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Abstract
The steady decline of avian populations worldwide urgently calls for a cyber-physical system 1

to monitor bird migration at the continental scale. Compared to other sources of information 2

(radar and crowdsourced observations), bioacoustic sensor networks combine low latency with 3

a high taxonomic specificity. However, the scarcity of flight calls in bioacoustic monitoring 4

scenes (below 0.1% of total recording time) requires the automation of audio content analysis. 5

In this article, we address the problem of scaling up the detection and classification of flight 6

calls to a full-season dataset: 6672 hours across nine sensors, yielding around 480 million 7

neural network predictions. Our proposed pipeline, BirdVox, combines multiple machine 8

learning modules to produce per-species flight call counts. We evaluate BirdVox on an 9

annotated subset of the full season (296 hours) and discuss the main sources of estimation 10

error which are inherent to a real-world deployment: mechanical sensor failures, sensitivity to 11

background noise, misdetection, and taxonomic confusion. After developing dedicated 12

solutions to mitigate these sources of error, we demonstrate the usability of BirdVox by 13

reporting a species-specific temporal estimate of flight call activity for the Swainson’s Thrush 14

(Catharus ustulatus). 15

Introduction 16

The role of bioacoustic monitoring in conservation science 17

The northeast United States has lost 13% of its overall avian migratory biomass between 2007 18

and 2017 [1]. In this respect, the order (Passeriformes) appears as most direly affected: the 19

global populations of American sparrows (Passerellidae) and New World warblers (Parulidae) 20

have both declined by about 30% since 1970; i.e., 1.5 billion missing individuals. A large 21

portion of this decline is attributable to human activity. The three biggest causes to avian 22

mortality in the United States are predation by domestic cats, collisions with buildings, and 23

collisions with vehicles [2]. Beyond these direct threats, global warming accelerates the risk of 24

extinction in the near future: over two thirds of North American birds will become moderately 25

or highly vulnerable to climate change under a 3.0 ◦C scenario [3]. 26

American sparrows and New World warblers are both families that include long-distance 27

migrants, with typical endpoints being Canada and Central America [4]. During migration, 28

birds may alter their routes depending on local weather and availability of foraging 29

resources [5]. For this reason, the number of individuals flying over any given area may vary 30

from one year to the next and cannot be extrapolated from past observations alone. Instead, 31
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avian conservation science requires tools to monitor bird migration with a low latency of a few 32

minutes at best to a few days at most [6]. The prospect of forecasting the quantity of 33

vulnerable species of birds near hazardous sites (e.g., airports [7], windfarms [8], and dense 34

urban areas [9]) creates an opportunity for preventive measures at the local level, such as the 35

temporary reduction of light pollution [10]. Furthermore, the design of a low-latency and 36

reliable system for bird migration monitoring would benefit civil aviation safety and 37

agricultural planning [11]. 38

At present, the two most widespread methods to monitor bird migration over time are 39

direct human observations and remote sensing by radar [12]. Although these methods are 40

scalable and informative, they exemplify a tradeoff between selection bias and taxonomic 41

uncertainty. On one hand, a citizen science initiative such as eBird provides detailed checklists 42

of all the species a human can see from the ground on a given day. However, the content of 43

these checklists does not necessarily reflect the actual distribution of birds aloft; rather, it 44

favors more conspicuous species, those flying at lower altitudes, those present on the 45

observation site during daytime hours, and those which migrate over more populated areas. 46

This is a form of selection bias, which may be reduced via species distribution modeling but 47

not canceled entirely [13]. Besides, in the context of conservation science, eBird is a powerful 48

tool when applied to species with moderately high abundance but loses in efficiency when 49

monitoring the population of critically endangered species (appearing in almost zero 50

checklists) as well as overabundant species (appearing in almost all checklists). 51

On the other hand, monitoring bird migration via radar scans leads to an unbiased 52

measurement of the total biomass aloft at the scale of about 1 km2. However, this measurement 53

lacks anatomical information which could allow species classification [14]. As a result, when 54

monitoring multiple species of similar body mass yet disparities in conservation status, radar 55

scans alone cannot disambiguate the contribution of each species to the total population in the 56

large-scale migratory flock under study. 57

These shortcomings motivates the need for a method in addition to weather radar and 58

human observations: the deployment of an acoustic sensor network of autonomous recording 59

units (ARUs) [15–17]. Unlike human observers, an ARU can operate almost anywhere, even 60

the most remote locations, without disturbing the ecological community under study. It can 61

operate 24 hours a day, independently of temperature or sky visibility. Meanwhile, unlike in 62

radar scans, each species of passerine (Passeriformes) distinguishes itself from all others by a 63

unique acoustic signature: its flight call. 64

Flight calls differ from bird songs in terms of their spectrotemporal characteristics: while 65

songs comprise multiple “syllables” and tend to last multiple seconds, a flight call consists of a 66

single acoustic event and lasts between 50 and 150 milliseconds [18]. Such a short time span 67

poses a challenge for identification, be it human or automatic. However, it also presents an 68

opportunity to measure per-species vocal activity not just in terms of presence vs. absence, but 69

in terms of abundance as well (e.g., flight call count over a predefined unit of time). It stems 70

from the above that supplementing human daytime observations and radar scans with acoustic 71

data could, in the near future, improve the reliability of bird migration monitoring; and 72

ultimately evaluate the effectiveness of public policies for avian conservation. 73

Computational bioacoustics with deep learning 74

Despite the growing interest for bioacoustic analysis in avian ecology, the scalability of ARU 75

deployment is currently hampered by the shortage of human experts that are trained to pinpoint 76

and identify bird vocalizations in continuous audio recordings. Indeed, although manufacturing 77

an ARU and collecting audio data is relatively inexpensive, audio annotation is a slow and 78

tedious task [19]. In this context, closing the discrepancy between the cost of hardware and the 79

cost of human labor is crucial to achieving the long-term goal of enabling the deployment of 80

an acoustic sensor network for bird migration monitoring at the continental scale [20]. 81
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In order to reduce the annotation overhead involved in bioacoustic monitoring, one 82

promising solution consists in replacing human experts by “machine listening” software. In 83

the ornithological literature, there is a long history of engineering automated or 84

semi-automated bird call detectors, which are initially designed as simple template matching 85

algorithms. These algorithms do not need large computational resources to run, nor large 86

amounts of training data to be parametrized; however, their practical usability is limited to very 87

specific recording conditions, with little or no background noise and a short distance between 88

bird and sensor. In addition, even in the case of a correct detection, they are often unable to 89

distinguish closely related species. As a consequence, human annotation remains the only 90

reliable solution to count bird calls in real-world ARU audio, where the audio signal is 91

polluted by the presence of noise: insects, vehicles, rain, and so forth. 92

The situation changed recently with the introduction of machine learning, and deep 93

learning in particular, to the field of detection and classification of acoustic scenes and events 94

(DCASE). As the past years have witnessed a relative democratization of high-performance 95

computing (HPC), it has become possible to design more ambitious software architectures for 96

species classification of bird songs and calls. Whereas template matching systems are based on 97

a handful of numerical parameters, deep learning systems typically contain 106 independent 98

parameters or more. These parameters are not tuned by hand, but instead jointly optimized on 99

some pre-annotated training data in order to maximize classification accuracy. The advantage 100

of this increase in dimensionality lies in the robustness of the resulting system: with machine 101

learning, it is theoretically possible to detect bird calls despite high levels of noise and at a 102

long distance. As a downside, machine learning needs a vast amount of training data in order 103

to avoid statistical overfitting—that is, a large gap in classification accuracy between the subset 104

of audio recordings that is annotated and the complementary subset of test data, which may 105

exhibit a different background noise profile. We refer to [21] for a recent review of the state of 106

the art in computational bioacoustics with deep learning. 107

Bioacoustic sensor networks as cyberphysical systems 108

In full generality, a cyberphysical system (CPS) is a network of multiple hardware elements 109

which interact with a complex physical process via a distributed algorithm, thus producing a 110

monitoring tool which may eventually inform decision-making [22]. A well-known example 111

of a CPS is the “smart grid”, an infrastructure in which algorithms monitor and control 112

electrical supply so as to meet constraints of sustainability and reliability. A recent publication 113

has pointed out that the SONYC acoustic sensor network for urban noise monitoring is also a 114

CPS in the sense that machine listening software and microphone hardware constitute its 115

“cyber” and “physical” components respectively [23]. The term CPS has also been employed 116

in the context of acoustic communication between autonomous underwater vehicles [24] and 117

in the SCENA-RBD project for terrestrial monitoring of amphibians [25]. 118

In all the examples listed above, the main challenge facing the deployment of the CPS lies 119

in its multiple spatiotemporal scales of interaction with the data. We point out that bird 120

migration monitoring also fits this definition. From the perspective of bioacoustics, its 121

multiscale temporal extent spans eleven orders of magnitude: the carrier frequency of flight 122

calls belongs to the range 2–10 kHz, hence an oscillation period of the order of 3 ·10−4
123

seconds; whereas the annual migration cycle has a period of 3 ·107 seconds. In between those 124

two extremes, the time span between two flight calls is equal to 102 seconds, with high 125

variations depending on location and time of day. It thus follows that flight calls make up for 126

about 0.1% of the ARU’s uptime, with the remaining 99.9% being spent in acquiring irrelevant 127

audio data. Likewise, in the spatial domain, North American passerines cover a territory of 128

about 1013 square meters yet their flight calls can only be heard over an area of about 104
129

square meters [18, 26]. The gap between these orders of magnitude implies that bioacoustic 130

sensor networks for bird migration monitoring cannot realistically seek an exhaustive 131
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Figure 1. General flowchart of BirdVox, grouped into three blocks. Letter (a) to (f)
correspond to subfigures of Figure 2.

acquisition of all flight calls from Passeriformes [27]. Although they can provide relevant 132

information about species abundance on their own, their ultimate purpose is to serve a 133

complementary source of information to radar aeroecology and crowdsourced 134

observations [28]. Such need for a multiscale interoperability between heterogeneous 135

modalities of data acquisition is what makes bird migration monitoring a prime example of 136

CPS. 137

However, the design of a CPS necessarily incurs practical risks in terms of reliability, and 138

the case of bioacoustic sensor networks is no exception. Indeed, the ARUs, which constitute 139

the physical frontend of the system, are typically made from low-cost parts [29], deployed in 140

extreme weather conditions [30], and under strong constraints of energy supply [31]. On the 141

“cyber” side of the CPS, machine listening remains a fallible technology, with multiple forms 142

of technical bias. Prior research has shown that the error rate of a state-of-the-art deep learning 143

system for species-agnostic flight call detection may be anywhere between 2% and 20% 144

depending on sensor location; and that its recall may vary between 10% and 70% from dusk to 145

dawn [32]. More generally, audio classification models for bioacoustics should be understood 146

as imperfect approximations of the human ear, and their spatiotemporal predictions of vocal 147

activity as inherently uncertain. 148

Yet, a search of the existing literature on flight call detection and classification reveals that 149

the approach is rarely posed in its full complexity, but merely as a proof of concept [33–36]. In 150

particular, the machine listening component relies on small–scale data: between 102 and 104
151

examples in total. Furthermore, these examples tend to originate from field guides and audio 152

recordings in captivity; yet, a prior publication has shown that the classification accuracy of 153

flight calls is lower on field recordings than on captive recordings, across multiple machine 154

listening methods [37]. The number of recording locations and diversity of background noise 155

conditions at training stage thus tends to be insufficient to reflect a practical deployment, in 156

which unforeseen failures necessarily happen [38]. 157

Contributions 158

In this article, we present BirdVox, a project for bird migration monitoring via machine 159

listening techniques. Compared to previous studies on flight calls, the main novelty of BirdVox 160

resides in its unprecedented scale: nine sensors which span an area of 109 m2 and remain 161

active for 102 days, containing 105–106 flight calls from 102–103 species. The BirdVox project 162

encompasses two contributions: first, a robust machine listening pipeline for the automatic 163

detection and classification of flight calls, named BirdVoxDetect; and secondly, a large-scale 164

evaluation of BirdVoxDetect versus competing methods in real-world conditions of 165

deployment, by way of a new dataset named BirdVox-full-season. 166

Figure 1 outlines the functioning of BirdVox. The pipeline comprises six stages in total, 167

which are grouped into three blocks: audio signal processing, machine learning, and statistical 168

modeling. The first block involves only engineered transformations and incurs no learning. 169

The second block is data-driven and requires supervised learning on annotated datasets at 170

training time but no further annotation at deployment time. These two blocks form a suite of 171

software tools named “BirdVoxDetect” and “BirdVoxClassify”, for flight call detection and 172

species classification respectively. 173

Figure 2 presents the output of some key intermediate stages of BirdVoxDetect; i.e., a full 174

night of bird migration from 6 p.m. to 6 a.m. For the sake of clarity, subfigure numbers from 175

(a) to (f) correspond to arrows in Figure 1. Note that, in this case, the sample input presents 176

temporal regions of audible sensor faults, both at dusk and dawn. The BirdVoxDetect pipeline 177

integrates a sensor fault detector which automatically flags these regions in red in 178
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Figure 2. Sample output of BirdVox. Brighter colors in subfigures (a) to (c) denote larger
values in the time–frequency domain. Red regions in subfigures (d) to (f) denote time
segments where a sensor fault is detected. Every triangle in subfigure (e) represents a flight
call, as Every blue lozenge in subfigure (f) represents a flight call from an identifiable species.

Figure 3. Diagram of the full-season dataset and its subsets. Solid and dashed lines denote
labeled and unlabeled audio respectively. Black and purple lines denote training and evaluation
subsets respectively. Rectangles and ellipses denote full-length acoustic scenes and isolated
audio clips respectively.

visualizations (d) to (f), thus preventing potential false positives. Subfigure 2 (f) presents the 179

result of the second block (“machine learning”) in the BirdVoxDetect pipeline, which is 180

potentially re-usable beyond BirdVox. This subfigure displays flight call timestamps for seven 181

species of passeriformes in addition to a catch-all row of timestamps (in red) for other species. 182

The second contribution of our paper is the open release of the largest audio dataset of 183

flight calls to date, named BirdVox-full-season (or full-season for short)1. The full-season 184

dataset contains 6671 hours of audio across nine sensors from Tompkins County, NY. 185

Furthermore, an expert (AF of the authors) has annotated two of its subsets: 186

BirdVox-full-season (or full-season for short) and BirdVox-296h (or 296h for short). The 187

former contains 62 hours of continuous audio from one night within the full-season and serves 188

for training of the flight call detector in BirdVoxDetect. The latter contains 150 two-hour audio 189

segments which span the spatiotemporal and acoustical diversity of the full-season. 190

Figure 3 lists all the audio datasets of the BirdVox project. Note that, because 191

BirdVox-296h is disjoint from the training of BirdVoxDetect, thus allowing us to use it as an 192

evaluation benchmark. Once the evaluation is complete, we deploy BirdVoxDetect on the 193

full-season dataset via a massively parallel computing task comprising around 1.6 ·109 Fourier 194

transforms and 4.8 ·108 neural network predictions. 195

Data collection 196

This section presents our procedure of audio acquisition and expert annotation of acoustic 197

events. 198

Deployment of a bioacoustic sensor network 199

In 2015, we placed nine bioacoustic sensors in residential areas surrounding the town of 200

Ithaca, NY, USA. All sensors in our deployment setting correspond to the same hardware 201

specification: namely, the Recording and Observing Bird Identification Node (ROBIN) 202

developed by the Cornell Lab of Ornithology. Each ROBIN comprises a Knowles EK23132 203

microphone element, an analog-to-digital converter, a Raspberry Pi Model B single-board 204

computer, a solid-state memory card, and a battery. The microphone element is 205

omnidirectional and has an approximately flat sensitivity of 53±5 dB between 2 and 10 kHz; 206

that is, the frequency range of flight calls [39]. The microphone element sits at the bottom of a 207

small horn-shaped enclosure oriented upwards. In turn, this enclosure sits inside a hard plastic 208

housing, whose purpose is to reject lateral sound sources, such as insects or car engines2. 209

The analog-to-digital converter encodes the monophonic signal recorded by the 210

microphone into a linear pulse-code modulation sequence at a sample rate of 24 kHz and a 211

1Data repository of BirdVox-full-season: https://zenodo.org/record/5791744
2For more information on the design of bioacoustic sensors for bird migration monitoring, visit: http://www.oldbird.

org
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Figure 4. Map of sensors in the full-season dataset. The map shows the surroundings of
Ithaca, NY, USA, over an area of roughly 1.000 km2, i.e. 40 km from West to East and 25 km
from North to South. The area of each orange dot is proportional to the total duration of
available audio in the corresponding sensor.

sample depth of 16 bits. The single-board computer streams this sequence under the form of 212

20-second buffers, which are progressively appended to a lossless audio file in FLAC format. 213

This acquisition procedure is repeated every night from dawn to dusk between August 3rd, 214

2015 and December 8th, 2015. This corresponds to roughly 1,500 hours of audio per sensor, 215

and thus 13,500 hours for the entire sensor network. However, due to intermittent failures of 216

sensing hardware, only 6,671 hours were successfully retrieved. 217

Figure 4 presents the spatial distribution of sensors in Tompkins County, NY, USA. We 218

observe that the availability of audio data varies starkly across sensor locations between 107 219

and 1,356 hours, with a median of 834 hours. Furthermore, the sensor network does not follow 220

a simple geographical pattern, such as a uniform linear array or a rectangular grid. Indeed, for 221

reasons of privacy and practicality, the sensors were deployed in backyards or on house roofs, 222

pertaining to members of the Cornell Lab of Ornithology (see Acknowledgments section). 223

Expert annotation of flight calls 224

We divide all recordings in the full-season dataset into two-hour segments. The starting times 225

of these segments are expressed in Coordinated Universal Time (UTC) and range from 6 p.m. 226

to 6 a.m. by increments of two hours. Note that the local time in Ithaca, NY, corresponds to 227

Eastern Standard Time (UTC-05:00) in winter and Eastern Daylight Time (UTC-04:00) in 228

summer. Furthermore, for each nocturnal recording in full-season, we extract the audio 229

segment corresponding to the two hours preceding sunrise. To determine the time of sunrise on 230

any given day, we rely on open data from the weather station of the Ithaca Tompkins Regional 231

Airport (KITH). This operation results in a collection of 3,131 segments, amounting to 6,262 232

hours of audio. 233

We select 150 segments at random from the aforementioned collection. Among them, 100 234

segments are synchronized with UTC, ranging between 6 p.m. and 6 a.m, while the remaining 235

50 correspond to the two hours preceding sunrise. The reason why we assign a larger relative 236

proportion to the latter is that the density of flight calls is higher at dawn than at dusk or at 237

night [40]. 238

In 2018 and 2019, an expert ornithologist (AF of the authors) annotated each of these 150 239

segments by means of the Raven Pro sound analysis software3. The annotation task consisted 240

in pinpointing and labeling every flight call in the time–frequency domain. It took 570 hours to 241

complete this first round of annotation. A second round of annotation, conducted in 2021, 242

revealed that two segments were not admissible for nocturnal flight call detection because they 243

had mistakenly been extracted after sunrise. After excluding these two segments, we obtained 244

148 segments, corresponding to 296 hours of audio. 245

The annotation files for those 296 hours comprise over 100 distinct sound categories. We 246

filter out categories corresponding to non-animal sounds (e.g., alarm, rain), invertebrate 247

sounds (katydid), non-bird sounds (frog, coyote), and non-passeriforme bird sounds (Caspian 248

Tern, Green Heron). Then, we focus on a list of 14 birds of interest: four American sparrows, 249

one cardinal, two thrushes, and seven New World warblers (see Figure 5). Outside of these 250

four families, we aggregate all flight calls from Passeriformes under a common catch-all 251

category: “other Passeriformes”, e.g., American Goldfinch, Baltimore Oriole, Golden-crowned 252

Kinglet. Furthermore, we build catch-all categories for each of the four passerine families of 253

interest. For example, “other American Sparrows” includes eight species, e.g. Field Sparrow. 254

3Official website of Raven: https://ravensoundsoftware.com.
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Figure 5. Taxonomy of labels in the 296h dataset. The coarse, medium, and fine level of the
taxonomy correspond to order, family, and species respectively. Species within the same
bracket belong to the same family of the Passeriformes order.

Likewise, “other Cardinals” includes three species, e.g. Indigo Bunting; “other Thrushes” 255

includes four species, e.g. Veery; and “other New World Warblers” includes 16 species, e.g. 256

Magnolia Warbler. 257

Due to the varying distance between the sensor and the source, some of the flight calls are 258

too faint to be confidently labeled in terms of species, even to an expert ear. However, they 259

may be identifiable at a coarser taxonomic level. In those instances, automatic species 260

classifiers can only be evaluated against the human ground truth up to a certain level of 261

granularity [41]. For this reason, we release three variants of the annotation, respectively 262

denoting order, family, and species. 263

We name BirdVox-296h (or “296h” for short) the annotated dataset of 150 two-hour 264

segments, as a subset of BirdVox-full-season. For the sake of research reproducibility, we 265

upload a copy of BirdVox-296h to the Zenodo repository of open-access data4. 266

Per-channel energy normalization (PCEN) 267

Let E(t, f ) be the mel-frequency spectrogram of some audio recording, with t and f denoting 268

discrete time and mel frequency respectively. We define a low-pass filter φ T with a cutoff 269

frequency equal to T−1. Per-channel energy normalization (PCEN), originally introduced 270

by [42], applies adaptive gain control and dynamic range compression E by means of the 271

following equation: 272

PCEN(t, f ) =

(
E(t, f )(

ε +(E
t∗φ T )(t, f )

)α
+δ

)r

−δ
r, (1)

where the quantities ε , α , δ , and r are constants and the notation (x
t∗ y) denotes a convolution

over the time dimension. In practice, we construct φ T as a first-order IIR filter whose response
to E is of the form

M(t, f ) =(E∗φ T )(t, f )

=sE(t, f )+(1− s)M(t− τ, f ), (2)

where the constant s is the weight of the associated autoregressive process (AR(1)) and 273

τ = 1.5ms is the hop size of the mel-frequency spectrogram. The recursive implementation 274

above is more computationally efficient than FFT-based convolution while having a smaller 275

memory footprint. Proposition IV.1 from [43] gives the following connection between 276

constants T , τ , and s: 277

s =

√
1− cos

2πτ

T

(√
3− cos

2πτ

T
−
√

1− cos
2πτ

T

)
. (3)

In this paper, we set T = 60ms, ε = 10−6, α = 0.8, δ = 10, and r = 0.25. A previous 278

publication [32, Figure 4 specifically] has shown empirically that, on the full-night dataset, this 279

choice of parameters Gaussianizes the distributions of normalized spectrogram magnitudes, 280

consistently across sensors. This is in contrast with the original publication on PCEN [42], in 281

which the proposed default parameters are optimized for automatic speech recognition in a 282

noisy indoor environment, but inadequate for flight call detection. 283

In the rest of this paper, we refer to the output of PCEN by the abbreviation “PCEN-gram”. 284

Figure 2b illustrates a sample PCEN-gram. 285

4Data repository of BirdVox-296h: https://zenodo.org/record/4603643
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Median filtering 286

We compute the running median of the PCEN-gram over non-overlapping windows of 287

duration 30 minutes, for each mel-frequency subband f independently. This results in a 288

time–frequency representation in which the time axis is sampled at a rate of two frames per 289

hour. Furthermore, we subsample the mel–frequency axis by a factor of 12, thus reducing the 290

number of subbands f from 120 down to 10. We call “sensor fault features” the resulting 291

time–frequency representation, samples at a rate of two frames per hour. Figure 2c illustrates a 292

sample output of median filtering. 293

Sensor fault detection 294

This section presents the sensor fault detector of our system, i.e., a random forest classifier 295

trained with an active learning paradigm. In the functional diagram of Figure 1, the sensor 296

fault detector corresponds to block (d). 297

Random forest classifier 298

We extract sensor fault features on the full-season dataset. This operation results in 12k feature 299

vectors, i.e., one every half-hour segment. We manually label two half-hour segments in the 300

dataset: one in which a sensor fault is present and the other in which no sensor fault is present. 301

With scikit-learn v0.20.1 [44], we train a random forest classifier on the two sensor fault 302

feature vectors corresponding to these two segments. We set the number of ensembled 303

decision trees in the random forest equal to 100. 304

Active learning for efficient audio annotation 305

Because the classifier described above is trained on a tiny dataset (two samples), it does not 306

generalize well to unseen recording conditions. To improve accuracy, it is necessary to refine 307

the decision boundary between classes, and thus label more samples. However, the annotation 308

of sensor faults from bioacoustic recordings is a particularly tedious task. Furthermore, the 309

relatively rare proportion of sensor faults in full-season (estimated between 1% and 5% of the 310

audio data) causes a class imbalance problem, which hampers the statistical generalization of 311

the classifier. 312

We address the issue of annotation efficiency in the sensor fault detection task by adopting 313

an active learning paradigm. Instead of annotating audio segments drawn uniformly at random 314

in full-season, we execute an algorithm which iteratively queries the human annotator with the 315

most informative unlabeled sample. Here, the informativeness of a sample is defined according 316

to the prediction confidence of the random forest classifier. 317

We apply the active learning algorithm of [45], known as “alternate confidence sampling”. 318

In fHC = 90% of the iterations, the algorithm queries the human with the unlabeled sample 319

with least confidence, that is, the one closer to the decision boundary of the classifier. 320

Alternatively, in one every ten iteration, the algorithm queries the human with a 321

high-confidence sample: specifically, one sample drawn uniformly at random among the pool 322

of unlabeled samples whose confidence exceeds a fixed probability threshold of THC = 85%. 323

The human annotator labels samples progressively, as queried by the active learning 324

algorithm. Conversely, the random forest classifier is retrained after the labeling of every 325

sample, and thus becomes progressively more discriminative. This human-in-the-loop machine 326

learning procedure is repeated until the classifier reaches a satisfying generalization power. In 327

practice, two annotators (AF and VL of the authors) labeled 100 half-hour segments in 328

full-season. 329
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Figure 6. Calendar of recordings in the full-season dataset, organized by month (x-axis)
and by uptime (y-axis). Every red (resp. green) rectangle represents a faulty (resp.
non-faulty) recording, as determined by our random forest classifier.

Figure 7. Visualization of sensor fault features with t-SNE. Left column: human expert
annotation. Red lozenges (resp. green squares) denote the presence (resp. absence) of a sensor
fault in the corresponding audio excerpt. Unlabeled samples are denoted as small black dots.
Right column: machine listening prediction by a random forest classifier trained on sensor
fault features in dimension ten. Darker shades of red (vs. green) denote a greater predicted
probability that a sensor fault is present (resp. absent) in the corresponding audio excerpt.

Figure 6 illustrates the prediction of the sensor fault classifier on the entire full-season 330

dataset, after being trained on these 100 half-hour segments. We observe that sensor faults (in 331

orange) affect all eight of the nine sensors intermittently and tend to span across two or more 332

consecutive nights. 333

Qualitative evaluation with t-SNE embedding 334

We propose to shed light on the active learning process described above by visualizing the 335

performing a t-distributed stochastic neighbor embedding (t-SNE) of the full-season 336

dataset [46]. The t-SNE algorithm learns a nonlinear mapping from a feature space in 337

dimension ten to a embedding space in dimension two. In doing so, t-SNE minimizes the 338

Kullback-Leibler divergence between the joint probability distribution of samples in the 339

feature space and that of samples in the embedding space. Therefore, spatial proximity in the 340

2-D embedding space denotes acoustical similarity in terms of median PCEN-gram features. 341

We use the implementation of scikit-learn with all parameters set to their default values as of 342

v0.20.1. 343

Figure 7 illustrates the outcome of t-SNE embedding. In the left column, we represent 344

unlabeled samples as black dots and labeled samples in color: green square for positives (i.e., 345

absence of sensor fault) and red squares for negatives (i.e., presence of sensor fault). In the 346

right column, we represent the predictions of the sensor fault detector over all samples, be 347

them labeled or unlabeled: darker shades of red (vs. green) denote a greater predicted 348

probability that a sensor fault is present (resp. absent) in the corresponding audio excerpt. We 349

repeat the display at different stages of the active learning process: initialization (top), with 10 350

labeled samples (center), and with 100 labeled samples (bottom). 351

We observe in Figure 7c (left) that the distribution of labeled samples is not uniform over 352

the t-SNE map. Instead, it is concentrated on the regions of least confidence of the sensor fault 353

detector: the top-left and bottom-right corners of the scatter plot in our case, appearing in pale 354

green in Figure 7b (right). Moreover, we observe on Figure 7a (right) that the decision 355

boundary of the sensor fault detector appears as a rectilinear color gradient at the initialization. 356

In contrast, we observe on Figures 7b (right) and 7c (right) that the decision boundary becomes 357

progressively sharper and nonlinear as the number of labeled samples increases. These 358

observations provide qualitative evidence that the proposed active learning process accelerates 359

the convergence of the sensor fault detector as a function of training set size. 360

Flight call detection 361

This section presents our deep learning system for species-agnostic avian flight call detection, 362

named BirdVoxDetect. BirdVoxDetect is a convolutional neural network (CNN) taking a 363

PCEN-gram representation as its input. In the functional diagram of Figure 1, BirdVoxDetect 364

corresponds to block (e). 365
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Figure 8. Functional diagram of the convolutional neural network for flight call detection
(BirdVoxDetect). Grey tensors represent intermediate computations and blue regions
represent receptive fields of convolutional layers.

Deep learning architecture 366

BirdVoxDetect draws its inspiration from prior research on urban sound classification [47] and 367

species classification from clips of flight calls [48]. It composes three convolutional layers and 368

two fully connected layers. The first (resp. second) convolutional layer consists of 24 (resp. 369

48) kernels of size 5×5, a rectified linear unit (ReLU) activation function, and a strided 370

max-pooling operator of shape 4×2; that is, 4 time frames and 2 frequency bands. The third 371

convolutional layer consists of 48 kernels of size 5×5, a ReLU, and no pooling. The first fully 372

connected layer contains 64 hidden units, followed by a ReLU. Lastly, the second fully 373

connected layer maps those 64 hidden units to a single output unit, followed by a sigmoid 374

nonlinearity. Figure 8 illustrates the architecture of BirdVoxDetect, as rendered by the 375

NN-SVG online tool [49]. 376

The input to BirdVoxDetect is a PCEN-gram excerpt of duration equal to 150.9ms, 377

corresponding to the center portion of the audio clips in BirdVox-222k. This PCEN-gram is 378

encoded as a single-precision real matrix with 120 rows and 104 columns. During training, we 379

apply batch normalization to this matrix (but not to deeper layers), thus bringing its 380

coefficients to null mean and unit variance. 381

Throughout the development of BirdVoxDetect, we have explored over 100 common 382

variations in hyperparameters: kernel size, layer width, number of layers, mel scale 383

discretization, multiresolution input, choice of nonlinearity, use of dropout, use of batch 384

normalization, and choice of learning rate schedule. Yet, none of these variations improved 385

validation accuracy systematically (see next subsection for details on evaluation). Of course, 386

we do not claim that the architecture presented in the paragraph above is optimal; but our 387

failure to improve it via common hyperparameter variations does suggest that it faithfully 388

represents the accuracy of CNNs—in the sense of a general family of machine learning 389

models—on the flight call detection task. 390

Data curation 391

We train BirdVoxDetect on BirdVox-222k (or “222k” for short), a new derivative of the 392

BirdVox-full-night dataset. BirdVox-full-night (or “full-night” for short) comprises 62 hours of 393

audio in total, as recorded on the night of September 23rd, 2017 by six different sensors. In 394

2017, an expert ornithologist (AF of the authors) spent 102 hours annotating each of these six 395

recordings and found 35k flight calls from passeriformes. 396

We extract 35k audio clips from full-night, each lasting two seconds and centered around 397

one annotated flight call. We group these 35k audio clips into 352 segments, each of them of 398

size 100, according to their spatiotemporal contiguity in the sensor network. Then, we run a 399

pretrained flight call detector full-night: this detector combines spherical k-means (SKM) and 400

a support vector machine (SVM), and is thus an instance of “shallow learning”. We use the 401

false alarms of this detector as a source of challenging negatives for the spatiotemporal region 402

corresponding to each segment. By design, the negative-to-positive ratio varies between 1 and 403

9 depending on the segment, but is always integer. We refer to [40] for more details on 404

full-night and the shallow learning classifier. 405

Furthermore, we count the spatiotemporal temporal distribution of flight calls per sensor 406

location and per two-hour segment within the full night. Following this coarse spatiotemporal 407

estimate, we extract 222k audio clips at random within the time regions containing no flight 408

calls. Combining the 35k positive clips (centered around one flight call) and the 187k negative 409

clips (containing no flight call) yields the 222k dataset. Note that the ratio of positives to 410

May 26, 2022 10/20page.20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.494155doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494155
http://creativecommons.org/licenses/by/4.0/


negatives in 222k is equal to 187k/35k ≈ 5.3. 411

We divide 222k into a training set and a validation set, following a 85% / 15% random 412

partition. Contrary to prior research on full-night, we do not perform “leave-one-sensor-out” 413

cross-validation but a simple shuffle split without regard for sensor location. Indeed, in this 414

article, we are not primarily interested in the generalization ability of BirdVoxDetect from one 415

sensor to another but from one night of audio acquisition (full-night) to several months 416

(full-season). The training subset of 222k amounts to 299 segments or 189k samples. 417

Data augmentation 418

We augment the 222k dataset with three kinds of digital audio effects: pitch shifting, time 419

stretching, and the combination of pitch shifting and time stretching. We sample the pitch 420

interval at random from a normal distribution with null mean and half-unit variance, as 421

measured in semitones according to the 12-tone equal temperament. Furthermore, we sample 422

the time stretching factor at random from a log-normal distribution with parameters µ = 0 and 423

σ = 0.05. 424

Such a randomization procedure allows to augment any given audio sample more than 425

once. Specifically, we draw ten instances of pitch shifting, ten instances of time stretching, and 426

ten instances of pitch shifting and time streching in combination. This corresponds to 31 427

versions of each audio sample in total: i.e., one original version and 30 augmentations. After 428

augmenting each of the 189k samples in the training set of BirdVox-222k, we obtain a dataset 429

of 31×189k = 5.9M samples. This dataset represents 633 gigabytes of data on disk. 430

Training 431

We train BirdVoxDetect on the augmented training subset of BirdVox-222k via the Adam 432

algorithm, an improved variant of stochastic gradient descent. We leave the hyperparameters 433

of Adam to their default values: i.e., a learning rate of 10−3, decay rates of β1 = 0.9 and 434

β2 = 0.999, and a denominator offset of ε̂ = 10−7 [50]. 435

We formulate the flight call detection task as binary classification and choose binary 436

cross-entropy as objective function. Similarly to [40], we regularize this objective function by 437

penalizing the L2 norm of the synaptic weights in the penultimate layer, with a multiplicative 438

factor set to 10−3. 439

To implement the training procedure efficiently, we use the pescador Python package, 440

which offers utility functions for shuffling and streaming heterogeneous data5. For each of the 441

299 segments and the 31 augmentations, we construct a “stream”: that is, an infinite generator 442

which yields positive and negative samples with equal probability. At the beginning of each 443

epoch, pescador draws one augmentation uniformly at random (out of 31) for each of the 299 444

segments. We then define batches by “multiplexing” the streams corresponding to these 299 445

segment–augmentation pairs, so that each stream contributes one and only one sample per 446

batch. In this way, we guarantee that the 299 samples in each batch reflect the acoustical 447

diversity of the full-night dataset. We repeat the process 100 times per epoch, thus yielding 448

29.9k samples per epoch in total. Note that this number roughly corresponds to the number of 449

flight calls in the training set. 450

On every epoch, we re-draw a new augmentation for each of the 299 available segments 451

and multiplex the corresponding streamers. Thus, different epochs contain the same original 452

audio material but vary stochastically in terms of augmentations. Furthermore, we guarantee 453

that the spatiotemporal density of negatives matches that of positives. We run Adam for 24 454

hours on a CPU and checkpoint the model with lowest validation loss. 455

5Documentation of pescador: https://pescador.readthedocs.io
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Figure 9. Precision–recall curves of BirdVoxDetect for the 296h dataset. Each dot on the
curve denotes a different value of the BirdVoxDetect threshold.

Evaluation 456

After training on 222k, we evaluate BirdVoxDetect on 296h. Note that 222k and 296h arise 457

from the same recording locations but are disjoint in time. Furthermore, the dataset 222k was 458

constructed from a single night of data acquisition whereas 296h is more diverse, as it involves 459

recordings between August and November 2015. 460

We run BirdVoxDetect on each of the two-hour segments in 296h according to a hop 461

duration of 50 ms, thus producing an event detection function at a rate of 20 Hz. We select 462

local peaks in the detection function above some fixed absolute threshold τ ∈]0,1[. Then, we 463

compare the set of detected peaks to the human-provided checklist of flight call timestamps. 464

We define matching pairs between detected events and a reference events if their timestamps 465

are within 500 ms of each other. We optimize the cardinality of this matching while 466

guaranteeing that each reference peak matches a single detected peak at most, and vice versa. 467

For this purpose, we solve a bipartite graph matching problem via the match events function 468

of the mir eval Python package [51]. This operation yields a number of true positives, false 469

positives, and false negatives. We may convert these integer counts into information retrieval 470

metrics: precision, recall, and F1-score. We repeat the process for sweeping values of the 471

threshold parameter τ in to derive a precision–recall curve. 472

Results 473

Figure 11 summarizes out results. First, we evaluate a flight call detection system that does not 474

rely on deep learning, but purely on feature engineering. Under the names of “Tseep” and 475

“Thrush”, this system has long remained the standard for detecting sparrows, warblers and 476

thrushes respectively [?]. We re-implement these detectors in Python, with help from the 477

original authors. We obtain an F1-score of 3%. As shown on Figure 11 (curve A), this low 478

F1-score can be explained by a low precision; that is, a large proportion of false positives in 479

comparison with true positives. 480

Then, we evaluate a version of BirdVoxDetect yet without PCEN nor data augmentation. 481

Instead, we train the network on batch-normalized log-mel-spectrograms from BirdVox-222k. 482

We obtain an F1-score of 5%: see curve B in Figure 11. Artificial data augmentation, as 483

described above, brings the F1-score of the deep convolutional network to 15%: see curve C. 484

Replacing the log-mel-spectrogram representation by a PCEN-gram considerably improves 485

F1-score up to 52%: see curve D. Lastly, implementing a form of context adaptation in the 486

neural network, as proposed in [43], reduces the F1-score to 45%: see curve E. Therefore, we 487

keep model D as our flight call detector of choice and release it publicly under the name of 488

BirdVoxDetect v0.6. 489

Species classification 490

This section presents our deep learning system for multilevel taxonomic avian flight call 491

classification, named BirdVoxClassify. Similarly to BirdVoxDetect, BirdVoxClassify is a CNN 492

taking a 120-band PCEN-gram as its input. Because BirdVoxDetect and BirdVoxClassify 493

share a common input representation, we may pass positive clips from BirdVoxDetect to 494

BirdVoxClassify directly in the PCEN-gram domain instead of the waveform domain, without 495

having to recompute PCEN. In the functional diagram of Figure 1, BirdVoxClassify 496

corresponds to block (f). 497
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Deep learning architecture 498

The architecture of our multilevel taxonomic classifier corresponds to a non-hierarcical 499

multitask model (abbreviated Non-H. MT) presented in prior species classification 500

research [52]. Although this prior publication reported that a hierarchically structured 501

classifier (TaxoNet) achieved the best classification performance on its evaluation dataset, we 502

were not able to replicate the results with the new data and now find that the non-hierarchical 503

multitask model performs best. 504

The architecture of BirdVoxClassify is similar to that of BirdVoxDetect, as it also composes 505

three convolutional layers and two fully connected layers, with no bias weights for any layer. 506

Before the first layer, we perform batch normalization on the PCEN-gram to stabilize and 507

accelerate training [53]. The three convolutional layers are identical in shape to those of 508

BirdVoxDetect, except that their numbers of kernels per layer are 24, 48, and 48 respectively. 509

The first fully connected layer contains 64 hidden units, followed by a ReLU. Lastly, the 510

second fully connected layer maps those 64 hidden units to 15 output units followed by a 511

softmax nonlinearity corresponding to 14 species (shown in Figure 5) and an ”other” (i.e. 512

out-of-vocabulary) species class. The second fully connected layer also maps its 64 hidden 513

units to 5 output units followed by a softmax nonlinearity corresponding to 4 families (shown 514

in Figure 5) and an ”other” family class, and single output unit followed by a sigmoid 515

nonlinearity corresponding to Passeriformes or non-Passeriformes (order-level classification). 516

We note that there are no guarantees that the outputs of the model are hierarchically 517

consistent; for example, the classifier can simultaneously predict Cardinalidae at the family 518

level and White-throated sparrow at the species level even though white-throated sparrows are 519

not cardinals. Since we do not have any guarantee of hierarchically consistency, we propose a 520

method for selecting candidates which have this guarantee. Hierarchical consistency could be 521

incorporated directly in the model by modeling joint class likelihoods instead of marginal class 522

likelihoods, but we leave this question as future work. 523

Hierarchical consistency 524

A simple method for selecting class candidates from the classifier output probabilities is to 525

select the class with the largest output probability for each level in our taxonomy; however, 526

this does not ensure that these class candidates are hierarchically consistent. In order to 527

improve the robustness of the multilevel taxonomic classifier, we propose a method to ensure 528

(top-down) hierarchical consistency for predictions. We define a procedure that, from a set of 529

output probabilities for each taxon, produces class candidates that are hierarchically consistent. 530

First, we select the class for the coarsest taxon (order, in this case) that has the largest output 531

probability. If this probability is greater than a threshold of 0.5, we select this class as the 532

taxon’s candidate and select ”other” otherwise. Then, for each subsequent taxon, we select the 533

class with the largest output probability that is also a taxonomic child of the previous taxon’s 534

candidate. If this probability is greater than a threshold of 0.5, then we select this class for this 535

taxon’s candidate and select ”other” otherwise. Once we obtain a candidate for the finest 536

taxon, we complete the collection of class candidates for each taxon. 537

Data curation 538

To train and validate BirdVoxClassify, we present an updated version of the BirdVox American 539

Northwest Avian Flight Call Classification (BirdVox-ANAFCC, or ANAFCC for short) 540

Dataset [52], which we refer to as ANAFCC-v2 . This dataset aggregates isolated flight calls 541

from different data sources: BirdVox-full-night, CLO-43SD, CLO-SWTH, CLO-WTSP [?], 542

the Macaulay Library [?], Xeno-Canto [?], and Old Bird [?]6. An expert ornithologist (AF of 543

6Official website of Old Bird, Inc.: https://www.oldbird.org

May 26, 2022 13/20page.20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.494155doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494155
http://creativecommons.org/licenses/by/4.0/


the authors) verified and re-annotated each clip and aligned each flight call precisely at the 544

center of its corresponding clip. We map the resulting annotations onto our taxonomy as 545

shown in Figure 5. This new version of ANAFCC, v2.0, contains additional flight calls from 546

full-night which did not appear in the initial release, v1.0. 547

In order to better match our heterogenous development set to data found in realistic 548

acoustic monitoring scenarios, we create training and validation subsets by finding a suitable 549

partition of the ANAFCC data sources that is appropriately sized and have species 550

distributions similar to that of the 296h dataset. To do this, we first pose the task of allocating 551

data sources to the validation set as a knapsack problem [54] where we treat individual data 552

sources as items. In the case of full-night we also treat clips from different recording units as 553

separate sources. Each item has a weight corresponding to the number of annotated audio clips 554

from the data source contains. We set the knapsack size according to our desired validation set 555

size and the find the optimal knapsack using the dynamic programming algorithm 556

implemented in Google OR-Tools [55]. We obtain optimal knapsacks for knapsack sizes 557

corresponding to between 15–30% of the total number of examples, giving us a candidate set 558

of appropriately sized validation subsets. 559

Given the data sources of a validation subset, we map all to the corresponding training 560

subset. Finally, from this set of appropriately sized candidate partitions, we select the partition 561

where the species distribution of both subsets are most similar to that of 296h. More precisely, 562

we choose the partition with the lowest average Jensen-Shannon divergence between the 563

species distributions of the split subsets and 296h. 564

Training 565

We train the model to minimize a uniformly weighted summation of categorical cross-entropy 566

for the species-level outputs, categorical cross-entropy for the family-level outputs, and binary 567

cross-entropy loss for the order-level output. This multitask training method presented in prior 568

species classification research [52] improves species classification performance over 569

species-only training. We train the models using the Adam optimizer with initial learning rate 570

set to 10−4. We also apply L2 regularization on the synaptic weights of the linear layers, using 571

a multiplicative factor of 10−5 for the first linear layer and using a factor of Ck
43 10−5 for each 572

output layer for level k of the taxonomy with Ck classes. The output layer regularization factor 573

is chosen so that each synaptic weight for the output layer is the same as in the original 574

method [36]. 575

Evaluation 576

To evaluate BirdVoxClassify, we present a new version of the BirdVox 14 Species Dataset 577

(BirdVox-14SD) [52], which we refer to as BirdVox-14SD-v1.1. A derivative of 578

BirdVox-300h, BirdVox-14SD comprises roughly 14k isolated clips of flight calls alongside 579

their human annotations, which are mapped to taxonomy shown in Figure 5. All clips last 580

500 ms and are centered around the annotated flight call. In comparison with the previous 581

version (v1.0), the updated version (v1.1) addresses some edge cases regarding the alignment 582

of clip boundaries. 583

We evaluate the predictions with and without enforcing hierarchical consistency to 584

understand the impact of our hierarchical consistency procedure. We use F1 score for each 585

class and overall to evaluate classifier performance, as shown in Figure 11. 586

Results 587

With our hierarchical consistency procedure, the classifier achieves an F1 score of 72.82% 588

whereas it achieves an F1 score of 66.71% without our hierarchical consistency procedure. We 589
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Figure 10. Confusion matrix of BirdVoxDetect on the 296h dataset. The color of each
element indicates the percentage points of ground-truth positive examples that are predicted as
each class. The species are ordered (downward and rightward) and grouped (in blue boxes)
according to the taxonomy in Figure 5.

Figure 11. Evaluation of hierarchical consistency on the 296h dataset. Species-specific
F1-scores are ordered (downward) and grouped (in blue brackets) according to the taxonomy in
Figure 5. The row “other” represents the F1-score of out-of-vocabulary samples while the row
“overall” corresponds to a micro-averaged F1-score across all training samples in the dataset.

also see that for each class, enforcing hierarchical consistency results in matched or improved 590

performance. 591

Figure shows the 10 confusion matrix between predicted classes and the ground truth in 592

BirdVox-14SD-1.1. We observe that this matrix has a block structure: most of the off-diagonal 593

confusions level correspond to different species of the same taxonomical family. 594

Example use case: Swainson’s Thrush (Catharus ustulatus) 595

The sections above have focused on the evaluation of individual components in BirdVox: 596

sensor fault detection, flight call detection, and species classification. It remains to be seen 597

how BirdVox operates once these elements are integrated within a given application. For this 598

purpose, we run the complete BirdVox pipeline on all recordings from the BirdVox-full-season 599

dataset. This dataset contains 6,671 hours of audio; which, given a hop length of τ =15 ms, 600

translates to 601

6671×3600
15 ·10−3 ≈ 1.601 ·109 (4)

instances of Fast Fourier Transform (FFT). The convolutional neural network in 602

BirdVoxDetect predicts event detection function at a rate of 20 Hz, hence a total of 603

6671×3600×20≈ 4.803 ·108 predictions. Furthermore, the number of synapses in the first 604

layer of BirdVoxDetect is equal to 128×104×24≈ 2.995×105. Because each synapse is 605

encoded over 32 bits, or four bytes, the throughput of our computation is at least 606

(2.995 ·105)×4× (4.803 ·108)≈ 613 ·109 (5)

bytes, or 613 terabytes. Lastly, the output contains 6671×3600×20×4≈ 1.921 ·109 bytes; 607

i.e., around two gigabytes. These numbers demonstrate the need for parallel computing in the 608

analysis of the full-season dataset. For this reason, we use the high-performance computing 609

facility of New York University7 and parallelize execution massively over hundreds of CPU 610

cores. In this way, the computation completes within a few hours. 611

Figure 13 illustrates the flight call activity for one of the most vocal species in the dataset: 612

Swainson’s Thrush (Catharus ustulatus). We express this flight call activity as the average 613

number of flights calls across all non-faulty sensors in the network on a given day. Because 614

sensor faults appear intermittently during the migration season (see 6), this average is not 615

7Link: https://sites.google.com/nyu.edu/nyu-hpc

Figure 12. Effect of hierarchical consistency on the confusion matrix. Relative change in
class-wise confusion of BirdVoxDetect at the species level for the 296h dataset, without and
with hierarchical consistency. Green (resp. red) cells denote a relative decrease (resp. increase)
in confusion with respect to the confusion matrix in Figure 11. The species are ordered
(downward and rightward) and grouped (in blue boxes) according to the taxonomy in Figure 5.
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Figure 13. Comparison between machine listening and crowdsourced observations. Top:
density of nocturnal flight calls from the Swainson’s Thrush (Catharus ustulatus) between
midnight and 6 a.m. during the fall 2015 migration season in Tompkins County, NY, USA.
Direct estimation from the BirdVox machine listening system on the full-season dataset (6,671
hours from nine sensors). Bottom: frequency of occurence of the Swainson’s Thrush among
eBird checklists in Tompkins County for the same period.

necessarily taken over the same subset of sensors between one day and the next. With that 616

caveat in mind, we observe some consistent trends: busy migration activity on Sep. 13th and 617

14th, followed by a decrease to almost zero detected flight calls, followed by a large peak on 618

Sep. 23th. Juxtaposing these trends with a chart of crowdsourced observations on the ground 619

(Figure 13, bottom) confirms that these trends are ecologically meaningful for the months of 620

September. 621

However, we also notice that BirdVox predicts a relatively large flight call activity of 622

Swainson’s Thrush in November and even December. Yet, domain-specific knowledge about 623

the migration cycle of this species informs us that such a prediction is spurious, and is the 624

result of mislabeling by the machine listening system. This observation indicates that BirdVox, 625

despite being the current state of the art in flight call detection and classification, does not 626

suffice on its own to monitor bird migration. Instead, it must be paired with radar 627

measurements and/or crowdsourced observations so as to bring value for data-driven research 628

in population ecology and conservation science. We leave this question to future work. 629

Conclusion 630

The emerging field of machine listening for bird migration monitoring has the potential to 631

elucidate some long-lasting questions in avian population ecology and inform conservation 632

science efforts. In this paper, we have presented BirdVox, a cyber-physical system which is 633

capable of detecting and classifying over fourteen species of flight calls from an acoustic 634

sensor network on the ground. BirdVox integrates state-of-the-art components in signal 635

processing and machine learning, such as per-channel energy normalization (PCEN) and deep 636

convolutional neural networks (CNN). It also features novel elements such as a sensor fault 637

detector trained with active learning and a rule-based algorithm for “hierarchical consistency” 638

in the classification of living organisms. Our paper has shown that, once all elements are 639

composed, BirdVox produces a daily log of flight call counts that, in the case of the most vocal 640

species (Swainson’s Thrush), aligns with observations on the ground. We have released the 641

automatic detector of BirdVox as part of an open-source software library, named 642

BirdVoxDetect. Since this release, a community of flight call enthusiasts has adopted the tool 643

and is currently using it to ease the process of nocturnal bird migration monitoring. 644

Beyond the technical aspects of BirdVox, it is worth stressing that the problem of flight call 645

monitoring encompasses eleven orders of magnitude in terms of time scales: from a few 646

microseconds for a digital audio sample up to millions of seconds for a full season. Figure 14 647

illustrates some of these time scales. Meanwhile, prior research on machine listening for the 648

detection and classification of flight calls was carried out over four or five orders of magnitude: 649

that is, up to one to ten seconds of time scale at most. With this paper, we aim to fill this gap in 650

research by providing large-scale open audio datasets with expert annotation: 651

BirdVox-full-season, BirdVox-296h, and BirdVox-14SD-v1.1. In future work, we will evaluate 652

whether pairing machine listening with radar measurements and/or crowdsourced observations 653

benefits the species-specific monitoring of bird migration at the macroscopic scale. 654
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Figure 14. Timescales of bird migration monitoring with bioacoustic sensor networks.
Blue triangles represent natural time scales, whereas black vertical lines represent our design
choices.
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