordial/nongrowing fol-
licles, and established parameters for our modeling approach
based upon i) the distribution(s) of measured numbers of PFs
present in the human ovary over time (3) and ii) the degree of
variability between women in terms of their cessation of ovar-
ian function (39–41, 70–72). Follicle number data used in
this study were generated from published plots (40, 41) using
the data extraction tool WebPlotDigitizer (73). Although loss
of ovarian function prior to the age of 40 is defined clinically
as reflective of a pathological state, termed primary ovarian
insufficiency (POI; 70), we included the possibility that ran-
dom action could result in measurable numbers of women
that exhaust their PF reserve by that time.

Matlab and R code. Data were downloaded from their
respective sources and analyzed using Matlab or R (36)
as indicated in order to interrogate RW modeling of
datasets. Matlab (https://doi.org/10.6084/m9.
figshare.19834774.v1) and R (https://doi.
org/10.6084/m9.figshare.19858987.v1) code
used in the manuscript are available in a public repository
for download and use.
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Figure i. Graphical Abstract: Modeling primordial ovarian follicle growth activation with random walks. The control mechanism that determines when individual
primordial follicles (PFs) begin to grow over time is unknown. The ovary is a uniquely dynamic organ that undergoes constant remodeling (ovaries, panel a) as follicles
grow and die, and sometimes ovulate and form corpora lutea. The organ also changes with age, and this includes diminishing numbers of follicles, alterations in the ovarian
stroma, and changes in blood vessels and their distribution. These dynamic changes include regional signaling differences in the ovary (intra-ovarian "microenvironments"),
including factors that induce stress and damage over time (grey arrow). In panel a, the same dormant PF (red arrowhead) and its immediately surrounding ovarian region are
monitored over time. As structures develop, change, and die in that region, the monitored PF is subject to dynamically changing signals and physiological damage-inducing
agents that activate the ISR. Spatiotemporally fluctuating ISR activity is simplified in panel b (modified from 20). When ISR activity is high, CELL CYCLE ARREST and
CYTOPROTECTION occur due to checkpoint activation. If ISR activity declines enough in a PF to the point of ISR checkpoint resolution, a Growth Threshold is crossed, and
pregranulosa cell cycle entry and GROWTH occurs (asterisk, monitored PF). In the plot in panel b, three PFs experience fluctuating ISR activity due to fluctuating stress and
damage (y-axis) over time (x-axis), and this is modeled as random walks (RWs). Each PF begins the RW at time 0 ("birth", PF on y-axis), and dark plot lines indicate changing
ISR activity as a RW over time (x-axis). Two PFs cross the PFGA threshold at approximately ages 21 and 38, and the monitored PF in panel a crosses the threshold at age 52
(red triangle, asterisk). Impacts of the following potential sources of variability between simulated women upon RW patterns and the timing of PF exhaustion are considered.
First, variation in PF numbers between subjects around the time of birth is modeled according to the reported distribution (Starting Supply, 3). Second, the probability of PF
movement is modified so that "Drift" towards the growth threshold occurs (b, orange block arrow at right); the amount of Drift is optionally modeled to vary between simulated
subjects.
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Fig. 1. Continuous one-dimensional random walk modeling of ovarian aging over simulated time. Panel a shows the number of PFs in ovarian histological preparations
over more than 6 decades (red circles, data from 3). The overlaid blue solid line is our output from a RW model when the starting number of PFs is set to the population
median. These RW settings result in the decay curve crossing an "ANM" threshold of 1000 remaining PFs at 51 years (black horizontal lines in a and b). Additional decay
curves were determined by applying different starting points from the PF Starting Supply distribution at time 0 from the same dataset (1a, dashed blue lines, see also
Supplemental Figure S1). Fig 1a depicts the outcome when homogenous Drift is applied to simulated subjects (Subject-Identical Drift). RW model output when Drift was
heterogeneous between subjects is shown in panel b. In a and b, dashed blue lines are RW output when Starting Supply was set arbitrarily to the values shown. Note that
unlike homogenous Drift between subjects where parallel decay lines result (1a), heterogeneous Drift results in decay that differs in trajectory between subjects, as seen in
crossing blue dashed lines in 1b. In panel 1c, ANM distributions reported by 39 (blue diamonds) and 40, 41 (black squares) are overlaid with simulation output in the CDF
plot. Red dots in 1c reflect the proportions of the population that are expected to reach menopause by the corresponding ages (e.g., approximately 1% of women reaching
menopause before age 40, a median ANM of 51, and very few to no women reaching menopause after age 62). The blue dashed line in 1c is our RW output when only PF
Starting Supply varies (e.g., homogenous Drift), and the black dotted line in 1c is our RW output when Drift is heterogeneous. Simulation output from these conditions are
provided as histograms in Supplemental Fig. S2 as compiled results from 10000 simulations of the time that the 1000-PF threshold was crossed by each subject.
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Fig. 2. Further exploration of primordial follicle loss with aging: ANM variability, impact of simulated acute loss, and simulation of accelerating growth activation
with time. In panel a, identical conditions were used as in as in 1b with subject-variable Drift, but here, results from 50 RWs that all begin at the median Starting Supply value
are traced. ANM variability given the same Starting Supply but varying Drift is shown in the varied points that dashed decay curves cross the ANM threshold (black horizontal
line; see also histogram in Fig. S2). Also in a, 50 resulting trajectories from a simulated subject that experienced an acute loss of PFs at approximately 12 years are shown
(indicated by *). Next, in distinct simulation conditions, the Drift applied was constant until age 38 years, when a one-time elevation in Drift is applied for the remainder of the
simulation. The resulting ANM distribution from 10000 subjects under the conditions used in b is provided as a histogram in Supplemental Figure S2.
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APPENDIX
Supplemental information in support of our mathematical modeling approach is provided as follows. We first expand upon
the alignment between continuous and discrete random walk models, then provide the justification for treatment of PF Starting
Supply as a log-normal distribution (Fig. S1), and finally provide ANM simulation results as histograms for further considera-
tion.

Discrete and continuous random walk models
We now show the equivalence of the discrete random walk in Eq. (1) and the continuous random walk in Eq. (2) for small steps
∆t and ∆x. The discrete random walk in Eq. (1) can be written as

X((n+ 1)∆t) =X(n∆t) + ∆xξn+1, n≥ 0, (12)

where {ξn}n≥1 is an independent and identically distributed (iid) sequence of random variables with

ξn =
{

+1 with probability p,
−1 with probability 1−p.

Defining D and V as in Eq. (3), the discrete random walk Eq. (12) can be written as

X((n+ 1)∆t) =X(n∆t)−V∆t+
√

2D∆tZn+1, n≥ 0, (13)

where

Zn := ξn−2p+ 1, n≥ 1.

Notice that {Zn}n≥1 is an iid sequence with

E[Zn] = 0, Variance(Zn) = 4p(1−p).

If we take ∆x→ 0, ∆t→ 0, and p→ 1/2 while keeping D and V in Eq. (3) fixed, applying the functional central limit
theorem (74) to Eq. (13) yields that the discrete random walk {X(n∆t)}n≥0 converges in distribution to the continuous
random walk {X(t)}t≥0 process satisfying the stochastic differential equation in Eq. (2).

Reserve exit time τ .

Exact probability distribution of τ . For the continuous random walk {X(t)}t≥0 satisfying Eq. (2), the reserve exit time τ is the
first time that the random walk leaves the interval (0,L). Mathematically, this is denoted by

τ := inf{t > 0 :X(t) /∈ (0,L)}. (14)

Define the survival probability,

S(x,t) := P(τ > t |X(0) = x),

where we have conditioned on the initial position of the random walk. The survival probability S(x,t) is the unique solution
of the following backward Kolmogorov equation (35),

∂

∂t
S =D

∂2

∂x2S−V
∂

∂x
S, x ∈ (0,L), t > 0, (15)

with absorbing Dirichlet boundary conditions, S(0, t) = S(L,t) = 0, and unit initial condition S(x,0) = 1.
In order to solve for S(x,t), we first define the solution operator for the partial differential equation in Eq. (23) subject to

absorbing boundary conditions in the special case that V = 0 by Φt(q). That is, Φt is a linear operator that takes an initial
condition, q(x), and maps it to the solution of Eq. (23) with V = 0 subject to absorbing boundary conditions at time t > 0. It is
straightforward to solve for Φt explicitly via a standard separation of variables calculation and find

(Φt(q))(x) =
∞∑
k=1
〈φk, q〉e−νktφk(x), (16)
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where the eigenvalues, {νk}k≥1, and orthonormal eigenfunctions, {φk}k≥1, are given by

νk = Dk2π2

L2 , φk(x) =
√

2
L

sin
(kπx
L

)
, (17)

and 〈·, ·〉 denotes the inner product,

〈f,g〉 :=
∫ L

0
f(x)g(x)dx.

It follows that

S(x,t) = e
V

2Dxe−
V 2
4D tΦt(e

−V
2D z). (18)

To make Eq. (18) explicit, we first calculate the inner product

〈φk(x),e
−V
2D x〉=

∫ L

0
e

−V
2D x

√
2
L

sin
(kπx
L

)
dx

=
4
√

2πD2k
√
L
(

1− (−1)ke
−LV

2D
)

4π2D2k2 +L2V 2 , k ≥ 1.

Therefore, Eq. (16) and Eq. (18) imply

S(x,t) =
∞∑
k=1

Ake
−λkt, (19)

where

λk := Dk2π2

L2 + V 2

4D

Ak :=
4
√

2πD2k
√
L
(

1− (−1)ke
−LV

2D
)

4π2D2k2 +L2V 2 e
V

2Dx

√
2
L

sin
(kπx
L

)
, k ≥ 1.

Growth and death probabilities. In our model, a PF begins to grow if its ISR activity hits the growth threshold at X = 0 and it
dies before beginning to grow if its ISR activity hits the death threshold at X = L > 0. For the parameter values in Eq. (6), the
vast majority of PFs grow rather than die.
To study this quantitatively, define

τ0 := {t > 0 :X(t) = 0},
τL := {t > 0 :X(t) = L}.

In words, τ0 is the first time the random walk reaches 0, and τL is the first time the random walk reaches L. Note that the
reserve exit time τ in Eq. (14) is thus the minimum of τ0 and τL. Hence, a PF dies before beginning to grow if τ0 > τL (i.e. if
its ISR activity hits the death threshold at X = L before the growth threshold at X = 0).
Define the probability that a PF dies before beginning to grow,

u(x) := P(τ0 > τL |X(0) = x), (20)

where we have conditioned on the initial ISR activity, X(0) = x. The probability u(x) satisfies Gardiner (35)

0 =D
d2

dx2u−V
d

dx
u, x ∈ (0,L),

with boundary conditions u(0) = 0 and u(L) = 1. It is straightforward to check that the unique solution to this boundary value
problem is

u(x) = e
−V (L−x)

D −e
−V L
D

1−e
−V L
D

. (21)

Evaluating Eq. (21) at the parameter values in Eq. (6) yields

u(x) = 2.05×10−6. (22)
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Approximate probability distribution of τ . We have found that the vast majority of PFs hit the growth threshold before the death
threshold. This suggests that we can approximate the probability distribution of τ by ignoring the death threshold. To study
this case, define the survival probability,

S0(x,t) := P(τ0 > t |X(0) = x).

The survival probability S0(x,t) is the unique solution of the following backward Kolmogorov equation, (35)

∂

∂t
S0 =D

∂2

∂x2S0−V
∂

∂x
S0, x > 0, t > 0,

S0 = 0, x= 0,
S0 = 1, t= 0.

(23)

A straightforward calculus exercise verifies that

S0(x,t) = 1
2

[
1 + erf

(x−V t√
4Dt

)
−eV x/D

(
1− erf

(x+V t√
4Dt

))]
satisfies Eq. (23). Equation Eq. (7) then follows from Eq. (4) upon setting x= 1.
For the values of V and D in Eq. (6) with x = 1 and L ≥ 2, the solution S(x,t) is well-approximated by S0(x,t). Again,

the basic reason is that for these parameter values, it is very unlikely for a PF to hit the death threshold at L before the growth
threshold at 0. To make this precise, observe that

P(τ0 > t) = P(τ0 > t,τL > τ0) +P(τ0 > t,τ0 > τL)
≤ P(τ0 > t,τL > t) +P(τ0 > τL)
= P(τ > t) +P(τ0 > τL).

Therefore,

0≤ P(τ0 > t)−P(τ > t)≤ P(τ0 > τL). (24)

By definition of S and S0, the bound Eq. (24) implies

0≤ S0(x,t)−S(x,t)≤ u(x), (25)

where u(x) is the probability in Eq. (20). Evaluating u(x) at the parameter values in Eq. (6) as in Eq. (22), we obtain

0≤ S0(x,t)−S(x,t)≤ 2.05×10−6.

Starting Supply distribution. We model the distribution of the Starting Supply N across a population of women as a log-
normal distribution as in Eq. (8)-Eq. (9). The parameters µ and σ in Eq. (8) are the respective mean and standard deviation of
the natural logarithm of the 30 PF counts in Wallace and Kelsey (3) taken from women who were at least 6 months gestation
and at most one month post birth. In Figure S1a, we plot the histogram of these 30 PF counts (blue bars), which is well-
approximated by the probability density function of the log-normal distribution in Eq. (9) with µ and σ in Eq. (8) (dashed black
curve). In Figure S1b, we plot the corresponding empirical cumulative distribution function for these 30 PF counts (solid blue
curve) and the cumulative distribution function of the log-normal distribution in Eq. (8)-Eq. (9) (dashed black curve). The
Kolmogorov-Smirnov distance between these two distributions in Figure S1b (i.e. the maximum absolute difference) is only
0.1, which has a corresponding p-value of 0.88 for the null hypothesis that these 30 PF counts are indeed sampled from the
log-normal distribution in Eq. (8)-Eq. (9).
We chose to consider women who were within a few months of birth since only 15 PF counts in Wallace and Kelsey (3) were

from women at birth. However, considering only these 15 PF counts at birth would have little effect on our results, and would
only change the values µ= 12.686, σ = 0.497 in Eq. (8) to µ= 12.801, σ = 0.490.
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Supplemental Figures
Supplemental information in support of our mathematical modeling approach is provided as follows. First, we show how PF
Starting Supply was determined according to the distribution of PF numbers around the time of birth produced by Wallace and
Kelsey (3) (Fig. S1).

Appendix 1, Figure S1. Starting Supply distribution. In panel a, we plot a histogram of the 30 PF counts for women near birth reported
by Wallace and Kelsey (3) (blue bars), which is well-approximated by the log-normal distribution in Eq. (8)-Eq. (9) (dashed black curve).
In panel b, we provide a cumulative distribution function plot of observed PF counts (blue solid line) versus the log-normal distribution
(dashed black curve).
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ANM histograms in Fig. S2 correspond to data shown in Figures 1 and 2, with model conditions indicated by Figure panel.

Appendix 1, Figure S2. ANM histograms generated from RW output when Drift was set as specified in "Drift Parameters" column. As
shown, an ANM distribution centered around a median age of approximately 51 (red vertical line) can be produced in each case, with
few simulated subjects reaching menopause before 40 years and after 60 years. Time-Variant Drift indicated by the asterisk (*) was
applied by modifying Drift conditions and also applying a single step Drift acceleration in year 38 of simulation time. This was used
to interrogate the possibility that PF loss accelerates during reproductive aging. Note that here, the ANM distribution generated when
Subject-Variable Drift is applied (middle panel) is broader than that seen for homogenous Drift (top panel) given otherwise identical
model conditions. Application of Time-Variant Drift resulted again in a narrower ANM distribution, and prevented simulated subjects
from reaching the ANM threshold after age 62 (blue vertical line).
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