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MAIN  

A quarter of a century ago, in 1993, Donald S. Coffey hypothesized that cancer is an ‘abrupt’ 

and ‘emergent’ phenomenon caused by the transformation of the cell proliferation machinery 

from an ordered to a disordered albeit self-organizing state 1. In the following decades 

researchers have focused more and more on the characterization of the dysregulated 

(disordered) genomic and non-genomic elements of cancer. Yet the prevalent somatic 

mutation theory stating that near-random DNA lesions combined with selection cause cancer 

still indicate a failure to grasp Coffey’s vision of using cancer’s self-organizing features to 

identify unifying aspects across malignancies 2-4. With the advent of precision cancer 

medicine, more efforts than ever are now being put on characterizing the broad spectrum of 

genetic variation among individual tumors instead of describing all cancers as one entity. 

This has resulted in a fine-tuned prognostication of many neoplasms and the identification of 

treatment targets based on each cancer’s molecular signature. Yet, in many cases, the threat 

of a relapse and a consequent treatment resistant aggressive disease loom, reminding us that 

cancer shares features of resilience with many other self-organizing systems. Cancer relapse 

mechanism have also thoroughly been studied through the lens of genetic diversity, 

elucidating how tumors evolve along different evolutionary trajectories 5 and, how resistant 

clones often appear due to excessive branching early in the disease and remain dormant only 

to clonally fixate afterwards 6-7. Despite the massive amount of data accumulated on the 

molecular routes to relapse, it still remains an essentially unpredictable phenomenon. 

However, as inferred by Coffey, cancer is not a purely stochastic phenomenon. Rather, it 

results from runaway dysregulations in a complex, dynamic and adaptive system. Can we 

then use generic knowledge from other systems in a state near chaos to better understand 

tumorigenesis?  

In his seminal work on chaotic oscillations in dynamic systems, James A. Yorke candidly 

showed that a self-repeating process with the periodicity of three or higher experiences 

chaotic fluctuations. It was exemplified with the logistic function 8, a sigmoidal curve with a 

periodically oscillating slope (fig. 1A). Robert May further demonstrated how chaotic 

fluctuations could appear as a function of logistic growth in a bifurcation diagram 9 (fig. 1B) 

with a presentation of how a function can assume more than one value near its asymptotes 

(orbits). Today the generalized logistic model (with the Gompertz curve being a special case) 

is a commonly used construct in simulating spatially constricted (bonded) growth of species / 
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cell populations and it is popularly used to emulate solid tumor growth 10-12. Several 

comparative studies analyzing in-vivo tumor growth have established the suitability of the 

logistic function in tumor growth estimation 12-13. Additionally it has also been used to 

illustrate clonal selection and genetic drift in solid tumors in silico 14. Simulations show that 

evolutionary trajectories of cancers are highly dependent on how cell populations grow and 

how they interact with the stromal boundary 15. However, whether the logistic function as a 

mechanism for tumor growth can explain emergent clonal geographies in tumorigenesis 

remains to be explored. We here probe this question with a focus on the trends in evolution of 

the mutational landscapes. 

First, we performed simulations based on the assumption that tumors prior to clonal 

expansions emerge from a uniform population of cells that are henceforth referred to as the 

ancestors. Ancestors went through clonal expansion adhering to certain parameters (i.e., a 

growth rate governed by birth and death rates, a rate of acquiring mutations at each cell 

division and, a probability of a mutation to be a driver mutation), which were set at initiation 

and remained unchanged, purely for the sake of simplicity. The selective advantages provided 

by a mutation was sourced from deleteriousness scores provided by the COSMIC database 

(detailed in Methods) 16 and the maximum number of cells at the end of the simulation was 

kept fixed. Instead of determining the ancestry of each cell, we focused on how cells 

underwent genetic diversification due to variations in simulation parameters making them 

genetically distant and heterogeneous progenies of the ancestors. All cells at the end of each 

simulation were clustered according to the number of acquired mutations where the least 

mutated cluster is considered to represent the most recent common ancestors. With this, we 

arrive at a simple measure of the percentage of ancestors remaining at the end of a simulation 

run. 

With each simulation cycle the mutations were drawn at random from a set of known somatic 

mutations (see Methods). Using fixed initial conditions, we evaluated if the genetic 

diversification remained somewhat predictable given certain mutation parameters. Keeping 

the growth rate unchanged, we first varied the probability of acquiring a mutation at each cell 

division between 0.01 and 0.04 (fig. 1C) 14. Cellular growth rates were affected by mutation 

rate, changes in fitness etc. and we also observed a non-linear monotonically decreasing 

relationship between the percentage of ancestors and increasing mutation rate. The fraction of 

remaining ancestors at the end of the simulation varied on average between 92% (low 
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mutation rate) and 36% (high mutation rate, calculated over 100 simulation runs). We could 

not detect any canonical relationship between the median number of mutations and growth 

rates. Instead, mutation acquirement seems to undergo a dramatic step-like increment over an 

arbitrary span (fig. 1D). Clear jumps in median mutation aggregation can be seen near growth 

rates 3.0 and 3.4 indicating rapid changes in the distribution of mutation aggregation at 

certain values of growth rate. As the number of mutations increases, so should the percentage 

of cells that harbor a subset of these mutations. Indeed, the jumps in mutation aggregation 

corresponded to the classic bifurcation diagram of the logistic function (fig 1B 9) when 

plotting the percentage of the remaining ancestor against the growth rate (fig. 1E). 

The shape of the bifurcation diagram predicts chaotic behavior as the growth constant 

increases over a certain threshold that also represents a one-to-many solution of the logistic 

map at the asymptotes and we see in our simulations, that the percentage of ancestors very 

closely resemble this orbit diagram. In our simulations faster growth rate resulted in a 

markedly heterogeneous mutational landscape in comparison to a slow growth rate (fig. 1F). 

This led us to conclude that chaotic growth (at least in our case) is a biologically emergent 

feature exclusively occurring in tumors following logistic growth and with a growth rate 

above 3.0. 

Talkington and Durett evaluated in vivo growth characteristics of several cancer cell lines and 

found that numerous cell lines at least partly resemble logistic (specifically, Gompertzian) 

growth 13 and in addition, some of the earliest investigations on in vitro growth experiments 

have also pointed towards a similar pattern 17-18. However, the extent to which fast logistic 

growth is present in tumors in vivo has remained unclear.  

To evaluate whether such fast-growing tumors with potential non-linear clonal evolution 

exist, we assessed how often logistic growth is observed across in vivo model systems, in 

situations simulating relapse by implantation of a limited tumor population. Pediatric cancers 

are well known to have much higher growth rates compared to adult cancers. Neuroblastoma 

(NB) and Wilms tumor (WT) are two of the most common solid pediatric tumors, notorious 

for their fast growth. We estimated growth rates from previously published data from 

untreated patient-derived xenografts (PDX), derived from NB and WT 5,19-22. As a 

comparison to adult tumors (i.e., slow growers) 23, we also evaluated uninhibited growth of 

several lung and breast cancer cell lines (unpublished data). Strikingly, 43% of the evaluated 

NB PDXs abided by logistic growth (73% of growth rates being more than 3.0 with a median 
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of 10.0), considerably above the chaotic bifurcation limit of 3.0 whereas 75% of the WT 

PDXs showed logistic growth (all growth rates over 3.0) with median growth rate of 31.0 

(fig. 1G-H). PDXs from the H441 lung cancer and MCF7 breast cancer cell lines, 71% and 

78%, respectively, experienced logistic growth but none over 3.0. The median growth rates 

were only 1.13 and 0.9 respectively, far below that for chaotic fluctuations. In addition to 

patient derived models, we also evaluated the growth of two lineages of the NB SK-N-

BE(2)C cell line in vivo, which median growth rates of 5.0 and 4.0 respectively 

(Supplementary material). When combined, the growth rates from all NB replicates had a 

median of 6.0 and that for the WT was 24.0. All but one breast cancer replicates that adhered 

to a logistic growth had growth rates below 3.0 with a median of 0.99 and that for lung cancer 

replicates was 0.68 none reaching 3.0. 

The implication of the present study is limited to tumors that demonstrated a logistic growth 

curve however not all tumors did so. This is possibly due to different inherent growth 

characteristics as the absolute volume of the tumors varied substantially between the pediatric 

and the adult tumors. By week four of observation the average volume for NB replicates 

exceeded 2000 mm3. In the same time frame adult tumors grew only about 400 mm3 except 

for one replicate (m3) of the MDA-MB-231 breast cancer cell line (growth rate 3.6). The WT 

PDXs at implantation were all larger than 200 mm3 with an average size of 308 mm3 that 

grew up to 3800 mm3 on average by week 3. Also notable is that NB PDXs underwent 

orthotopic implantation initially and then were grafted heterotopically22 whereas the WTs 

were heterotopic. Often the reason that a curve failed to be reasonably fit to a logistic 

function was due to abrupt changes in growth pattern (measurement artifacts etc.) which is a 

regular phenomenon. Nevertheless, the presence of any systematic artifact being responsible 

for the low growth rates in the adult tumors was ruled out as the experiments yield growth 

rate within-variances of 0.023 and 0.012.  

The simulations under chaotic growth resulted in a massively varied mutational landscapes 

implying that evolutionary trajectories, even in controlled model systems, are intrinsically 

unpredictable under certain conditions that invoke chaos. Our experimental data imply that 

this seems particularly applicable to fast-growing pediatric tumors. The mouse model data 

illustrate that some tumor types are associated with specific growth characteristics (non-

logistic/logistic and slow/fast growing), which determines whether they evolve clonally in a 

chaotic or predictable fashion. This essentially puts an intrinsic limit to what can be predicted 
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using today’s popular approach of precision cancer medicine. However, observing the tumor 

growth rate can potentially become a noninvasive way to determine with what degree of 

predictability the tumor is expected to evolve, in turn providing insights to how often the 

clonal landscape of a tumor needs to be resampled to evaluate options for targeted therapy 

based on molecular profile.  
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Figure legend 

Figure 1. Simulation of tumor evolution. (A) Interpretation of the classical shape of a logistic 

growth curve. (B) Classical orbit diagram of logistic curve (logistic map) 9. (C) Change in 

percentage of remaining MRCA (most recent common ancestors) cells was plotted against 

increasing mutation rate. Examples were overlayed at the estimated mean calculated with 100 

simulation runs. Confidence interval with shaded overlay depicts 3σ limit. (D) Average 

number of total distinct mutations at the end of simulation is plotted against growth rates (r). 

All estimates are calculated over 100 separate runs. As logistic map experiences chaotic 

fluctuations starting at r = 3.0, the x-axis is terminated at 4.0 as it already provided adequate 

range (confidence interval depicts 3σ limit) (E) Cell growth rate was plotted against 

percentage of remaining ancestors at the end of simulations, grey section indicates r < 3.0, 

calculated by taking average; black section indicates 3.0 < r < 3.5, calculated by cluster 

centroids; red section indicates r > 3.5 where all estimates are plotted. (F) Three replicates of 

simulation are shown for growth rates (r) 1.0 and 3.0 to draw attention to the fact that high r 

results in markedly different mutational pattern compared to that in low r. (G) Tumor growth 

data in mouse models are depicted; red: logistic growth and green: did not fit to logistic 

function. NB: neuroblastoma (Radke et. al.); WT: Wilms tumor (KT-47 sample, Murphy et. 

al.); LC: lung cancer (H441 cell line); BC: breast cancer (MCF7 cell line). (H) Box plots of 

growth rates of data shown in (1-G) plotted across cancer types. 
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