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Abstract 
 
Despite substantial efforts in identifying both rare and common variants affecting disease risk, in the majority of 

diseases, a large proportion of unexplained genetic risk remains.  We propose that variable number tandem 

repeats (VNTRs) may explain a proportion of the missing genetic risk.  Herein, we tested whether VNTRs are 

causal modifiers of breast cancer risk in 347 female carriers of BRCA1 185delAG, an important group given 

their high risk of developing breast cancer. We performed targeted-capture to sequence VNTRs, called 

genotypes with adVNTR, and tested the association of VNTRs and breast cancer risk using Cox regression 

models.  Of 303 VNTRs that passed quality control checks, 4 VNTRs were significantly associated with risk to 

develop breast cancer  at false discovery rate [FDR] < 0.05 and  an additional 4 VNTRs had FDR < 0.25. After 

determining the specific risk alleles,   there was a significantly earlier age at development of  breast cancer in 

carriers of the risk genotypes compared to those without the risk genotypes for seven of eight VNTRs.  Results 

from this first systematic study of VNTRs demonstrate that VNTRs may explain a proportion of the 

unexplained genetic risk for disease and have larger effects than SNPs.   
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INTRODUCTION 
 

For carriers of pathogenic variants (PVs) in BRCA1, the lifetime risk for developing breast cancer (up to 

80% lifetime risk) is a six-fold increase over that of average risk women and ovarian cancer risk (up to a 44% 

lifetime risk) is up to a 30-fold increase [1]. Despite these substantially elevated risks, penetrance is incomplete 

(not all carriers will develop cancer) and age at cancer diagnosis varies. The limited understanding of factors 

that modify cancer risks in BRCA1 carriers hampers clinical decision-making ability, including decisions about 

the appropriate type and timing of risk reducing surgeries. Therefore, there is a critical, clinically relevant need 

for more refined risk estimates.   

The variation in risk, even in identical PVs carriers, suggests that modifier factors, both genetic and 

environmental, affect cancer risks [2].  Studies to identify “modifier genes” that govern the phenotypic 

expression of BRCA PV carriers have been ongoing since the early 2000's, conducted largely through the 

Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) [3, 4].  Through genome-wide association 

studies (GWAS), single nucleotide polymorphisms (SNPs) have been identified that, when combined into a 

polygenic risk score (PRS), better define BRCA1 carriers at higher and lower risk of developing breast cancer 

(e.g., [5-7]).  However, these modifier variants explain only a portion of the variation in risk [8, 9].  Identifying 

additional genetic modifiers will facilitate better risk estimates for clinical decision-making on timing and 

options for risk reduction.  

Variable number tandem repeats (VNTRs) may plausibly account for some of the missing genetic risk. They 

are known to modulate biologic processes, including gene expression and protein function [10-14]. These 

eVNTRs (VNTR expression Quantitative Trait Loci) also mediate risks of developing various cancers [15, 16] 

including breast cancer [17-20].  A genome-wide investigation of VNTRs as modifiers has been hampered by 

technical difficulties; however, adVNTR [10, 21] became available to genotype VNTRs (i.e., count repeat units) 

from next generation sequencing (NGS) data. This tool uses Hidden Markov models (HMM) to model each 

VNTR, count repeat units, and detect sequence variation.   
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We tested a new paradigm – that VNTRs are causal modifiers of breast cancer risk.  They have not been 

systematically investigated as they are poorly tagged by nearby SNPs [12].  Previous GWAS conducted through 

CIMBA have demonstrated heterogeneity of breast cancer risk by BRCA1/2 mutations, breast tumor subtypes, 

and race and ethnicity [22].   Therefore, to reduce potential confounding with unmeasured variables,  we tested 

the association in  carriers of a single recurring PV in BRCA1. We performed targeted-capture to sequence 

VNTRs, called genotypes with adVNTR, and explored the association of VNTRs and breast cancer in in 327 

women carrying the pathogenic BRCA1 185delAG mutation NM_007294.4(BRCA1):c.68_69del (p.Glu23fs) 

(rs80357914). 

 
METHODS 

Cases. Females carrying the pathogenic BRCA1 variant 185delAG (NM_007294.3:c.66_67del) were eligible. 

Of the 347 participants with DNA, 250 were enrolled by Dr. E. Friedman from the Suzanne Levy-Gertner 

Oncogenetics Unit at the Sheba Medical Center (SMC) in Israel. All participants underwent oncogenetic 

counseling and genotyping of cancer susceptibility genes, including BRCA1. Referral to the oncogenetics 

services came from several sources: women who developed breast and/or ovarian cancer (consecutive women at 

the SMC), cancer free women with a significant family history of breast and /or ovarian cancer, and from 

population screens of the three predominant mutations in Ashkenazi Jewish (AJ) women in BRCA1 and BRCA2 

[23], a procedure recently approved and included in the Israeli "health basket" for all AJ women as a screening 

procedure with no need for pre-test counseling.  Another 95 participants were recruited and enrolled by Dr. J. 

Weitzel into the Clinical Cancer Genomics Community Research Network housed at the City of Hope and 

another 2 participants were recruited and enrolled in a research study led by Dr. S. Neuhausen.  All participants 

provided written informed consent under IRB-approved protocols at their respective institutions. All 

participants were unrelated.    

VNTR genotyping 

VNTR selection. To get an initial list of VNTRs (of four or more base pair repeats), Tandem Repeat Finder 

(TRF) [24] was applied to the human reference genome [GRCh38], and 559,804 VNTRs were identified. To 
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focus on the most relevant candidates, we selected VNTRs that intersected with coding exons, promoters, or 

untranslated regions (UTRs) of genes in RefSeq (https://www.ncbi.nlm.nih.gov/refseq/). VNTRs were excluded 

if they were located in low-complexity sequence (e.g. close to a telomere) resulting in 8953 candidate VNTRs.  

Lastly, only candidate VNTRs with total length of 140 bp or shorter (n=6271) were included so that genotypes 

could be confidently assigned with Illumina short read sequencing data.  We used the Agilent SureDesign 

software to design probes for 6271 VNTRs.  Of these 6271 VNTRs, 1398 are in coding exons, 2000 are in 

promoter regions, and 2873 are in UTRs. Using the least stringent parameters to design probes for target 

enrichment, probes were designed to cover 6186 VNTRs; 85 VNTRs were excluded because they were in 

repetitive DNA regions where probes could not be designed. We also excluded 21 VNTRs on the Y 

chromosome.  

Library preparation. Libraries were created from 500 ng DNA using KAPA Hyper (KAPA Biosystems) 

reagents along with our optimized protocols [25, 26] to maximize efficiency and minimize cost including bar-

coding samples prior to hybridization in order to hybridize 24 samples per bait capture kit. Prior to bait capture, 

indexed samples were carefully quantified with both Picogreen and qPCR assays to ensure equal representation 

of each sample in the pool.  The protocol has been optimized to minimize the number of PCR cycles, reducing 

duplicate reads to less than 20%. Sequencing was performed in the City of Hope Integrative Genomics Core 

(IGC) on a HiSeq2500 genetic analyzer (Illumina Inc, San Diego, CA).   

Targeted capture DNA sequencing and processing of reads. For the first 192 samples, we obtained sequencing 

on 150 bp paired-end reads.  The remaining samples were sequenced with 250 bp paired-end reads in order to 

provide more flanking sequence for better accuracy of the call.  

 Once sequencing was complete, the fastq files were uploaded to a shared folder for processing. Sequence 

reads were aligned to NCBI build GRCh38 using Burrows-Wheeler Aligner (BWA) to generate BAM files. 

Duplicate reads were detected by Picard MarkDuplicates (http://broadinstitute.github.io/picard/) and only 

unique reads were kept for subsequent analysis.  The BAM files including unmapped reads were used for 

assigning VNTRs. From the BAM files, genotypes from VNTRs were assigned using adVNTR-NN adapted 
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from adVNTR [21] based on minimal total supporting reads ≥ 10 and minimal proportion of reads to support 

alternative allele ≥ 0.25. 

Confirmation of VNTR genotyping results from adVNTR. Using the unique flanking regions of the selected 

VNTRs, PCR primers were designed to amplify 50 ng DNA from up to 4 samples per VNTR genotype. PCR 

reactions were performed using TAQ polymerase (Qiagen) and amplification was confirmed using gel 

electrophoresis. Samples were then sequenced on an Applied Biosystems SeqStudio Genetic Analyzer 

(ThermoFisher Scientific).  

VNTR sequences were visualized using Quality Check and Variant Analysis Modules on the 

ThermoFisher Cloud. The visualized sequence in conjunction with the product sizes from the post-PCR gel 

electrophoresis were used to verify genotyping calling made by adVNTR. For homozygotes, this was done by 

observing a single band of the correct size during gel electrophoresis and by quality sequence for the number of 

repeats called by adVNTR. Whereas heterozygotes were confirmed by observing multiple bands of expected 

size differentials on the gel and a poor-quality sanger sequence at the point of allele differences.  

Statistical analysis. After genotypes were assigned for each VNTR, we tested for HWE.  For those that were in 

HWE (p > 0.001), we tested the association of the VNTR and risk to develop breast cancer using Cox 

regression models in both the primary and secondary analyses (described below).  In the model, women with a 

first breast cancer are considered as affected with time to breast cancer diagnosis as the end point; those 

unaffected with any cancer or diagnosed with ovarian cancer prior to breast cancer were censored at age of last 

follow-up and age at ovarian cancer diagnosis, respectively.  There were too few cases of ovarian cancer for 

association analysis.   

In the primary analysis, we tested the association between each VNTR marker as a continuous variable and 

disease risk.  Three separate VNTR genotypes were constructed: 1) the average length of the two alleles; 2) the 

length of only the shorter allele; and 3) the length of only the longer allele [27].  Analyses were adjusted for 

sample collection site (US or Israel).  Probability values were adjusted for multiple comparisons using the False 
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Discovery Rate (FDR) method of Benjamini and Hochberg [28]. For VNTRs with associations with FDR < 

0.25 in the primary association analysis, a secondary association analysis was performed to identify the specific 

risk groups of repeat alleles using a sliding window method [27].  Specifically, a threshold T along the number 

of repeats from short to long was used to dichotomize allele lengths. An allele was denoted as ‘short’ if it had 

shorter than T repeat motifs, and ‘long’ otherwise. Multiple values of threshold T were chosen for association 

tests. For each specific threshold T, the VNTR genotype of an individual was converted to homozygous-short-

allele genotype (S/S), heterozygous-short-and-long-allele genotype (S/L), or homozygous-long-allele genotype 

(L/L).  The optimal threshold for each VNTR was determined by choosing T that provided the smallest p-value 

among the multiple association tests. This secondary analysis allowed us to identify critical cut points for risk 

alleles along the continuous repeat allele distribution in a VNTR and then to estimate the effect size of the 

association related to the risk genotypes.  Kaplan-Meier curves and log-rank tests were used to graphically 

examine differences in the cumulative probability of breast cancer risk among VNTR genotype groups 

categorized using the critical cut points for risk alleles.    

Luciferase assays. We conducted luciferase assays to test alleles of one VNTR in the promoter region to 

determine if it affected expression. We selected the VNTR with the lowest FDR that was in a promoter or 

5’UTR region. 

PCR amplification and subcloning. Primers, designed to flank the VNTR, also included restriction enzyme 

sites.  The PCR products for each risk allele and reference repeat allele served as inserts for subcloning into 

plasmids. PCR reactions were performed using Herculase high fidelity polymerase (Agilent) and the products 

sizes were confirmed by gel electrophoresis. Because an individual with a rare VNTR allele is almost always 

heterozygote, the PCR reaction generated two different sized products.  Following amplification, each PCR 

product was cloned separately into the pGEM-T plasmid (Promega) according to the manufacturer’s 

instructions followed by transformation into E. coli cells. Ampicillin resistant colonies were picked, grown 

overnight, followed by the isolation of plasmid DNA.  Several plasmids were Sanger sequenced to ensure that 

clones contained inserts with the appropriate sequence and length corresponding to the desired repeat alleles.   
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Construction of luciferase reporter plasmids.  Following sequence confirmation, the pGEM-T plasmids served 

as the template DNA for another PCR reaction using the same primers described above. The PCR products 

containing the VNTR alleles were digested with the appropriate restriction enzymes, purified, and cloned into 

restriction enzyme sites in the pGL3-Promoter luciferase gene-reporter plasmid (Promega) upstream of the 

SV40 promoter.  Sequencing was performed to confirm the fidelity and orientation of all inserts.  

Luciferase assay. We transfected the luciferase gene-reporter plasmids along with the pRL Renilla luciferase 

control plasmid into an MCF7 cell line (from ATCC) and performed luciferase assays using the Dual-

Luciferase Reporter Assay System (Promega). After 48 hours, each group of cells was lysed and manipulated 

according to the manufacturer’s instructions, and the fluorescence intensity of each group of cells was expressed 

as the ratio of firefly luciferase activity to Renilla luciferase activity.  The relative luciferase activities of the 

plasmid constructs were determined by normalizing the standardized values to empty pGL3-Promoter plasmid. 

All transfections were performed in quadruplicate, and each construct was tested in three independent 

experiments. The average of the 12 relative luciferase measurements for each allele were expressed as the mean 

±standard error of mean (SEM).  Difference in relative activity values between the risk repeat allele group and 

reference repeat allele group was tested by one-way ANOVA analysis. The P-value was adjusted for multiple 

testing using the Tukey's method [29]; adjusted p- values less than 0.05 were considered as statistically 

significant.    

RESULTS 

Participants.  The cancer status and ages at diagnosis or enrollment (for non-cancer cases) are shown in Table 

1. Of the 347 women, ages ranged from 18 to 77 years with 49% having been diagnosed with breast cancer, of 

which 4.9% also were also diagnosed with ovarian cancer. The median age at diagnosis was 55 years (95% CI: 

50 - 58 years). The cumulative risk of breast cancer by age 70 years was 75% .  

VNTR genotyping. In total, we sequenced 6165 VNTRs in 347 BRCA1 185delAG PV carriers.  Genotypes were 

called using adVNTR-NN. In Figure 1, the flow diagram of steps for elimination of VNTRs and samples is 
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shown.  Of 6165 VNTRs, 3847 (62.4%) VNTRs were removed due to missing more than 5% of genotypes, with 

the main reasons being VNTRs located in GC-rich regions which had poorer amplification during library 

generation, imperfect repeats, or flanked by other repetitive elements. Another 1622 VNTRs were removed 

because they were monomorphic (1588 VNTRs) or not in Hardy-Weinberg equilibrium (P value < 0.001; 34 

VNTRs).  Lastly 393 VNTRs had heterozygosity < 0.02. Because this is a homogeneous dataset of Ashkenazi 

Jewish ancestry, it was expected that more VNTRs would be monomorphic and within VNTRs, not all alleles 

would be present. Twenty samples were removed that had more than 10% missing genotypes leaving 327 for 

analysis. The summary of repeat alleles in this dataset for the 303 VNTRs is shown in Table 2.  

Association of VNTRs and risk of developing cancer. In the primary analysis, we used Cox proportional hazards 

models to evaluate the association between each VNTR and risk of developing breast cancer, considering the 

VNTR as a continuous variable.  Of 303 VNTRs  analyzed, 8 VNTRs had unadjusted p-values < 0.005, of 

which four VNTRs had FDR < 0.05,  and an additional four had FDR < 0.25 (Table 3; Supplemental Table 1).   

The alleles for each of the eight VNTRs were accurately called, with 100% consistency among the adVNTR, 

agarose gel, and Sanger sequencing results (VNTR 558420 is shown as an example in Supplemental Figure 1).  

We then conducted the secondary analysis for the eight VNTRs to identify the specific risk repeat alleles 

contributing to the significant association.  For 7 of 8 VNTRs, there was a  significant (P < 0.05) difference in 

breast cancer risk between risk and reference genotype groups categorized using the critical cut point of risk 

allele (forward slash character in Table 3). For VNTR 47260, although breast cancer risk increased with repeat 

length based on the linear trend test (FDR = 0.035), there were too few long repeat alleles (> 9R) for a stable 

estimation of cut point in the categorical test. Kaplan-Meier (KM) curves were used to graphically show the 

difference in the cumulative probability of breast cancer risk for the VNTR genotype groups (Figure 2 and 

Supplemental Figure 2).  Individuals with the risk genotypes had significantly earlier ages at developing breast 

cancer (log-rank p value < 0.05) (Figure 2 and Supplemental Figure 2).  For example, the median ages at breast 

cancer diagnosis for  carriers with the S/S genotype and the  L/L genotype in VNTR357331 were 40 years and 
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56 years, respectively  (log-rank p value of 0.0014, Figure 2), indicating the age-modifying effect of breast 

cancer diagnosis among carriers harboring risk genotype (S/S).  

Effect of VNTR alleles on expression.  For testing the effect on gene expression, we selected the VNTR with the 

lowest FDR that was located in a gene promoter or 5’ UTR.  We tested VNTR 558420 located in the 5’ UTR of 

ZNF501 (p-value = 0.0025 and FDR = 0.135) (Table 3 and Supplemental Figure 3) with repeats of 2R, 3R and 

4R and 3 genotypes (3 samples with genotype 2/3, 314 with 3/3, and 5 with 3/4).  In Figure 3, normalized 

luciferase activity is shown for the 2R, 3R, 4R repeats and the control (empty vector) with standard error bars 

on the top of each group mean. There was a significant (adjusted p value < 0.05) difference between the 2R and 

4R groups with the 3R intermediate (Figure 3) and a significant linear trend of decreased luciferase activity with 

increasing number of repeats (p = 0.021) (Supplemental Figure 4).    

 

DISCUSSION 

Our study is the first to conduct a systematic study of VNTRs and association with risk to develop cancer in 

high-risk BRCA1 PV carriers. We identified four VNTRs significantly associated with risk of developing breast 

cancer in women carrying the 185delAG BRCA1 PV (FDR < 0.05) and another four VNTRs associated with 

FDR < 0.25.   

 None of the small number of previous association studies of risk of developing breast cancer and 

VNTRs at candidate genes had investigated the eight VNTRs we identified.  Krontiris and coworkers reported 

an association of rare alleles in a HRAS1 VNTR and development of cancers, including breast cancer [17], and a 

meta-analysis of 13 breast cancer studies found an association with breast cancer risk [30]. Functional analysis 

showed that this HRAS VNTR altered CpG DNA methylation [31]. In a meta-analysis of 17 studies of a CAG-

repeat polymorphism in the androgen receptor, they found an association of longer CAG repeats with an 

increased risk of breast cancer in Caucasian women [32]. In  a meta-analysis of two studies of the MNS16A 

VNTR in the hTERT promoter, they found a  significant association with development of breast cancer. In a 

Japanese study of an 18-bp VNTR in the promoter of PTTG1IP, they found a signficant association  with risk of 
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estrogen-receptor positive breast cancer, with functional analysis showing that an increase in the number of 

repeats increased the binding affinity of ER-alpha [20].  In a study of a VNTR in the promoter of XRCC5, they 

found a significant  association with age at breast cancer diagnosis [18]. Our study did not include the two 

trinucleotide repeats and the XRCC5 VNTR, and the MSN1 VNTR was monomorphic and  the PTTG1IP VNTR 

was missing too many genotypes in our set and thus were excluded. 

Of the eight VNTRs that we found to be associated with risk of developing breast cancer in this 

population, several warrant further investigation.  VNTR 945060 is in the 5’UTR of ERCC6L, a DNA helicase.  

ERCC6L is highly expressed in breast tissue and higher levels of expression have been associated with worse 

survival [33]; silencing of ERCC6L in breast cell lines significantly inhibited cell proliferation [33, 34]. A 

second VNTR, 253688, is located 3’ of FLJ22447, a lncRNA located near HIF-1α.  In a study of esophageal 

squamous cell carcinoma and gastric cancers to determine the effect of FLJ22447 on HIF-1α, they observed 

that low expression of lncRNA was associated with expression of HIF-1α suggesting that FLJ22447 may have 

a regulatory function on HIF-1α expression [35]. High over-expression of HIF-1α is common in breast cancers 

and is particularly common in BRCA1 carriers [36-38]. This VNTR may alter risk to develop breast through 

affecting HIF-1α.   

Given the reports that there are shared genetic contributions between breast cancer and schizophrenia 

[39], it is interesting that three of the VNTRs are at or in genes (SYN2, ZNF501, ZNF804A) associated with risk 

to develop schizophrenia [40-44];  VNTR 549198 is in exon 12 of SYN2; VNTR 472060 is in exon 4 of 

ZNF804A; and VNTR558420 is in the 5’UTR of ZNF501 and all are most commonly expressed in brain 

(proteinatlas.org).  From our luciferase assays, there was differential expression from varying alleles in the 

VNTR in the 5’UTR of ZNF501; expression differences for this VNTR were only associated with brain tissue 

in GTEX [10].  The exonic VNTRs in SYN2 and in ZNF804A cause expansions of poly-serine (Supplemental 

Figure 5) and poly-alanine (Supplemental Figure 6) tracts, respectively. VNTR expansions in gene coding 

regions have been associated with multiple diseases [45].  Further investigation is needed to assess possible 

roles in development of breast cancer. 
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   This was a pilot study to determine the feasibility of conducting targeted sequencing of VNTRs and 

investigating the association of VNTRs as modifiers of disease risk, similar to what has been accomplished with 

SNPs [8, 46].  We purposefully included women carrying the specific BRCA1 185delAG Ashkenazi Jewish 

founder PV to try to explain the known variation in risk in women carrying this PV and to reduce potential 

confounding with unmeasured variables; however, the consequence is that it reduced the number of VNTRs that 

were polymorphic and restricted the sample size.  In hindsight, using targeted capture and sequencing of 250 bp 

reads limited the size of repeats and reduced the number of VNTRs that made it through all the quality control 

checks due to poor amplification of VNTRs in GC-rich regions, difficulty in aligning VNTRs with imperfect 

repeats and/or with low complexity/repetitive sequence in the flanking regions. As costs continue to decrease 

for whole-genome sequencing and for long-read sequences such as performed by PacBio, we will be able to 

obtain analyzable data on a larger number of VNTRs.  

BRCA1 breast cancers are generally basal, triple-negative hormone receptor cancers (TNBC).  We have 

seen from SNP studies of both BRCA1 carriers and women with TNBC that there are fewer SNPs associated 

with risk than for estrogen-receptor positive breast cancers.  Thus, identification of VNTRs significantly 

associated with risk of developing breast cancer in this genetically and ethnically homogeneous population is 

encouraging; several of which have been observed to play a role in breast cancer.  HRs for these VNTRs ranged 

from 1.7 to 6.1 whereas HRs for SNPs generally range from 1.01  to 1.4 [8, 47], suggesting that VNTRs may 

have larger effects than SNPs.   These results need to be validated in larger datasets that include women of 

diverse ethnicities, a wider spectrum of BRCA1 PVs, and carriers of BRCA2 PVs.  Moreover, a larger genome-

wide VNTR association study may identify additional VNTRs. 

 In summary, the results from this study demonstrate that VNTRs may explain a proportion of the 

unexplained genetic risk for disease.  Similar to SNPs, VNTRs significantly associated with the disease of 

interest could be incorporated into polygenic risk scores (PRS) to test for improved risk assessment and clinical 

applicability.   
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Started with 6165 VNTRs markers and 347 samples with BRCA1 185delAG mutation 

                                                         6165 markers and 347 samples 

Removed 3847 markers with more than 5% missing genotypes in 347 samples (> 17 missing genotypes) 

                                                        2318 markers and 347 samples 

Removed 20 samples with more than 10% missing genotypes in 2318 markers (> 231 missing genotypes) 

                                                        2318 markers and 327 samples 

Removed 1588 monomorphic markers (only one unique genotype in 327 samples) 

                                                        730 markers and 327 samples 

Removed 34 markers with HWE p value < 0.001 

                                                        696 markers and 327 samples 

Removed 393 markers with observed heterozygosity < 0.02 

                                                      303 markers and 327 samples 

Association test of 303 markers and 327 samples using Cox regression model 

 

Figure 1.  Flow diagram of process and result of VNTR marker and sample filtering. 
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Figure 2.  Kaplan-Meier estimates of the cumulative probability of breast cancer diagnosis. The age

breast cancer diagnosis is on the X-axis and proportion of participants diagnosed with breast cancer is on

axis. The horizontal/vertical dash line is the median age at diagnosis of breast cancer.  In this step functio

breast cancer risk over age, in panel A, the cumulative incidence of breast cancer for all BRCA1 185 delA

carriers is shown.  For panels B, C, and D, the Kaplan-Meier curves for each of the three VNTRs with FD

0.05 are shown. Panel B is VNTR 357331, Panel C is VNTR253688, and panel D is VNTR412033.  The 

line is the reference genotype, the green line (when present) is the heterozygote genotype, and the red is t

genotype. For each of the VNTRs, there were significantly different risks by genotype (log-rank p value <

with earlier ages of developing breast cancer among participants carrying the risk genotypes. 
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Figure 3. Association of VNTR558420 with ZNF501 gene expression by luciferase assay. Each 

experimental group is composed of 12 data points. Data represent fold change in the repeat group relative to 

vector group, with standard error bar shown for each group. Significance was assessed by one-way ANOVA 

with pairwise t test and P-value adjusted by the Tukey's method. Asterisk above standard error bar indicates 

significance test between the repeat group and vector group; asterisk above the line indicates the significance 

between the 2R and 4R repeat groups; *P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Table 1.   Participant characteristics 

  N (%) Age in years (Mean, Range) 
Sample origin 

  
     US  97 (28.0) 43.9, 18 - 72 
     Israel 250 (72.0) 46.8, 24 - 77 
Cancer status 

  
     Breast 153 (44.1) 43.5, 24 - 75 
     Ovarian  60 (17.3) 54.0, 35 - 77 
     Breast & Ovarian 17 (4.9) 48.0, 27 - 68 
     Unaffected 117 (33.7) 44.9, 18 - 76 
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Table 2. Summary of repeat alleles in the 303 VNTRs in 327 female BRCA1 185delAG mutation carriers 
 

# repeat 
alleles 

# VNTRs 
Heterozygosity 
Median(range) 

 Repeat motif 
length range (bp) 

# VNTRs of a given repeat motif length 

3 to 5 bp 6 to 10 bp 11 to 20 bp ≥ 21 bp 

2 173 0.14 (0.02 - 0.52) 3 to 51 26 34 71 42 
3 71 0.13 (0.02 - 0.64) 3 to 49 35 19 11 6 
4 25 0.28 (0.02 - 0.59) 4 to 23 17 6 1 1 
5 16 0.46 (0.12 - 0.72) 3 to 14 11 4 1   
6 7 0.56 (0.18 - 0.69) 4 to 6 6 1     
7 6 0.63 (0.52 - 0.82) 4 to 7 5 1     
8 2 0.72 (0.67 - 0.77) 4 2       
9 3 0.70 (0.47 - 0.78) 4 3       
        105 65 84 49 

bp: base pair 
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Table 3. Association of VNTR with breast cancer risk in female carriers of BRCA1 185delAG 

 
Trend test, VNTR as a continuous variable 

 
Categorical test to determine cut point of risk repeats in a VNTR 

VNTR      
IDa 

P FDR HR (95% CI) 
 

Repeat number / 
critical cut pointb 

Reference,  
risk genotypec 

P HR (CI) 

253688 9.1E-05 0.024 6.12 (2.47 - 15.15) 
 

5, 9 / 10 S/S, S/L 9.1E-05  6.12 (2.47 - 15.15) 
357331 2.6E-04 0.035 3.57 (1.79 - 7.14) 

 
4 / 5, 6 L/L, S/S 2.9E-04    3.59 (1.80 - 7.16) 

472060 3.9E-04 0.035 2.54 (1.52 - 4.25) 
 

4 / 9, 13 L/L, S/L 6.8E-01 0.81 (0.30 - 2.19) 
412033 6.9E-04 0.046 1.35 (1.14 - 1.59) 

 
7, 8 / 9, 10, 11 L/L, S/S 3.4E-02 1.69 (1.04 - 2.75) 

558420 2.5E-03 0.135 6.06 (1.88 - 19.51) 
 

2, 3 / 4 S/S, S/L 2.5E-03   6.06 (1.88 - 19.51) 
735300 4.1E-03 0.183 3.08 (1.43 - 6.65) 

 
5 / 6 S/S, S/L 4.1E-03 3.08 (1.43 - 6.65) 

945060 4.8E-03 0.183 1.60 (1.15 - 2.23) 
 

6, 7, 8, 9 / 10 S/S, S/L 1.1E-02  2.73 (1.26 – 5.94) 
549198 2.0E-03 0.209  2.94 (1.49 - 5.92)   4 / 5 L/L, S/L 2.0E-03 2.97 (1.49 - 5.91) 

a. VNTR IDs were assigned in this project and their genomic annotations are provided in supplemental table 1; b: in categorical 
test to determine cut point of risk repeat for a VNTR by a sliding window method, the forward slash “/” character is the final 
critical cut point based on smaller p values among the multiple tests of cut points, greater or equal to repeat number at right side 
of slash is defined as long allele (L), repeat numbers at left side of slash as short allele (S); c: in Cox regression model using 
categorical VNTR genotype as predict variable, hazard ratio was calculated by comparing risk genotype to reference genotype. 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.494371doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494371

