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Abstract 30 

Single-cell RNA sequencing (scRNA-seq) can unmask transcriptional heterogeneity 31 

facilitating the detection of rare subpopulations at unprecedented resolution. In response to 32 

challenges related to coverage and quantity of transcriptome analysis, the lack of unbiased 33 

and absolutely quantitative validation methods hampers further improvements. Digital PCR 34 

(dPCR) represents such a method as we could show that the inherent partitioning enhances 35 

molecular detections by increasing effective mRNA concentrations. We developed a scRT-36 

ddPCR method and validated it using two breast cancer cell lines, MCF7 and BT-474, and 37 

bulk methods. ErbB2, a low-abundant transcript in MCF7 cells, suffers from dropouts in 38 

scRNA-seq and thus calculated fold changes are biased. Using our scRT-ddPCR, we could 39 

improve the detection of ErbB2 and based on the absolute counts obtained we could validate 40 

the scRNA-seq fold change. We think this workflow is a valuable addition to the single-cell 41 

transcriptomic research toolbox and could even become a new standard in fold change 42 

validation because of its reliability, ease of use and increased sensitivity. 43 
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1 Introduction 45 

RNA-seq is the method of choice for gene expression analysis. Herein, differential expression 46 

(DE) analysis between two conditions is pivotal to answer challenging questions in research 47 

and clinical applications. In bulk RNA-seq, population heterogeneity remains covert, whereas 48 

scRNA-seq can capture delicate differences between cells [1]. The development of new 49 

platforms expresses the growing interest in scRNA-seq [2–6] and allows novel applications, 50 

such as unmasking transcriptional heterogeneity in healthy and cancerous tissues by 51 

functional clustering [7–9], discovering uncharacterized cell types [10], and identifying 52 

phylogenetic relationships between cells [11]. scRNA-seq enables researchers to understand 53 

underlying mechanisms of drug resistance development and relapse in disease treatment by 54 

the detection of rare subpopulations at unprecedented resolution [5,8,12]. However, the 55 

inherent low sample input in scRNA-seq introduces a significant amount of noise, which 56 

increases the propensity for dropouts and artificially increases cell-to-cell variability [13,14]. 57 

This is especially dramatic with respect to low-abundant transcripts, which are often referred 58 

to as highly interesting but difficult to reliably analyze [15–18]. Furthermore, the tremendous 59 

variety of platforms and bioinformatics tools has not yet solidified into a consistent pipeline 60 

[13,19,20]. Additionally, the protocol impacts results, as plate-based Smart-seq2 [21,22] 61 

proved to be more sensitive, especially regarding low-abundant transcripts compared to the 62 

droplet-based Chromium system from 10X Genomics [23,24]. 63 

Thus, DE analysis from scRNA-seq must be independently confirmed by single-cell PCR 64 

[25]. Several scRT-qPCR workflows have been described [26–30] as well as a few 65 

scRT-ddPCR workflows [31–33]. The majority of these workflows use fluorescence-activated 66 

cell sorting (FACS) for single-cell isolation [27,28,30,31,34], while other studies use 67 

microfluidic devices [32,33], micromanipulators [26] or manual cell picking [29]. Despite its 68 

widespread use, single-cell isolation with FACS requires high sample input and the inherent 69 

shear forces can damage the cells and impair RNA integrity [34,35]. Furthermore, qPCR is 70 

less sensitive and more susceptible to inhibitors compared to dPCR [17,36], while the 71 

detection mechanism of dPCR allows absolute quantification without reference [37]. 72 

Particularly, the lower sensitivity of qPCR hampers its use for challenging, single-cell mRNA 73 

quantification with a focus on low-abundant transcripts.  74 

Therefore, we here propose a novel method for the validation of fold changes from scRNA-75 

seq. Our scRT-ddPCR method combines gentle (ensuring high cell viability ~ 80 %) and 76 

highly reliable (~ 90 % single cell isolation efficiency) single cell isolation using the 77 

F.SIGHT™ single-cell dispenser (CYTENA GmbH, Freiburg) [38] and contact-free liquid 78 

handling (I.DOT, Dispendix, Stuttgart) with highly sensitive dPCR [36]. The F.SIGHT™ 79 

requires minimal sample input (down to 5000 cells in 5 µl) and its image-based analysis 80 

ensures single-cell isolation and delivers an image proof of each dispensing event, which can 81 

be unambiguously assigned to the addressed well of the microplate. Through partitioning, 82 

dPCR can reliably detect single molecules and enables absolute quantification [17,32,36]. The 83 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.05.31.494164doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494164


4 
 

latter characteristic is key to inter-experimental comparisons as absolute counts are 84 

independent of any standard and depict the ground truth. For the validation of our scRT-85 

ddPCR, we used two breast cancer cell lines, MCF7 and BT-474, the latter overexpresses 86 

ErbB2 [39–41]. We found high concordance between mRNA counts from scRT-ddPCR and 87 

bulk RT-ddPCR methods. Interestingly, ErbB2 log2FCs were significantly different between 88 

scRNA-seq and scRT-ddPCR. We assume that the inherent partitioning of dPCR increases 89 

sensitivity and resolution, and thus allows us to confirm or reject fold changes from 90 

scRNA-seq.  91 
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2 Materials and methods 93 

2.1 Cells and cell culture 94 

MCF7 (ATCC® HTB-22TM) and BT-474 (ATCC® HTB-20TM) cells were obtained from the 95 

BIOSS Centre for Biological Signaling Studies (Freiburg, Germany). MCF7 cells were 96 

cultured in DMEM, GlutaMAXTM Supplement (31966021, GibcoTM) and BT-474 cells were 97 

cultured in DMEM/F12, GlutaMAXTM Supplement (31331028, GibcoTM) in NuncTM 98 

EasYFlaskTM Cell Culture Flasks (156340, Thermo Scientific™). Both media were 99 

supplemented with 10 % FBS (10270106, GibcoTM) and 1 % Pen/Strep (15140122, GibcoTM). 100 

Cells were cultured until ~90 % conflueny in a cell culture incubator (Heracell™ 150i CO2 101 

Incubator, 50116048, Thermo Scientific™) under a 5 % CO2 atmosphere at 37 °C. Cells were 102 

harvested with 1X TrypLETM Express Enzyme (12604021, GibcoTM). Trypsin activity was 103 

quenched by addition of medium. The cells were washed twice with DPBS (14040133, 104 

GibcoTM) and counted (Countess® II Automated Cell Counter, Invitrogen™) including 105 

live/dead staining with trypan blue (T10282, Invitrogen™).  106 

 107 

2.2 Total RNA isolation and bulk cell lysis 108 

Total RNA was isolated from 1x106 MCF7 and 1x106 BT-474 cells (‘bulk’) using the RNeasy 109 

Mini Kit (74104, Qiagen) in combination with the QIAshredder (79654, Qiagen) for lysate 110 

homogenization according to manufacturer’s instructions. Simultaneously, total RNA was 111 

isolated using the Quick-DNA/RNA Microprep Plus Kit (D7005, Zymo Research) with an 112 

upfront proteinase K digest and on-column DNase I digest. RNA concentration (Tab S3) was 113 

measured with the NanoDrop™ One (Thermo Scientific™). RNA integrity was checked on a 114 

1.2 % native agarose gel (2267.1, Roth) using 1X TBE buffer (3061.1, Roth) (Fig S2c). 1 µg 115 

total RNA was combined with 1X DNA Orange Loading Dye (R0631, Thermo ScientificTM) 116 

and 60 to 75 % formamide (6749.3, Roth) and heated to 65 °C for 5 min before loading. RNA 117 

was visualized with 1X GelRed® Nucleic Acid Stain (SCT123, Milipore). Total RNA was 118 

diluted 1:20, 1:50, 1:100 and 1:1000 with PBS for MCF7 cells and 1:50, 1:100, 1:1000 and 119 

1:10000 with PBS for BT-474 cells. Each sample of the dilution series was analyzed 120 

regarding ErbB2 and ACTB mRNA counts in triplicates using dPCR (2.5 Droplet digital 121 

PCR). The absolute gene mRNA counts per single cell were calculated by dividing the 122 

detected number of mRNAs with the number of cells (with respect to the dilution factor).  123 

Crude lysates (‘cl’) from 1x106 MCF7 and 1x106 BT-474 cells were prepared using 500 µl 124 

LBTW (lysis buffer from PICO Amplification Core (AMC) Kit, PICO-000010, Actome) 125 

proprietary buffer of Actome GmbH). The samples were incubated on ice for 5 min, sonicated 126 

for 1 min and cell debris were removed by centrifugation at 14000 xg at 4 °C for 10 min. The 127 

lysate was diluted with 49.5 ml DPBS (100X dilution), resulting in 20 cell equivalents per µl. 128 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.05.31.494164doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494164


6 
 

Thus, dispensation of 50 nl in to the ddPCR master mix using the I.DOT (2.3 Liquid 129 

dispensation using I.DOT) resulted in an equivalent amount of material to a single cell. 130 

 131 

2.3 Liquid dispensation using I.DOT 132 

The Immediate Drop-on-demand Technology (I.DOT One; Dispendix, Stuttgart, 133 

Germany) [42,43] with I.DOT PURE plates 90 µm orifice (Dispendix, Stuttgart, Germany) 134 

was used to dispense 0.5 µl LBTW into a 384-well V-bottom plate (0030623304, 135 

Eppendorf®) for single-cell dispensation (2.4 Single-cell dispensation using F.SIGHT™). The 136 

reduced volumes for down-scaled SMART-Seq® (2.6.1 cDNA synthesis using SMART-137 

Seq® Single Cell Kit) and down-scaled library preparation (2.6.2 Library preparation using 138 

Nextera XT and sequencing) were dispensed using the I.DOT. Prior to dispensation, the 139 

I.DOT was calibrated for the applied liquids to ensure reliable dispensation.  140 

 141 

2.4 Single-cell dispensation using F.SIGHT™ 142 

The single cell dispensing procedure was performed as described earlier [38,44,45]. The 143 

F.SIGHTTM single-cell dispenser (CYTENA GmbH, Freiburg, Germany) is an improved 144 

version of the single-cell printer (SCP) [38]. Both MCF7 and BT-474 cell concentrations were 145 

adjusted to 1x106 cells/ml and loaded into a Dispensing Cartridge (CYTENA GmbH, 146 

Freiburg, Germany). The settings for MCF7 cells were 10 to 25 µm cells size (BT-474: 10 to 147 

30 µm) and 0.5 to 1 roundness (same for BT-474) (Fig 1a, S3a and S3b). The F.SIGHTTM 148 

can reliably dispense single cells in minimal liquid volumes [45] within a short period of time 149 

(96 single cells per approx. 10 min). The single-cell dispensation efficiency (fraction of 150 

successful single-cell isolation events from targeted single-cell isolation events) is usually 151 

around 90 % [38], and is additionally controlled by cell images unambiguously assigned to 152 

each dispensation event (Fig 1a). Thus, other than single-cell dispensation events like 153 

multiple cells per droplet or empty droplets can be excluded.  154 

 155 

2.5 Droplet digital PCR 156 

ErbB2 and ACTB mRNAs were analyzed using the naica® Crystal Digital PCR System (Stilla 157 

Technologies, Villejuif, France) [46]. Master mix was prepared as follows: 11.5 µl qScript 158 

XLT 1-Step RT-qPCR ToughMix (2X) (95132, Quantabio), 1.15 µl TaqMan Assay 159 

Hs01001580_m1 (20X) (ErbB2) (4331182, Applied BiosystemsTM), 1.15 µl TaqMan Assay 160 

Hs01060665_g1 (20X) (ACTB) (4448489, Applied BiosystemsTM), 0.23 µl fluorescein 161 

(100X, prepared according to “Fluorescein preparation for naica® system” from Stilla 162 

Technologies) (0681-100G, VWR Chemicals), 1 µl of diluted RNA sample (or a single cell), 163 
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ad 23 µl H2O. After thorough mixing, 20 µl of the reaction mix were transferred bubble-free 164 

to the chambers of the Sapphire Chips (Stilla Technologies, Villejuif, France). The dPCR 165 

conditions of the Geode cycler were: partitioning of the reaction mix, cDNA synthesis (50 °C, 166 

10 min), initial denaturation (95 °C, 1 min); followed by 45 cycles of denaturation (95 °C, 167 

6 s), annealing and extension (60 °C, 45 s) and finally the pressure was released. The chips 168 

were transferred to the Prism3 reader and imaged using exposure times: 65 ms and 150 ms for 169 

FAM and HEX channel (82 mm focus). Afterwards, droplet quality was manually controlled 170 

and in case of poor quality, e.g. coalescence or air bubbles, the respective areas were excluded 171 

from further analysis. All NTCs were negative (data not shown). The average droplet volume 172 

using 1X qScript XLT 1-Step RT-qPCR ToughMix is 0.548 nl. Hence, the corresponding 173 

analysis configuration file was used for quantification (User Manual v2.1 of the Crystal Miner 174 

Software, Stilla Technologies, 2018). We comply with the dMIQE guidelines [47,48] and 175 

report all essential information (Tab S7).  176 

 177 

2.6 Down-scaled single-cell RNA sequencing  178 

2.6.1 cDNA synthesis using SMART-Seq® Single Cell Kit 179 

For cDNA synthesis the SMART-Seq® Single Cell Kit (634472, Takara BIO) at 1/10 of the 180 

original reaction volume was used (down-scaled SMART-Seq® workflow). Briefly, 1.15 µl 181 

of the lysis buffer (0.1 µl Reaction Buffer, 0.1 µl 3’ SMART-Seq CDS Primer II A and 182 

0.95 µl dH2O) were dispensed in skirted 384-well PCR plates (4ti-0384/X, 4titude) using the 183 

I.DOT. Subsequently, single cells (84 cells per cell line) and NTCs (empty droplets) were 184 

dispensed into the lysis buffer. The plates were sealed (AB0558, Thermo ScientificTM) and 185 

snap-frozen at -80 °C until further processing. After thawing, primers were annealed in a 186 

C1000 TouchTM Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA) at 72 °C for 187 

3 min. Afterwards, 0.75 µl of RT Master Mix (0.4 µl SMART-Seq sc First Strand Buffer, 188 

0.1 µl SMART-Seq sc TSO, 0.05 µl RNase Inhibitor and 0.2 µl SMARTScribe II Reverse 189 

Transcriptase) were added to each well using the I.DOT. The plate was processed in the 190 

C1000 Thermal Cycler for cDNA synthesis at 42 °C for 180 min, 70 °C for 10 min and 4 °C 191 

hold. Next, 3 µl PCR Master Mix (2.5 µl SeqAmpCB PCR Buffer (2X), 0.1 µl PCR Primer, 192 

0.1 µl SeqAmp DNA Polymerase and 0.3 µl dH2O) were added to each well and cDNA was 193 

amplified (95 °C for 1 min, 19 cycles: 98 °C for 10 sec, 65 °C for 30 sec, and 68 °C for 3 min; 194 

72 °C for 10 min and 4 °C hold). Purification of cDNA was performed manually using 9 µl of 195 

AMPure XP bead suspension (A63880, Beckman Coulter) per well according to 196 

manufacturer’s instructions. In brief, beads and cDNA were incubated for 8 min at room 197 

temperature. The beads were separated using conventional neodym magnets for 5 min and 198 

beads were washed with 30 µl 80 % ethanol for 30 sec. Afterwards, the beads were 199 

resuspended in 17 µl 10 mM Tris-HCl and incubated for 8 min at room temperature. The 200 
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beads were separated using magnetic separation for 5 min. 15 µl supernatant of each well 201 

were transferred to a fresh 384-well plate. The cDNA quantity was determined with the 202 

Quant-iTTM PicoGreenTM dsDNA Assay Kit (P7589, InvitrogenTM) in 384-well plates (4ti-203 

0203, 4titude). Fluorescent intensities were measured using the Spark 10M Microplate Reader 204 

(Tecan, Männedorf, Switzerland). cDNA quality was determined with Agilent’s 2100 205 

Bioanalyzer using the High Sensitivity DNA Kit (5067-4626, Agilent) according to 206 

manufacturer’s instructions (representative images in Fig 1b).  207 

 208 

 2.6.2 Library preparation using Nextera XT and sequencing 209 

Prior to tagmentation cDNA was normalized to 0.2 ng/µl. Tagmentation was performed using 210 

the Nextera XT DNA Library Preparation Kit (FC-131-1024, Illumina) at 10-fold 211 

down-scaled reaction volumes. 1 µl of Tagment DNA Buffer and 0.5 µl Amplicon Tagment 212 

Mix were added to each well using the I.DOT. The amplified and purified cDNA was 213 

tagmented for 8 min at 55 °C in a C1000 Thermal Cycler. Transposase activity was quenched 214 

by addition of 0.5 µl Neutralize Tagment Buffer using the I.DOT (< 1 min) and incubation at 215 

room temperature for 5 min. MCF7 and BT-474 libraries were independently amplified with 216 

index primers N7xx and S5xx of Nextera XT Index Kit v2 Set A (FC-131-2001, Illumina) and 217 

Nextera XT Index Kit v2 Set B (FC-131-2002, Illumina). 1.5 µl Nextera PCR Master Mix and 218 

0.5 µl of a unique combination of primers were added to each well using the I.DOT and 219 

tagmented cDNA was amplified in a C1000 Thermal Cycler (72 °C for 3 min, 95 °C for 220 

30 sec, 12 cycles: 95 °C for 10 sec, 55 °C for 30 sec, and 72 °C for 30 sec; 72 °C for 5 min 221 

and 10 °C hold). The cDNA libraries for MCF7 and BT-474 were pooled separately (total 222 

volume ~ 420 µl), and purified according to the previously mentioned bead clean-up 223 

procedure (using 0.6 to 1-fold AMPure XP bead suspension, A63880, Beckman Coulter), 224 

except that after removal of ethanol, 75 µl of resuspension buffer were added and incubated 225 

for 3 min. 73 µl of eluted library were transferred to a fresh tube. The quality of tagmented 226 

libraries was determined using the High Sensitivity DNA Kit on Agilent’s 2100 Bioanalyzer 227 

(representative images in Fig 1c). The pooled library was sequenced on the NextSeq 500 228 

System (Illumina, San Diego, CA, USA) using the High-Output v2.5 Kit (20024906, 229 

Illumina) with 75 bp single-end reads.  230 

 231 

2.6.3 Bioinformatics data analysis  232 

FASTQ files were generated with bcl2fastq v2.20 (“--no-lane-splitting” flag). Sample quality 233 

was assessed with FASTQC v0.11.9 (exemplary images: Fig S1). The aligners, salmon v1.3.0 234 

[49], kallisto v0.46.1 [50] and STAR 2.7.5c [51], were wrapped into bash scripts and the 235 

FASTQ files were separately aligned aligned to the GRCh38 cDNA reference transcriptome 236 

from Ensembl using salmon (“--validateMappings” flag) or kallisto as well as to the 237 
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GRCh38.p13 genome with STAR in solo mode. As recommended for salmon and kallisto, the 238 

mean read length and the standard deviation were calculated for each file. For STAR aligner, 239 

a genome index was calculated. The outputs were analyzed in Jupyter Notebooks [52] 240 

(jupyter core v4.7.0, jupyter-notebook v6.1.6) using R version 4.1.2. Transcript abundances 241 

(TPM) and count estimates were imported with the tximeta [53] package for salmon and 242 

tximport [54] for kallisto and summarized to genes using the summarizeToGene() statement. 243 

STAR alignment files were counted with featureCounts v2.0.3 [55] and the count matrices 244 

were directly imported. Cells with an alignment efficiency below 80 % were filtered out 245 

(salmon and kallisto) (Fig 1d and Tab S1). Cells with less than 60 % of uniquely mapped 246 

reads were filtered out (STAR) (Fig 1e and Tab S1). In both cases cells with at least 1E+5 247 

detected reads were considered. Pseudo-bulk differential expression analysis was performed 248 

with DESeq2 v1.32.0 [56] on count matrices using LRT testing and suggested parameters for 249 

single-cell testing. In order to evaluate transcriptional similarity between cells assayed using 250 

our down-scaled SMART-Seq® (salmon aligner only) and published data (GSE151334) [4], 251 

the datasets were concatenated into a single AnnData object and imported into SCANPY 252 

(v1.8.1) [57]. Cells with fewer than 200 genes expressed and genes expressed in less than 253 

three cells were excluded from further analysis. Counts per cell were normalized with 254 

SCANPY’s built-in normalization method and log-transformed according to the standard 255 

workflow recommended in the SCANPY documentation. Batch-correction was performed 256 

with BBKNN [58]. Dimensionality reduction was performed with SCANPY’s built-in 257 

UMAP-function (uniform manifold approximation and projection). Scripts for the here 258 

described analysis are available from github.com/LangeTo/scRNA-seq_scripts. 259 

 260 

2.7 Statistical analysis 261 

Groups were initially tested for normal distribution (Shapiro-Wilk test) and for 262 

homoscedasticity (F-test) upon which information a suitable test was chosen (if not stated 263 

differently): Mann-Whitney test (normal distribution rejected), Welch’s t-test (normal 264 

distribution, heteroscedasticity) or Student’s t-test (normal distribution, homoscedasticity). 265 

Distributions were compared using the Kolmogorov-Smirnov test. Bonferroni correction was 266 

applied for multiple testing corrections. Significance levels are indicated as follows: 267 

*** p < 0.001, ** p < 0.01, * p < 0.05, ns p > 0.05. Boxplots indicate the inner quartiles of the 268 

data (25 % to 75 %). Whiskers show 1.5xIQR (interquartile range). The median is drawn as a 269 

horizontal line. The mean is represented by a square. Individual data points are shown as dots. 270 

All plots and statistical analyses were performed with OriginPro 2021 (OriginLab 271 

Corporation). 272 

 273 

2.8 Bootstrapping comparison 274 
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To compare fold changes between two methods (a: scRNA-seq and b: scRT-ddPCR), we used 275 

a bootstrapping comparison because regular statistical tests suffer from p-value inflation after 276 

repetitive bootstrapping. The algorithm is described in Fig S4 based on the ratio rg (Eq 1). In 277 

brief, four arrays of expression values are needed (one per cell line and per method). A subset 278 

of each initial expression array is randomly subsampled with replacement (same length as 279 

initial array). The log2FCs of the means of these expression arrays are calculated per method. 280 

Then the ratio rg of these log2FCs is determined (Eq 1). Subsampling and ratio calculation is 281 

repeated 1,000 times. Finally, mean and 95 % confidence intervals (CI) of the new array rg is 282 

determined. If the 95 % CI overlaps with 1, the methods are assumed to yield the same fold 283 

change. 284 
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3 Results 286 

 3.1 Down-scaling of SMART-Seq®  287 

It is hypothesized that down-scaling of reaction volumes improves sensitivity [59], 288 

while conserving data quality [4,60–62]. This idea follows the concept of dPCR [36], where 289 

down-scaling (by partitioning) is an inherent feature, which enhances molecular detections by 290 

increasing the effective concentration of nucleic acids. Thus, we down-scaled our scRNA-seq 291 

reaction volumes to yield the most precise log2FCs. We used the F.SIGHT™ (CYTENA 292 

GmbH, Freiburg) for single cell isolation and the I.DOT (Dispendix, Stuttgart) for contact-293 

free liquid handling. The F.SIGHT™ uses a microfluidic chip generating free-flying, 294 

picoliter-sized droplets in which single cells are encapsulated and delivered to the microplate 295 

[34,35,38]. Image-based analysis intercepts a permanent vacuum suction when single cells of 296 

the desired morphological criteria are detected in the nozzle. High precision is ensured by 297 

automatic dispenser offset compensation (AOC) enabling single-cell deposition into few 298 

hundred nanoliters in 384-well plates [45]. Simultaneously, the F.SIGHT™ records an image 299 

series for each dispensation event, which can be unambiguously assigned to the addressed 300 

well of the microplate [38]. Based on the images, the cells can be qualitatively stratified 301 

according to roundness and size from a heterogeneous population of particles (Fig 1a, only 302 

colored dots are dispensed cells, the grey dots are either artefacts or cells that could not be 303 

isolated) resulting in a homogeneous cell population (Fig 1a, boxplots at the edges). We 304 

manually analyzed all images from putative single cells (84 cells per cell line) and found that 305 

7 % (MCF7) and 4 % (BT-474) were doublets or empty droplets (Tab S1). The cells were 306 

directly dispensed into the lysis buffer and processed by down-scaled SMART-Seq® and 307 

down-scaled Nextera XT protocols (2.6.1 cDNA synthesis using SMART-Seq® Single Cell 308 

Kit and 2.6.2 Library preparation using Nextera XT and sequencing). The average fragment 309 

length for tagmented cDNA was 459 bp and 432 bp for MCF7 and BT-474 cells, respectively. 310 

According to Jaeger et al. [62], this is an indication for good quality, tagmented cDNA. 311 

Representative electropherograms of cDNA and tagmented cDNA are shown in Fig 1b and 312 

1c. FastQC analysis revealed an average Phred score of above 30 for both cell lines (Fig S1). 313 

We analyzed sequencing data using three common aligners: salmon [49], kallisto [50] and 314 

STAR [51]. Based on alignment efficiency ≥ 80 % (salmon and kallisto) or fraction of 315 

uniquely mapped reads ≥ 60 % (STAR), cells of poor quality were excluded from downstream 316 

analysis (Fig 1d and 1e and Tab S1). Further on, cells with less than 1E+5 reads were also 317 

excluded from analysis (Fig 1f and Tab S1). All aligners yielded the same number of genes 318 

per cell. 11676 genes per single MCF7 cell and 11682 genes per single BT-474 cell were 319 

detected (Fig 1g). We also clustered our data with external data from Isakova et al. [4], who 320 

used 10-fold down-scaled Smart-seq2 protocol. The clusters of MCF7 cells exactly overlap, 321 

while other cells formed independent clusters like the reference cell lines HEK293T and 322 

fibroblasts (Fig 2a). We performed pseudo-bulk DE analysis with different input to DESeq2 323 
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(salmon, kallisto or STAR aligner count matrices) (Fig 2c, 2d and Tab S2). Interestingly, 324 

salmon and kallisto predict the highly significant overexpression of OLFML3, RAMP3 and 325 

VWA5A (only salmon), which we could not observe with STAR aligner (Fig 2c). To our 326 

knowledge there is no supporting evidence for this overexpression in MCF7 cells in literature. 327 

Furthermore, STAR aligner input to DESeq2 predicts clearly more DEGs in MCF7 than the 328 

other two aligners (Fig 2d). We found that ErbB2 is significantly overexpressed in BT-474 329 

cells as previously described [39], while ACTB as a housekeeping gene is not significantly 330 

different between the cell lines (Fig 2c and Tab S2). These findings are consistent across all 331 

aligners. Additionally, we evaluated the expression of two marker genes for MCF7 cells, 332 

KRT8 and TFF1 [4]. TFF1 is overexpressed in MCF7 cells, while KRT8 shows differential 333 

expression only with STAR aligner input to DESeq2 (Fig 2c and Tab S2). This underlines 334 

furthermore the dissimilarity of the aligners used.  335 
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 3.2 Validation of scRT-ddPCR using bulk methods 337 

For scRT-ddPCR, we isolated cells on the same day and from the same culture as in the case 338 

of down-scaled SMART-Seq® using F.SIGTH™ and I.DOT except that the cells were 339 

dispensed into LBTW (Fig S3a and S3b). After lysis, the gene mRNA per cell counts were 340 

determined directly form the lysate using digital PCR. First, we investigated varied volumes 341 

of LBTW lysis buffer, as the carry-over of detergents may impair droplet formation or reverse 342 

transcription and thus PCR efficiency [31,63]. The results indicate that as the volume of lysis 343 

buffer increases, the number of formed droplets decreases (Fig 3a) due to increased areas of 344 

coalescence (Fig S2a). The use of 0.5 µl LBTW produces no areas of coalescence and the 345 

number of droplets is not significantly reduced, despite a drop of ~18 % in total droplet 346 

number (Fig 3a). Similarly, we could not detected a significant difference between the ErbB2 347 

and ACTB mRNA concentrations upon different volumes of lysis buffer (Fig S2b). Thus, we 348 

used 0.5 µl lysis buffer in subsequent experiments. Of note, at low target concentrations the 349 

subsampling error becomes significant [36] due to the loss of mRNAs in the non-partitioned 350 

(dead) volume (~34 % according to manufacturer’s information). We reduced the loaded 351 

master mix volume without performance effects (data not shown) to minimize the loss of 352 

transcripts (~18 % dead volume). The well-documented differential expression of ErbB2 in 353 

MCF7 and BT-474 cells [39–41] was taken advantage to demonstrate the ability of our scRT-354 

ddPCR for absolute quantification. We could observe an expression of 355 

9 ErbB2 mRNA/MCF7 cell (79 % CV), while BT-474 cells expressed a ~50-fold higher 356 

amount (453 ErbB2 mRNA/BT-474 cell (42 % CV)) (Fig 3b and Tab S5). Durst et al. could 357 

observe the same fold difference [39]. On the other hand, we could not detect a significant 358 

difference in ACTB expression between the cell lines (66 ACTB mRNA/MCF7 cell with 359 

44 % CV and 114 ACTB mRNA/BT-474 cell with 70 % CV, p > 0.05, Mann-Whitney test 360 

with Bonferroni correction; Fig 3b and Tab S5). The F.SIGHT™ records morphological 361 

details of each dispensed cell but we could not detect any correlation between cell size and 362 

number of mRNAs per singe cell (Fig S3c and S3d). These mRNA counts could be biased by 363 

incomplete lysis of the single cell. To verify these mRNA counts, we checked the ability of 364 

the lysis buffer (LBTW) to exert full dispersion of cell material prior to compartmentalization. 365 

Thus, we used two commercially available methods for total RNA isolation, for which we 366 

assume a 100 % isolation efficiency (‘bulk’). The two methods differ in sample preparation 367 

(DNase I digest vs. no digest and enzymatic lysate homogenization vs. mechanical lysate 368 

homogenization), buffers and handling in general, but resulted in the same amount of ErbB2 369 

or ACTB mRNAs per cell (Fig S2d). Of note, the RNA quality differs between the two 370 

methods (Fig S2c and Tab S3). Similarly, a single-cell volume equivalent from a crude lysate 371 

(‘cl’) cells was dispensed into the dPCR mix and ErbB2 and ACTB counts per single cell were 372 

determined to validate that the lysis conditions have no effect on dPCR or the detection of the 373 

transcripts. Comparing these extraction methods (‘sc’, ‘bulk’, ‘cl’) for BT-474 cells yields no 374 

significant differences for both genes ErbB2 or ACTB (Fig 3b). Also ErbB2 counts in MCF7 375 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.05.31.494164doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494164


14 
 

cells are not significantly different between extraction methods. However, ACTB counts from 376 

‘bulk’ are significantly higher than from ‘sc’ or ‘cl’ (p < 0.001, Mann-Whitney test with 377 

Bonferroni correction). Although, ACTB is considered to be a housekeeping gene, its 378 

variability due to possible uncontrolled conditions is already described [64]. In this given case 379 

we assume, the variability might be related to the different passage numbers (Tab S4) or to a 380 

different confluency state of the cell culture. Overall, the results of absolute gene mRNA 381 

counts of total bulk RNA isolation methods and similarly the results of the crude lysates 382 

confirm unbiased, quantitative transcript detection by our scRT-ddPCR method (Fig 3b). The 383 

larger CVs of single-cell data compared to ‘bulk’ and ‘cl’ (Tab S5) are expected and 384 

considered to recapitulate expression variability.  385 
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 3.3 Comparison of down-scaled SMART-Seq® and scRT-ddPCR 387 

Conclusions made solely on the basis of scRNA-seq might be biased because of noise and 388 

dropouts and thus need confirmation by PCR means [25]. Because of increased sensitivity, 389 

absolute quantification and higher tolerance towards inhibitors [17,32,36,37], we chose 390 

scRT-ddPCR for unbiased validation of scRNA-seq data. Furthermore, dPCR provides an 391 

orthogonal validation as mRNAs are non-competitively but simultaneously transcribed into 392 

cDNAs (partitioning). Thus, the detection events are independent, while in scRNA-seq 393 

multiple mRNAs are reverse transcribed in a bulk reaction resulting in competitions and 394 

increased propensity for dropouts. Further, we sought to minimize biological and technical 395 

variability between the methods by using cells from the same population and the same high 396 

precision instrumentation regarding single-cell isolation and liquid handling. We constructed 397 

signal distributions of ErbB2 and ACTB expression in MCF7 and BT-474 cells using TPM 398 

values from salmon and kallisto, raw counts from STAR aligner or absolute gene mRNA 399 

counts per cell from scRT-ddPCR and normalized them to the maximum value per dataset 400 

(based on values from Fig 2b and 3b). For ErbB2 expression in MCF7 cells, we found for 401 

scRNA-seq a typical zero-inflation for low abundant targets (~ 80 % of cells in the first bin; 402 

Fig 4a, strongly skewed distributions Tab S6) [13,14,65]. We observed this behavior also for 403 

already published down-scaled Smart-seq2 data from Isakova et al. [4]. However, this 404 

distribution differs from our scRNA-seq pipelines (Kolmogorov-Smirnov test with Bonferroni 405 

multiple testing correction). For the ErbB2 signal distribution from MCF7 scRT-ddPCR data, 406 

we observed a significantly different shape as we could not observe an accumulation of cells 407 

in a bin of the histogram and the skewness is much lower (Tab S6). For high-abundant 408 

transcripts such as ErbB2 in BT-474 cells, we could detect differences between the alignment 409 

tools especially between salmon and kallisto, and STAR. This difference might be justified by 410 

the missing normalization of raw counts from STAR aligner or by using the genome as 411 

alignment reference. However, ACTB signal distributions show no such behavior, but data 412 

from Isakova et al. are strikingly different compared to all our approaches (Fig 4b). Based on 413 

the expression values (Fig 2b and Fig 3b), we calculated log2FCs (MCF7 vs. BT-474) (Fig 414 

4c). Additionally, we bootstrapped and down-sampled the scRNA-seq groups to the same 415 

sample size as the scRT-ddPCR group to eliminate subsampling errors (Fig 4c, shaded bars). 416 

The so calculated log2FCs do not differ from the log2FCs calculated by DESeq2 (blue and 417 

green arrows; Fig 2c, 4c and Tab S2). All ACTB log2FCs from scRNA-seq and scRT-ddPCR 418 

fluctuate within 0 ± 1, which is the null hypothesis of DESeq2 [56], meaning that there is no 419 

differential expression between cell lines (Fig 4c). The fluctuation probably depicts statistical 420 

noise. To compare log2FCs between methods, we bootstrapped their ratio and calculated 421 

95 % CIs. If these 95 % CIs overlap with 1, the methods are assumed to determine the same 422 

log2FC (Eq 1 and Fig S4). Log2FCs from both, scRNA-seq (with salmon, kallisto or STAR 423 

aligner) and scRT-ddPCR, confirm the overexpression of ErbB2 in BT-474 cells, although to 424 

a significantly different extent, while we could not detect any difference between the log2FCs 425 
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from the different aligners (Fig 4c). scRT-ddPCR predicts significantly stronger 426 

overexpression of ErbB2 in BT-474 cells. This can potentially be explained by the biased 427 

detection of ErbB2 expression in MCF7 cells by scRNA-seq (Fig 4a).   428 
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4 Discussion 429 

In this study, we present a novel, orthogonal method, scRT-ddPCR, for the validation of 430 

scRNA-seq fold changes. Durst et al. found that absolute quantification is the most reliable 431 

approach for single-cell analysis [39], which is the key feature of dPCR and delivers a ground 432 

truth that facilitates inter-experimental comparisons as it is detached from any standard. This 433 

is achieved by the inherent partitioning of dPCR, which further allows spatially separated but 434 

simultaneous reverse transcription of mRNAs. This potentially improves cDNA capture 435 

through enrichment. Thus, for low-abundant transcripts, which are often referred to as highly 436 

interesting but difficult to reliably analyze [15–18], dPCR might therefore be of great 437 

advantage.  438 

First, we aimed to enhance molecular detections for SMART-Seq® by down-scaling, which is 439 

frequently applied to scRNA-seq protocols to increase throughput, reduce costs, and increase 440 

sensitivity, while maintaining data quality [4,59–62]. We demonstrated that our down-scaled 441 

SMART-Seq® protocol using F.SIGHT™ and I.DOT delivers high quality data (Fig 1, S1 442 

and Tab S1). We validated our method by comparative UMAP-clustering against published, 443 

down-scalded data [4] and found excellent conformity (Fig 2a). Compared to 3’-counting 444 

methods such as the Chromium system [24], full-length protocols such as SMART-Seq® 445 

have already demonstrated better coverage of low-abundant transcripts [3,23], but are still not 446 

sensitive enough to detect low-abundant ErbB2 mRNA in MCF7 cells as we show (Fig 4a). 447 

We relate these dropouts to the simultaneous reverse transcription of multiple 448 

poly(A)-mRNAs into cDNAs. Thus, our data support previous findings of dropouts in 449 

scRNA-seq [13,14].  450 

Secondly, we successfully validated our scRT-ddPCR method (Fig 3 and S2), which 451 

underlines that scRT-ddPCR can serve as a ground truth. We could detect ErbB2 expression 452 

in MCF7 cells without dropouts (Fig 4a) potentially because of the inherent partitioning step 453 

in dPCR, which increases the effective mRNA concentration [36]. ErbB2 expression in BT-454 

474 cells and ACTB expression in MCF7 and BT-474 cells could be similarly detected (Fig 455 

3b, 4a and 4b). Thus, our proposed scRT-ddPCR method can reliably and absolutely quantify 456 

low- and high-abundant transcripts offering a solution for fold change validation. However, a 457 

drawback of dPCRs is the degree of multiplexing, which limits the genes to analyze. At the 458 

time we conducted the experiments, the highest degree of multiplexing was three colors [46]. 459 

Recent developments in dPCR instrumentation allow five (QIAcuity, Qiagen) or six (Prims6, 460 

Stilla Technlogies) color detection. Most of the existing approaches for scRNA-seq validation 461 

use qPCR [26–30], but also these cyclers do not offer higher degree of multiplexing than six. 462 

Alternatively, approaches of monochrome multiplexing, such as photo bleaching, could be 463 

used to extend the degree of multiplexing beyond hardware limitations [66,67].  464 

Finally, we compared log2FCs from scRNA-seq and scRT-ddPCR and found that ACTB 465 

log2FCs from scRNA-seq were not different from scRT-ddPCR log2FCs (Fig 4c). In both 466 

cell lines, ACTB expression has a good signal distribution for scRT-ddPCR and all aligners 467 
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used in scRNA-seq (Fig 4b and Tab S6). Strikingly, the signal distribution obtained from 468 

published data shows a much stronger skewness (Fig 4b and Tab S6), which could be an 469 

indication that our down-scaled protocol using F.SIGHT™ and I.DOT performs better than 470 

existing down-scaled versions. While ErbB2 fold changes are consistent among the aligners 471 

used, we found a significant difference between scRNA-seq and scRT-ddPCR (Fig 4c). We 472 

hypothesize that these differences originate from the heavily skewed signal distributions 473 

(skewness ≈ 3) of ErbB2 in MCF7 cells, which indicate dropouts (Fig 4a and Tab S6). 474 

However, scRNA-seq and scRT-ddPCR use different priming strategies for cDNA synthesis 475 

[68] and in scRNA-seq protocols more PCR steps are included (i.e. cDNA amplification, 476 

tagmented library amplification, bridge amplification), which potentiate biases and promote 477 

dropouts. Biases in scRNA-seq could also originate from the bioinformatics tools used as we 478 

observe that some genes are predicted to be overexpressed with some aligners (Fig 2c and 2d) 479 

and that overexpression is not consistent across the aligners (Tab S2).  480 

In this study, we only evaluate the impact of dropouts on individual fold changes but we 481 

assume that this has far-reaching implications on DE analyses and their conclusions, 482 

especially since this is not an issue limited to scRNA-seq but also exists in conventional 483 

RNA-seq [69–71]. However, it is pronounce in scRNA-seq because of low sample input 484 

[13,14]. In concordance with this, we could show that the alignment tool has an impact on the 485 

amount of DEGs and on the fold changes (Fig 2c, 2d, 4c and Tab S2). This underlines the 486 

necessity for an independent validation method that allows the reliable detection of absolute 487 

mRNA counts such as our scRT-ddPCR. Our here presented scRT-ddPCR method can thus 488 

serve as a platform for mRNA analysis but could also be extended to the protein [31] and 489 

DNA analysis [72] or different cell types [45]. On top of that, it is compatible with any plate-490 

based sequencing protocol such as Smart-seq3, Smart-seq3xpress or FLASH-seq [60,61,73]. 491 

In conclusion, we think this method is a valuable addition to the toolbox of researchers 492 

interested in single-cell transcriptomics because of its reliability, ease of use, reduced costs, 493 

and increased sensitivity. 494 
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Graphical abstract: Validation of scRNA-seq fold changes by scRT-ddPCR.  808 
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 810 

Figure 1: Quality control of down-scaled SMART-Seq® workflow with MCF7 and BT-474 cells. a) 811 
2D-scatter plots (roundness vs. diameter) of detected particles in the dispensation nozzle during the process and 812 
dispensed cells (colored dots). The particles can be of various origins: cell debris, cell aggregates, corpuscular 813 
materials from the cell culture medium or cells. The ROI (region of interest) depicts the desired morphological 814 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.05.31.494164doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494164


32 
 

criteria by which a particle is defined as a cell. The overlap in the ROI between detected particles and dispensed 815 
cells is because of the fact that some cells could not be isolated. Boxplots show roundness and diameter 816 
distributions of dispensed single cells (n = 84). Representative images of the printing process, which enable 817 
manual image-based exclusion of droplets with multiple cells or empty droplets are shown. These images can be 818 
unambiguously assigned to the addressed wells of the microplate. b, c) Representative electropherograms 819 
(Agilent’s Bioanalyzer) of cDNA and tagmented cDNA size distributions for both cell lines. The average cDNA 820 
length after tagmentation was 459 bp for MCF7 and 432 bp for BT-474 cells. d) Alignment efficiency of salmon 821 
and kallisto aligner. Cells with less than 80 % alignment efficiency were excluded from further analyses. e) 822 
Alignment statistics (fraction of uniquely mapped reads, fraction of reads mapped to multiple loci, fraction of 823 
reads mapped to too many loci, fraction of reads too short for mapping, fraction of unmapped reads) for MCF7 824 
and BT-474 cells using STAR aligner. Cells with less than 60 % of uniquely mapped reads were excluded from 825 
further analyses. f) Total read counts per cell for MCF7 and BT-474 cells using salmon, kallisto or STAR 826 
aligner. Cells with less than 1E+5 transcripts were excluded from further analyses. g) Gene per cell counts for 827 
MCF7 cells (median across all aligners: 11676 genes per cell) and BT-474 cells (median across all aligners: 828 
11682 genes per cell) after all steps of filtering. The median of genes per cell is the same independent of aligner 829 
and cell line (p > 0.05, Mann-Whitney test with Bonferroni correction). The amount of cells excluded after each 830 
filtering step is shown in Tab S1.  831 
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 833 

Figure 2: Validation of down-scaled Smart-seq2 by clustering and different bioinformatics pipelines. a) 834 
UMAP clustering of MCF7 and BT-474 cells along with MCF7 cells, HEK293T cells and fibroblasts from 835 
GSE151334. b) Violin plots of ErbB2 and ACTB expression values in MCF7 and BT-474 cells from salmon, 836 
kallisto and STAR aligner in the respective units (salmon and kallisto: TPM: transcripts per kilobase million; 837 
STAR: raw counts). c) Bland-Altman plots of gene expression in MCF7 over BT-474 cells with salmon, kallisto 838 
or STAR aligner input to DESeq2. Each dot symbolizes a gene with its average expression value in both cell 839 
lines (baseMean; x-axis) and the log2FC (log2 of fold change; y-axis). Dots colored in red are significantly 840 
differentially expressed genes (DEGs); log2FC > 1 and padj < 0.05: overexpression in MCF7 cells; log2FC < -1 841 
and padj < 0.05: overexpression in BT-474 cells. ErbB2, ACTB, TFF1 and KRT8 expression values are 842 
highlighted with stars and extreme values are highlighted with a red circle. The dashed line indicates 10-fold 843 
overexpression in either cell line. d) Total number of genes analyzed by DESeq2 using salmon, kallisto or STAR 844 
aligner input (STAR: baseMean > 5 necessary for consideration) with amount of DEGs overexpressed in either 845 
cell line.  846 
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 848 

Figure 3: Validation of scRT-ddPCR workflow. a) Impact of lysis buffer volume on the number of droplets 849 
generated per reaction chamber of one Sapphire Chip. Bar plots show mean values with standard deviation as 850 
error bars. Groups were compared using student’s t-test with Bonferroni correction (n = 3). b) Absolute gene 851 
mRNA per cell counts from different methods (‘sc’ = scRT-ddPCR; ‘bulk’ = quantification from bulk isolated 852 
RNA; ‘cl’ = quantification from a crude lysate) according to the genes ErbB2 and ACTB and the cell lines BT-853 
474 and MCF7. Groups were compared using Mann-Whitney test with Bonferroni correction (n ≥ 11). 854 
Significance levels not indicated are non-relevant comparisons for this work.  855 
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 857 

Figure 4: Comparison of scRT-ddPCR and scRNA-seq on the basis of signal distributions and fold 858 
changes. a) Distribution of normalized ErbB2 expression signal (normalized to maximum signal) from salmon, 859 
kallisto and STAR aligner used in this study, MCF7 expression data from Isakova et al. (10-fold down-scaled 860 
Smart-seq2) and scRT-ddPCR in MCF7 and BT-474 cells. All distributions were compared using a 861 
Kolmogorov-Smirnov test with Bonferroni correction for multiple testing. Non-significant difference are not 862 
shown. b) Distribution of normalized ACTB expression signal (normalized to maximum signal) from salmon, 863 
kallisto and STAR aligner used in this study, MCF7 expression data from Isakova et al. (1/10 down-scaled 864 
Smart-seq2) and scRT-ddPCR in MCF7 and BT-474 cells. All distributions were compared using a 865 
Kolmogorov-Smirnov test with Bonferroni correction for multiple testing. Non-significant difference are not 866 
shown. c) Log2FCs (MCF7 vs. BT-474) for scRNA-seq data processed with salmon, kallisto and STAR aligner 867 
and scRT-ddPCR, calculated on the basis of expression values as shown in Fig 2b. The shaded bars show 868 
log2FCs of the respectives group down-sampled by bootstrapping to the same sample size of scRT-ddPCR. 869 
Log2FCs were compared using a bootstrapping comparison (2.8 Bootstrapping comparison and Fig S4). Bars 870 
depict mean log2FCs with bootstrapped error bars indicating 95 % CI. Log2FCs within 0 ± 1 are not considered 871 
to be statistically significant. Blue and green arrows indicate log2FCs calculated by DESeq2. 872 
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