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Abstract 17 
Skeletal muscles support the stability and mobility of the skeleton but differ in biomechanical 18 
properties and physiological functions. The intrinsic factors that regulate muscle-specific 19 
characteristics are poorly understood. To study these, we constructed a large atlas of RNA-20 
seq profiles from six leg muscles and two locations from one muscle, using biopsies from 20 21 
healthy young males. We identified differential expression patterns and cellular composition 22 
across the seven tissues using three bioinformatics approaches confirmed by large-scale 23 
newly developed quantitative immune-histology procedures. With all three procedures, the 24 
muscle samples clustered into three groups congruent with their anatomical location. 25 
Concomitant with genes marking oxidative metabolism, genes marking fast- or slow-twitch 26 
myofibers differed between the three groups. The groups of muscles with higher expression 27 
of slow-twitch genes were enriched in endothelial cells and showed higher capillary content. 28 
In addition, expression profiles of Homeobox (HOX) transcription factors differed between 29 
the three groups and were confirmed by spatial RNA hybridization. We created an open-30 
source graphical interface to explore and visualize the leg muscle atlas 31 
(https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/). Our study reveals molecular 32 
specialization of human leg muscles and provides a novel resource to study muscle-specific 33 
molecular features, which could be linked with (patho)physiological processes.  34 

Keywords: Skeletal muscles, mRNA expression atlas, molecular and cellular signatures, 35 
Capillary density, Myofiber type, Homeobox genes   36 
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Introduction 37 
Skeletal muscles have grosso modo similar functions, generate the force for mobility and 38 
skeleton support, and maintain the body homeostasis. However, skeletal muscles differ in 39 
biomechanical and physiological features. These features include the size and contractile 40 
properties of the motor units and myofibers, differences in shortening velocity, resistance to 41 
fatigue, and differences in innervation and perfusion (Valentine 2017). Yet, the molecular and 42 
cellular differences that contribute to this muscle specialization are not fully understood. A 43 
molecular atlas for different skeletal muscles could assist in deciphering the molecular basis 44 
of muscle-specific physiological features. Such an atlas may also be used to study differential 45 
muscle involvement in various conditions, such as muscular dystrophies, myopathies, 46 
differences in regenerative potential, physiological compensation in sports and sarcopenia. 47 
In aging and muscle diseases, Muscle involvement it has been observed that some muscles 48 
were affected at an earlier age than others, and that this muscle involvement pattern can be 49 
characteristic for a given disease (Carlier, Laforet et al. 2011, Raz, Henseler et al. 2015, 50 
Albayda, Christopher-Stine et al. 2018, Brogna, Cristiano et al. 2018, Diaz-Manera, Fernandez-51 
Torron et al. 2018, Servian-Morilla, Cabrera-Serrano et al. 2020). Several studies suggested 52 
that muscle-specific intrinsic molecular factors may explain this muscle involvement pattern 53 
(Kang, Kho et al. 2005, Rahimov, King et al. 2012, Huovinen, Penttila et al. 2015, Raz, Henseler 54 
et al. 2016, Terry, Zhang et al. 2018, Hettige, Tahir et al. 2020, Xi, Langerman et al. 2020). For 55 
example, differences in the cellular pathways and myofiber type (slow- and fast-twitch 56 
myofibers) composition between muscles could play a role (De Micheli, Spector et al. 2020, 57 
Rubenstein, Smith et al. 2020, Xi, Langerman et al. 2020), but may not fully explain the muscle 58 
involvement patterns.  59 
Most of the studies characterizing the molecular variation between muscles were performed 60 
in mice (Campbell, Gordon et al. 2001, Porter, Khanna et al. 2001, Haslett, Kang et al. 2005, 61 
von der Hagen, Laval et al. 2005, Raz, Riaz et al. 2018, Terry, Zhang et al. 2018, Hettige, Tahir 62 
et al. 2020), where muscle-specific mRNA profiles were linked to distinct myofiber type 63 
composition (Campbell, Gordon et al. 2001, Raz, Riaz et al. 2018, Hettige, Tahir et al. 2020).  64 
Since human muscle-related pathologies are not always recapitulated in mouse models (van 65 
Putten, Lloyd et al. 2020), understanding molecular variations between skeletal muscles 66 
should be performed in human samples. Only a few studies compared mRNA profiles between 67 
muscles from healthy human adults, and these studies face several limitations. Skeletal 68 
muscles are highly affected by age (McCormick and Vasilaki 2018, Aversa, Zhang et al. 2019), 69 
yet, the age range in previous studies was broad (Kang, Kho et al. 2005, Huovinen, Penttila et 70 
al. 2015). Moreover, the numbers of sampled muscles and subjects were limited (Abbassi-71 
Daloii, Kan et al. 2020). A study using postmortem material (Kang, Kho et al. 2005) only partly 72 
reflects molecular composition in living muscles due to storage in cooling conditions. 73 
Understanding muscle involvement in different pathologies can benefit from a molecular 74 
atlas of human muscles. 75 
We generated a transcriptome atlas from six leg muscles and two locations from one muscle 76 
to explore molecular variations within and between muscles. Paired samples were obtained 77 
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from 20 healthy male subjects of 25 ± 3.6 years old. We show that the seven muscle tissues 78 
clustered into three groups, distinguished by cell type composition and mRNA expression 79 
profiles. We confirmed the transcriptome analyses with large-scale quantitative 80 
immunohistochemistry and RNA in situ hybridization procedures. We discuss the value of this 81 
skeletal muscle atlas resource to understand human health and pathologies affecting skeletal 82 
muscle tissues. 83 

Results 84 

Transcriptome atlas of adult human skeletal muscles  85 
To determine molecular signatures marking leg muscles, we generated a transcriptome atlas 86 
of human skeletal muscles by sequencing biopsies from five upper leg muscles, gracilis (GR), 87 
semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) 88 
muscles, and one lower leg muscle, gastrocnemius lateralis (GL) (Figure 1A). We also 89 
investigated molecular differences within one muscle by including biopsies from the middle 90 
and distal end of the semitendinosus muscle (STM and STD, respectively). These two biopsies 91 
were treated as independent muscle samples in subsequent analyses (Figure 1B and C). In 92 
total, 128 samples from 20 individuals (aged 25 ± 3.6 yr) were analyzed (Supplementary Figure 93 
S1), making this currently the largest freely available human muscle atlas. Supplementary 94 
Table S1 shows the sample characteristics.  95 

Variation in cell type composition between different muscles 96 
Skeletal muscle is a heterogeneous tissue containing multiple cell types. The differences in 97 
the abundance of these cell types can be reflected in bulk RNA-seq profiles. Therefore, we 98 
used RNA-seq data to first explore possible cell type heterogeneity between leg muscles. We 99 
summarized the expression level of genes marking each cell type present in human skeletal 100 
muscles by calculating their first principal components (eigenvectors) (Supplementary Table 101 
S2). We used the eigenvalues of the eigenvectors representing the different cell types to 102 
cluster the muscles (Figure 2A) and to identify cell types with significant differences in relative 103 
abundance between muscles (Supplementary Figure S2A). The muscle tissues clustered into 104 
three groups, Group 1 (G1): GR, STM, and STD; Group 2 (G2): RF, VL, and VM; GL was the only 105 
muscle in Group 3 (G3) (Figure 2A). The relative abundance of endothelial cells was 106 
statistically the most different between muscles, with higher abundance in G2 and G3 than in 107 
G1 (Figure 2A-B, Supplementary Figure S2A). Other cell types marking blood vessels, namely 108 
pericytes, post-capillary venule (PCV) endothelial cells, natural killer (NK) cells, T and B cells, 109 
and myeloid cells, clustered together with the endothelial cells and all showed a higher 110 
abundance in G2 and G3 compared with G1 (Figure 2A-B). These results could suggest a higher 111 
capillary density and blood perfusion in/of the muscles in G2 and G3.  112 
Genes marking fast-twitch myofibers showed overall higher expression levels in G1, while 113 
slow-twitch genes were higher in G2 and G3 (Figure 2A-B). Differences in the relative 114 
abundance of non-muscle cell types, pericytes, immune cells, and endothelial cells, 115 
distinguished G3 from the G1 and G2 muscles (Supplementary Figure S2B, Figure 2A-B). 116 
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While STM and STD showed significant differences in the relative abundance of genes marking 117 
endothelial cells (higher expression in STD) and slow-twitch myofibers (higher expression in 118 
STM), there were no significant differences between ST and GR, and within the G2 muscles. 119 
This suggests that differences between regions of the same muscle may be larger than 120 
differences between distinct muscles (Supplementary Figure S2A).  121 

Further study of differences in myofiber type composition between groups of muscles 122 
To confirm the differences in myofiber types between muscles, we performed 123 
immunofluorescence staining for all muscles with a mixture of antibodies to three MyHC 124 
isoforms and anti-laminin antibody (Figure 3A). We developed a semi-automated image 125 
processing workflow to segment the myofibers using laminin staining and to quantify the 126 
fluorescence intensity of each MyHC isoform per myofiber. We next identified myofiber types 127 
by clustering all the myofibers using the MFI values of the three MyHC isoforms. The vast 128 
majority of the myofibers (94%) were assigned to three major clusters (Figure 3B). Each 129 
myofiber cluster had a major MyHC isoform (Figure 3C). Consistent with our study in human 130 
vastus lateralis muscle (Raz, van den Akker et al. 2020), the results here suggest that the 131 
myofibers are generally not purely type -I, -IIA, or -IIX but contain a mix of myosin heavy chain 132 
isoforms. We observed relatively high correlations from 0.55 to 0.62 between normalized 133 
gene expression of the dominant MyHC in each cluster and the proportion of myofibers 134 
assigned to the corresponding cluster (Figure 3D-F). This correlation demonstrates the 135 
reliability of our RNA-seq-based assessment of MyHC expression. 136 
In agreement with the results of the RNA-seq cell type composition analysis (Figure 2A-B), the 137 
quantitative histology analysis demonstrated a higher proportion of slow-twitch (oxidative) 138 
myofibers and a lower proportion of MyHC2X-dominated myofibers in G2 and GL (G3) 139 
muscles than in G1 muscles (Figure 3G, Supplementary Figure S3). The quantitative histology 140 
analysis further showed that G2 muscles had a higher proportion of MyHC2A-dominated 141 
myofibers than the G3 muscle (Figure 3G, Supplementary Figure S3), highlighting a distinct 142 
myofiber type composition of the GL muscle.  143 
The myofiber composition results further showed a higher proportion of MyHC2X-dominated 144 
myofibers in STD than in STM, whereas STM had a higher proportion of MyHC1 and MyHC2A-145 
dominated myofibers (Supplementary Figure S3). This confirms the existence of regional 146 
differences within a muscle (Bindellini, Voortman et al. 2021). 147 

Higher capillary density in GL  148 
The RNA-seq cell type composition analysis suggested a higher proportion of endothelial and 149 
other cell types marking blood vessels in the GL muscle than in other muscles. To confirm this 150 
observation, we immunostained for the endothelial cells using antibodies against Endoglin 151 
(ENG) and CD31 proteins (Tey, Robertson et al. 2019). We included cryosections of GL and 152 
STM with the largest differences in the expression of genes marking endothelial cells (Figure 153 
4A). We observed a higher proportion of CD31-positive areas in GL (Figure 4B), which was 154 
consistent with higher CD31 RNA expression levels in this muscle (Figure 4C).  155 
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Next, we determined the muscles’ capillary density by counting small circular objects stained 156 
positive for both CD31 and ENG (Wehrhan, Stockmann et al. 2011). We observed a higher 157 
capillary density in GL compared with STM (Figure 4D). This observation is consistent with a 158 
higher proportion of endothelial cell types in GL compared with muscles in G1 or G2. 159 

Gene expression profiles and molecular pathways distinguishing muscle clusters  160 
We next investigated whether muscle-specific gene expression profiles, not explained by cell 161 
type composition, could also be found in our dataset. To this end, we determined the 162 
differentially expressed genes (DEGs) in every pairwise comparison (Supplementary Figure 163 
S4A, Supplementary Table S3). The DEGs that were driven by differences in cell type 164 
composition were excluded (Pearson’s R > 0.5 between gene expression levels and the 165 
eigenvector of any cell type). The proportion of DEGs that were not driven by cell type 166 
composition but discriminated each pair of muscles are shown in Figure 5A. The muscles 167 
clustered in a similar way as was observed in the cell type composition analysis: GR, STM, and 168 
STD (G1), RF, VL, and VM (G2), and GL (G3) (Figure 5A).  169 
To further study muscle-specific expression profiles, we applied weighted gene co-expression 170 
network analysis (WGCNA). We identified 35 modules of co-expressed genes (Supplementary 171 
Table S4). For each module, we calculated the module eigengene (ME) that represents gene 172 
expression levels of the genes in the module. We then implemented a pairwise comparison 173 
to find modules showing significant differences in every pairwise comparison (Supplementary 174 
Figure S4B-C). Out of the 35 modules, 27 showed a difference between at least two muscles 175 
(module size range: 38-1,459; containing 10,695 genes in total). Nine out of the 27 muscle-176 
related modules had at least five genes marking a specific cell type and were therefore 177 
defined as modules driven by differences in cell type composition and were not considered 178 
for further analysis (Supplementary Figure S4D). Figure 5B shows the remaining modules that 179 
were not driven by cell type composition, nevertheless distinguished pairs of muscles. We 180 
then plotted the mean eigenvalues of muscle-related modules in a heatmap (Figure 5C) to 181 
determine the clustering of muscles based on the expression patterns of genes in the 182 
modules. The WGCNA-based clustering was consistent with the cell type composition and 183 
differential expression groups (Figure 5C). In total, seven out of the 18 muscle-related 184 
modules demonstrated higher expression levels in G1, four modules had higher expression in 185 
G2 and G3, and three modules demonstrated higher expression levels in G3 only (Figure 5C). 186 
In addition, although none of the modules showed distinct expression patterns between 187 
muscles in G2 and between ST and GR, M.21 module showed higher expression levels in STM 188 
than STD (Supplementary Figure S4C).  189 
To explore the molecular and cellular pathways in the three groups, functional enrichment 190 
analysis was performed in the muscle-related modules. The most significantly enriched 191 
biological processes and molecular functions within these modules are listed in Table 1 (a 192 
complete list is in Supplementary Table S5).  193 
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Higher expression of mitochondrial genes in G2 and G3 muscles consistent with higher 194 
proportion of slow myofibers 195 
In the M.13 module, with higher expression in G2 (VL, VM, and RF) and G3 (GL), the 196 
mitochondrial-related genes were enriched (Table 1). Eighteen out of 122 genes enriched for 197 
mitochondria in this module were hub genes, highly interconnected genes in the module 198 
(Table 1). To assess a potential impact on mitochondrial metabolic processes, we mapped the 199 
122 genes to mitochondrial pathways (Figure 6). The most enriched processes were the 200 
respiratory electron transport chain in oxidative phosphorylation, the tricarboxylic acid (TCA) 201 
cycle, and beta-oxidation. This observation suggests a higher oxidative metabolism in G2 and 202 
G3, which is consistent with a higher proportion of slow myofibers.  203 

Homeobox transcription factors contribute to the mRNA diversity between the three 204 
groups of muscles 205 
An enrichment for “anterior/posterior pattern specification” in M.14 was observed, with 206 
higher expression in G2 and G3 (Table 1). This module included HOX hub genes (Figure 7A). 207 
To assess whether the diversity between the groups of muscles was associated with the 208 
pattern of HOX gene expression, we plotted the normalized expression of all expressed HOX 209 
genes across all samples (Figure 7B). Remarkably, clustering based on HOX gene expression 210 
clearly separated the G1 from the G2 and G3 muscles (Figure 7B). Moreover, eleven out of 36 211 
HOX genes were assigned to three of the muscle-related modules (M.14, M.30, and M.32), 212 
which showed the largest differences between the three groups of muscles (Figure 7B). Two 213 
HOX genes were selected (HOXA10 and HOXC10) to further confirm the differences in 214 
expression between muscles using the in situ hybridization (ISH) procedure (Figure 8A). We 215 
included samples from GL and STM showing the largest difference in HOX genes expression. 216 
The HOX signal was mainly localized in myofibers (Figure 8A). Per sample, the average number 217 
of foci per myofiber was calculated revealing a higher number of HOXA10 and HOXC10 single 218 
molecule RNAs in STM compared with GL (Figure 8B). The ISH results were consistent with 219 
the RNA-seq data (Figure 8B-C), further demonstrating the robustness of our RNA-seq data. 220 

Web application for exploring transcriptome atlas of human skeletal muscles 221 
To facilitate data reuse and exploration of human skeletal muscle atlas, we developed a web 222 
application (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp), enabling users to look 223 
up the sample information and the expression of any gene of interest. In addition, users can 224 
explore the list of genes used for the cell type composition analysis and their expression levels 225 
across all the samples. Furthermore, users can list and visualize the differentially expressed 226 
genes and the modules and their hub genes.  227 

Discussion 228 
We generated a large skeletal muscle transcriptome atlas from 20 young healthy males. We 229 
included six leg muscles and two locations within one muscle. The atlas presented in this study 230 
is unique in terms of the number of muscles, the individuals included, and the age range of 231 
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the participants. We confirmed the RNA-seq analysis using large-scale quantitative 232 
immunohistochemistry and mRNA in situ hybridization. Based on cell type composition, 233 
differential expression analysis and WGCNA, the seven leg muscle tissues consistently 234 
clustered into three groups: G1) GR, STM, and STD; G2) VL, VM, and RF; G3) GL. The muscles 235 
in G2 and G3 (VL, VM, RF and GL) showed higher proportions of slow myofiber types and 236 
higher capillary densities. GL, the only lower leg muscle, was distinct from VL, VM, and RF in 237 
its lower proportion of type 2A myofibers and a higher proportion of non-muscle cells. 238 
HOXA10 and HOXC10 expression were lower in VL, VM, RF and GL than in GR, STM, and STD 239 
muscles.  240 

Molecular diversity between muscles in different anatomical locations 241 
The muscles included in this study mobilize and stabilize the knee joint. Muscles of the 242 
hamstrings (ST and GR) clustered together (G1), and muscles of the quadriceps (RF, VL and 243 
VM) clustered together (G2). The Hamstrings and quadriceps alternate in contraction and 244 
relaxation to flex, extend and stabilize the knee and aid in moving of the thigh. GL, the only 245 
lower leg muscle in our set, is located on the posterior side of the knee, allowing flexion of 246 
the knee and plantar flection of the ankle. Our study suggests that there is little molecular 247 
diversity between muscles of the same group, as compared to muscles in different groups of 248 
muscles. 249 
We observed a higher proportion of fast-twitch myofibers in G1 compared with G2 and G3. 250 
This could be due to the role of the hamstrings in activities that require a large power output 251 
since fast-twitch myofibers are used more in these activities than slow-twitch myofibers 252 
(Bottinelli, Pellegrino et al. 1999, Willigenburg, McNally et al. 2014, Camic, Kovacs et al. 2015). 253 
Slow-twitch myofibers have a higher mitochondrial content compared with fast-twitch 254 
myofibers (Berchtold, Brinkmeier et al. 2000, Gouspillou, Sgarioto et al. 2014). Consistently, 255 
G2 and G3 muscles showed higher expression of genes encoding for mitochondrial proteins 256 
and a higher ratio of slow-twitch myofibers compared with G1. Slow-twitch muscles are also 257 
supplied by a denser capillary network (Nishiyama 1965, Murakami, Fujino et al. 2010, 258 
Korthuis 2011). Indeed, we observed a higher capillary density and higher endothelial cells in 259 
G3. The three groups of muscles also differed by the expression of HOX genes, specifically, 260 
HOXA and HOXC family members. Hox genes establish the anterior/posterior patterning 261 
during vertebrate embryonic limb development (Zakany and Duboule 2007). Interestingly, the 262 
development of these groups of leg muscles differs in developmental time (Diogo, Siomava 263 
et al. 2019), consistent with the expression of Hox genes (Zakany and Duboule 2007). Hox 264 
genes expression is not limited to embryonic development, but was found also in adult mouse 265 
muscles (Houghton and Rosenthal 1999, Yoshioka, Nagahisa et al. 2021), and Hoxa10 gene 266 
was differentially expressed across adult limb mouse muscles (Yoshioka, Nagahisa et al. 2021). 267 
Moreover, Yoshioka, Nagahisa et al. (2021) demonstrated that Hoxa10 expression in adult 268 
satellite cells affects muscle regeneration in mice. Here, we show that both HOXA and HOXC 269 
gene family are expressed in myofibers, and their expression levels differs between leg 270 
muscles. Yoshioka, Nagahisa et al. (2021) also showed expression of HOX genes in adult 271 
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human muscle tissues. Yet, Terry, Zhang et al. (2018) concluded that the expression pattern 272 
of Hox genes in adult muscles is insufficient to explain the mRNA expression diversity in adult 273 
mouse skeletal muscles. Whether HOX genes are transcriptionally active in adult myofibers is 274 
a subject for future studies.  275 

Potential relevance to muscles disease and aging 276 
In several muscle-related diseases like muscular dystrophies (MDs), muscle weakness and 277 
pathological features like replacement of muscle tissue with fat start in specific muscles and 278 
spreads to others as disease progresses (Emery 2002). This pattern differs between diseases, 279 
and the reason for the disease-specific involvement pattern is unknown. Exploring the 280 
molecular signatures that contribute to the differences between muscles may elucidate the 281 
pathophysiology of these diseases. For example, in Duchenne muscular dystrophy (DMD), 282 
which is caused by mutations in the DMD gene, the quadriceps is involved earlier, whereas 283 
the hamstring muscles are less involved, and the GR is spared (Wokke, van den Bergen et al. 284 
2014, Hooijmans, Niks et al. 2017). The observed higher expression level of the DMD gene in 285 
ST and GR may be related to the late involvement in DMD patients during disease progression. 286 
Accessing the expression level of genes and implementing a quantitative approach (Veeger, 287 
van Zwet et al. 2021) to evaluate the association between leg muscle architectural 288 
characteristics and gene expression levels could be performed for other muscle diseases. 289 

Regional differences within muscles 290 
The molecular and cellular differences between the samples from distal and middle locations 291 
of ST were larger than differences between ST and GR (Supplementary Figure S2). One module 292 
of co-expressed genes, M.21, showed a different expression pattern between STM and STD. 293 
This module was enriched for the cellular amino acid catabolic process and monocarboxylic 294 
acid catabolic process (Supplementary Table S5). While the distal side of the ST muscle has a 295 
rounded tendon, the differences between STM and STD cannot be explained by 296 
contamination of tendon tissue or closer proximity to the tendon, because we did not find a 297 
difference in the estimated tenocyte proportions between biopsies collected from the distal 298 
and middle parts of the muscle (Supplementary Figure S2). The myofiber composition was 299 
different between the distal and medial part of the ST muscle (Supplementary Figure S2A, 300 
Supplementary Figure S3). A divergent myofiber type composition of biopsies from superficial 301 
and deep areas of the same human muscle was reported by Johnson, Polgar et al. (1973) for 302 
the GL, RF, VL, VM, adductor magnus, soleus, and tibialis anterior muscles in the leg and thigh. 303 
Bindellini, Voortman et al. (2021) also reported different proportions of MyHC2A myofibers 304 
in distal and middle parts of tibialis anterior in mice. 305 

Interindividual differences were larger than differences between muscles 306 
Despite the narrow age range and an inclusion of only one gender in our study, we observed 307 
that the percentage of variance explained by the individual surpassed the variance explained 308 
by the muscles (Supplementary Figure S5F). This is in agreement with findings from Kang, Kho 309 
et al. (2005). The inter-individual variations are possibly resulting from genetic and 310 
environmental (activity, exercise, diet, etc.) factors. To account for inter-individual variation, 311 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.06.01.494335doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494335
http://creativecommons.org/licenses/by/4.0/


we included the individual as a random effect in the different analyses and constructed a 312 
consensus gene co-expression network by merging the co-expression networks separately 313 
constructed per individual. Only after properly accounting for interindividual differences, we 314 
could identify the intrinsic differences between leg muscles. 315 

Study limitations 316 
Differences in cell type composition between muscles are best captured using single-cell 317 
sequencing. Previous single cell (De Micheli, Spector et al. 2020, Rubenstein, Smith et al. 2020, 318 
Xi, Langerman et al. 2020) and single nucleus (Orchard, Manickam et al. 2021, Perez, McGirr 319 
et al. 2021) studies reported the cellular composition of adult human muscles, where single 320 
nucleus profiling is preferred because myofibers cannot be dispersed into single cell 321 
suspensions. The high costs associated with single-cell technologies are currently prohibitive 322 
for performing large scale analyses of >100 samples such as performed in our study. Here, we 323 
evaluated differences in cellular composition by deconvolution of bulk RNA-seq based on 324 
marker genes reported in single-cell studies. This approach appeared to be suitable for 325 
analyzing differences in cellular composition between large sets of samples, as we observed 326 
good consistency with immunohistochemistry-based analyses of myofiber type and 327 
endothelial cell composition. A limitation of the deconvolution approach is, however, that this 328 
only captures cell types for which discriminative marker genes are available.  329 

We further acknowledge that RNA expression levels do not necessarily match protein 330 
abundance in muscles and do not reflect post translational modifications (Greenbaum, 331 
Colangelo et al. 2003, Liu, Beyer et al. 2016). Although a protein atlas could relate to muscle 332 
cell function better than RNA expression profiles, generating a genome-wide proteome in 333 
skeletal muscles is challenging, as muscle proteomes are dominated by the high abundance 334 
of high molecular weight sarcomeric proteins, and capturing the low abundance proteins is 335 
challenging. Despite this limitation, we showed consistency between results obtained by 336 
mRNA expression profiling and immunohistochemical staining of the proteins that were in 337 
focus in our study.  338 

In summary, we demonstrated divergent molecular and cellular compositions between 339 
skeletal muscles in different anatomically adjacent locations. Overall, the consistency of the 340 
gene expression patterns, and the results obtained from the immunohistochemistry and RNA 341 
in situ hybridization experiments indicates the high accuracy and reliability of the 342 
transcriptome atlas generated in this study. Therefore, this atlas provides a resource for 343 
exploring molecular characteristics of muscles and studying the association between 344 
molecular signatures, muscle (patho)physiology and biomechanics.  345 

Materials and methods 346 

1. Subject characteristics and biopsy collection 347 
Healthy male subjects (aged 18-32) undergoing surgery of the knee for anterior cruciate 348 
ligament (ACL) reconstruction using hamstring autografts were recruited from outpatient 349 
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clinics of two hospitals: Erasmus Medical Center and Medisch Centrum Haaglanden. Inclusion 350 
criteria included age, sex, and the amount of routine exercise. Subjects eligible for 351 
reconstructive ACL surgery were mobile, had full range of knee motion, minimal to no knee 352 
swelling and had physiotherapy until the surgery.  353 
A total of seven biopsies were taken from six different leg muscles (Figure 1A). To study 354 
molecular differences within the muscle, two biopsies from the middle and distal sides of the 355 
semitendinosus muscle (STM and STD, respectively) were collected. During the surgery, the 356 
tendons of the gracilis (GR) and semitendinosus muscles were used to reconstruct the ACL, 357 
and biopsies from these muscles were taken directly from the graft after harvesting the 358 
autografts at the beginning of the operation. After the ACL construction, biopsies from 359 
gastrocnemius lateralis (GL) rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) 360 
muscles were taken by percutaneous biopsy (modified Bergstrom (Bergstrom 1975)) using a 361 
minimally invasive biopsy needle. All biopsies were immediately frozen in liquid nitrogen and 362 
were kept at -80ºC.  363 
The study was approved by the local Medical Ethical Review Board of The Hague Zuid-West 364 
and the Erasmus Medical Centre and conducted in accordance with the ethical standards 365 
stated in the 1964 Declaration of Helsinki and its later amendments (ABR number: 366 
NL54081.098.16). All subjects provided written informed consent prior to participation. 367 

2. Sample processing, RNA isolation, and cDNA library preparation  368 
Biopsies were cryosectioned for RNA isolation, immunofluorescence staining, and in situ 369 
hybridization. For each sample, three cryosections of 16 µm thick were collected onto 370 
SuperFrost slides (Thermo Fisher Scientific, 12372098) and stored at −20°C prior to staining. 371 
For in situ hybridization, the cryosections were mounted on SuperFrost Plus Adhesion slides 372 
(Thermo Fisher Scientific, 12625336) and stored at −80°C. For the RNA isolation, cryosections 373 
were transferred into MagNA lyser green beads tubes (Roche, 3358941001). Then, they were 374 
homogenized in QIAzol lysis reagent (Qiagen, 79306) using the MagNA Lyser. Subsequently, 375 
total RNA was purified with chloroform. For samples from a subset of individuals, RNA was 376 
precipitated with isopropyl alcohol (Supplementary Table S1). For the other samples total 377 
RNA was mixed with an equal volume of 70% ethanol and further purified with miRNeasy Mini 378 
Kit (217004, Qiagen) using the manufacturer’s protocol (Supplementary Table S1). To 379 
evaluate the effect of two different RNA isolation protocols, RNA from five GR samples were 380 
isolated with both protocols (Supplementary Figure S5A). For both protocols, DNA was 381 
removed using RNAse-free DNAse set (Qiagen, 79254) using the manufacturer’s protocol. 382 
RNA integrity was assessed with the Agilent 2100 Bioanalyzer using Eukaryote Total RNA Nano 383 
chips according to the manufacturer’s protocol (Agilent BioAnalyzer, 824.070.709) 384 
(Supplementary Table S1).  385 
Poly(A) library preparation was performed in four batches each with 39 samples at Leiden 386 
Genome Technology Center (LGTC, the Netherlands). Information on the RNA isolation 387 
protocol and library preparation batches used for each sample can be found in Supplementary 388 
Table S1. Samples from different muscles and individuals were equally distributed in each 389 
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library batch to minimize a batch effect bias. Approximately 200ng of total RNA was used as 390 
starting material. mRNA was enriched using oligo dT beads (polyA+ bead-based enrichment), 391 
fragmented, and converted to cDNA using random hexamers and SuperScript III (Invitrogen). 392 
End-repair, A-tailing, and adapter ligation were performed using NEBNext chemistry (New 393 
England Biolabs) and xGen dual index UMI adapters (Integrated DNA Technologies) according 394 
to the manufacturer’s protocol. Finally, USER digest (New England Biolabs) and 15 cycles of 395 
library amplification were performed. Libraries were purified with XP beads and analyzed for 396 
size and purity on a Bioanalyzer DNA HS chip (Agilent BioAnalyzer, 5067-1504). 397 

3. Bulk RNA-sequencing and analysis  398 
Illumina sequencing was performed by GenomeScan BV (Leiden, the Netherlands) on a 399 
Novaseq-6000 producing paired-end 2 × 150 bp reads. Fastq files were processed using the 400 
BioWDL pipeline for processing RNA-seq data (v3.0.0, 401 
https://zenodo.org/record/3713261#.X4GpD2MzYck) developed by the sequencing analysis 402 
support core (SASC) team at LUMC. The BioWDL pipeline performs FASTQ pre-processing, 403 
RNA-seq alignment, deduplication using unique molecular identifiers (UMIs), variant calling, 404 
and read quantification. FastQC (v0.11.7) 405 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used for checking raw 406 
read QC. Adapter clipping was performed using Cutadapt (v2.4) (Martin 2011) with default 407 
settings, followed by checking the QC using FastQC. RNA-Seq reads’ alignment was performed 408 
using STAR (v2.7.3a) (Dobin, Davis et al. 2013) against the GRCh38 reference genome. PCR 409 
duplications were removed based on UMIs using UMI-tools (v0.5.5) (Smith, Heger et al. 2017). 410 
Gene read quantification was performed using HTSeq-count (v0.11.2) (Anders, Pyl et al. 411 
2015). Ensembl version 98 (http://sep2019.archive.ensembl.org/) was used for gene 412 
annotation. Samples with less than 5M reads assigned to annotated exons were re-sequenced 413 
or excluded from all downstream analyses. A SNP calling was performed using GATK4 414 
(v4.1.0.0) (McKenna, Hanna et al. 2010). Possible sample swapping was checked using an SNP 415 
panel with 50 SNPs (Yousefi, Abbassi-Daloii et al. 2018). The similarity for calls of these SNPs 416 
showed that two samples in the same RNA isolation batch were swapped. We revised the 417 
labels of these two samples in our dataset for downstream analyses.  418 
We performed all the analyses in RStudio Software (v1.3.959)(RStudio-Team 2020) using R 419 
Statistical Software (v4.0.2)(R-Core-Team 2020). Samples with more than 5M reads assigned 420 
to annotated exons were included in all downstream analyses (Supplementary Figure S5B). 421 
The HTSeq count table was used to create a DGEList object using the edgeR Bioconductor 422 
package (v3.30.3) (Robinson, McCarthy et al. 2010). The filterByExpr function from the edgeR 423 
Bioconductor package was used to keep genes with 10 or more reads in at least 16 samples 424 
(the number of samples in the smallest muscle group). The dataset was normalized using the 425 
calcNormFactors function (considering trimmed mean of M-values (TMM) method) from the 426 
edgeR Bioconductor package. 427 
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4. Quality control and batch effect correction 428 
We performed principal component analysis (PCA) to evaluate the main difference between 429 
samples in an unsupervised manner. Log-transformed expression values after normalization 430 
by counts per million (CPM) were used to calculate principal components using the base 431 
function prcomp with the center and scale argument set to TRUE.  432 
We then performed the analysis of variance to determine the factors driving gene expression 433 
variations. We estimated the contribution of known biological (muscle tissues and Individuals) 434 
and technical (RNA isolation protocol, RIN score, initial RNA concentration, library preparation 435 
batch, sequencing lane, and library size) factors on variation of gene expression. Data 436 
transformed by the voom function from the limma Bioconductor package (v3.44.3) (Law, 437 
Chen et al. 2014, Ritchie, Phipson et al. 2015) was used to fit a linear model for each gene. 438 
We included all biological and technical factors as fixed effects and fitted the following linear 439 
model: 440 

Formula-1: 𝑣𝑜𝑜𝑚 − 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛!"#"	~	𝑚𝑢𝑠𝑐𝑙𝑒 + 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	 + 𝑅𝑁𝐴	𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛	𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 +441 
	𝑅𝐼𝑁	𝑠𝑐𝑜𝑟𝑒 + 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑖𝑏𝑟𝑎𝑟𝑦	𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛	𝑏𝑎𝑡𝑐ℎ + 	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔	𝑙𝑎𝑛𝑒 + 	𝑙𝑖𝑏𝑟𝑎𝑟𝑦	𝑠𝑖𝑧𝑒 + 𝑒𝑟𝑟𝑜𝑟	 442 

We used ANOVA from the car R package (v3.0-10) (Fox and Weisberg 2019) to estimate the 443 
relative contribution of each of these factors in the total variation of gene expression. 444 
Outcomes from both PCA and ANOVA revealed a strong library preparation batch effect 445 
(Supplementary Figure S5C and D), while the effect of other technical factors (RNA isolation 446 
protocol, initial RNA concentration, RIN score, and library size) was minimal (Supplementary 447 
Figure S5D). Accordingly, the HTSeq count table was corrected for the batch effect by the 448 
ComBat-seq Bioconductor package (Zhang, Parmigiani et al. 2020). The muscle was included 449 
in the ComBat-seq model to preserve possible molecular differences between muscles. The 450 
ComBat-Seq count table was used to create a DGEList object, followed by removing the low 451 
expressed genes and additional normalization using filterByExpr and calcNormFactors 452 
functions, respectively.  453 
Outcomes of PCA and ANOVA confirmed the proper removal of the batch effect 454 
(Supplementary Figure S5E and F). In addition, the percentage of variance explained by the 455 
individual was found to be bigger than the variance explained by the muscle (Supplementary 456 
Figure S5F). We, therefore, included the individual as a random effect in all different analyses. 457 
Moreover, the RIN score was not considered as an exclusion criterion as it did not contribute 458 
to gene expression variation (Supplementary Figure S5F).  459 

5. cell type composition estimation 460 
We collected lists of genes marking different cell types that are present in human skeletal 461 
muscles from different studies (Smith, Meyer et al. 2013, Kendal, Layton et al. 2019, Perucca 462 
Orfei, Viganò et al. 2019, Rubenstein, Smith et al. 2020)(Supplementary Table S2). The 463 
expression of genes marking each cell type was summarized by their eigenvector (first 464 
principal component). We subsequently fitted a linear-mixed model to the eigenvector of 465 
each cell type using the lmer function from the lmerTest R package (3.1-3) (Kuznetsova, 466 
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Brockhoff et al. 2017). These models included muscle as a fixed effect and individual as a 467 
random effect shown in the formula below:  468 

Formula-2: 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟	!"##	%&'" 	~	𝑚𝑢𝑠𝑐𝑙𝑒 + (1|𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) + 	𝑒𝑟𝑟𝑜𝑟	 469 

We tested the significance of fixed effects with the ANOVA from the car R package. The 470 
Benjamini-Hochberg false-discovery rate (FDR) was applied to adjust for multiple testing. We 471 
conducted post-hoc pairwise comparisons using the lsmeans R package (v2.30-0)(Lenth 2016) 472 
to identify a significant difference in the expression level of genes marking different cell types 473 
between different muscles. We used the pheatmap function from the pheatmap R package 474 
(v1.0.12) (https://CRAN.R-project.org/package=pheatmap) with the difficult setting to draw 475 
all the heatmaps. 476 

6. Differential expression analysis (DEA)  477 
We used the voom-transformed data to fit linear mixed-effects models for each gene using 478 
the lmer function from the lmerTest R package. The individual and muscle were included in 479 
the models as a random-effect and a fixed-effect, respectively, similarly to the formula-2. The 480 
voom precision weights showing the mean-variance trend for each observation were 481 
incorporated into the models. We tested the significance of fixed effects with the ANOVA 482 
from the car R package and the FDR was applied to adjust for multiple testing. We conducted 483 
post-hoc pairwise comparisons using the lsmeans R package to identify significant differences 484 
between each pair of muscles.  485 
We calculated the Pearson correlation between differentially expressed genes (DEGs, FDR < 486 
0.05) and the eigenvector of each cell type using the cor and cor.test from the stats R package. 487 
We adjusted for multiple testing using the FDR. DEGs which were significantly associated with 488 
a cell type eigenvector (Pearson correlation < 0.5 and FDR > 0.05) were defined as cell type 489 
related.  490 

7. Consensus gene co-expression network analysis 491 
In order to construct a gene network, we used the weighted gene co-expression network 492 
analysis algorithm using the WGCNA R package (v1.69) (Langfelder and Horvath 2008). We 493 
used the voom transformed data as an input. In order to calibrate the parameters of the 494 
network, we used the approach published by our group (Abbassi-Daloii, Kan et al. 2020). 495 
Briefly, prior knowledge of gene interactions from a pathway database was used to select the 496 
most optimal set of WGCNA parameters. We used the biweight midcorrelation (median-497 
based) function in WGCNA of the signed hybrid type to define the adjacency matrix. We 498 
performed a full parameter sweep, testing various combinations of settings for power (6, 8, 499 
10, 12, 14, 18, and 22), minClusterSize (15, 20, and 30), deepSplit (0, 2, and 4) and CutHeight 500 
(0.1, 0.15, 0.2, 0.25, and 0.3). These different settings were assessed using the knowledge 501 
network obtained from the Reactome database using g:ProfileR2 R package (v0.2.0) (Kolberg, 502 
Raudvere et al. 2020). All possible pairs of genes were assigned into four different groups: (1) 503 
in the same module and in the same pathway, (2) in the same module but not in the same 504 
pathway, (3) not in the same module but in the same pathway and (4) neither in the same 505 
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module nor in the same pathway. The enrichment factor 506 

(().'+,-.	,/	0-)1'	2	×	().'+,-.	,/	0-)1'	4
().'+,-.	,/	0-)1'	5	×	().'+,-.	,/	0-)1'	6

) was calculated. The optimal set of parameters with the 507 

highest enrichment factor was: power: 8, MinModuleSize: 20, deepSplit: 0, Cut Height: 0.2. 508 
To identify gene co-expression networks that were consistent across individuals, we 509 
constructed first co-expression networks for each individual separately and merged these 510 
subsequently into a consensus co-expression network. To achieve this, the adjacency 511 
matrices per individual were raised to power 8 and converted into topological overlap 512 
matrices (TOM). TOM of some individuals may be overall lower or higher than TOM of other 513 
individuals. To account for this, we performed percentile (0.95) normalization over all the 514 
TOMs. The consensus TOM was then calculated by taking the elementwise 40th percentile of 515 
the TOMs. The consensus TOM was used to calculate the TOM dissimilarity matrix 516 
(𝑑𝑖𝑠𝑠𝑇𝑂𝑀	 = 1 − 𝑇𝑂𝑀) which was then input to agglomerative hierarchical clustering 517 
(Langfelder and Horvath 2012). Finally, modules were identified using a dynamic tree-cutting 518 
algorithm from the resulting dendrogram (Langfelder, Zhang et al. 2008) specifying 519 
MinModuleSize = 20 and deepSplit = 0. The module labeled “grey” was not considered in the 520 
analysis as it consisted of genes that did not assign to any specific module. The summary 521 
expression measure for each module, the module eigengene (ME), was calculated (Zhang and 522 
Horvath 2005). Modules with similar expression profiles were merged at the threshold of 0.2. 523 
In addition, we calculated the intramodular connectivity to identify highly interconnected 524 
genes, called hub genes, per module. 525 

7.1. Module-muscle association  526 
To identify modules that differ in expression levels between muscles (named as muscle-527 
related modules), we fitted linear mixed-effect models on the module eigengenes (MEs) using 528 
the lmer function from the lmerTest R package. These models included individual as a 529 
random-effect and muscle as a fixed-effect, like formula-2. We tested the significance of fixed 530 
effects with ANOVA from the car R package. We used ranova from the LmerTest R package to 531 
test the significance of random effects. To identify significant differences between each pair 532 
of muscles, we used a post-hoc multiple comparison tests as implemented in the lsmeans R 533 
package.  534 
We performed a functional enrichment analysis for the muscle-related modules using ClueGO 535 
App (v2.5.7) (Bindea, Mlecnik et al. 2009) in Cytoscape (v3.8.1) (Kohl, Wiese et al. 2011). We 536 
used the CyREST API (Ono, Muetze et al. 2015) to execute the ClueGO by R script 537 
(http://www.ici.upmc.fr/cluego/cluegoDocumentation.shtml). Pathways and gene 538 
annotations from Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), 539 
Reactome, and WikiPathways (WP) were included. The Benjamini-Hochberg FDR was applied 540 
to adjust for multiple testing. The annotations with any differentially expressed genes or hub 541 
genes or a transcription factor were included. To eliminate the redundant annotations, we 542 
only included an annotation with the lowest FDR for each ‘GoGroups’ defined by ClueGO and 543 
the annotations marked as ‘LeadingGoTerm’ by ClueGO.  544 
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We next determined muscle-related modules which showed the largest differences between 545 
the three groups of muscles. These modules were selected based on the FDR of GlueGO 546 
enrichment (< 0.01) and the F-value of the genes resulting from DEA in each module (third 547 
quantile > 5.5). 548 

8. Immunofluorescence staining, imaging, image analysis 549 
The immunofluorescence staining included myofiber typing and capillary staining. Prior to the 550 
staining, slides were allowed to equilibrate to room temperature, blocked for 30 minutes 551 
using 5% milk powder (FrieslandCampina, Amersfoort, The Netherlands) in phosphate-552 
buffered saline containing 0.05% tween (PBST).  553 

8.1 Myofiber type composition 554 

8.1.1 Myosin staining 555 
The antibodies for three myosin heavy chain (MyHC) isoforms (MyHC1, MyHC2A, and 556 
MyHC2X) and laminin were used as described by Riaz, Raz et al. (2016). Briefly, cryosections 557 
were stained with rabbit anti-laminin (1:1000, Sigma-Aldrich, L9393) and mouse anti-6H1 558 
(1:5, DSHB; AB_2314830) detecting MyHC2X, for two hours at room temperature. Following 559 
the PBST washing, the secondary antibodies goat anti-rabbit-conjugated-Alexa Fluor® 750 560 
(1:1000, Thermo Fisher Scientific, A21039) and goat anti-mouse-conjugated-Alexa Fluor® 488 561 
(1:1000, A11001, Thermo Fisher Scientific) were incubated for an hour at room temperature. 562 
After PBST washing, sections were incubated overnight at four degrees with a mix of 563 
fluorescently conjugated monoclonal antibodies: BA-D5-conjugated-Alexa Fluor® 350 (1:600, 564 
DSHB, AB_2235587) and SC-71-conjugated-Alexa Fluor® 594 (1:700, DSHB, AB_2147165), 565 
detecting MyHC1 and MyHC2A, respectively. Lastly, after washing with PBST, the cryosections 566 
were mounted with ProLong™ Gold antifade reagent (P36930, Thermo Fisher Scientific) and 567 
stored at four degrees prior to imaging.  568 

8.1.2. Image acquisition, processing, and quantification  569 
The stained slides were imaged with the Axio Scan.Z1 slidescanner (Carl Zeiss, Germany) using 570 
the ZEN Blue software (v2.6), capturing the entire section. The images were acquired with a 571 
10×/0.45 Plan-Apochromat objective lens and the same image settings were used for all 572 
slides.  573 
After imaging all cryosections, a shading profile was calculated using the ‘Shading Reference 574 
From Tile Image’ in ZEN Lite (v3.3) for each channel in each slide. This procedure produces a 575 
shading profile for each channel per slide and does not apply the shading correction. To 576 
improve the accuracy of the shading profile, we calculated the median over all the shading 577 
profiles over all scanned slides for each channel. These median shading profiles were then 578 
used to perform the shading correction using ‘Shading Correction’ in ZEN Lite (v3.3). 579 
Further image processing was performed using Fiji (v 1.51) (Schindelin, Arganda-Carreras et 580 
al. 2012). Since the aggregated dataset is relatively large, we created a modular set of Fiji 581 
macros that process each step independently.  582 
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First, we converted the slidescanner datasets from the Carl Zeiss Image format (CZI) to 583 
multichannel 16 bit TIFF files using BioFormats (Linkert, Rueden et al. 2010). In this step, the 584 
images were 4x downsampled, by averaging, to improve the processing speed and reduce the 585 
dataset size. After downsampling the effective pixel size was 2.6 µm. 586 
Next, we applied a semi-automated process to generate tissue masks from the laminin 587 
channel to determine the (parts of) cryosections to be quantified. To generate masks, we first 588 
used an automated procedure, inspired by ‘ArtefactDetectionOnLaminin’ method from 589 
MuscleJ (Mayeuf-Louchart, Hardy et al. 2018). Subsequently, a manual step was incorporated 590 
to check and correct the generated masks. For each sample, we performed manual 591 
corrections to remove artifacts such as tissue folds, out-of-focus regions, scratch, and dirt 592 
objects. 593 
Then, we generated ‘masked’ copies of the laminin channel. To reduce any possible artifacts 594 
due to this binary mask, we applied a gaussian blur of 4 pixels to the masks and we set the 595 
pixel values of the laminin channel that were outside the mask to the median intensity of 596 
these pixels. The masked laminin images were then fed into the Ilastik pixel classification 597 
algorithm (Berg, Kutra et al. 2019). In Ilastik we trained a classifier to identify two classes: 598 
‘myofiber boundary’ and ‘not myofiber boundary’. This classifier was then used to process all 599 
images in this dataset. This classification step greatly improved the subsequent laminin 600 
segmentation outputs. 601 
Next, the laminin objects were segmented based on the output of the previous step. In short, 602 
the image was slightly blurred with a Gaussian Blur, after which the image was segmented 603 
using the Fiji method “Find Maxima” with output “Segmented Particles”, followed by binary 604 
dilation, and closing. Finally, the regions-of-interest (ROI) (individual laminin segmented 605 
objects) were generated using the ‘Analyze Particle’ method from Fiji. 606 
After laminin segmentation, we measured the mean fluorescence intensity (MFI) as well as 607 
other properties in ROIs for all three channels using the Fiji measurement: “Mean gray value”. 608 
In addition, we recorded the “Area”, “Standard deviation”, “Modal gray value”, “Min & max 609 
gray value”, “Shape descriptors”, and “Median” features. We also quantified the results of 610 
the pixel-classification step by measuring its “Mean gray value” in each ROI as well as on the 611 
border (3-pixel enlargement) of each ROI. This quantification allows the assessment of the 612 
myofiber ‘segmentation certainty’, the certainty is high when the pixel-classification is high 613 
for the ‘myofiber boundary’ class all around the myofiber and low in the interior of the 614 
myofiber. 615 

8.1.3. Myofiber type composition analysis 616 
First, we filtered out the non-myofiber objects since the laminin segmentation was automatic. 617 
We applied a percentile filtering for a ‘segmentation certainty’ on the cross-sectional area 618 
(CSA) and the circularity values. The objects with (1) pixel-classification on the object 619 
boundary less than 5th percentile or (2) pixel-classification in the interior of the object greater 620 
than 95th percentile or (3) CSA less than 10th percentile or greater than 99th percentile or (4) 621 
circularity greater than 1st percentile were excluded. Samples from different muscles were 622 
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pooled for all different filtering criteria except for the filtering for CSA, as the density 623 
distributions of CSA were found to differ between different muscles. In the next step, we 624 
selected the cryosection with the largest number of myofibers for each sample for further 625 
analysis. Samples with a minimum of a hundred myofibers were included in the myofiber type 626 
analysis. The final dataset contained 1,287,729 myofibers from 96 samples, with a median of 627 
888 myofibers per sample. As previously described by Raz, van den Akker et al. (2020), per 628 
myofiber, the MFI values for each of three MyHC isoforms were scaled per sample (without 629 
centering). Subsequently, the composition of myofiber types was determined by clustering of 630 
the transformed (natural logarithm) MFI values. Each myofiber was assigned to a cluster using 631 
the mean-shift algorithm (bandwidth (h) = 0.02), a density-based clustering approach, 632 
implemented in the LPCM R package (v0.46-7) (Cheng 1995, Einbeck 2011). All the small 633 
clusters, with less than 1% from the total myofibers, were excluded. Then, per myofiber type 634 
cluster, the proportions of the total myofibers were calculated per sample. 635 

8.2 Capillary density 636 

8.2.1. Staining and image acquisition 637 
Sections were stained with the primary antibodies: anti-human CD105 (endoglin, ENG) biotin-638 
conjugated (1:100, BioLegend, 323214), anti-human CD31-Alexa Fluor® 594 conjugated 639 
(1:400, BioLegend, 303126), and rabbit anti-laminin for two hours at room temperature. After 640 
PBST washing, the slides were incubated with streptavidin-Alexa Fluor® 647 conjugated 641 
(1:500, Life Technologies, S21374) and goat anti-rabbit Alexa Fluor® 750-conjugated for an 642 
hour. After final PSBT washing, nuclei were counterstained with 4’,6-diamidino-2-643 
phenylindole (DAPI) (0.5 μg/mL, Sigma-Aldrich) and were mounted with ProLong™ Gold 644 
antifade reagent. Cryosections were imaged with Axio Scan.Z1 slide scanner. 645 

8.2.2. Image processing and quantification 646 
We used Fiji macros created for the myofiber composition analysis to convert CZI files to TIFF 647 
files, to generate the masks, and for the laminin segmentation. We then measured the cross-648 
sectional area for laminin segmented objects using the Fiji “Area” measurement. Next, a 649 
Gaussian Blur filter with an σ value set to 1 was implemented on the CD31 channel, followed 650 
by thresholding using setAutoThreshold (“Li dark” algorithm) and processing using Watershed 651 
algorithm to separate touching and overlapping cells. The lumens were filled using the Fill 652 
Holes algorithm in Fiji. We then measured the properties in ROIs using the Fiji measurements: 653 
“Area”, “Mean gray value”, “Standard deviation”, and “Shape descriptors”. We then 654 
implemented the same processing on the ENG channel to select the ROIs but measured the 655 
“Mean gray value” and “Standard deviation in the CD31 channel to determine the CD31 and 656 
ENG colocalization. 657 
For the image quantification, we first calculated the ratio between the total positively stained 658 
areas for CD31 and the total area of the muscle section, expressed as a percentage. We then 659 
determined the capillaries as the objects with (1) positive signals for both CD31 and ENG 660 
(Wehrhan, Stockmann et al. 2011), (2) larger than 3 µm2 and smaller than 51 µm2 (Poole, 661 
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Copp et al. 2013), and (3) circularity larger than 0.5. Finally, we defined capillary density as 662 
the number of capillaries per unit (µm²) of muscle area. 663 

9. RNAscope in situ hybridization 664 
We detected single-molecule RNA using Multiplex Fluorescent Reagent Kit v2 (ACDBio, 665 
323135) according to the manufacturer’s protocol for fresh-frozen cryosections, with the 666 
following adjustments to optimize the experiment for human muscles: fixation with 4% 667 
paraformaldehyde at 4 degrees for an hour, and all washing steps with washing buffer were 668 
performed three times for two minutes each. The protocol was optimized on control muscle 669 
cryosections by negative and positive probe sets provided by ACDBio. We performed the 670 
hybridization using probes for Hs-HOXA11 (ACDBio, 1061891-C1), Hs-HOXA10 (ACDBio, 671 
867141-C2), and Hs-HOXC10 (ACDBio, 803141-C3). Following the completion of the RNA 672 
probe hybridization, we carried out an immunostaining step at room temperature to label 673 
myofibers with rabbit anti-laminin followed by secondary labeling with goat anti-rabbit-674 
conjugated-Alexa Fluor® 555 (1:1000, Abcam, ab150078). Lastly, following PBST washing, the 675 
nuclei were counterstained with DAPI (ACDbio, 323110). Cryosections were mounted with 676 
ProLong™ Gold antifade reagent. Slides were imaged with a Leica SP8 confocal microscope, 677 
equipped with a white light laser (WLL) source (Leica Microsystems, Germany) using a 40x/1.3 678 
OIL objective. For each sample, multiple tiles at different regions across the muscle 679 
cryosection were images with seven z-planes (z-step size = 0.35 μm). The images for DAPI and 680 
HOXA11 channels were acquired using a HyD 2 detector with 414nm-532nm excitation lasers 681 
and with 504nm-543nm excitation lasers, respectively. A HyD 4 detector was used to image 682 
anti-laminin and HOXA10 channels with 558nm-585nm excitation lasers and with 603nm-683 
665nm excitation lasers, respectively. A HyD 5 detector was used to image HOXC10 channel 684 
with 675nm-800nm excitation lasers. The same image settings were used for all samples.  685 
We performed the image processing in multiple steps and created a modular set of Fiji macros 686 
that process each step independently. We first merged and converted the Leica Image File 687 
(LIF) to a multichannel 16 bit TIFF file using the Grid/Collection Stitching Plugin (Preibisch, 688 
Saalfeld et al. 2009). We segmented myofibers using the following steps: 1) creating the 689 
maximum intensities projections of the laminin channel, 2) creating ‘probability’ maps of the 690 
laminin channel in Ilastik, 3) adding a point selection to the TIFF files, which seed the 691 
watershed, and 4) implementing watershed segmentation with two halting points for user 692 
interaction, first watershed segmentation and then making the ROI list (individual segmented 693 
myofibers) generated using the ‘Analyze Particle’ command. 694 
After myofiber segmentation, we implemented a Gaussian Blur filter with an σ value set to 1 695 
on each probe channel. We then applied the color threshold settings using setAutoThreshold 696 
(“RenyiEntropy dark” algorithm). Finally, for each probe channel, we measured the foci 697 
properties in each segmented myofiber using the Fiji measurements: “Area”, “Mean gray 698 
value”, “Standard deviation”, and “Shape descriptors”. 699 
The RNA foci were defined as speckles smaller than 3.5 µm2 with circularity above 0.98. We 700 
excluded HOXA11 from further analysis due to a low signal-to-noise ratio, agreeing with a 701 
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lower expression level than HOXA10 and HOXC10. Based on the negative controls, we defined 702 
threshold values to filter out false-positive signals for the 2 other HOX genes. These threshold 703 
values were set such that approximately all the foci in the negative control were classified as 704 
negative. Finally, to compare the expression of two genes between muscles, we calculated 705 
the average number of foci per myofiber per sample. 706 

Availability of data and scripts  707 
All scripts are publicly available on GitHub: 708 
github.com/tabbassidaloii/HumanMuscleTranscriptomeAtlasAnalyses. The raw data is 709 
publicly available at the European Genome Archive (Dataset ID: EGAS00001005904, 710 
https://ega-archive.org). Figure 1C and Supplementary Figure S1 show our analyses workflow 711 
used to explore genes contributing to the intrinsic differences between muscles. 712 

Graphical user interface 713 
The muscle transcriptomics atlas is available for exploration through a graphical user interface 714 
(https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/) implemented using shiny, a web 715 
application framework for application shiny R package (v1.5.0)(Chang, Cheng et al. 2020). 716 

Gene network visualization 717 
The subnetwork was exported and visualized in Cytoscape (v3.8.1). 718 

Data availability 719 
The raw data is publicly available at the European Genome Archive (Dataset ID: 720 
EGAS00001005904, https://ega-archive.org/). The muscle transcriptomics atlas is available 721 
for exploration through a graphical user interface 722 
(https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/).  723 
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Table 1. Top enrichment results of muscle-related modules not driven by cell type composition 990 

Module Term FDR #Enriched 
genes Hub genes 

Higher expression in G1 (GR, STM, and STD) 

M.30 (75 genes) IRE1-mediated unfolded protein 
response 4 × 10-4 4  

M.32 (236 genes) Hormone-mediated signaling pathway 9 × 10-3 11 CARM1, WBP2, ZBTB7A 

M.7 (308 genes) 

Negative regulation of nucleobase-
containing compound metabolic 
process 

6 × 10-4 51 CREBBP, DAB2IP, FOXK2, 
LARP1, RXRA, THRA 

Chromatin organization 1 × 10-2 27 ARID1B, CREBBP, 
HUWE1 

M.17 (176 genes) Chromatin modifying enzymes 4 × 10-3 11 HCFC1, SETD1A 
Higher expression in G2 (RF, VL, and VM) and G3 (GL) 

M.31 (945 genes) 
RNA splicing 6 × 10-5 54 SNRNP70 
Histone modification 3 × 10-3 47 KAT2A 

M.33 (538 genes) Apical junction complex 2.4 × 10-2 11 MICALL2 

M.13 (300 genes) Mitochondrion 4 × 10-45 122 

AIFM1, ATP5F1A, 
ATP5F1B, CKMT2, COQ9, 
DLD, DLST, FH, GHITM, 
HADHA, HADHB, IMMT, 
MFN2, NDUFS2, PDHA1, 
PDHB, TRAP1, UQCRC2 

M.14 (162 genes) Anterior/posterior pattern specification 4 × 10-3 7 HOXA11 
Higher expression in G3 (GL) 

M.5 (190 genes) Regulation of lipid metabolic process 8 × 10-4 15 
ADIPOQ, ADRA2A, 
CIDEA, LEP, LGALS12, 
PDE3B, SCD 

M.25 (188 genes) 
Ameboidal-type cell migration 5 × 10-3 15 CFL1, PML, TGFB1 
Positive regulation of muscle cell 
differentiation 9 × 10-3 6 EHD2, ENG, NIBAN2, 

TGFB1 

M.11 (299 genes) 
Golgi membrane 2 × 10-3 30 ASAP2, MAN1A1 
Regulation of nervous system 
development 8 × 10-3 30 IQGAP1 

 991 

  992 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.06.01.494335doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494335
http://creativecommons.org/licenses/by/4.0/


Figures  993 

 994 
Figure 1. An overview of biopsies’ location and the study workflow. A) A schematic overview of the 995 
leg muscles. Arrows point to the muscles that were included in this study. The biopsies, with exception 996 
of STM (semitendinosus-middle), were taken from the distal area. B-D) The study overview includes 997 
cryosectioning, RNA-isolation and sequencing (B) data analysis (C) and validations (D). 998 
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  1000 
Figure 2. Muscles cluster into three main groups based on cell type composition. A) The heatmap 1001 
shows the mean eigenvalues of genes marking each cell type across all the individuals. Each row shows 1002 
a muscle, and each column shows a cell type. FAB stands for fibro-adipogenic progenitors. B) The 1003 
boxplot shows the eigenvalues for the endothelial cells, fast-twitch, and slow-twitch myofibers per 1004 
muscle. The boxes reflect the median and interquartile range.  1005 
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Figure 3. Myofiber type composition is consistent with the expression level of genes marking fast 1007 
and slow-twitch myofibers. A) A representative immunostaining image. The overlay of each myosin 1008 
heavy chain isoform and laminin are shown separately. B) The MFI of the three MyHC isoforms are 1009 
plotted in 3-D. Each dot represents a myofiber. Myofibers in the three largest clusters are denoted 1010 
with red (Cluster 1), blue (Cluster 2), and green (Cluster 3). The objects with low MFI values for all the 1011 
isoforms are denoted in yellow (Cluster 4, ~2% of all the dots). In gray are ~4% of myofibers assigned 1012 
to many small clusters. C) The table shows the proportion of myofibers assigned to each of the three 1013 
largest clusters and the average MFI values for each isoform. D-F) Scatterplots show the proportion of 1014 
the assigned myofibers to each of the largest clusters and the normalized expression of the gene 1015 
coding the isoform with a relatively higher expression in that specific myofiber cluster. G) The boxplot 1016 
shows the proportion of myofibers in the three largest clusters per muscle. Each muscle is depicted 1017 
with a different color, with G1 muscles in blue, G2 muscles in red and the G3 muscle in grey. The boxes 1018 
reflect the median and interquartile range. 1019 
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 1021 

Figure 4. Immunostaining confirms higher capillary density in GL compared with STM muscles. A) A 1022 
representative muscle cross section image immunostained with CD31, ENG, and laminin. An 1023 
enlargement of the boxed region is shown on the right, with images of the three separate channels 1024 
and an overlay. Examples of objects recognized as capillaries are shown by green arrows. Some 1025 
examples of objects that were not considered as capillaries are shown by red arrows. B) The box plot 1026 
shows the percentage of CD31 positive area in the two muscles. C) The box plot shows the normalized 1027 
expression of CD31 gene in the two muscles. D) The boxplot shows the estimated capillary density in 1028 
the two muscles. The capillary density was defined as the number of objects (3-51 µm2) with an 1029 
overlap between CD31 and ENG per unit cross-sectional area of the muscle. The boxes reflect the 1030 
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median and interquartile range (N = 19 per muscle). The red dots on the boxes show the mean. **** 1031 
P-value < 1×10-6 (linear mixed-model). 1032 
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 1034 

Figure 5. Gene expression differences between three groups of muscles not driven by cell type 1035 
composition. A) Symmetric heatmap plot shows the percentage of DEGs in different pairwise 1036 
comparisons. Genes with a high Pearson correlation (R > 0.5) with the eigenvector of any cell type are 1037 
excluded. Each row or column represents a muscle. B) Symmetric heatmap plot shows the number of 1038 
modules that were not driven by cell type composition and were significantly different in each pairwise 1039 
comparison. Each row or column represents a muscle. C) The heatmap shows the modules that reflect 1040 
the intrinsic differences between groups of muscles. Each row represents a muscle, and each column 1041 
shows a muscle-related module that was not driven by cell type composition. Color-coded cells show 1042 
the corresponding average of eigenvalues across all individuals (N = 20). Modules with an overall 1043 
higher expression in G1 or G3 are underlined by a blue or gray dashed line, respectively. The red 1044 
dashed line underlines the modules with an overall higher expression in both G2 and G3. The black 1045 
asterisks show modules with the largest differences between the three groups of muscles. 1046 
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1048 
Figure 6. A schematic representation of genes with higher expression in G2 and G3, related to 1049 
oxidative phosphorylation and metabolic pathways in the mitochondria. 60 (out of the 122) 1050 
mitochondrial genes with higher expression in G2 and G3 are shown in red. The electron transport 1051 
chain, lysin and tryptophan catabolism, TCA cycle, and beta-oxidation are shown. The hub genes are 1052 
underlined and in bold. 1053 
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 1055 

Figure 7. The expression patterns of HOX genes cluster muscles in the same groups. A) The graph 1056 
shows the co-expression subnetwork of HOX genes and genes related to anterior/posterior pattern 1057 
specification assigned to the M.14 module. Diamonds indicate transcription factors while other genes 1058 
are indicated by circles. Pink and purple nodes represent the hub genes and non-hub genes, 1059 
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respectively. The genes related to anterior/posterior pattern specification have a black border. The 1060 
edge thickness reflects the degree of topological overlap. Topological overlap is defined as a similarity 1061 
measure between each pair of genes in relation to all other genes in the network. High topological 1062 
overlaps indicate that genes share the same neighbors in the co-expression network. B) Normalized 1063 
expression of all HOX genes (scaled by row) represented as a heatmap. The hierarchical clustering was 1064 
generated using the normalized expression values. Each row represents a gene and each column 1065 
represents a sample. The side color of columns indicates different muscles. The module in which the 1066 
gene assigned is given between parentheses. Eleven highlighted HOX genes are assigned into muscle-1067 
related modules which showed the largest differences between the groups of muscles (M.14, M.30, 1068 
and M.32). 1069 
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 1071 

Figure 8. Distinct expression of HOX genes confirmed by RNAscope. A) A representative in situ 1072 
hybridization image of HOXC10 and HOXA10 in muscle cryosections. The image is a merge image of 1073 
the channels used for laminin, DAPI, HOXC10 and HOXA10 staining. B) The boxplots show the average 1074 
number of foci per myofiber (y-axis) in STM and GL muscles (x-axis). C) The boxplots show the 1075 
normalized expression of HOXA10 (top) and HOXC10 (bottom) in STM and GL muscles. The boxes 1076 
reflect the median and interquartile range (N = 12 per muscle). The red dots on the boxes show the 1077 
mean. **** P-value < 1×10-6 (linear mixed-model). 1078 
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Supplementary Figures 10 

11 
Supplementary Figure S1. Analysis framework. A flowchart summarizing the analysis framework used 12 
to detect molecular signatures characterizing distinct skeletal muscles. Following pre-processing, 13 
muscle-specific signatures were identified using three approaches: cell type composition analysis (in 14 
yellow), differential expression analysis (in blue), gene co-expression network analysis (in green), and 15 
functional enrichment analysis (in red). 16 
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19 
Supplementary Figure S2. Cell type composition differences between muscles. A) The heatmap 20 
shows the differences between each pair of muscles. The statistically significant variation between 21 
muscles was tested by ANOVA followed by the post-hoc pairwise comparisons. Each row corresponds 22 
to a pairwise comparison, and each column shows a cell type. Color-coded cells show the 23 
corresponding t-ratio for the differences in eigenvalue of a cell type in each pairwise comparison. The 24 
significant differences (Tukey p-value < 0.05) are colored red (significantly higher eigenvalues in 25 
muscle M1) or blue (significantly higher eigenvalues in muscle M2). The non-significant differences 26 
are colored from pink (relatively higher eigenvalues in M1) to light blue (relatively higher eigenvalues 27 
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in M1). B) Each boxplot shows the eigenvalues of a cell types across different muscles. The boxes 28 
reflect the median and interquartile range. 29 
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 31 

Supplementary Figure S3. Myofiber composition differences between muscles. The heatmap shows 32 
the differences between each pair of muscles. The statistically significant variation between muscles 33 
was tested by ANOVA followed by the post-hoc pairwise comparisons. Each row corresponds to a 34 
myofiber cluster, and each column shows a pairwise comparison. Color-coded cells show the 35 
corresponding t-ratio for the differences in proportions of myofiber in each pairwise comparison. The 36 
significant differences (Tukey p-value < 0.05) are colored red (significantly higher proportions in 37 
muscle M1) or blue (significantly higher proportions in muscle M2). The non-significant differences 38 
are colored from pink (relatively higher proportions in M1) to light blue (relatively higher proportions 39 
in M1). 40 
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Supplementary Figure S4. DEA and WGCNA also clustered muscles in three groups. A) Symmetric 43 
heatmap shows the proportion of all differentially expressed genes in different pairwise comparisons. 44 
Each row or column represents a muscle. B) Symmetric heatmap shows the number of modules that 45 
were significantly different in each pairwise comparison. Each row or column represents a muscle. C) 46 
Each row corresponds to a pairwise comparison and each column shows a muscle-related. Color-47 
coded cells show the corresponding t-ratio for the differences in eigenvalue of a module in each 48 
pairwise comparison. The significant differences (Tukey p-value < 0.05) are colored red (significantly 49 
higher eigenvalues in M1) or blue (significantly higher eigenvalues in M2). The insignificant differences 50 
are colored from pink (relatively higher eigenvalues in M1) to light blue (relatively higher eigenvalues 51 
in M1). D) The table shows the intersection of the genes in the modules (columns) with genes marking 52 
different cell types (rows). Color-coded cells show the corresponding intersection number. The red 53 
asterisks show modules driven by cell type composition. 54 
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56 
Supplementary Figure S5. The quality control and batch correction of RNA-seq data. A) The PCA plot 57 
shows the effect of the RNA isolation protocols. The scatter plot of PC1 (x-axis) and PC2 (y-axis) shows 58 
GR muscle from five individuals from which RNA was isolated using two RNA isolation protocols. B) An 59 
overview of the RNA-seq samples (available from the European Genome Archive, Dataset ID: 60 
EGAS00001005904). An X indicates samples that are not present in the final transcriptome dataset. C 61 
& E) Scatter plots of PC1 (x-axis) and PC2 (y-axis) before (C) and after (E) batch correction. Each dot 62 
presents a sample labeled by muscle tissue. Each library preparation batch is shown with a different 63 
color. The re-sequenced batch is denoted in black. D & F) Box plots show the analysis of variance 64 
before (D) and after (F) batch correction. Y-axis shows the percentage of variance explained by 65 
different factors. The x-axis shows the known biological (muscle and individual, shown in green) and 66 
technical (RIN score, concentration, batch, library size, shown in red) factors. The RNA isolation 67 
protocol effect is captured in the individual effect. 68 
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