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Abstract 

Along with the study of brain activity evoked by external stimuli, the past two decades 

witnessed an increased interest in characterizing the spontaneous brain activity occurring 

during resting conditions. The identification of the connectivity patterns in this so-called 

"resting-state" has been the subject of a great number of electrophysiology-based studies, 

using the Electro/Magneto-Encephalography (EEG/MEG) source connectivity method. 

However, no consensus has been reached yet regarding a unified (if possible) analysis 

pipeline, and several involved parameters and methods require cautious tuning. This is 

particularly challenging when different choices induce significant discrepancy in results and 

drawn conclusions, thereby hindering reproducibility of neuroimaging research. Hence, our 

objective in this study was to evaluate some of the parameters related to the EEG source 

connectivity analysis and shed light on their implications on the accuracy of the resulting 

networks. We simulated, using neural mass models, EEG data corresponding to two of the 

resting-state networks (RSNs), namely the default mode network (DMN) and the dorsal 

attentional network (DAN). We investigated the impact of five channel densities (19, 32, 64, 

128, 256), three inverse solutions (weighted minimum norm estimate (wMNE), exact low 
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resolution brain electromagnetic tomography (eLORETA), and linearly constrained minimum 

variance (LCMV) beamforming) and four functional connectivity measures (phase-locking 

value (PLV), phase-lag index (PLI), and amplitude envelope correlation (AEC) with and without 

source leakage correction), on the correspondence between reconstructed and reference 

networks. We showed that, with different analytical choices, a high variability is present in the 

results. More specifically, our results show that a higher number of EEG channels significantly 

increased the accuracy of the reconstructed networks. Additionally, our results showed a 

significant variability in the performance of the tested inverse solutions and connectivity 

measures. In our specific simulation context, eLORETA and wMNE combined with AEC 

computed between orthogonalized time series exhibited the highest performance in terms of 

similarity between reconstructed and reference connectivity matrices. Results were similar for 

both DMN and DAN. We believe that this work could be useful for the field of electrophysiology 

connectomics, by shedding light on the challenge of analytical variability and its consequences 

on the reproducibility of neuroimaging studies. 

Keywords: EEG resting-state networks, channel density, inverse solution, functional 

connectivity, neural mass model, analytical variability, reproducibility. 

1. Introduction 

Over the past two decades, there has been a considerable growth in the number of studies 

investigating human brain activity at rest (Raichle et al. 2001; Raichle and Snyder 2007; van 

den Heuvel, Mandl, and Pol 2008; Damoiseaux et al. 2006). Characterizing synchronous 

activity across spatially distributed regions has revealed consistent patterns of brain 

connectivity in the absence of a goal-directed task, with a preserved consistency across 

subjects as well as across different neuroimaging modalities (Damoiseaux et al. 2006; Brookes 

et al. 2011; Francesco de Pasquale et al. 2012; Kabbara, Paban, and Hassan 2021). 

Interestingly, an accurate identification of the so-called resting-state networks (RSNs) has 

been found to be primordial for both cognitive (Keller et al. 2015; Jockwitz et al. 2017; Shen et 
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al. 2018; Alavash et al. 2015) and clinical studies (Sheline and Raichle 2013; Kabbara et al. 

2018; Hassan, Chaton, et al. 2017; Gratton et al. 2018; Jimenez et al. 2019).  

Functional RSNs can be mapped, non-invasively, using either functional magnetic resonance 

imaging (fMRI) or magneto/electro-encephalography (M/EEG). The main advantage of EEG, 

as compared to fMRI, which is more established in resting-state studies, is its ability to track 

brain networks at a sub-second scale, providing important insights on the dynamics of those 

networks (Hassan and Wendling 2018; Kabbara et al. 2017). Since EEG is measured at the 

level of sensors distributed over the head, challenging computational problems need to be 

tackled to reconstruct the underlying networks with reasonable accuracy. In this context, the 

EEG source connectivity method enables identifying cortical networks while providing a 

satisfying trade-off between time and space resolutions (Hassan and Wendling 2018). 

However, many methodological questions related to the EEG source connectivity analysis 

remain unanswered. In fact, each step of the analysis involves different choices that may 

significantly affect the resulting functional network, which poses a key challenge to the topic of 

research reproducibility. Hence, the effect of several factors needs to be investigated and 

quantified for a more consistent and reliable use of this method.  

First, several studies investigated the effect of the number of electrodes on EEG source 

localization in simulations in the context of epilepsy (Song et al. 2015; Sohrabpour et al. 2015; 

Goran Lantz et al. 2003). More specifically, it has been shown that the number of EEG 

electrodes has a direct influence on the localization error: a higher number of electrodes is 

associated with a significant decrease in localization error (Goran Lantz et al. 2003; Song et 

al. 2015; Sohrabpour et al. 2015). In both studies by (Goran Lantz et al. 2003) and (Sohrabpour 

et al. 2015), a dramatic decrease in localization error occured when increasing the number of 

electrodes from 32 to 64. 

Another critical influencing factor in the EEG source connectivity pipeline is the algorithm 

chosen to solve the inverse problem, which is ill-posed due to its non-uniqueness and the 

instability of its solution (see (Grech et al. 2008) for a review).  Several studies quantifying the 

performance of different inverse methods, in simulated and experimental EEG/MEG data, 
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concluded that the choice of the inverse method significantly influences source estimation 

results (Anzolin et al. 2019; Mahjoory et al. 2017; Hedrich et al. 2017; Bradley et al. 2016; 

Grova et al. 2006; Halder et al. 2019; Tait et al. 2021; Allouch et al. 2022). However, no 

consistent conclusions have been made regarding one method that would stand apart from 

the others in terms of performance, which can also be related to the analyzed conditions. 

The choice of the functional connectivity metric is also a critical step. A wide range of measures 

are used in the field, and each differs in the aspect of the data that is being  investigated 

(amplitude- vs phase- based measures / directional vs non-directional connectivity, 

prone/robust to source leakage), (see (Friston 2011; Pereda, Quiroga, and Bhattacharya 2005; 

Cao et al. 2022) for a review), resulting in a significant variability of  performance and 

interpretations (Colclough et al. 2016; H. E. Wang et al. 2014; Wendling et al. 2009; Hassan, 

Merlet, et al. 2017; Allouch et al. 2022).   

In this context, simulation studies are of utmost interest, since they provide an otherwise 

inaccessible ground-truth for an objective evaluation of the methods/techniques under 

investigation. Several approaches have been suggested to provide such ground-truth. For 

instance, a toy model was used in (Schelter et al. 2006), where a signal was acting as an 

oscillator and was driving the activity of other structures. The use of Multivariate autoregressive 

(MVAR) models is also frequent (Anzolin et al. 2019; Haufe and Ewald 2016). However, such 

models are limited either in terms of their spectral properties, or in terms of their linearity and 

lack of complexity as compared to actual brain activity. As an attempt to bridge this gap, we 

used here a popular model for cortical dynamics, namely neural mass models (NMMs), to 

simulate resting state networks, and more specifically the default mode network (DMN) and 

dorsal attentional network (DAN). Then, we quantified the effect of three key factors involved 

in the EEG source connectivity analysis:  

1) The EEG channel density (going from 19,32,64,128 to 256 channels). 

2) The inverse method used to reconstruct EEG sources. We selected three of the widely used 

algorithms in the EEG/MEG community, namely i) weighted minimum norm estimate (wMNE) 

(Fuchs et al. 1999; Lin et al. 2006), ii) exact low-resolution brain electromagnetic tomography 
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(eLORETA) (Pascual-Marqui 2007), and iii) linearly constrained minimum variance (LCMV) 

beamformer (Van Veen et al. 1997).  

3) The functional connectivity metric. Since we did not intend to present an exhaustive 

comparison between all available metrics, we selected two phase- and two amplitude-based 

metrics: the phase-locking value (PLV) (Lachaux et al. 2000), phase-lag index (PLI) (Stam, 

Nolte, and Daffertshofer 2007) and amplitude envelope correlation (AEC) with and without 

source leakage correction (Hipp et al. 2012; Colclough et al. 2016, 2015). 

Finally, cortical networks computed for each combination of methods were quantitatively 

compared to the reference simulated networks for all experimental conditions investigated in 

this study.  

2. Materials and Methods 

A schematic diagram of the analysis pipeline is summarized in Figure 1. 

2.1. Simulations 

The simulated cortical networks (DMN and DAN) each included six regions based on the 

Desikan-Killiany atlas (Desikan et al. 2006) in terms of region parcellation. The DMN consisted 

of the right and left posterior cingulate cortex (PCC), medial orbitofrontal (MOF) gyrus, and 

inferior parietal lobe (IPL). Regarding the DAN, this network consisted of the right and left 

inferior parietal lobe (IPL), caudal middle frontal gyrus (cMFG), and superior parietal lobe 

(SPL). The choice of those regions was based on their frequent occurrence in previous resting-

state studies (E. A. Allen et al. 2018; Elena A. Allen et al. 2014; Damoiseaux et al. 2006; M. D. 

Fox and Raichle 2007; Greicius et al. 2003; Baker et al. 2014; Shirer et al. 2012; Kabbara et 

al. 2017; Kabbara, Paban, and Hassan 2021). Cortical-level activity was generated using a 

flexible neural mass model framework, named COALIA. This multi-population neural mass 

model enables the simulation of brain-scale electrophysiological activity while accounting for 

the macro- (between regions) and micro-circuitry (within a single region) of the brain, with one 
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neural mass representing the local field potential of one Desikan-Killiany atlas region [for 

details, readers may refer to (Bensaid et al. 2019)]. Activity in the alpha band ([8 − 12] 𝐻𝑧) was 

attributed to the regions belonging to reference RSNs, while background activity was assigned 

to remaining cortical regions. A variability between simulated data segments was introduced 

at the subject level, as well as at the level of epochs per subject. Each “virtual subject” had 

different connectivity matrices provided to the model, while each epoch for the same subject 

had a different input noise (𝑚𝑒𝑎𝑛 = 90, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  30)  set within the model. More 

specifically, for each subject, a different fractional anisotropy matrix of the HCP dataset was 

used (Van Essen et al. 2013), and the weights corresponding to an RSN-connection were 

modified and set to a value of (1 ±  20%). A corresponding scaling of the matrices followed in 

accordance with COALIA’s requisites and the type of each input matrix (inhibitory/excitatory). 

A total of 50 “virtual subjects”, 4 epochs per subject (i.e., 200 data segments) were simulated; 

with a duration of 40 seconds each and a sampling rate of 2048 𝐻𝑧. The time delay between 

NMMs was determined by the euclidean distance between the centroids of Desikan-Killainy’s 

regions divided by the velocity of action potentials propagation, which was set as 100 𝑐𝑚/𝑠. 

An example of simulated cortical signals is shown in Supplementary Materials, Figure S1 (A). 
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Figure 1. Pipeline used in the present study. (A) Generation of reference, ground-truth cortical-level 
electrophysiological signals using a realistic model of neuronal activity. (B) Projection of source-level 
activity on scalp-level EEG sensors by using an anatomically accurate head model. (C) Network 
reconstruction using different methods of source reconstruction based on scalp-level signals, and of 
statistical coupling between signals (functional connectivity metrics). (D) quantifying the level of 
matching between estimated and reference networks. DMN - default mode network. DAN - Dorsal 
attentional network. eLORETA - exact low resolution electromagnetic tomography. LCMV - linearly 
constrained minimum norm beamforming. wMNE - weighted minimum norm estimate. PLV - phase-
locking value. AEC - amplitude envelope correlation. PLI - phase-lag index. AEC* - amplitude envelope 
correlation with source leakage correction. 

2.2. Forward problem 

Scalp EEG signals were estimated from simulated cortical activity by solving the forward 

problem as follows: 

 𝑋(𝑡) = (𝑥1(𝑡)  . . .   𝑥𝑀(𝑡))𝑇 = 𝐺. (𝑠1(𝑡)  . . .  𝑠𝑃(𝑡))𝑇 = 𝐺. 𝑆(𝑡) (1) 
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where 𝑋(𝑡) represents scalp EEG signals, 𝑆(𝑡) simulated cortical time series, and 𝐺 the  

(𝑀 × 𝑃) Gain (leadfield) matrix. More specifically, 𝐺 quantifies the contribution of each cortical 

source to the generation of scalp signals by taking into account the geometrical and electrical 

characteristics of the head. Here, the gain matrix was computed using a realistic head model 

(Colin27 MRI template) using the boundary element method (BEM), implemented within the 

OpenMEEG package (Gramfort et al. 2010) in the Fieldtrip toolbox (Oostenveld et al. 2011). 

The sensor space was defined based on the GSN HydroCel electrodes configuration (EGI, 

Electrical geodesic Inc) with 256, 128, 64, and 32 channels, as well as the international 10-20 

system with 19 channels. The leadfield matrix used for solving the forward problem, as well as 

the inverse problem, was constrained to 66 leadfield vectors representing the contribution of 

the sources located at the centroid of the regions of interest defined by the Desikan-Killiany 

atlas (Desikan et al. 2006) (right and left insula were excluded, leaving 66 regions of interest). 

To mimic measurement noise, white gaussian noise was added to scalp EEG (Anzolin et al. 

2019) as follows: 

 𝑋𝑛𝑜𝑖𝑠𝑦(𝑡) = 𝛾 ×
𝑋(𝑡)

||𝑋(𝑡)||𝐹
+ (1 − 𝛾) ×

𝑛(𝑡)

||𝑛(𝑡)||𝐹
 (2) 

where 𝑋(𝑡) and 𝑛(𝑡) represent the scalp EEG signals and white uncorrelated noise signals, 

respectively; and || . ||𝐹 denotes their Frobenius norm. 𝛾 ranges from 0.1 to 1. An example of 

scalp EEG signals obtained for different 𝛾 values are shown in Supplementary Materials, 

Figure S1 (B). Results shown in the main manuscript correspond to 𝛾 = 1, i.e., no added 

measurement noise. 

2.3. Inverse problem 

The first step to reconstruct cortical networks was to estimate the dynamics of cortical sources 

from scalp EEG data, i.e., determining the position, orientation, and magnitude of dipolar 

sources �̂�(𝑡). Cortical sources were located at the centroids of Desikan-Killiany regions, and 

oriented normally to the cortical sheet. Thus, the inverse problem was reduced to computing 

the magnitude of dipolar sources �̂�(𝑡): 
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 �̂�(𝑡) = 𝑊. 𝑋(𝑡) (3) 

Several algorithms have been proposed to solve this problem, and estimate 𝑊 based on 

different assumptions related to the spatiotemporal properties of sources and regularization 

constraints (see (Awan, Saleem, and Kiran 2019; Grech et al. 2008; Baillet, Mosher, and Leahy 

2001) for a review). Inverse solutions can be classified into two major families: minimum norm 

estimates and beamformers. The former reconstructs all sources simultaneously by minimizing 

the difference between the data 𝑋(𝑡) and predicted data 𝐺. �̂�(𝑡), while beamformers take an 

adaptive spatial-filtering approach in which each source is scanned independently. In this 

study, we focused on three commonly used solutions in EEG source reconstruction: weighted 

minimum norm estimate (wMNE) (Fuchs et al. 1999; Lin et al. 2006), exact low-resolution brain 

electromagnetic tomography (eLORETA) (Pascual-Marqui 2007), and linearly constrained 

minimum variance (LCMV) (Van Veen et al. 1997).  

2.3.1. Weighted minimum norm estimate (wMNE) 

wMNE (Lin et al. 2006; Fuchs et al. 1999) is a derivative of the minimum norm estimate (MNE) 

(Hämäläinen and Ilmoniemi 1994), which proposes a solution that fits the measurements with 

a least square error. However, wMNE compensates further for the tendency of MNE to favor 

weak and surface sources: 

 𝑊𝑤𝑀𝑁𝐸 = 𝐵𝐺𝑇(𝐺𝐵𝐺𝑇 + 𝜆𝐶)−1 (4) 

where 𝜆 is the regularization parameter, and 𝐶 the noise covariance matrix (set to the identity 

matrix in our case). The matrix 𝐵 is a diagonal matrix built from matrix 𝐺 with non-zero terms 

inversely proportional to the norm of lead field vectors. This matrix adjusts the properties of 

the solution by reducing the bias inherent to the standard MNE solution: 

 𝐵𝑖𝑗 = (𝐺𝑖
𝑇𝐺𝑖)1/2           𝑖𝑓 𝑖 = 𝑗; (5) 

            0                          𝑖𝑓 𝑖 ≠ 𝑗; 

Regarding the regularization parameter 𝜆, we used the recommended default value (1/SNR; 

SNR=3) included in the Brainstorm toolbox (Tadel et al. 2011).  

2.3.2. Exact low-resolution brain electromagnetic tomography (eLORETA) 
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eLORETA belongs to the family of weighted minimum norm inverse solutions. However, in 

addition to compensating for depth bias, it also has exact zero error localization in the presence 

of measurement and structured biological noise (Pascual-Marqui 2007): 

 𝐵𝑖𝑗 = (𝐺𝑖
𝑇(𝐺𝑖𝐵𝐺𝑖

𝑇 + 𝜆𝐶)−1)1/2           𝑖𝑓 𝑖 = 𝑗; (6) 

            0                                                      𝑖𝑓 𝑖 ≠ 𝑗; 

Regarding the regularization parameter 𝜆, we used the default value (0.05) of the Fieldtrip 

toolbox (Oostenveld et al. 2011). 

2.3.3. Linearly constrained minimum-variance (LCMV) beamformer 

The LCMV beamformer (Van Veen et al. 1997) takes an adaptive spatial-filtering approach 

and estimates the activity for a source at a given location while simultaneously suppressing 

contributions from all other sources and noise captured in the data covariance. 

 𝑊𝐿𝐶𝑀𝑉 = ((𝐺𝑇 . (𝐶 + 𝜆. 𝐼)−1). 𝐺)−1. (𝐺𝑇 . (𝐶 + 𝜆. 𝐼)−1) (7) 

The regularization parameter 𝜆 was set to 0.05. 

2.4. Functional connectivity 

Following the reconstruction of cortical dynamics, functional connectivity was assessed to 

estimate cortical networks. Two distinct approaches can be adopted to compute functional 

connectivity: phase-based and amplitude-based techniques. Here, we used the phase-locking 

value (PLV) and the phase-lag index (PLI) as an example of the former, and the amplitude 

envelope correlation (AEC) as an example of the latter. 

2.4.1. Phase-locking value (PLV) 

For two signals 𝑥(𝑡) and 𝑦(𝑡), the phase-locking value (Lachaux et al. 2000) is defined as:  

 𝑃𝐿𝑉 = |𝐸 {𝑒𝑖|𝜙𝑥(𝑡)−𝜙𝑦(𝑡)|}| (8) 

where 𝐸{. } is the expected value operator, and 𝜙(𝑡) is the instantaneous phase derived from 

the Hilbert transform. PLV was computed over consecutive non-overlapping sliding windows, 

with the length of the window 𝛿 set to 
6

𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 as recommended in (Lachaux et al. 
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2000), and where 6 is the number of cycles in a given frequency band. Thus, 𝛿 equals 600 𝑚𝑠 

in the considered alpha band ([8 − 12] 𝐻𝑧) where the central frequency was equal to 10 𝐻𝑧. 

PLV values were then averaged over all sliding windows. 

2.4.2. Phase-lag index (PLI) 

The PLI originally proposed in (Stam, Nolte, and Daffertshofer 2007) is a measure of the 

asymmetry of the distribution of phase differences between two signals. It aims at overcoming 

the issue of source leakage by discarding phase differences centered around 0 and 𝜋, that is, 

removing zero-lag connections. For two signals 𝑥(𝑡) and 𝑦(𝑡), PLI is defined as follows: 

 𝑃𝐿𝐼 = |{𝑠𝑖𝑔𝑛(𝜙𝑥(𝑡) − 𝜙𝑦(𝑡))}| (9) 

where 𝐸{. } is the expected value operator, and 𝜙(𝑡) is the instantaneous phase derived from 

the Hilbert transform. Similarly to PLV, PLI was computed over consecutive non-overlapping 

sliding windows (600 𝑚𝑠). PLI values were then averaged over all sliding windows. 

2.4.3. Amplitude envelope correlation (AEC) 

AEC was computed as the Pearson correlation between the signals’ envelopes derived from 

Hilbert transform (Hipp et al. 2012; Brookes et al. 2011). Similar to PLV and PLI computation, 

a sliding window approach was adopted. Based on (O’Neill et al. 2017), the window length was 

set to 6 𝑠 with an overlap of 0.5 𝑠. 

2.4.4. Amplitude envelope correlation with source leakage correction (AEC*)  

Zero-lag signal overlaps caused by spatial leakage were removed using a symmetric 

orthogonalization approach detailed in (Colclough et al. 2015). Orthogonalization was applied 

over the entire data segments. Following the orthogonalization procedure, AEC was computed 

as previously described in section 2.4.3. 

2.5. Results quantification and statistical testing 

We used three metrics to assess the performance of different channel densities and the tested 

inverse solutions and connectivity measures.  

2.5.1. Pearson correlation 
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First, the Pearson correlation between the reference and reconstructed connectivity matrices 

was computed as a global measure of the similarity between networks. Matrices were not 

thresholded nor binarized.  

2.5.2. Closeness accuracy 

Second, closeness accuracy (𝐶𝐴), defined as follows, was used for a node-wise analysis of 

the results: 

 𝐶𝐴 =
1

1+𝐴𝐷
  (9) 

where 𝐴𝐷 is the average distance (in 𝑐𝑚) between the reference and reconstructed networks 

given by: 

 𝐴𝐷 =  
∑ 𝑑(𝑁𝑘,𝑁𝑣)𝑘

𝑀
               𝑘 ∈ [1, 𝑀];  𝑣 ∈ [1, 𝑊]    (10) 

where 𝑑(𝑁𝑘 , 𝑁𝑣) denotes the euclidean distance between the node 𝑁𝑘 in the reconstructed 

network, and the nearest node 𝑁𝑣 in the reference simulated network. 𝑀  and 𝑊 represent the 

total number of the nodes detected in the reconstructed and reference networks, respectively. 

Prior to computing the 𝐶𝐴, networks were thresholded by keeping the edges with the highest 

0.7% weight values, the choice of this proportion corresponding to the number of edges in the 

simulated RSNs (30 edges).  

 2.5.3. Edge contribution 

Finally, we investigated the contribution of individual edges to the correlation values obtained 

between the reference and reconstructed networks (Finn et al. 2015; Colclough et al. 2016). 

The set of edges of the reference and reconstructed (non-thresholded) networks were first z-

score normalized (𝑚𝑒𝑎𝑛 = 0, 𝑠𝑡𝑑 = 1). Second, the edge contribution 𝜑 was calculated as the 

element-wise product between the two normalized edge vectors. Suppose that [𝑋𝑖
𝑅𝑒𝑓

] and 

[𝑋𝑖
𝑅𝑒𝑐] are the set of edges of the reference and reconstructed networks for an epoch 𝑖, after 

z-score normalization, then: 

 𝜑𝑖(𝑒)  = 𝑋𝑖
𝑅𝑒𝑓

(𝑒) ∗ 𝑋𝑖
𝑅𝑒𝑐(𝑒)  , 𝑒 ∈ [1, 𝐸] (11) 
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where 𝑖 is the epoch index, 𝑒 the edge index, and 𝐸 the total number of edges, and the average 

of 𝜑𝑖 across all subjects and all epochs is denoted 𝜙. High positive values in 𝜙 corresponds to 

edges that are consistent within- and between- subjects.  

All statistical analyses were performed using R (R Core Team 2020). Linear mixed models 

implemented using the {lme4} package (Bates et al. 2015) were used to assess the effect of 

(i) number of sensors, (ii) inverse solution, and (iii) functional connectivity metric as fixed 

effects on correlation and closeness accuracy. The “subject” was added as a random intercept 

to account for simulation-related variability. Assumptions of normality and homoscedasticity of 

the model’s residuals were graphically checked. Regarding correlation, the following model 

was used: 

Model=lmer(pearson_correlation~inverse_solution*connectivity_measure*channels+(1|subje

ct_id), data=data) (12) 

The same model was used for closeness accuracy with the difference that closeness accuracy 

was inverse-transformed because of a better compliance with the model’s assumptions in that 

case. Calculation of the significance of fixed effects was performed with F tests using the 

Anova function of the {car} package (J. Fox and Weisberg 2019), and post-hoc analyses were 

performed using z-tests with the glht function of the {multcomp} package (Hothorn, Bretz, and 

Westfall 2008) that provides corrected p-values. Marginal and conditional R² were calculated 

with the {MuMin} package (Barton 2009) to estimate the variance explained by the models. 

The significance threshold was set at 𝑝 = 0.05. 

3. Results 

Figure 2 and Figure 3 show, respectively, the distributions of correlation and closeness 

accuracy values, for all tested conditions (results obtained for DAN can be found in the 

Supplementary Materials, Figure S2, S3). Since the orthogonalization procedure is limited by 

the rank of the data (Colclough et al. 2015), it can only be applied in our case with 128 and 

256 electrodes. Therefore, the statistical tests were repeated twice: 
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- Case 1: comparing all electrodes configurations (19, 32, 64, 128, 256), inverse 

solutions (eLORETA, LCMV, wMNE), and three connectivity measures (PLV, AEC, 

PLI) where no orthogonalization is applied. 

- Case 2: comparing two electrode configurations (128, 256), all inverse solutions 

(eLORETA, LCMV, wMNE) and all connectivity metrics (PLV, AEC, PLI, AEC*).  

 

Figure 2. Violin plots of the Pearson correlation values computed between the reference and 
reconstructed DMNs for all electrode montages and inverse methods/connectivity metrics combinations. 
eLORETA - exact low resolution electromagnetic tomography. LCMV - linearly constrained minimum 
norm beamforming. wMNE - weighted minimum norm estimate. PLV - phase-locking value. AEC - 
amplitude envelope correlation. PLI - phase-lag index. AEC* - amplitude envelope correlation with 
source leakage correction. 

 

Figure 3. Violin plots of the closeness accuracy values computed between the reference and 
reconstructed DMNs for all electrode montages and inverse methods/connectivity metrics combinations. 
eLORETA - exact low resolution electromagnetic tomography. LCMV - linearly constrained minimum 
norm beamforming. wMNE - weighted minimum norm estimate. PLV - phase-locking value. AEC - 
amplitude envelope correlation. PLI - phase-lag index. AEC* - amplitude envelope correlation with 
source leakage correction. 

 

3.1. Pearson Correlation 
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For all inverse methods and connectivity metrics, the trend in correlation values was similar as 

the number of electrodes increased, for both DMN and DAN: a greater number of channels 

was associated with higher correlation values. Pearson correlation results demonstrate a 

drastic effect of increasing the number of electrodes on enhancing the accuracy of 

reconstructed networks, regardless of the chosen inverse solution/connectivity measure. 

Statistical tests comparing all channels configurations, inverse solutions and connectivity 

measures (PLV, AEC, PLI) (case 1) revealed that the effect of channel density was significant 

(F(4, 8906) = 32256, p < 0.0001; full model marginal R² = 0.99; conditional R² = 0.99) as well as 

all pairwise comparisons (p < 0.0001). Similarly, comparing all inverse solutions and 

connectivity measures (PLV, AEC, PLI, AEC*) at 128 and 256 channels (case 2) revealed a 

significant effect of the number of electrodes (F(1, 4727) = 6142, p < 0.0001; full model marginal 

R² = 0.99; conditional R² = 0.99). Significant effects of the inverse method (case 1: F(2, 8906) = 

4388, p < 0.0001; case 2: F(2,4727) = 10396, p < 0.0001), functional connectivity measure (case 

1: F(2, 8906) = 651672, p < 0.0001; case 2: F(3, 4727) = 371598, p < 0.0001) were also identified. 

Moreover, reconstructed networks differed as a function of the inverse solution/connectivity 

metric combination (case 1: F(4, 8906) = 548, p < 0.0001; case 2: F(6, 4727) = 4858, p < 0.0001). 

Post-hoc analysis showed significant differences between inverse solution algorithms (case 1: 

p<0.001, except for eLORETA vs wMNE: p=0.17; case 2: p<0.001 except for LCMV vs wMNE: 

p = 0.01), as well as connectivity measures (p<0.001). Pairwise comparisons of the different 

combinations of inverse solution and functional connectivity methods also revealed significant 

differences between combinations (case 1: p<0.001 except for wMNE/AEC vs eLORETA/AEC 

(p = 1), LCMV/PLI vs eLORETA/PLI (p = 0.99) and LCMV/PLV vs eLORETA/PLV (p = 0.48); 

case 2: p<0.001 except for wMNE/AEC vs LCMV/AEC (p = 0.13) and wMNE/PLI vs LCMV/PLI 

(p = 0.97). At high sensor densities, AEC computed between orthogonalized time series along 

with wMNE and eLORETA, exhibited the best reconstruction accuracy. PLI, which also 

discards zero-lag connections, came second with all three inverse solutions and regardless of 

channel density. Regarding measures which do not compensate for spatial leakage, PLV had 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.494301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494301
http://creativecommons.org/licenses/by-nc/4.0/


16 

a moderate performance, whereas correlation values obtained with AEC were systematically 

low, regardless of the inverse method and number of electrodes.  

3.2. Closeness accuracy 

Differences in closeness accuracy values between evaluated electrode configurations were 

not as clear as with the Pearson correlation values, except for PLI and AEC*, which were 

associated with a higher between-epochs variability. Similar to correlation results, closeness 

accuracy values were significantly affected by the number of electrodes (case 1: F(4, 8906) = 

1278, p < 0.001; full model marginal R² = 0.43; conditional R² = 0.44; case 2: F(1, 4727) = 267, p 

< 0.001; full model marginal R² = 0.81; conditional R² = 0.82), inverse method (case 1: F(2, 8906) 

= 304, p < 0.001; case 2: F(2, 4727) = 395, p < 0.001), connectivity metric (case 1: F(2, 8906) = 2167, 

p < 0.001; case 2: F(3, 4727) = 6696, p < 0.001), and inverse method/connectivity metric 

combination (case 1: F(4, 8906) = 53, p < 0.001; case 2: F(6, 4727) = 74, p < 0.001). Pairwise 

comparisons of channel density showed significant differences between results obtained with 

19 and (32, 64, 128, 256) channels (p<0.001), as well as between 32 and 128 electrodes (p = 

0.01). Other pairwise comparisons of electrode configurations were not significant. When 

comparing all electrodes configurations, inverse solutions and (PLV, AEC, PLI), post-hoc 

analysis showed significant differences between inverse solutions (p<0.001) except for wMNE 

vs eLORETA (p = -1.79), as well as between connectivity metrics (p<0.001) except for PLI vs 

AEC (p = 1). Regarding the inverse solution/connectivity measure combination, differences 

were not all significant. When comparing results obtained with 128 and 256 electrodes and all 

inverse solutions and connectivity measures, significant differences were obtained for all 

inverse solutions (p<0.001), connectivity measures (p<0.001) and inverse/ solution 

connectivity measure combination (p<0.001 except for wMNE/PLV vs WMNE/AEC (p = 0.89) 

and wMNE/PLI vs LCMV/PLI (p = 1). Detailed statistical tests results relative to the DMN and 

DAN are reported in the Supplementary Materials. 

3.3. Edge contribution 

In Figure 4 and Figure 5, the contribution of DMN edges averaged across all subjects and 

epochs are presented for all sensor densities and inverse method/connectivity metric 
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combination (results for the DAN are shown in Figure S4 and S5 in Supplementary Materials). 

The contribution of DMN connections to the correlation value computed between the reference 

and reconstructed networks increased when increasing the number of electrodes. The 

averaged edge contribution measure can be seen as a reflection of the consistency of DMN 

connections in the reconstructed networks across all data segments, i.e., a higher number of 

electrodes is associated with a greater consistency of DMN edges. This trend was clearer with 

phase-based connectivity measures (PLV and PLI) than with AEC. 

 

Figure 4. Heatmaps of contribution of the DMN edges (see Materials and Methods section) averaged 
across all subjects and epochs are shown for all sensor densities and inverse method/connectivity 
measure (PLV, PLI) combinations. eLORETA - exact low resolution electromagnetic tomography. LCMV 
- linearly constrained minimum norm beamforming. wMNE - weighted minimum norm estimate. PLV - 
phase-locking value. AEC - amplitude envelope correlation. PLI - phase-lag index. AEC* - amplitude 
envelope correlation with source leakage correction. 
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Figure 5. Heatmaps of contribution of the DMN edges averaged across all subjects and epochs are 
shown for all sensor densities and inverse method/connectivity measure (AEC, AEC*) combinations. 
eLORETA - exact low resolution electromagnetic tomography. LCMV - linearly constrained minimum 
norm beamforming. wMNE - weighted minimum norm estimate. PLV - phase-locking value. AEC - 
amplitude envelope correlation. PLI - phase-lag index. AEC* - amplitude envelope correlation with 
source leakage correction. 

 

Figure 6. Barplots of the percentage of edges located within the DMN among the edges having the ≈
0.7% highest contribution values. eLORETA - exact low resolution electromagnetic tomography. LCMV 

- linearly constrained minimum norm beamforming. wMNE - weighted minimum norm estimate. PLV - 
phase-locking value. AEC - amplitude envelope correlation. PLI - phase-lag index. AEC* - amplitude 
envelope correlation with source leakage correction. 

 

We then thresholded the averaged edge contribution matrices and kept only the 30 edges 

(number of edges in the reference RSNs) having the highest contribution values. The 

percentile of edges belonging to DMN (DAN) are thus shown in Figure 6 (Figure S6 in 
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Supplementary Materials). With PLV and AEC, the percentage of edges within DMN increased 

at higher channel density with AEC having percentage values not exceeding 50%. In contrast, 

the majority of edges with the highest contribution were within the DMN when using PLI or 

AEC with source leakage correction regardless of the number of channels.  

3.4. Effect of white measurement noise 

In Figure 7, we plotted the Pearson correlation (mean+standard deviation) as a function of the 

measurement noise level (number of channels = 256). eLORETA and wMNE had similar 

performances. They both exhibited stable correlation values (≈ 0.7) for 𝛾 ≥ 0.4 with PLV and 

𝛾 ≥ 0.6 with PLI. In contrast, LCMV combined with PLV and PLI had a linear trend where 

correlation values increased when added measurement noise decreased. Interestingly, AEC* 

had the highest performance in the absence of noise (𝛾 = 1). However, its performance 

degrades drastically when noise is added. eLORETA/AEC, wMNE/AEC and LCMV/AEC also 

were stable in terms of performance, albeit performance being low. (Results corresponding for 

DAN are shown in Figure S7 in Supplementary Materials). 

 

Figure 7. Mean and standard deviation of the Pearson correlation computed between the reference and 
reconstructed DMNs for different levels of measurement noise using 256 channels. eLORETA - exact 
low resolution electromagnetic tomography. LCMV - linearly constrained minimum norm beamforming. 
wMNE - weighted minimum norm estimate. PLV - phase-locking value. AEC - amplitude envelope 
correlation. PLI - phase-lag index. AEC* - amplitude envelope correlation with source leakage 
correction. 
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4. Discussion 

The EEG/MEG source connectivity technique has gained increased interest due to its ability 

to reconstruct functional networks in the cortical space with a high temporal resolution. As 

aforementioned, however, there is still no agreement to date over a unified detailed EEG 

source connectivity pipeline, and several parameters/methods are involved which require 

cautious tuning. Here, our objective was to evaluate some of the parameters related to the 

EEG source connectivity analysis in the context of resting state networks, and investigate the 

variability in the results caused by different choices in the analysis pipeline. We mainly focused 

on the effect of the number of electrodes, inverse method, and functional connectivity metric. 

In a recent study, we tested the effect of the number of electrodes, and tested wMNE and 

eLORETA along with PLV and wPLI in the context of simulated epileptiform activity (Allouch 

et al. 2022). In this specific case, epileptiform signals had a sufficiently high signal‐to‐noise‐

ratio (SNR) to be distinguished from background noise (Wa 1983; Iwasaki et al. 2005), which 

might have facilitated the identification of underlying networks. However, a growing interest in 

the last two decades has led to an increased number of resting-state studies where the 

significantly lower SNR could be in favor of different methods/parameter tuning in EEG source 

connectivity analysis. Therefore, in the present study, we used neural mass models to simulate 

resting-state brain activity (DMN and DAN) in the cortical space, and derived the corresponding 

scalp EEG signals by solving the forward problem. Then, we reconstructed the corresponding 

cortical networks. This pipeline was repeated using different electrode densities (19, 32, 64, 

128, 256 channels) to solve the forward problem, three algorithms to solve the inverse problem 

(wMNE, eLORETA, LCMV), and four metrics to assess functional connectivity (PLV, AEC, PLI, 

leakage-corrected AEC (AEC*)), at different levels of measurement noise. 

4.1. Number of electrodes 

To the best of our knowledge, the effect of the number of electrodes on the reconstruction of 

EEG-based resting-state cortical networks has never been studied before, especially in the 

presence of a ground-truth enabling an objective comparison of the tested electrode 
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configurations. Our results demonstrate a key role of the number of electrodes on the EEG 

source connectivity analysis: a more accurate reconstruction of cortical activity was achieved 

using high-density EEG (hd-EEG). This result is in line with previous simulations and empirical 

evidence (Song et al. 2015; Sohrabpour et al. 2015; Goran Lantz et al. 2003), as well as with 

the theoretical foundation (Srinivasan, Tucker, and Murias 1998; Song et al. 2015). As 

established in (Srinivasan, Tucker, and Murias 1998), an accurate characterization of the 

spatial electrophysiological information requires a higher number of electrodes. A high inter-

electrode distance (i.e., corresponding to a low number of EEG electrodes) can induce 

aliasing, and therefore high spatial frequency signals are misrepresented as low spatial 

frequency signals due to the violation of the Nyquist criteria (𝐹𝑠 > 2 × 𝐹𝑚𝑎𝑥) (Srinivasan, 

Tucker, and Murias 1998; Song et al. 2015). In (Song et al. 2015) results were found to be 

independent of the inverse method (minimum norm/standardized low resolution brain 

electromagnetic tomography). On the other hand, (Goran Lantz et al. 2003) showed that 63 

electrodes were sufficient for a decent source localization with EPIFOCUS (a linear inverse 

solution that optimally localize single focal sources (Grave de Peralta Menendez et al. 2001; 

G. Lantz et al. 2001)), however, 100 electrodes were required when using the weighted 

minimum norm estimate. Consistently, (Goran Lantz et al. 2003) and (Sohrabpour et al. 2015) 

showed that a dramatic decrease in localization error was achieved when increasing the 

number of electrodes from 32 to 64 electrodes. Based on our results, we suggest a minimum 

of 64 electrodes to be used in the course of EEG source reconstruction in the specific context 

of resting-state networks.  

4.2. Inverse solution and connectivity measures  

According to the source connectivity estimation, a plethora of methods offers the possibility to 

1) reconstruct the dynamics of cortical activity, and 2) assess the functional connectivity 

between reconstructed sources. However, there is no consensus over an optimal approach, 

nor on whether such “best” technique exists. Both in terms of the correlation between reference 

and reconstructed networks, and in terms of the closeness accuracy of nodes detected in the 

reconstructed networks, our results showed that eLORETA and wMNE performed significantly 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.494301doi: bioRxiv preprint 

https://paperpile.com/c/vi4R1W/pqws+3Dmb+uSIj
https://paperpile.com/c/vi4R1W/GRk8+pqws
https://paperpile.com/c/vi4R1W/GRk8
https://paperpile.com/c/vi4R1W/GRk8+pqws
https://paperpile.com/c/vi4R1W/GRk8+pqws
https://paperpile.com/c/vi4R1W/pqws
https://paperpile.com/c/vi4R1W/uSIj
https://paperpile.com/c/vi4R1W/70JA+EtZm
https://paperpile.com/c/vi4R1W/70JA+EtZm
https://paperpile.com/c/vi4R1W/uSIj
https://paperpile.com/c/vi4R1W/3Dmb
https://doi.org/10.1101/2022.06.01.494301
http://creativecommons.org/licenses/by-nc/4.0/


22 

better than LCMV, and that compensating for spatial leakage (PLI, AEC*) resulted in increased 

accuracy, regardless of the inverse solution. Significant discrepancies were observed with the 

different combinations of inverse methods and connectivity measures tested in this study, 

which was also observed in other comparative studies. In general, there is a lack of consistency 

across studies comparing several inverse methods and connectivity measures. For example, 

(Anzolin et al. 2019) showed that LCMV had a better performance globally as compared to 

eLORETA. Similarly, in (Mahjoory et al. 2017), a relatively strong difference was found 

between LCMV beamformer on one hand, and eLORETA/wMNE solutions on the other hand. 

In (Hedrich et al. 2017) the coherent maximum entropy on the mean (cMEM) showed similar 

localization error to MNE, dynamic statistical parametric mapping (DSPM), sLORETA, but 

lower spatial spread and reduced crosstalk. In (Bradley et al. 2016), the use of LORETA for 

source localization outperformed sLORETA and minimum norm least square (MNLS). 

Following an extensive comparison between six inverse methods, (Grova et al. 2006) 

recommended taking into account results from different methods when localizing actual 

interictal spikes. Results of source localization in (Halder et al. 2019) did not identify a clear 

winner between LCMV, eLORETA, MNE, DISC. (Tait et al. 2021) summarized the conditions 

where each method can be recommended, following a comparison of six inverse methods in 

resting state MEG data. It is noteworthy to mention that the discrepancy of the results was 

mainly related to the mathematical and physical constraints imposed by each of the inverse 

solutions. More precisely, wMNE searches for a solution with minimum power (Hämäläinen 

and Ilmoniemi 1994), while eLORETA  tends to achieve exact zero error localization in the 

presence of measurement and structured biological noise (Pascual-Marqui 2007). On the other 

hand, LCMV beamformer assumes that only one dipole is active at a time, and tries to minimize 

the corresponding output energy (Van Veen et al. 1997).  

In terms of functional connectivity metrics, (Colclough et al. 2016) assessed the consistency 

of different measures in experimental MEG resting state data and recommended using the 

correlation between orthogonalised, band-limited, power envelopes (AEC). On the other hand, 

following extensive simulation studies, (H. E. Wang et al. 2014) and (Wendling et al. 2009) 
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both concluded that there is no ideal “one-fits-all” method for all data types: it is rather 

suggested to evaluate which conditions are appropriate for each method. In (Hassan et al. 

2014) and (Hassan, Merlet, et al. 2017) in the context of epilepstic spikes, wMNE combined 

with PLV had better accuracy as compared to other algorithms. Let us note that, in (Allouch et 

al. 2022), wMNE combined with wPLI performed better in the context of epileptiform activity 

simulations. 

A key limitation of those numerous studies (and ours) is that different methods were tested in 

different contexts and using different data types, which complicates further the identification of 

clear and concise guidelines on the topic. Thus, we are aware that, even with our additional 

contribution, we are still far from a generalization of the results obtained in the specific context 

tested in this study (simulated signals, resting state activity, alpha rhythms, number/location of 

cortical sources, etc…). In fact, it is entirely possible (and even probable) that the inverse 

solution/connectivity measure combination is context-specific, and that no ideal method can 

account for all data types or all research questions. However, this raises the question of 

whether it is possible to determine the method that is the most adapted in each context, which 

requests extensive investigation far beyond simple comparative studies. Meanwhile, cross-

validation of the results using several methods/measures could be a reasonable compromise. 

4.3. Methodological considerations 

Taking together the conclusions from the vast majority of analysis and modeling choices, the 

identified networks might be also sensitive to other factors that were not investigated in this 

study. For instance, spatial resolution in the cortical space (i.e., number/size of parcellated 

ROIs) could affect the accuracy of reconstructed networks. Our simulations were all restricted 

to 66 ROIs (Desikan Killiany atlas) due to the model design. Many graph-based studies have 

reported that different parcellation scales resulted in significant differences in network 

parameters (clustering coefficient, characteristic path length, local and global efficiency, 

degree distribution, etc…), while inferences about small-world and scale-free properties were 

maintained across different scales (Hayasaka and Laurienti 2010; J. Wang et al. 2009; Zalesky 

et al. 2010; Fornito, Zalesky, and Bullmore 2010). In this study, we did not investigate how 
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spatial resolution in the source space (i.e., number/size of ROIs) could affect the accuracy of 

reconstructed networks. Therefore, it would be interesting to evaluate if the optimal number of 

ROIs depends on the number of recording electrodes and vice versa, i.e., whether there exists 

an optimal ratio (number of electrodes/number of ROIs) that exhibits higher accuracy regarding 

source connectivity. Moreover, the effect of parcellation is not limited to the number of regions, 

but also involves the algorithms by which sources belonging to the same ROI are aggregated 

(averaging signals across all vertices, averaging their absolute values, power signals, keeping 

the first mode of PCA decomposition, choosing the maximum value among vertices at each 

time point...). 

Here, we simulated two widely studied RSNs (DMN, DAN). The major difference between 

those two networks is the position of simulated sources (i.e., network’s regions). While the 

DMN exhibits a less distributed architecture with small to moderate distance between regions 

(especially the right and left MPFC and PCC), DAN regions are widespread across the cortex 

with higher inter-region distances. Due to this difference, we were able to test whether the 

results are affected by the specific spatial location of sources. However, the similarity of results 

obtained with both networks confirm, to some extent, the absence of a bias caused by the 

position of sources. For simplicity, we restricted the number of DMN and DAN regions in our 

simulations to six, and focused on the most consistent regions reported in the literature. 

However, other regions could be involved in the simulated DMN, such as the precuneus, 

isthmus cingulate, rostral anterior cingulate and lateral orbitofrontal cortex. The DAN could 

also include the middle temporal gyrus and frontal regions, such as the parsopercularis, 

parsorbitalis and parstriangularis (Kabbara et al. 2017; Kabbara, Paban, and Hassan 2021). 

An interesting future prospect would be testing the consistency of results when more complex 

networks are involved.  

In the simulations used for this study, alpha activity [8-12] Hz was assigned to RSN, while 

background activity was attributed to the remaining regions. We acknowledge that such 

contrast between those two types of activity is not ideally realistic. Despite a potential 

significant interest, we were not able to simulate brain-like broadband signals covering all 
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frequency bands, due to intrinsic model limitations. In addition to broadband simulations, 

frequency bands other than alpha could be tested with the aim to replicate those results. 

Another limitation of our study is our “static” approach for brain networks identification (i.e., 

one network estimated per epoch), which we could improve upon by investigating the accuracy 

of brain networks dynamics. Importantly, understanding the dynamics of brain networks 

provides crucial insights about brain functions both in resting-state (Hipp et al. 2012; F. de 

Pasquale et al. 2018; De Pasquale et al. 2016; E. A. Allen et al. 2018; Elena A. Allen et al. 

2014; Baker et al. 2014; Kabbara et al. 2017; Kabbara, Paban, and Hassan 2021) and task-

related paradigms (Shine et al. 2016; O’Neill et al. 2017; Elton and Gao 2015; Braun et al. 

2015; Krienen, Yeo, and Buckner 2014; Fong et al. 2019; Hassan et al. 2015).  

As aforementioned, inverse solutions and connectivity algorithms require tuning several 

parameters, such as the regularization parameter in wMNE, eLORETA, LCMV and the time 

window over which connectivity measures are computed. Here, we applied either default or 

usually used values proposed by the Fieldtrip and Brainstorm toolboxes, or values proposed 

in previous studies. To test the stability of reconstructed networks across different 

regularization values, we computed the Pearson correlation between the reference and 

reconstructed networks for different regularization values (PLV, 256 channels) and presented 

the results in Figure S8 in the Supplementary Materials. A decrease in the correlation values 

was observed when increasing the regularization of the inverse solution, emphasizing the 

importance of tuning the regularization parameter rather than using default values. Several 

methods are available to address this issue, falling into two general categories: those based 

on the estimation of the measurement noise, and those which are not (L-curve method, 

general-cross validation method, composite residual and smoothing operator, minimal product 

method, zero crossing) (Grech et al. 2008). An additional crucial factor that may introduce 

variability between results, and that emerges when dealing with experimental EEG data, is the 

pre-processing procedure that precedes network reconstruction. EEG signals are indeed 

usually contaminated by several artifacts and noise sources, that may each introduce 

undesired changes in the measurements and affect the signal of interest (Urigüen and Garcia-
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Zapirain 2015), especially in clinical, pediatric and aging populations (Pedroni, Bahreini, and 

Langer 2019). In order to clean EEG signals, pre-processing algorithms usually impose 

different constraints for accepting and rejecting artifactual epochs, and propose different 

techniques to eliminate artifacts. Hence, an important methodological consideration would be 

to investigate and systematically quantify the variability induced by different data 

preprocessing techniques. 

The choice of the most convenient metric for quantifying the results is also a challenge. Here, 

in order to quantify the performance of the tested parameters, we used the (1) Pearson 

correlation computed between the reference and reconstructed networks, (2) closeness 

accuracy reflecting the distance between the nodes detected in the reconstructed network and 

those in the reference network, and, (3) averaged contribution of network edges to the 

correlation between connectivity matrices (i.e.,the consistency of DMN/DAN connections 

across all simulation epochs) and the percentage of edges having the highest contributions 

and falling within the simulated RSN. It should be noted that each metric measures different 

aspects of data, and it is important in the context of comparative studies to address the relevant 

aspect of data to prevent biases. In our case, the general trend in the results was preserved 

across all used metrics. While both Pearson correlation and closeness accuracy showed 

significant differences between tested parameters, the latter exhibited higher variability 

between epochs. Other metrics such as networks-based metrics have also been developed to 

evaluate the distance/similarity between networks, and a promising approach would be testing 

whether the differences between networks are maintained across different aspects 

investigated by such metrics (global analysis, edge-wise, node-wise, spectral graph analysis, 

Edit distance, kernel methods) (Mheich, Wendling, and Hassan 2020). 

Importantly, correlation results presented in this article were computed between unthresholded 

weighted connectivity matrices. However, selecting a set of network edges for subsequent 

analysis while discarding others remains a debatable subject in the network neuroscience 

community. We usually face two main questions: 1) what method to use to perform 

thresholding, and 2) the choice of the threshold value when needed. Since we aimed to reduce 
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further data manipulation and subjective intervention in the analysis, no threshold was applied 

prior to the computation of Pearson correlation and edge contribution matrices in our study. 

However, we also tested the effect of a proportional threshold (1%) on correlation values and 

reported the results in Figure S9 in Supplementary materials. Although lower correlation values 

and higher between-epochs variability were obtained, the general trend was similar to that of 

unthresholded matrices. 

5. Conclusion 

To sum-up, we simulated EEG data corresponding to RSNs and tested the effect of several 

key parameters (number of EEG electrodes and inverse solution/connectivity measure 

combination) on network reconstruction accuracy. Different analytical choices led to a high 

variability in the resulting networks. In the context of RSN simulations, our results demonstrate, 

as expected, that an accurate cortical network reconstruction requires a high number of EEG 

electrodes. Therefore, we recommend using hd-EEG (>64 channels) to infer cortical dynamics 

from recorded scalp EEG signals. In addition, we suggest a very careful choice of the inverse 

solution/connectivity measure combination, since our results highlight a significant variability 

in the networks reconstructed using different inverse solutions and connectivity measures. 

Such methodological variability and absence of analyses standardization represent a critical 

issue for neuroimaging studies that should be prioritized.  

Data and codes availability 

Data simulated for this study are available at https://doi.org/10.5281/zenodo.6597385. Codes 

supporting the results of this study are available at https://github.com/sahar-allouch/var-RSNs. 

We used Matlab (Matlab 2018), Brainstorm toolbox (Tadel et al. 2011), Fieldtrip toolbox 

((Oostenveld et al. 2011); http://fieldtriptoolbox.org), OpenMEEG (Gramfort et al. 2010) 
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implemented in fieldtrip, R (R Core Team 2020) for statistical analysis, and Seaborn (Waskom 

2021) and Matplotlib (Hunter 2007) for visualization. 
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