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Abstract

Understanding the demographic history of populations is a key goal in population genetics,
and with improving methods and data, ever more complex models are being proposed and
tested. Demographic models of current interest typically consist of a set of discrete populations,
their sizes and growth rates, and continuous and pulse migrations between those populations
over a number of epochs, which can require dozens of parameters to fully describe. There is
currently no standard format to define such models, significantly hampering progress in the field.
In particular, the important task of translating the model descriptions in published work into
input suitable for population genetic simulators is labor intensive and error prone. We propose
the Demes data model and file format, built on widely used technologies, to alleviate these issues.
Demes provides a well-defined and unambiguous model of populations and their properties that
is straightforward to implement in software, and a text file format that is designed for simplicity
and clarity. We provide thoroughly tested implementations of Demes parsers in Python and C,
and showcase initial support in several simulators and inference methods.

Introduction

The ever-increasing amount of genetic sequencing data from genetically and geographically diverse
species and populations has allowed us to infer complex demography and study life history at fine
scales. An integral component to such population genetics studies is simulation. Software to either
simulate whole genome sequences (Thornton, 2014, 2019, Staab et al., 2015, Baumdicker et al.,
2022, Kelleher et al., 2016, Haller and Messer, 2019) or informative summary statistics of
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diversity (Gutenkunst et al., 2009, Kamm et al., 2017, Jouganous et al., 2017) have enabled
the increasing complexity of genomic studies, with several software packages capable of handling
large sample sizes, many interacting populations, and deviations from panmictic random-mating
assumptions. This ability to infer and simulate such complex demographic scenarios, however, has
highlighted a major shortcoming in community standards: the fragmented landscape of different
ways to describe demographic models makes it difficult to compare inferences made by different
methods and to reliably simulate from previously inferred models. Inference results are typically re-
ported in publications via a combination of visual depiction, a list of key parameters in tabular form
and a discussion within the text. Unfortunately these descriptions are often ambiguous, and imple-
menting the precise model inferred for later simulation is at best tedious and error prone (Adrion
et al., 2020, Ragsdale et al., 2020), and occasionally impossible because of missing information.

Simulation is a core tool in population genetics, and many methods have been developed over
the past three decades (Carvajal-Rodŕıguez, 2008, Liu et al., 2008, Arenas, 2012, Yuan et al.,
2012, Hoban et al., 2012). Simulations are based on highly idealized population models, and one
of the key uses of inferred demographic histories is to make simulations more realistic. Simulation
methods take three broad approaches to specifying the demographic model to simulate, using either
a command line interface (e.g., Hudson, 2002, Hernandez, 2008, Kern and Schrider, 2016), a
custom input file format (e.g., Guillaume and Rougemont, 2006, Excoffier and Foll, 2011,
Shlyakhter et al., 2014), or an Application Programming Interface (API) to allow models to be
defined programmatically (e.g., Thornton, 2014, Hernandez and Uricchio, 2015, Kelleher
et al., 2016, Becheler et al., 2019, Haller and Messer, 2019, Thornton, 2019, Baumdicker
et al., 2022). Command line interfaces are a concise way of expressing demographic models, and the
syntax defined by ms (Hudson, 2002) is used by several simulators (e.g., Ewing and Hermisson,
2010, Chen et al., 2009, Staab et al., 2015). However, this conciseness means that models of
even intermediate complexity are difficult for humans to understand, making errors likely. Input
parameter file formats for simulators allow the model specification to be less terse and allow for
documentation in the form of comments. Several graphical user interfaces and visualization methods
have been developed, which greatly facilitate interpretation (Mailund et al., 2005, Antao et al.,
2007, Parreira et al., 2009, Ewing and Hermisson, 2010, Parobek et al., 2017, Zhou et al.,
2018). However, these methods currently have little traction as they are all either directly coupled
to an internal simulation method or to the syntax of a specific simulator. There is currently no
way in which demographic models inferred by different packages can be simulated or visualized by
downstream software.

Here we present “Demes”, a data model and file format specification for complex demographic
models developed by the PopSim Consortium (Adrion et al., 2020). The Demes data model
precisely defines the sizes and relationships of populations, and it provides a way to explicitly
encode the information relevant to demography while avoiding repetition. This data model is
implemented in the widely used YAML format (Ben-Kiki et al., 2009), which provides a good
balance between human and machine readability. The specification precisely defines the required
behavior of implementations, ensuring that there is no ambiguity of interpretation, and includes
both a reference implementation and an extensive suite of test examples and their expected output.
The initial software ecosystem includes high-quality Python and C parser implementations, as well
as utilities for verification and visualization of Demes models, and has been implemented in several
popular inference and simulation methods (Table 1). We hope that this data model and file format
will be widely adopted by the community, such that users can expect to simulate directly from
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inferred models with little to no programming effort.

Demes

The design of Demes is a balance between two partially competing requirements: that (a) models
should be easy for humans to understand and manipulate; and (b) software processing Demes mod-
els should be provided with an unambiguous representation that is straightforward to process. For
efficiency of understanding and avoidance of model specification error, we require a data representa-
tion without redundancy (i.e., repetition of values). However, for the simplicity of software working
with the Demes model (and the avoidance of programming error, or divergence in interpretations
of the specification) it is preferable to have an explicit representation, in which all relevant values
are readily available. Thus, Demes is composed of three entities: the Human Data Model (HDM)
designed for human readability; the Machine Data Model (MDM) designed for programmatic input
and processing; and the parser, which is responsible for transforming the former into the latter.

Below we provide a brief overview of the population genetics models that Demes supports
and the components of the Demes infrastructure. We then highlight an example usage, including
visualization and simulation of a multi-population demographic model. More detailed descriptions
of the population genetics model, parsers, scope, and additional examples are given in the Appendix.
Complete technical details of the MDM and HDM, and the responsibilities of the parser are provided
in the online Demes specification (https://popsim-consortium.github.io/demes-spec-docs/).

Population genetics model

Demographic models consist of one or more populations (or “demes”) defined by their size histo-
ries and the time intervals of their existence. Individuals can move between populations based on
their ancestor-descendant relationships or by continuous or discrete migration events. The demo-
graphic model itself omits information about genome biology, such as genome size and architecture,
ploidy, and mutation and recombination rates. It also omits any information about selection op-
erating within populations. Within populations, allele-frequency dynamics are assumed to follow
the Wright-Fisher model, so that generations are discrete and non-overlapping and population sizes
are independent of mean fitness (i.e., “soft” selection (Christiansen, 1975)). While these restric-
tions preclude some population-genetic scenarios of interest, such as continuous spatial structure
(Wright, 1943, Barton et al., 2002, 2010, Ringbauer et al., 2017, Battey et al., 2020) or
stochastic population size dynamics (Nunney and Campbell, 1993, Orr and Unckless, 2014),
many current forwards- and backwards-in-time simulators make these same assumptions. The basic
assumptions of discrete populations connected by instantaneous or continuous migrations are also
shared by many inference methods (e.g., Gutenkunst et al., 2009, Gravel, 2012, Kamm et al.,
2017, Jouganous et al., 2017, Ragsdale and Gravel, 2019, Excoffier et al., 2021). Demes
therefore serves as “middleware” between inference methods and simulation software, capturing
these common assumptions. Appendix A1 provides more details on the population genetics models
supported by Demes.

Human Data Model

The Demes Human Data Model (HDM) is focused on efficient human understanding and avoiding
errors. We have adopted the widely used YAML format (Ben-Kiki et al., 2009) as the primary
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Software infrastructure

demes-python A Python library for loading, saving, and working with Demes models.
Includes support for converting to and from ms (Hudson, 2002) (https:
//github.com/popsim-consortium/demes-python).

demes-c A C library for parsing Demes YAML descriptions. (https://github.
com/grahamgower/demes-c).

demesdraw A Python library for visualizing Demes models (https://github.com/
grahamgower/demesdraw).

Methods using Demes as input/output format

dadi Optimizes parameters in models of demographic history and distribu-
tions of fitness effects using SFS (Gutenkunst et al., 2009). Can sim-
ulate SFS from Demes models.

demes-slim Loads Demes models into the SLiM forward simulator (Haller and
Messer, 2019).

fwdpy11 Simulates the Wright-Fisher model forward in time (Thornton, 2014,
2019). Demes is the preferred format for specifying a demographic
model.

GADMA Infers models of demographic history (Noskova et al., 2020). Outputs
Demes models and visualizations.

moments Optimizes parameters in models of demographic history using SFS and
linkage disequilibrium statistics (Jouganous et al., 2017, Ragsdale
and Gravel, 2019). Models to be optimized can be specified in Demes.

msprime Simulates population genetic models using tree sequences (Kelleher
et al., 2016, Kelleher and Lohse, 2020, Baumdicker et al., 2022).
Demographic history models can be specified using Demes.

Table 1: Software support for Demes. We have included software infrastructure developed for
working with Demes models (such as parsing, validation, and visualization) as well as downstream
software that implement the specification, at the time of writing.
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interface for writing and interchanging demographic models (see Appendix A2 for details about
our choice of YAML). Demographic models written in YAML format provide information about
global features of the model (such as time units and generation times), populations (as “demes”)
and their existence intervals (as “epochs”), and gene flow between populations (as continuous
“migrations” or instantaneous “pulse” events) (e.g., Figures 1 and A1). The HDM encourages
human understanding by avoiding redundancy in the description where possible and by providing
a mechanism for specifying default values that are inherited hierarchically.

Parsers

While the HDM is designed for human readability and conciseness, the underlying data model suit-
able for software implementation (the Machine Data Model, or MDM) is redundant and exhaustive.
Translation from the HDM to the MDM requires resolving hierarchically-defined default values and
verifying relationships between populations and the validity of specified parameter values. Because
this translation and validation requires significant programming effort, we define a standard soft-
ware entity as part of the specification to perform this task (the parser), which is intended to be
shared by programs that support Demes as input. By maintaining high-quality Demes parsers
available as libraries, we ensure consistency across simulation and inference software. In addition
to a reference implementation written in Python, we provide high-quality parser implementations
in the Python and C languages (Table 1, as discussed in Appendix A3).

The scope of Demes

The Demes specification is static by design—we wish to unambiguously describe a demographic
model with a concrete set of parameters. This simplicity means that we cannot directly specify
parameter distributions or estimated confidence intervals for those parameters. While it is not dif-
ficult to imagine extending the specification in ways that would allow this (Appendix A4), it is not
immediately clear that the benefits are worth the increased parser complexity. It is important to
note, however, that Demes may be used in applications that include additional population genetic
processes outside of what is explicitly modeled in the specification, such as interpreting popula-
tion sizes as carrying capacities, implementations of hard selection, or layering more complicated
mating or spatial structure. The Demes specification therefore provides a basic model that can be
elaborated on where necessary.

Application: simulation using Demes

Here, we highlight the interaction between Demes and other software, including simulation and
model illustration tools. Demes allows us to specify a demographic model which can be used as the
input for a growing number of simulation packages (Table 1). We implemented the human two-
population demographic model from Tennessen et al. (2012) inferred from European and African-
American sequencing data. This model (shown in Demes format in Figure A2) is parameterized
by an ancestral population with an ancient growth, divergence into “AFR” and “EUR” that each
have multiple-epoch size histories, and multiple epochs of continuous migration between the two
branches (illustrated using demesdraw in Figure 1A). The large final sizes (≈ 500, 000 individuals
each) are one to three orders of magnitude larger than ancestral population sizes, reflecting the
recent explosive population size increase in humans.
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Figure 1: Illustration and simulation using Demes. (A) Using an inferred demographic
model from Tennessen et al. (2012) specified as a YAML file in Demes format (Figure A2), we
used demesdraw to visualize the demographic model (note the recent exponential growth resulting
in present-day population sizes that greatly exceed those in the past). We then used msprime

to simulate genomic data for 20 genome copies sampled from the two contemporary populations,
and we used moments to compute the expected joint site-frequency spectrum for the same sample
sizes (Figure A3). (B, C) We compared the single-population SFS in each population, showing
agreement between the simulation methods. (D) Python code snippets of the interactions between
demes and the simulation software. An extended script to compute the SFS shown in (B) and (C)
is given in Figure A3.

We used this model to simulate 20 haploid genome copies from EUR and AFR at time zero
(i.e., present day) to obtain the joint site-frequency spectrum (SFS), a summary of observed al-
lele frequencies widely used in evolutionary inference (Bustamante et al., 2001, Gutenkunst
et al., 2009, Tennessen et al., 2012, Jouganous et al., 2017, Kamm et al., 2017, Kim et al.,
2017). The Demes model (Figures 1A and A2) was provided as the input demography to msprime

(Baumdicker et al., 2022) to simulate a large recombining region under the mutation rate as-
sumed in Tennessen et al. (2012), and we computed the observed SFS using tskit (Ralph et al.,
2020). Using the same Demes model as input to moments (Jouganous et al., 2017), we computed
the expectation of the joint SFS and compared to the msprime simulated data (Figure 1B,C). Fig-
ure 1D shows the code required to run the simulations in msprime and moments, and demonstrates
that precisely the same input model, without modification, was provided to both packages. Such
interoperability is a major gain for researchers, which we hope will become the expected norm as
more packages adopt the Demes format.
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Discussion

Stable and healthy software ecosystems require standard interchange formats, allowing for the
development of high-quality and long-lasting tools that produce and consume the standard. Demo-
graphic models are a key part of population genetics research, and to date the transfer of inferred
models to downstream simulations has been ad-hoc, and conversions between the many different
ways of expressing such models is both labor intensive and fraught with errors. The proposed
Demes standard is an attempt to bridge this gap between inference and simulation, and also to
provide the foundations for a sustainable ecosystem of tools built around this data model. Table 1
shows some initial infrastructure that we have built as part of developing Demes, but many other
useful tools can be envisaged that consume, transform, or produce this format.

Reproducibility is a significant problem throughout the sciences (Baker, 2016), and various
measures have been proposed to increase the likelihood of researchers being able to replicate results
in the literature (Munafò et al., 2017). The most basic requirement for reproducibility is that we
must be able to state precisely what the result in question is. The lack of standardization in how
complex demographic models are communicated today, and the lack of precision in the published
model descriptions means that it is difficult to replicate analyses, or reproduce those models for
later simulation. Thus, we hope that the Demes standard introduced here will be widely adopted
by simulation and inference methods and be used for reporting results in publications, either as
supplemental material or uploaded to a data repository.
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Appendix

The Demes specification is a formal data model for describing the properties of populations over
time, along with some metadata and provenance information. The data model is based on the ubiq-
uitous JSON (Bray, 2017) standard, and formally defined using JSON Schema (Wright et al.,
2020). Along with the schema, full technical details of the of the model are provided in the on-
line specification document (https://popsim-consortium.github.io/demes-spec-docs/). This
specification rigorously defines the data model, fully describing the entities and their relationships,
and the required behavior of implementations. Since the online specification is definitive, we will
not recapitulate the details here, but instead focus on the high level properties of the model and
the rationale behind key design decisions.

Below we detail the population genetics model in Appendix A1, the high-level, human-readable
model specification in Appendix A2, demographic model parsers and their intended behavior in Ap-
pendix A3, and the intended scope of Demes in Appendix A4. The extended figures in Appendix A5
provide additional examples and illustrations of Demes usage.

A1 Population genetics model details

In Demes, demographic models consist of one or more interacting populations, or “demes”, un-
derstood to be a collection of individuals that can be conveniently modeled using a defined set of
rules and parameters (Gilmour and Gregor, 1939, Gilmour and Heslop-Harrison, 1955). To
avoid confusion with the name of the specification itself we will use the term “population” in this
discussion, with the understanding that the terms are interchangeable. A population is defined as
some collection of individuals that exists for some period of time, and has a well-defined size (i.e.,
number of individuals) during that time period. Individuals can move between populations either
according to their ancestor-descendant relationships or through processes involving migrations. Few
other properties of the populations are specified in the model: we are concerned primarily with
defining the populations, their sizes, and the movement of individuals between those populations.

A1.1 Time units

Population and event times are written as units in the past, so that time zero corresponds to the
final generation or “now”, and event times in the past are values greater than zero with larger values
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corresponding to times in the more distant past. By having time units increase into the past, we
avoid the need to choose an arbitrary point in history as “time zero”. A natural specification for
time units is in generations, although other time units are permitted, such as years, accompanied
by the generation time.

A1.2 Sizes and epochs

Population sizes are given as numbers of individuals, and details such as ploidy levels are considered
external to the model. We therefore focus on the number of individuals as opposed to the number of
genome copies. Sizes and mating system details are specified for each population within population-
specific epochs. Epochs are contiguous time intervals that define the existence interval of the
population. Each epoch specifies the population size over that interval, which can be a constant
value or a function defined by start and end sizes that must remain positive.

A1.3 Population dynamics

Within a population, we assume that allele frequency dynamics can be described by the Wright-
Fisher model. Briefly, generations are non-overlapping (all parents reproduce and die simultane-
ously), and for allele i currently at frequency pi, its frequency in the next generation (at birth) is
expected to be piwi/w̄, where wi and w̄ are the marginal and mean fitnesses, respectively, properly
weighted according to ancestry proportions. In this framework, a forward-time simulation of finite
populations is equivalent to multinomial sampling of allele frequencies each generation (Bürger
(2000, pp 29-31), Crow and Kimura (1970, pp 179-181)), and a backwards-time (coalescent) sim-
ulation follows the approximations described in Tajima (1983), Hudson (1983) and Wakeley
(2008, chapter 3). Further, this model assumes “soft” selection (Christiansen, 1975), meaning
that the dynamics of population sizes changes are independent of the details of individual fitnesses.
As such, this model excludes scenarios such as “hard selection,” in which population sizes are
dependent on a population’s mean fitness, or stochastic fluctuations in population size, such as
interpreting population sizes as carrying capacities. Many forwards and backwards time simula-
tors currently implement this model (e.g., Hudson, 2002, Gutenkunst et al., 2009, Excoffier
and Foll, 2011, Kelleher et al., 2016, Jouganous et al., 2017, Haller and Messer, 2019,
Thornton, 2019). Each has their own unique method of specifying the details of selection and
demography. The goal of Demes is to provide a common method for the latter task.

A1.4 Selfing and cloning

Each population has an assigned selfing rate and cloning rate, where each defines the probability
that offspring are generated from one generation to the next by either self-fertilization or cloning
of an individual. More specifically, for a given epoch within a population denote the clonal rate
by σ and the selfing rate by S. S and σ can take any value between zero and one and can sum to
more than one. Each generation a proportion of offspring σ are expected to be generated through
clonal reproduction, while 1 − σ are expected to arise through sexual reproduction. Within the
sexually-reproduced offspring, S are born via self-fertilization while the rest have parents drawn
at random from the previous generation. Depending on the simulator, this random drawing of
parent may occur either with or without replacement. When drawing occurs with replacement, a
small amount of “residual” selfing is expected, so that the realized selfing probability is (1−σ)(S+

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494112
http://creativecommons.org/licenses/by/4.0/


(1 − S)/N) instead of (1 − σ)S (so that even with σ = 0 and S = 0, selfing may still occur with
probability 1/N), although this effect is negligible in large populations (Nordborg and Donnelly,
1997). Simulators that allow variable rates of selfing are expected to clearly document the expected
behavior.

By allowing the definition of selfing and cloning probabilities, we allow many standard models
to be defined. However, by parameterizing selfing and cloning as we have, we assume that these
properties of populations can be specified independently from the genetics. In other words, muta-
tions that cause selfing probabilities to fluctuate within an epoch are not considered. More details
of the mathematical properties of selfing and cloning rates in a coalescent context can be found in
Nordborg and Donnelly (1997), Hartfield et al. (2016).

A1.5 Relationships between populations

A population may have one or more ancestors, which are other populations that exist at the pop-
ulation’s start time. If one ancestor is specified, the first generation is constructed by randomly
sampling parents from the ancestral population to contribute to offspring in the newly generated
population. If more than one ancestor is specified, the proportions of ancestry from each contribut-
ing population must be provided, and those proportions must sum to one. In this case, parents are
chosen randomly from each ancestral population with probability given by those proportions.

Individuals in a population may have parents from a different population through migrations.
These can be defined as continuous migration rates over time intervals for which populations co-
exist or through instantaneous (or pulse) migration events at a given time. Continuous migration
rates are defined as the probability that parents in the “destination” population are chosen from
the “source” population. On the other hand, pulse migration events specify the instantaneous re-
placement of a given fraction of individuals in a destination population by individuals with parents
from a source population.

A2 Human Data Model

The Demes Human Data Model (HDM) is focused on the efficiency of human understanding and
the avoidance of errors. We have adopted the widely used YAML format (Ben-Kiki et al., 2009)
as the recommended means of interchanging Demes models (e.g., Figures A1 and A2). YAML is a
data serialization language with an emphasis on simplicity and which interoperates well with JSON
(indeed, YAML 1.2 is a super set of JSON). We chose YAML over JSON because although JSON is
an excellent format for data interchange, it is ill-suited for human understanding or manipulation.
We also considered other declarative data exchange formats such as TOML, but chose YAML
because of equivalence with JSON, its popularity and good software support. Since the Demes
data model is defined in JSON Schema, however, there is no formal dependency on YAML and
implementations may choose to use JSON directly if they wish (e.g., for greater efficiency).

Structurally, the HDM encourages human understanding by avoiding redundancy in the descrip-
tion where possible and by providing a mechanism for specifying default values that are inherited
hierarchically. Figure A1 shows an example Demes model expressed in both the HDM and Machine
Data Model (MDM) forms (both in terms of YAML syntax). For values that repeat across fields,
defaults may be used to implicitly assign default values to fields of the given type. A default is
superseded by an explicitly provided value if given. Other implicit values are inherited naturally
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following the progression of time. For example, if an epoch start size is not provided, it is as-
sumed to be equal to the end size of the previous epoch. This also means that the first epoch of
each population must specify the initial size.

A3 Parsers

The implicit value inference and default value propagation required to fully resolve a Demes HDM
description into the corresponding MDM form is straightforward to describe, but still requires
significant effort to implement in software. Moreover, there are many constraints on the data
model (for example, epoch end time values should be strictly decreasing within a deme), which
must be enforced. It would not be reasonable to require every program that takes Demes models as
input to implement this logic, as the programming effort would be significant (limiting adoption)
and it is likely that if there were many implementations some would differ in their details (harming
the software ecosystem). We therefore define a standard software entity as part of the specification
(the parser), which performs this task and can be shared by programs that support Demes as an
input. By having relatively few high-quality Demes parsers available as libraries (ideally, one per
programming language), the probability of divergences from the standard is greatly reduced.

The Demes specification precisely defines the required behavior of parsers, which translate a
model described in the HDM into the MDM, where values have been assigned to all parameters
and data constraints have been checked. The output is formally defined as JSON, but in practice
parsers output an object model that is suitable for the particular programming language and
that can be used directly by the implementing program. We provide a reference implementation
written in Python to resolve any potential ambiguities and to provide a helpful template for other
implementations, as well as an extensive test suite of examples and the expected outputs. In
addition, we have high-quality parser implementations in the Python and C languages (published
under liberal open source licenses), providing a solid foundation for the software ecosystem.

A4 Scope of the specification

A4.1 Static models, not parameterized models

The Demes specification is designed to describe demographic models defined by a fixed set of
model parameters. As described in the main text, it does not include information about estimated
confidence intervals or the joint distribution of parameter values. In this section we describe the
rationale for this design decision.

The parameters of demographic models are typically tightly coupled, and cases in which distri-
butions for different parameters can be simply described are rare. In this situation, the simplest
way to describe an estimated distribution is to list a large number of samples from the posterior.
While writing out a large number of Demes models in YAML format may seem inefficient, it can
in fact be a compact way to describe these distributions. For example, consider a one-population
model with piecewise-constant sizes over 20 epochs which has ∼ 40 free parameters: the start size

and end time values for each epoch. If we sample 50,000 models from the posterior distribution,
the resulting multi-document YAML file is 45 MiB. This format compresses down to 8.4 MiB when
gzipped or 6.2 MiB when compressed with LZMA2, which is on par with an equivalent binary
representation of the free parameters (40 × 50000 × 4 bytes ≈ 7.6 MiB).
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Similarly, one might be interested in running simulations in which the demographic model
parameters are drawn from a distribution, e.g., in ABC inference (Beaumont et al., 2002). Other
inference procedures based on optimizing a loss function (Gutenkunst et al., 2009, Kamm et al.,
2017, Jouganous et al., 2017, Ragsdale and Gravel, 2019, Excoffier et al., 2021) need users to
specify parameter bounds, and possibly non-linear or conditional constraints between parameters.
Indeed, the choice of how to parameterize a model could be important for some inference methods
(e.g. absolute times versus relative times between events).

Implementing the many distributions of interest and supporting a general way to describe a
model’s free parameters would greatly increase the complexity of parsers, with relatively limited
benefit to most users. It’s unlikely that Demes could be made sufficiently flexible without con-
siderable effort to implement many features of general-purpose programming languages, such as
variables, arithmetic, and flow control. Such use cases are therefore better served by writing
model-generating functions in an existing programming language, for example using the Demes
Python API (e.g., as implemented in moments (Jouganous et al., 2017, Ragsdale and Gravel,
2019)). As an intriguing possibility for developments in this direction, there exist many templating
solutions for YAML and JSON that are specifically designed for extending static data in arbitrarily
complex ways (e.g., YTT, Jsonnet, CUE, and Dhall).

A4.2 Population-level features, not genome features

Demes is designed to interface with a large number of simulation and inference methods, so we have
restricted the specification to only describe demographic features at the population level. Features
of the underlying genome biology are omitted, including mutation and recombination rates, genome
annotations, ploidy, sequence annotations, and so on. Selection and dominance models are absent,
as discussed in Sec. A1, and we do not specify how individuals are sampled.

The model is, by design, very limited. We do not specify details of individuals or of the processes
that happen within populations, because such details are necessarily complicated, vary greatly by
application, and attempts to encompass such a broad range of biological processes are unlikely
to succeed. The narrow focus on individuals and their groupings into populations should ensure
that the Demes standard is stable, and not subject to continual development as more and more
elaborations of basic processes are added. Demes is intended to provide part of a simulation model
specification; other parts of the specification, such as sampling strategies, or parameters that vary
by time or population can refer to this well defined and unambiguous description of the demography.

A5 Extended data and figures
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A

1 # Comments start with a hash.

2 description:

3 Two-deme isolation-with-migration model.

4 time_units: generations

5 defaults:

6 epoch: {start_size: 1000}

7 demes:

8 - name: A

9 description: The ancestral deme

10 epochs:

11 - end_time: 100

12 - name: X

13 description: First descendant deme.

14 ancestors: [A]

15 - name: Y

16 description: Second descendant deme.

17 ancestors: [A]

18 epochs:

19 - {end_time: 50}

20 - {end_size: 3000}

21 migrations:

22 - {demes: [X, Y], rate: 1e-4}
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1 description: Two-deme isolation-with-migration model.

2 time_units: generations

3 generation_time: 1

4 doi: []

5 demes:

6 - name: A

7 description: The ancestral deme

8 start_time: .inf

9 ancestors: []

10 proportions: []

11 epochs:

12 - end_time: 100

13 start_size: 1000

14 end_size: 1000

15 size_function: constant

16 selfing_rate: 0

17 cloning_rate: 0

18 - name: X

19 description: First descendant deme.

20 start_time: 100

21 ancestors: [A]

22 proportions: [1]

23 epochs:

24 - end_time: 0

25 start_size: 1000

26 end_size: 1000

27 size_function: constant

28 selfing_rate: 0

29 cloning_rate: 0

30 - name: Y

31 description: Second descendant deme.

32 start_time: 100

33 ancestors: [A]

34 proportions: [1]

35 epochs:

36 - end_time: 50

37 start_size: 1000

38 end_size: 1000

39 size_function: constant

40 selfing_rate: 0

41 cloning_rate: 0

42 - end_time: 0

43 start_size: 1000

44 end_size: 3000

45 size_function: exponential

46 selfing_rate: 0

47 cloning_rate: 0

48 migrations:

49 - {source: X, dest: Y, start_time: 100, end_time: 0,

50 rate: 0.0001}

51 - {source: Y, dest: X, start_time: 100, end_time: 0,

52 rate: 0.0001}

53 pulses: []

Figure A1: Example isolation-with-migration Demes model. (A) The Human Data Model rep-
resentation expressed using YAML. (B) A visual representation of the model using demesdraw.
(C) The same model in the Machine Data Model form. The YAML descriptions in (A) and (C)
correspond exactly to a JSON description, but are much more human-readable.
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1 description: The two-population model inferred in Tennessen et al (2012).

2 doi: ["https://doi.org/10.1038/nature11690"]

3 time_units: years

4 generation_time: 25

5 demes:

6 - name: ancestral

7 description: Population that splits into EUR and AFR

8 epochs:

9 - start_size: 7310

10 end_time: 148000

11 - start_size: 14474

12 end_time: 51000

13 - name: AFR

14 description: African Americans

15 ancestors: [ancestral]

16 epochs:

17 - start_size: 14474

18 end_time: 5115

19 - end_time: 0

20 end_size: 432125

21 - name: EUR

22 description: European Americans

23 ancestors: [ancestral]

24 epochs:

25 - start_size: 1861

26 end_time: 23000

27 - start_size: 1032

28 end_time: 5115

29 end_size: 9279

30 - end_time: 0

31 end_size: 501436

32 migrations:

33 - demes: [AFR, EUR]

34 rate: 1.5e-4

35 end_time: 5115

36 - demes: [AFR, EUR]

37 rate: 2.5e-5

38 start_time: 5115

Figure A2: The Tennessen et al. (2012) two-population demographic model in Demes
format. This model includes a single ancestral population that expands in size in the past, followed
by divergence between AFR- and EUR-labeled populations. The two-population phase of the model
includes multiple epochs of varying size, and rapid exponential growth over the past five thousand
years in each population.
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1 import demes

2 import msprime

3 import moments

4

5 ####

6 #### Import the demographic model using demes, set up samples

7 ####

8

9 graph = demes.load("tennessen.yaml")

10 samples = {"AFR": 20, "EUR": 20}

11

12 ####

13 #### Simulate genomic data using msprime

14 ####

15

16 msprime_samples = [

17 msprime.SampleSet(n, ploidy=1, population=p) for p, n in samples.items()

18 ]

19 demog = msprime.Demography.from_demes(graph) # load the demes model as msprime demography

20 L = 1e7 # sequence length of 10 Mb

21 r = 2e-8 # with constant recombination rate of 2e-8

22 u = 2.36e-8 # mutation rate used in Tennessen et al (2012)

23

24 ts = msprime.sim_ancestry(

25 msprime_samples,

26 demography=demog,

27 sequence_length=L,

28 recombination_rate=r,

29 random_seed=1234567,

30 )

31

32 ts = msprime.sim_mutations(ts, rate=u, random_seed=1234567)

33

34 # compute the SFS from the msprime simulation using tskit

35 msprime_afr = ts.allele_frequency_spectrum(

36 [range(samples["AFR"])], mode="site", polarised=True, span_normalise=False

37 )

38 msprime_eur = ts.allele_frequency_spectrum(

39 [range(samples["AFR"], samples["AFR"] + samples["EUR"])],

40 mode="site",

41 polarised=True,

42 span_normalise=False,

43 )

44

45 ####

46 #### Compute expected SFS for sampled populations using moments

47 ####

48

49 Ne = graph["ancestral"].epochs[0].start_size

50 theta = 4 * Ne * u * L

51

52 fs = moments.Spectrum.from_demes(graph, samples=samples)

53 fs *= theta # rescale to match the total mutation rate in the msprime simulation

54

55 moments_afr = fs.marginalize([1])

56 moments_eur = fs.marginalize([0])

Figure A3: Simulation of SFS for the Tennessen model. We first load the demographic model
using demes (as graph), which can then be used by msprime to create the demographic model used
in msprime.sim ancestry(). The same loaded graph can also be passed to moments to compute
the expected joint SFS. To compare the SFS in Figure 1, we marginalize the joint SFS to obtain
the single-population SFS for both AFR and EUR populations. Lines interfacing demes and other
software are highlighted.
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