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ABSTRACT 22 

Detection of bacterial flagellin by the tomato receptors Flagellin sensing 2 (Fls2) and 23 

Fls3 triggers activation of pattern-triggered immunity (PTI). Tomato signaling 24 

components associated or downstream of flagellin receptors are largely unknown. 25 

We investigated the involvement of tomato brassinosteroid-signaling kinase 830 26 

(Bsk830) in PTI triggered by flagellin perception. Bsk830 localized to the plasma 27 

membrane and interacted with Fls2 and Fls3. Consistent with a role in flagellin-28 

induced signaling, CRISPR/Cas9-generated tomato bsk830 mutants were impaired 29 

in ROS accumulation induced by the flagellin-derived flg22 and flgII-28 peptides. In 30 

addition, bsk830 mutants developed larger populations of Pseudomonas syringae 31 

pv. tomato (Pst) strain DC3000 than wild-type plants, whereas no differences were 32 

observed in plants infected with the flagellin deficient Pst DC3000ΔfliC. bsk830 33 

mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas 34 

fluorescens, and were more susceptible to Pst DC3000 than wild-type plants when 35 

inoculated by dipping, but not by vacuum-infiltration, indicating involvement of 36 

Bsk830 in pre-invasion immunity. Analysis of gene expression profiles in bsk830 37 

mutants detected a reduced number of differentially expressed genes and altered 38 

expression of jasmonic acid (JA)-related genes. In support of deregulation of JA 39 

response in bsk830 mutants, these plants were similarly susceptible to Pst DC3000 40 

and to the Pst DC3118 strain, which is deficient in coronatine production, and more 41 

resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These 42 

results indicate that tomato Bsk830 is required for a subset of flagellin-triggered PTI 43 

responses and support a model in which Bsk830 negatively regulates JA signaling 44 

during PTI activation.  45 
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INTRODUCTION 46 

Plants have evolved a complex immune system to confront the wide range of 47 

pathogens which inhabit their natural environment. Plant immune responses are 48 

activated through recognition of highly conserved microbe-associated molecular 49 

patterns (MAMPs) by membrane-localized pattern recognition receptors (PRRs) 50 

(DeFalco and Zipfel, 2021), or by detection of pathogen effectors by intracellular 51 

nucleotide binding leucine-rich repeat receptors (NLR) (Duxbury et al., 2021). In 52 

tomato (Solanum lycopersicum), known PRRs include Fls2 (Robatzek et al., 2007) 53 

and Fls3 (Hind et al., 2016), which perceive the bacterial flagellin-derived peptides 54 

flg22 and flgII-28, respectively, and CORE, which detects the bacterial cold shock 55 

protein-derived peptide csp22 (Wang et al., 2016). Flg22 and flgII-28 represent major 56 

bacterial MAMPs recognized by tomato (Rosli et al., 2013), and their binding by Fls2 57 

and Fls3 activates signaling pathways that regulate molecular events promoting 58 

defense, collectively referred to as pattern-triggered immunity (PTI) (Liang and Zhou, 59 

2018). PTI responses include production of reactive oxygen species (ROS), 60 

activation of mitogen-activated protein kinases (MAPKs), transcriptional 61 

reprogramming, callose deposition at the cell wall, stomatal closure and activation of 62 

hormone signaling (DeFalco and Zipfel, 2021). 63 

Stomata closure is a MAMP-triggered and PRR-mediated defense response, 64 

also referred to as stomatal immunity, particularly important against leaf-associated 65 

pathogenic bacteria, which gain access to the plant apoplast through these natural 66 

openings as well as wounds (Melotto et al., 2017). Dynamics of stomatal immunity 67 

against phytopathogenic bacteria have been described for the interaction of 68 

Arabidopsis and tomato plants with Pseudomonas syringae pv. tomato (Pst) bacteria 69 

(Melotto et al., 2006; Du et al., 2014). Plant infection with Pst DC3000 causes 70 
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stomata closure within 1 h post-inoculation followed by stomata reopening 3-4 h 71 

later. Stomatal movement is modulated by ROS accumulation that controls the 72 

activity of ion pumps, plasma membrane channels, and transporters (Sierla et al., 73 

2016). In Arabidopsis ROS molecules have been shown to be generated by the 74 

NADPH oxidase RBOHD that is activated by phosphorylation upon MAMPs 75 

perception by PRRs (Wang and Gou, 2021). MAMP perception also triggers the 76 

activation of signaling pathways involving the hormones salicylic acid (SA) and 77 

abscisic acid (ABA), which contribute to stomatal closure. Plants defective in SA and 78 

ABA synthesis and signaling are unable to induce stomatal closure (Melotto et al., 79 

2017). SA and ABA pathways have been shown to contribute to stomata closure 80 

independently and in an interconnected manner (Arnaud and Hwang, 2015). 81 

Stomatal reopening is induced by the pathogen to gain entry into leaves. To 82 

promote stomatal reopening, Pseudomonas syringae bacteria take advantage of the 83 

antagonistic interplay between the plant hormones SA and jasmonic acid (JA) 84 

(Thaler et al., 2012). P. syringae secretes type III effectors and phytotoxins to 85 

enhance JA signaling and repress SA signaling. For example, the HopX1 and 86 

HopZ1a effectors induce degradation of JAZ proteins, which are negative regulators 87 

of JA signaling, to enhance JA signaling and stomata reopening (Jiang et al., 2013; 88 

Gimenez-Ibanez et al., 2014). The P. syringae coronatine (COR) phytotoxin is a JA-89 

Ile-mimic molecule that binds the JA receptor COI1 and activates JA-mediated 90 

processes (Katsir et al., 2008). Binding of COR to COI1 triggers downstream 91 

signaling that induces NAC transcription factors which inhibit SA accumulation and 92 

promote stomata reopening (Melotto et al., 2017). 93 

PRRs recruit receptor-like cytoplasmic kinases (RLCKs) to link MAMP 94 

perception to downstream signaling. Multiple Arabidopsis RLCKs play a role in plant 95 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.01.494411doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494411


 

Sobol et al., page 5 
 

immunity. For example, BOTRYTIS-INDUCED KINASE1 (BIK1), a member of the 96 

RLCK subfamily VII, associates with multiple PRRs and activates downstream 97 

signaling components such as the NADPH oxidase RBOHD (Kadota et al., 2014; Li 98 

et al., 2014) and several calcium channels (Tian et al., 2019; Thor et al., 2020). 99 

Similar to BIK1, additional members of the RLCK subfamily VII contribute to PTI 100 

(Rao et al., 2018). RLCKs regulate stomatal immunity and are essential for the initial 101 

closure step (Wang and Gou, 2021). For example, BIK1 and PBL27 regulate 102 

stomatal closure by promoting activation of ion channels (Zheng et al., 2018; Liu et 103 

al., 2019; Thor et al., 2020). 104 

Brassinosteroid-signaling kinases (BSKs) belong to the RLCK subfamily XII and 105 

several of them were extensively characterized in Arabidopsis and shown to play a 106 

role in brassinosteroid signaling, growth, and response to abiotic stress (Tang et al., 107 

2008; Li et al., 2012b; Sreeramulu et al., 2013; Jia et al., 2019; Ren et al., 2019). 108 

Recent investigation identified Arabidopsis BSKs that are involved in plant immunity 109 

(Shi et al., 2013; Majhi et al., 2019 and 2021). BSKs participate in various branches 110 

of defense signaling, as evident by their interaction with multiple PRRs, and 111 

mediation of different PTI responses. For example, BSK1, BSK5, BSK7, and BSK8 112 

associate with the PRR FLS2 and mutations in the corresponding genes 113 

compromise a subset of flg22-mediated PTI responses (Shi et al., 2013; Majhi et al., 114 

2019 and 2021). BSK1 was also found to modulate MAPK activation by 115 

phosphorylation of the MAPKKK MAPKKK5 and the MAPK MPK15 (Yan et al., 2018; 116 

Shi et al., 2022). In addition, while BSK1, BSK7, and BSK8 interact exclusively with 117 

FLS2, BSK5 also interacts with EFR and PEPR1 and is required for their signaling 118 

(Majhi et al., 2019). In line with a function of BSKs in immune signaling, bsk1, bsk5, 119 

bsk7 and bsk8 mutants display enhanced susceptibility to fungal and bacterial 120 
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pathogens (Shi et al., 2013; Majhi et al., 2019 and 2021). Another family member, 121 

BSK3, was shown to interact in vivo with multiple components of immune signaling 122 

(Xu et al., 2014), but its function in plant immunity is yet unknown.  123 

Tomato BSKs are less characterized, but at least two of the seven family 124 

members play a role in plant immunity (Singh et al., 2014; Roberts et al., 2019a). A 125 

tomato homolog of BSK7 was found to interact with Pst DC3000 effectors and 126 

silencing of its homologous genes compromised PTI in Nicotiana benthamiana 127 

(Singh et al., 2014). Tomato Mai1, homolog of Arabidopsis BSK1, interacts with 128 

MAPKKKα, a signaling component required for NLR-mediated immunity (Roberts et 129 

al., 2019a). Silencing of Mai1 N. benthamiana homologs enhanced susceptibility to 130 

Pst DC3000 and compromised the hypersensitive response mediated by several R 131 

genes (Roberts et al., 2019a). Here, we investigated the involvement of tomato 132 

BSKs in plant immunity. We provide evidence that Bsk830 physically interacts with 133 

flagellin receptors and localizes to the cell plasma membrane. Analysis of two 134 

independent loss-of-function mutant lines revealed that Bsk830 is required for 135 

stomatal immunity against Pst DC3000 and for flagellin-induced ROS production. 136 

Analysis of gene expression profiles indicated that loss of Bsk830 caused an 137 

attenuated PTI response and deregulation of JA signaling. Consistent with an altered 138 

JA response, loss of Bsk830 compromised the contribution of the COR toxin to Pst 139 

DC3000 virulence and reduced susceptibility to a fungal necrotrophic pathogen. 140 

Together, our results indicate that Bsk830 modulates a subset of flagellin-induced 141 

PTI responses and contributes to regulation of JA signaling during PTI.142 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.01.494411doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494411


 

Sobol et al., page 7 
 

RESULTS  143 

Tomato Bsk830 interacts with the flagellin receptors Fls2 or Fls3 144 

Recognition of the motility-associated protein flagellin plays a major role in the 145 

induction of PTI responses on some tomato accessions (Roberts et al., 2019b). 146 

Flagellin contains two MAMPs, flg22 and flgII-28, that are recognized by the PRRs 147 

Flagellin sensing 2 (Fls2) and Fls3, respectively (Gómez-Gómez and Boller, 2000; 148 

Robatzek et al., 2007; Hind et al., 2016). To investigate the possible involvement of 149 

brassinosteroid-signaling kinase (Bsk) proteins in tomato PTI initiated by flagellin 150 

perception, we tested interactions of tomato Bsk family members with Fls2 and Fls3 151 

in a yeast two-hybrid system by using Bsk proteins as baits and the kinase domain of 152 

Fls2 (Fls2KD) and Fls3 (Fls3KD) as preys. Bsk830, but none of the other six tomato 153 

Bsk family members, interacted with both PRRs (Figure 1A). Next, a split luciferase 154 

complementation assay was employed to validate in planta interactions observed in 155 

yeast. In these experiments, Fls2KD and Fls3KD were fused to the C-terminal half of 156 

the luciferase protein (C-LUC) and co-expressed via Agrobacterium tumefaciens in 157 

N. benthamiana leaves with Bsk830 fused to the N-terminal half of luciferase (N-158 

LUC). As negative controls, C-LUC-PRRs and N-LUC-Bsk830 were co-expressed 159 

with N-LUC and C-LUC empty vectors, respectively. Interactions were quantified by 160 

measurement of luminescence emitted from leaf discs sampled at 48 h after agro-161 

infiltration. Co-expression of Bsk830 with Fls2KD or Fls3KD resulted in significantly 162 

higher luminescence than the negative controls (Figure 1B). Expression in yeast and 163 

in planta of all fusion proteins was confirmed by Western blot analysis (Supplemental 164 

Figure S1, A and B and Roberts et al., 2019a). 165 

To assess the hypothesis that Bsk830 participates in phosphorylation 166 

cascade(s) initiated by Fls2 and Fls3, we tested whether Bsk830 is a substrate of 167 
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Fls2 or Fls3 phosphorylation in an in vitro kinase assay. Bsk830 and the cytoplasmic 168 

domains of Fls2 (Fls2CD) and Fls3 (Fls3CD) were fused to the C-terminus of the 169 

maltose binding protein (MBP), expressed in E. coli, and affinity-purified. MBP-Fls2CD 170 

and MBP-Fls3CD were incubated with the MBP-BSK830 fusion in the presence of [γ-171 

32P]ATP in an in vitro kinase assay. As previously reported (Roberts et al., 2020), 172 

MBP-Fls2CD and MBP-FLS3CD displayed autophosphorylation activity (Supplemental 173 

Figure S2). However, phosphorylation of MBP-Bsk830 by MBP-Fls2CD or MBP-174 

Fls3CD was not detected (Supplemental Figure S2), indicating that Bsk830 is not a 175 

substrate of Fls2 and Fls3 kinase activity in vitro despite its interaction with both 176 

PRRs. 177 

 178 

Lipid modifications anchor Bsk830 to the plasma membrane 179 

The Fls2 and Fls3 PRRs are receptor kinases localized to the plasma membrane 180 

(PM) (Andolfo et al., 2013; Hind et al., 2016). Based on the interaction of Bsk830 181 

with Fls2 and Fls3, and the presence of putative myristoylation and palmitoylation 182 

sites at the Bsk830 N-terminus (Figure 2A), we hypothesized that Bsk830 is 183 

anchored to the PM by fatty acids modifications. To examine this possibility, Bsk830 184 

was fused to the N-terminus of YFP and transiently expressed via A. tumefaciens in 185 

N. benthamiana leaves along with the PM marker Flot1b-mCherry (Li et al., 2012a). 186 

Bsk830-YFP displayed a similar distribution as Flot1b-mCherry (Figure 2B, upper 187 

panels) that was confirmed by quantifying fluorescence detected in the YFP and 188 

mCherry channels along a set path (Figure 2B, lower panels). In contrast to Bsk830-189 

YFP, the Bsk830G2A-YFP and Bsk830C(3,11,12)A-YFP variants, which carry mutations in 190 

putative myristoylation and palmitoylation sites, respectively, did not co-localize with 191 
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Flot1b-mCherry (Figure 2C). These observations suggest that Bsk830 is associated 192 

to the PM through myristoylation and palmitoylation modifications.  193 

 194 

Mutations in the Bsk830 gene compromise flagellin-mediated immunity 195 

To investigate the function of Bsk830 in plant immunity, we used CRISPR/Cas9 196 

technology to generate tomato plants with mutations in the Bsk830 gene. Two 197 

independent mutant lines, bsk830-1 and bsk830-2, were generated and allowed to 198 

segregate until homozygous genotypes were obtained in the T2 generation. 199 

Sequence analysis of the area flanking the gRNA-targeted sequence revealed 200 

deletions of 4 bp and 135 bp in the first exon of Bsk830 in bsk830-1 and bsk830-2, 201 

respectively (Supplemental Figure S3). Next, we tested the involvement of Bsk830 in 202 

flagellin-induced immunity by examining susceptibility of wild-type and bsk830 203 

mutant lines to the bacterial pathogen Pst DC3000 and its derivative mutant strain 204 

Pst DC3000ΔfliC, which does not form flagella (Kvitko et al., 2009). Plants were 205 

inoculated by dipping into suspensions (1x107 CFU/mL) of Pst DC3000 and Pst 206 

DC3000ΔfliC, and bacterial populations were determined in leaf tissue at 2 days 207 

post-inoculation (dpi). Pst DC3000 bacteria displayed a significantly higher growth in 208 

bsk830 mutant lines than in wild‐type plants suggesting that Bsk830 is involved in 209 

immunity (Figure 3A). In addition, growth of Pst DC3000ΔfliC was higher than Pst 210 

DC3000 in wild-type plants, likely because Pst DC3000ΔfliC, lacking flagellin, is not 211 

detected by Fls2 or Fls3. Conversely, growth of Pst DC3000 and Pst DC3000ΔfliC 212 

was similar in the bsk830 mutants, suggesting that in these plants flagellin-induced 213 

immunity is impaired. In line with this conclusion, similar bacterial populations were 214 

observed in wild-type plants infected with Pst DC3000ΔfliC and in bsk830 mutants 215 

infected with Pst DC3000 indicating that flagellin-mediated immunity was not 216 
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activated in these interactions: in the first instance because the bacteria did not 217 

express flagellin, and in the second instance because the plant was impaired in 218 

flagellin signaling. 219 

To confirm that bsk830 mutant plants are impaired in flagellin-induced immunity, 220 

we examined PTI responses triggered in these plants by the flg22 and flgII-28 221 

MAMPs. Wild-type and mutant plants were treated with flg22 or flgII-28 and 222 

monitored for ROS production and MAPK phosphorylation. The fls2.1/fls2.2 and fls3 223 

mutants, which are not responsive to flg22 and flgII-28, respectively (Roberts et al., 224 

2020), were used as negative controls. On treatment with flg22 and flgII-28, bsk830 225 

mutants accumulated lower levels of ROS than wild-type plants (Figure 3, B and C), 226 

while MAPK phosphorylation was similarly activated in both genetic backgrounds 227 

(Supplemental Figure S4, A and B). As expected, fls2.1/fls2.2 and fls3 mutants did 228 

not produce ROS (Figure 3, B and C), and were impaired in the activation of MAPK 229 

phosphorylation (Supplemental Figure S4, A and B). Together, these results indicate 230 

that Bsk830 is required for a subset of flagellin-induced PTI responses. 231 

 232 

Bsk830 mutant plants are impaired in stomatal immunity  233 

In experiments that revealed enhanced susceptibility of bsk830 mutants to Pst 234 

DC3000 infection, plant inoculation was carried out by dipping plants into bacterial 235 

suspensions. The use of this inoculation technique left unresolved whether Bsk830 is 236 

required for immune responses that counteract the pathogen on the leaf surface 237 

during the pre-invasion phase of infection or in the leaf apoplast during the post-238 

invasion phase of infection. To differentiate between these possibilities, wild-type 239 

plants and bsk830 mutants were inoculated with a Pst DC3000 suspension by 240 

vacuum-infiltration (1x105 CFU/mL), which delivers bacteria directly into the apoplast, 241 
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or by dipping (1x107 CFU/mL), which requires movement of bacteria through stomata 242 

for infection. Bacterial populations were determined in leaf tissues sampled at 0 and 243 

2 dpi. Pst DC3000 bacteria displayed a significantly higher growth in bsk830 mutants 244 

than in wild-type plants inoculated by dipping (Figure 4A). However, similar bacterial 245 

populations were observed in wild-type and mutants plants inoculated by vacuum-246 

infiltration (Figure 4B), suggesting a role for Bsk830 in pre-invasion immunity. A 247 

similar stomatal number index was observed for wild-type and bsk830 mutant plants 248 

(Supplemental Figure S5), excluding a bias due to developmental differences 249 

between genetic backgrounds used in these experiments.  250 

Because pre-invasion immunity relies on stomatal closure to prevent entrance 251 

of bacteria into the leaf apoplast (Melotto et al., 2017), we examined dynamics of 252 

stomatal opening/closure in bsk830 mutants upon infection with Pst DC3000 253 

pathogenic bacteria and Pseudomonas fluorescens (Pf) A506 non-pathogenic 254 

bacteria. Both types of bacteria are known to induce stomatal closure early after 255 

infection, but only pathogenic bacteria overcome this line of defense at later stages 256 

of infection by using virulence factors to reopen stomata (Melotto et al., 2017). Prior 257 

to bacterial challenge, leaf pieces of wild-type and bsk830 mutant plants were floated 258 

on stomatal opening buffer under light to ensure stomata opening. After 3 h, leaf 259 

pieces were transferred to Pst DC3000 or Pf bacterial suspension (1x108 CFU/mL), 260 

or kept on buffer (mock), and monitored for stomatal apertures during the following 4 261 

h. At 0 h, stomata of both plant genotypes were similarly open, suggesting that loss 262 

of function in Bsk830 does not interfere with light-induced stomatal opening (Figure 263 

4, C and D). On Pst DC3000 treatment, stomata of wild-type plants closed at 1 h 264 

after infection and reopened at 2.5 h (Figure 4C), while on Pf treatment, they closed 265 

at 2.5 h and remained closed at 4 h (Figure 4D). In contrast, on both treatments, 266 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.01.494411doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494411


 

Sobol et al., page 12 
 

stomata of the bsk830 mutant plants remained open for the entire course of the 267 

experiment similar to mock-treated plants (Figure 4, C and D). These results indicate 268 

that Bsk830 is required for stomatal closure associated with pre-invasion immunity. 269 

 270 

Loss of function in Bsk830 alters expression of JA- and phenylpropanoid-271 

related genes during PTI 272 

To uncover molecular mechanisms underlying the contribution of Bsk830 to tomato 273 

immunity, we compared expression profiles of wild-type and bsk830 mutant plants 274 

during the onset of PTI. Leaves of wild-type and bsk830-1 lines were inoculated by 275 

vacuum-infiltration with a suspension (1x108 CFU/mL) of Pf bacteria or a mock 276 

solution; samples were collected at 0 and 6 h post-inoculation, and subjected to 277 

RNA-seq analysis. In these experiments, we opted for induction of PTI by non-278 

pathogenic rather than by pathogenic bacteria to avoid possible interference of 279 

virulence factors. In addition, plants were inoculated by vacuum-infiltration, rather 280 

than by dipping, to assure an equal bacterial load in the inoculated leaves despite 281 

the defective dynamics of stomatal closure of bsk830 mutants. A total of 2,146 (852 282 

up-regulated; 1,294 down-regulated) and 1,325 (655 up-regulated; 665 down-283 

regulated) differentially expressed genes (DEGs) were identified in Pf- inoculated 284 

wild-type and bsk830 mutant plants, respectively, as compared to mock inoculated 285 

plants with filtering parameters of pFDR < 0.05 and a fold change >3 (Figure 5A; 286 

Supplemental Table S1). 1,207 DEGs were common to both genotypes, whereas 287 

939 and 118 were unique to wild-type and bsk830 mutant plants, respectively 288 

(Figure 5A). These results suggest that bsk830 mutants were less responsive to Pf 289 

inoculation than wild-type plants. 290 
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To identify cellular processes in which Bsk830 is involved, we examined functional 291 

categories over-represented among genes that were expressed in wild-type plants, 292 

but not in the bsk830 mutant or vice versa, and genes whose fold-change during PTI 293 

differed by at least ±20% between the bsk830 mutant and the wild-type. Arabidopsis 294 

homologs of genes from this pool were subjected to functional enrichment analysis 295 

by using the g:Profiler tool (Raudvere et al., 2019) as separate entries based on their 296 

up- or down-regulation during PTI. The use of Arabidopsis homologs allowed a more 297 

extensive characterization of the gene pool in comparison to the use of tomato gene 298 

accessions. Among genes up-regulated during PTI, the predominant functional 299 

categories enriched in the bsk830 mutant were related to JA signaling and response, 300 

and to metabolism of phenylpropanoids (Table 1). In bsk830 mutant, expression of 301 

genes involved in JA biosynthesis (e.g., AOS, LOX3, OPR2; Wasternack and Song, 302 

2016), catabolism (e.g., JAO2, JAO3, CYP94B1; Smirnova et al., 2017), and 303 

negative regulation of JA signaling (e.g., JAZ2, JAZ3, JAZ7, JAZ9, JAM2; Sasaki-304 

Sekimoto et al., 2013) was reduced as compared to wild-type plants (Figure 5B, 305 

Supplemental Table S1). In addition, the transcript abundance of genes encoding 306 

various JA response factors (e.g., NATA1, TD, PI-I, ERF1, ERF5, JA2L; Du et al., 307 

2017) was reduced or increased (Figure 5B, Supplemental Table S1). Genes related 308 

to phenylpropanoid metabolism displayed increased expression in the bsk830 309 

mutant and included homologs of phenylalanine ammonia-lyase (PAL) as well as 310 

enzymes acting downstream to PALs and involved in lignin biosynthesis (Vanholme 311 

et al., 2019) (Supplemental Table S1). Among genes down-regulated during PTI, the 312 

predominant categories enriched in the bsk830 mutant were mainly related to 313 

photosynthesis (Table 1). Expression of photosynthesis-related genes was more 314 

elevated in the bsk830 mutant than in wild-type plants (Supplemental Table S1), 315 
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suggesting a less extensive reallocation of resources from general metabolism to 316 

defense that is usually observed in plants activating immune responses (Attaran et 317 

al., 2014). Together, these results suggest that loss of Bsk830 results in a weaker 318 

PTI response and altered regulation of JA signaling and response. 319 

 320 

Mutation of Bsk830 affects JA-mediated phenotypes 321 

To assess the hypothesis that loss of Bsk830 causes altered regulation of the JA 322 

response during the onset of PTI, we examined the contribution of the COR toxin to 323 

Pst DC3000 virulence in wild-type and bsk830 mutant plants. COR is a hormone 324 

mimic, which closely resembles JA-Ile (Katsir et al., 2008), and it has been shown to 325 

activate JA signaling and promote stomatal opening (Melotto et al., 2017). Leaves of 326 

wild-type, bsk830-1 and bsk830-2 lines were inoculated by dipping in bacterial 327 

suspensions (1x107 CFU/mL) of Pst DC3000 (able to synthesize COR; COR+) or Pst 328 

DC3118 (unable to synthesize COR; COR-), and bacterial populations were 329 

determined in leaves at 0 and 2 dpi. In wild-type plants, Pst DC3000 (COR+) 330 

bacteria displayed a significantly higher growth than Pst DC3118 (COR-) (Figure 6A) 331 

indicating that COR promotes bacterial virulence, as previously reported (Zheng et 332 

al., 2012; Du et al., 2014; Gimenez‐Ibanez et al., 2017). Conversely, in bsk830 333 

mutant plants, Pst DC3000 (COR+) and Pst DC3118 (COR-) displayed a similar 334 

growth indicating that mutation of Bsk830 compromises the contribution of COR to 335 

bacterial virulence and suggesting that, similar to COR, a mutation in Bsk830 336 

deregulates the JA response. 337 

Next, we examined the effect of loss of function in Bsk830 on susceptibility to 338 

the necrotrophic fungal pathogen Botrytis cinerea, which is known to be mediated by 339 

JA (Zhang et al., 2017). Wild-type and bsk830 mutant plants were pretreated with a 340 
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mock solution or with a Pf bacterial suspension (1x108 CFU/mL) to activate PTI, and 341 

24 h later plants were infected by placing on the leaves a droplet of a B. cinerea 342 

spore suspension (2 × 105 conidia mL−1). Lesion diameter in infected leaves was 343 

measured at 3 dpi (Figure 6B). Wild-type and bsk830 mutant plants were equally 344 

susceptible to B. cinerea when mock treated. However, following the Pf treatment, 345 

symptoms developed more slowly and lesions were significantly smaller in leaves of 346 

bsk830 mutant plants than in wild-type plants. These results support a model in 347 

which the JA response is deregulated during the onset of PTI in bsk830 mutant 348 

plants.349 
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DISCUSSION 350 

We identified the tomato RLCK Bsk830 as a component of signaling pathways 351 

originated from perception of bacterial flagellin by the Fls2 and Fls3 PRRs. Initial 352 

indication for the involvement of Bsk830 in plant immunity was its interaction with the 353 

flagellin receptors Fls2 and Fls3 that was observed in yeast and then validated in 354 

planta. Subsequent analysis of bsk830 mutant plants revealed that Bsk830 is 355 

required for pre-invasion immunity by mediating a subset of PTI responses including 356 

ROS accumulation and stomatal closure possibly through negative regulation of JA 357 

signaling. BSK family members appear to play a role in flagellin-induced signaling in 358 

different plant species: in tomato, Bsk830 (but not other Bsk family members) is 359 

recruited by two flagellin receptors and is required for flagellin-induced immunity, 360 

while in Arabidopsis multiple BSKs (BSK1, BSK5, BSK7, BSK8) interact with the 361 

FLS2 PRR and play a role in flg22-induced PTI (Shi et al., 2013; Majhi et al., 2019 362 

and 2021). It remains to be determined whether Bsk830 participates only in signaling 363 

pathways activated by flagellin-derived MAMPs, similar to its closest Arabidopsis 364 

homologs BSK7 and BSK8 (required for PTI responses triggered by flg22, but not by 365 

elf18 and pep1 [Majhi et al., 2021]), or if it is involved in signaling events activated by 366 

multiple MAMPs, as observed for Arabidopsis BSK5 (Majhi et al., 2019).  367 

Similar to other BSK family members (Majhi et al., 2019 and 2021; Ren et al., 368 

2019; Roberts et al., 2019a; Su et al., 2021), Bsk830 localizes to the plasma 369 

membrane, where it may interact with PRRs and associated components of immune 370 

complexes. N-terminal sites predicted to mediate myristoylation and palmitoylation 371 

modifications were essential to its plasma membrane localization, common 372 

mechanisms used by BSKs for plasma membrane anchoring (Majhi et al., 2019 and 373 

2021; Ren et al., 2019; Roberts et al., 2019a; Su et al., 2022) or maintenance of 374 
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protein stability, as demonstrated for BSK1 (Su et al., 2022). However, the output of 375 

the interaction of Bsk830 with Fls2 and Fls3 is yet unknown. It is unlikely that Bsk830 376 

is activated by Fls2 and/or Fls3 phosphorylation, because Fls2 and Fls3 were not 377 

able to phosphorylate Bsk830 in vitro despite detection of their autophosphorylation 378 

activity. It is possible that additional molecules, which participate in vivo in Bsk830 379 

phosphorylation by Fls2 and Fls3, are missing in vitro. Alternatively, Bsk830 might 380 

function as a scaffolding protein that mediates signal transduction by bringing 381 

signaling components in proximity, as it has been suggested for other BSKs 382 

(Sreeramulu et al., 2013; Ren et al., 2019; Majhi et al., 2019 and 2021). The latter 383 

hypothesis is supported by the evidence that Bsk830 autophosphorylation was not 384 

detected under the conditions used in our in vitro experiments. 385 

Phenotypic analysis of bsk830 mutant lines revealed that Bsk830 is required for a 386 

subset of PTI responses induced by flagellin-derived MAMPs, including ROS 387 

production, but not MAPK phosphorylation. This result, together with previous 388 

observations that Arabidopsis bsk1, bsk5, bsk7 and bsk8 mutant lines are impaired 389 

in flg22-induced ROS production (Shi et al., 2013; Majhi et al., 2019 and 2021), 390 

confirms a central role of BSK family members in signaling pathway(s) that link flg22 391 

sensing to ROS accumulation. Conversely, it is less likely that BSK family members 392 

are involved in signaling of flg22-induced MAP kinase activation. In our experiments, 393 

a mutation in Bsk830 did not alter MAP kinase activation induced by flg22 treatment 394 

in tomato plants. Similarly, Arabidopsis lines carrying different combinations of 395 

mutations in BSK genes, including up to seven BSKs, displayed a similar MAPK 396 

activation as wild-type plants following flg22 challenge (Majhi et al., 2021). However, 397 

it is still possible that BSKs participate in MAP kinase activation induced by other 398 

MAMPs or pathogen effectors. In support of this hypothesis, BSK1 was shown to 399 
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phosphorylate in vitro MAPKKK5 and MPK15, and required for disease resistance 400 

mediated by these MAPKKKs against virulent and avirulent Pst DC3000 strains and 401 

powdery mildew fungi, respectively (Yan et al., 2018; Shi et al., 2022).  402 

We provide evidence that Bsk830 is involved in pre-invasion immunity, as bsk830 403 

mutants failed to close stomata when inoculated with pathogenic and non-404 

pathogenic bacterial strains, and displayed enhanced susceptibility to Pst DC3000 405 

when inoculated by dipping, but not by vacuum-infiltration. Stomata closure is a PTI 406 

response that prevents bacteria from entering the plant apoplast and is activated by 407 

detection of MAMPs by PRRs (Melotto et al., 2017). For example, Arabidopsis plants 408 

mutated in FLS2 or in both PEPR1 and PEPR2 PRRs fail to close stomata when 409 

challenged with the respective MAMPs, and are more susceptible to Pst DC3000 410 

when dip-inoculated, but not when syringe-infiltrated (Zipfel et al., 2004; Melotto et 411 

al., 2006; Zheng et al., 2018). In Arabidopsis, the RLCKs BIK1 and PBL27 act 412 

downstream of PRRs in signaling pathways that lead to stomata closure (Wang and 413 

Gou, 2021). BIK1 transduces the signal generated by recognition of flg22 and pep1 414 

by their respective PRRs and activates anion channels that cause stomata closure 415 

(Kadota et al., 2014; Li et al., 2014; Guzel Deger et al., 2015; Zheng et al., 2018; 416 

Thor et al., 2020). Similarly, PBL27, interacts with the chitin receptor CERK1 and 417 

upon chitin elicitation activates anion channels that cause stomata closure (Liu et al., 418 

2019). RLCKs of the BSK subfamily were not examined in the context of stomatal 419 

movement, with the exception of the observation that BSK5 mutant plants are 420 

hypersensitive to ABA in stomatal closure (Li et al., 2012b).  421 

Comparison of gene expression profiles of bsk830 mutant and wild-type tomato 422 

plants during the activation of PTI allowed us to formulate hypotheses about the 423 

molecular mechanisms of Bsk830 to regulate PTI responses. A prominent difference 424 
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between bsk830 mutants and wild-type plants was differential expression of genes 425 

related to JA biosynthesis, catabolism, signaling, and response. JA regulates 426 

stomatal aperture by promoting their opening, as opposed to SA that promotes 427 

stomata closure in response to bacterial pathogens in Arabidopsis and tomato plants 428 

(Lee et al., 2013; Melotto et al., 2017; Guzman et al., 2020). Pathogens manipulate 429 

stomata aperture by secretion of JA mimicking molecules or effectors (Melotto et al., 430 

2017). For example, Pst DC3000 secretes COR, a hormone mimic that closely 431 

resembles JA-Ile, that promotes degradation of JAZ proteins which negatively 432 

regulate transcription of JA-related genes and signaling (Zhang et al., 2017). 433 

Activation of the JA pathway leads to an inhibitory effect on accumulation of salicylic 434 

acid, which in turn promotes stomatal reopening (Melotto et al., 2017). Our 435 

expression profiles data indicates a release of negative regulation of JA signaling in 436 

the bsk830 mutants compared to wild-type plants. This was confirmed by the lack of 437 

COR contribution to Pst DC3000 virulence in bsk830 mutants, and their increased 438 

resistance to a fungal necrotrophic pathogen following PTI activation (Zhang et al., 439 

2017). We therefore propose a model in which Bsk830 negatively regulates JA 440 

signaling and response that promote stomatal closure and ROS production (Yi et al., 441 

2014; Toum et al., 2016). This is reminiscent of other regulators of plant immunity, 442 

such as FERONIA, which destabilizes MYC2, a regulator of JA signaling, to inhibit 443 

COR-induced signaling and promote disease resistance (Guo et al., 2018), and 444 

LINC1, which negatively regulates transcription of JA-related genes to enhance PTI 445 

(Jarad et al., 2020). In conclusion, our data reveal an important role for tomato 446 

Bsk830 in pre-invasion immunity initiated by flagellin perception and in regulation of 447 

JA signaling and response during PTI.  448 
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MATERIALS AND METHODS 449 

Plant materials and growth 450 

Plant cultivars used were: Nicotiana benthamiana (Goodin et al., 2008), and tomato 451 

(Solanum lycopersicum) Hawaii 7981 (Wang et al., 2011). N. benthamiana plants 452 

were grown in a phytochamber at 25°C in long-day conditions (16 h/8 h, light/dark). 453 

Tomato plants were grown in a greenhouse with temperatures fluctuating between 454 

25°C to 30°C under natural light conditions. 455 

 456 

Strains and growth conditions of bacteria, fungi, and yeast 457 

The strains used were: Escherichia coli DH5α (Invitrogen) and Rosetta (MERCK), 458 

Pseudomonas syringae pv. tomato (Pst) DC3000 (Guo et al., 2009), Pst 459 

DC3000ΔfliC (Kvitko et al., 2009), Pst DC3118 (Ma et al., 1991), Pseudomonas 460 

fluorescens A506 (Wilson et al., 2002), Agrobacterium tumefaciens GV2260 461 

(Deblaere et al., 1985) and LBA4404 (Ooms et al., 1982), Botrytis cinerea B05.10 462 

(Ma et al., 2017), and yeast (Saccharomyces cerevisiae) Y2HGold (Clontech). 463 

Bacterial, fungal, and yeast strains were grown with the appropriate antibiotics as 464 

follows: E. coli in Lysogeny broth (LB) medium at 37°C; Pst, Pf, and A. tumefaciens 465 

in LB at 30°C; B. cinerea in potato dextrose broth at 20°C; yeast in synthetically 466 

defined medium (6.7 g/L yeast nitrogen base without amino acids, 1.4 g/L amino acid 467 

drop-out mix) supplemented with 2 % (w/v) glucose at 30°C. 468 

 469 

Pathogenicity assays 470 

Tomato plants were inoculated by vacuum-infiltration with bacterial suspensions of 471 

1x105 CFU/mL in 10 mM MgCl2 and 0.008% (v/v) Silwet L-77 (apart from Pf A506, 472 

which was inoculated at a concentration of 1x108 CFU/mL), or by dipping into 473 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.01.494411doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494411


 

Sobol et al., page 21 
 

bacterial suspensions of 1x107 CFU/mL in 10 mM MgCl2 and 0.04% Silwet L-77. 474 

Plants inoculated by dipping were placed in a sealed transparent box to maintain 475 

humidity. Leaflets were with 3% (w/v) bleach, rinsed with water, and dried. Five 476 

samples of four leaf discs (1 cm diameter) were taken from three plants at 2 h after 477 

inoculation (day 0) and 2 days later, and homogenized in 1 mL of 10 mM MgCl2 to 478 

determine bacterial populations via serial dilution plating. 479 

For tomato inoculation with Botrytis cinerea, droplets (7 µL) of 0.5X potato dextrose 480 

broth containing 2x105 spores/mL were deposited on the leaf surface. The area of 481 

disease lesions was measured three days after inoculation.  482 

 483 

Peptide elicitors 484 

Peptides flg22 (QRLSTGSRINSAKDDAAGLQIA; Krol et al., 2010) and flgII-28 485 

(ESTNILQRMRELAVQSRNDSNSSTDRDA; Clarke et al., 2013) were purchased 486 

from Integrated DNA Technologies, Inc., dissolved in water to a 5 mM stock solution, 487 

and diluted to the working concentration.  488 

 489 

A. tumefaciens-mediated transient expression 490 

Overnight cultures of A. tumefaciens were pelleted, washed three times with 10 mM 491 

MgCl2, resuspended in induction medium (10 mM MgCl2, 10 mM MES [pH 5.6], and 492 

200 μM acetosyringone), and incubated with shaking for 3-4 h at 20°C. Cultures 493 

were diluted to OD600=0.2 and infiltrated into leaves of N. benthamiana plants using a 494 

needleless syringe.  495 

 496 

Generation of CRISPR/Cas9-mediated knockout lines 497 
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To generate tomato lines with mutations in the Bsk830 gene, guide RNAs (gRNA1: 498 

GATTCTGAGCCTCGTGAATG; gRNA2: GTTTAACAGCAACCGGCCTC) targeting 499 

the first exon of Bsk830 were designed using the tomato genome version SL2.5 500 

(Tomato Genome Consortium, 2012) and the Geneious R11 software 501 

(https://www.geneious.com). Each gRNA was cloned into a Cas9-expressing binary 502 

vector (p201N:Cas9; Jacobs et al., 2015) by Gibson assembly (Jacobs et al., 2017) 503 

and transformed into A. tumefaciens LBA4404. The obtained strains were pooled 504 

and used to transform Hawaii 7981 tomato plants at the Boyce Thompson Institute 505 

transformation facility (Frary and Van Eck, 2005). To determine the mutation type, 506 

genomic DNA was extracted from transgenic leaves using a modified CTAB method 507 

(Murray and Thompson, 1980). Genomic regions flanking the target site of the 508 

Bsk830 gene were amplified with primers 15-16 (Supplemental Table S2) and 509 

sequenced. 510 

 511 

Yeast two-hybrid assay 512 

A GAL4 two-hybrid system was used to analyze protein-protein interactions in yeast. 513 

pGBKT7 vectors (bait) carrying tomato Bsk family members fused to the GAL4 DNA 514 

binding domain were as described (Roberts et al., 2019a). Gene fragments encoding 515 

the kinase domains of Fls2 (Fls2KD; amino acids 867 to 1,169) or Fls3 (Fls3KD; amino 516 

acids 854 to 1,140) were PCR-amplified from tomato cDNA using primers 3-4 517 

(Fls2KD) or 1-2 (Fls3KD) (Supplemental Table S2) and fused to the GAL4 activation 518 

domain in the pGADT7RecM vector (prey). Interactions were tested by placing 519 

droplets of yeast (10 μl) carrying bait and prey vectors on SD medium lacking Leu 520 

and Trp (SD−LW), SD−LW lacking His and adenine (SD-LWHA), or SD−LW 521 

supplemented with 25 μg/ml Aureobasidin A (SD–LW+AbA).  522 
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 523 

Split luciferase complementation assay 524 

Gene fragments encoding Fls2KD and Fls3KD were PCR-amplified from tomato cDNA 525 

using primers 7-8 (Fls2KD) or 5-6 (Fls3KD) (Supplemental Table S2), and cloned in 526 

frame to the C-terminal fragment of firefly luciferase in the binary vector 527 

pCAMBIA1300:C-LUC (Chen et al., 2008). Bsk830 was cloned in frame to the N-528 

terminal fragment of firefly luciferase in the binary vector pCAMBIA1300:N-LUC 529 

(Chen et al., 2008), as described (Roberts et al., 2019a). The obtained vectors were 530 

transformed into A. tumefaciens GV2260 and co-expressed in N. benthamiana 531 

leaves. Split luciferase complementation assays were performed as described (Majhi 532 

et al., 2019).  533 

 534 

Subcellular localization  535 

Gene fragments encoding Bsk830, Bsk830G2A, and Bsk830C(3,11,12)A were PCR-536 

amplified from tomato cDNA using primers 9-10, 11-10, and 12-10, respectively 537 

(Supplemental Table S2). Amplified fragments were fused upstream of the coding 538 

region of the yellow fluorescence protein (YFP) in the pBTEX binary vector driven by 539 

the CaMV 35S promoter (Frederick et al., 1998; Popov et al., 2016). Fusion proteins 540 

were co-expressed with the plasma membrane marker Flot1b-mCherry (Li et al., 541 

2012a) via A. tumefaciens GV2260 in N. benthamiana leaves and their localization 542 

was visualized by a Zeiss LSM780 confocal laser scanning microscope (Zeiss). YFP 543 

was excited with an argon laser at 514 nm, while mCherry and mRFP were excited 544 

with a DPSS561-10 laser at 561 nm. Emission was detected between 518 and 583 545 

nm for YFP, and between 579 and 650 nm for mCherry and mRFP. Images were 546 

processed with the image processing package Fiji (https://fiji.sc/). 547 
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 548 

Expression of MBP fusion proteins in E. coli and in vitro kinase assay 549 

A gene fragment encoding Bsk830 was PCR-amplified from tomato cDNA using 550 

primers 13-14 (Supplemental Table S2), and cloned into the pMAL-c2x vector (New 551 

England Biolabs). Fls2CD (amino acids 841 to 1,169), and Fls3CD (amino acids 824 to 552 

1,140) MBP fusions in the pMAL-c2x vector were prepared as described (Roberts et 553 

al., 2020). Proteins were expressed in the Rosetta E. coli strain and purified (Majhi et 554 

al., 2019). MBP fusion proteins were incubated at 25°C for 1 h in a kinase assay 555 

solution containing 50 mM Tris-HCl (pH 7), 1 mM DTT, 10 mM MgCl2, 10 mM MnCl2, 556 

20 µM ATP, and 10 µCi [γ-32P]ATP (3,000 Ci mmol−1; Perkin-Elmer). Reactions were 557 

stopped by addition of the SDS sample buffer. Half of the reaction was fractionated 558 

by SDS-PAGE and stained with Coomassie Blue. The second half was fractionated 559 

by SDS-PAGE, blotted onto a PVDF membrane and exposed to autoradiography. 560 

 561 

Protein extraction 562 

Protein extraction from yeast and leaves was performed as described by Salomon 563 

and Sessa (2010) and Majhi et al. (2019), respectively.  564 

 565 

ROS production assay 566 

Leaf discs were placed in 200 μL of water overnight with the adaxial side up in 96-567 

well plates. The next day, the water was replaced with a solution containing 100 nM 568 

flg22 or flgII-28, 34 μg mL−1 luminol (Sigma-Aldrich), and 20 μg mL−1 horseradish 569 

peroxidase (Sigma-Aldrich). Luminescence was measured with a Veritas Microplate 570 

Luminometer (Turnerbiosystems Veritas) for 30 min (flg22) or 45 min (flgII-28) at 2.5- 571 

or 3-min intervals, with a reading time of 2 sec per well. 572 
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 573 

MAPK phosphorylation assay 574 

Leaf discs (~60 mg) were floated overnight in 10 mL water in 6-well-plates and then 575 

treated with 1 µM flg22, 1 µM flgII-28, or water. Total proteins were extracted in 150 576 

µL extraction buffer (50 mM Tris-HCl [pH 7.5], 200 mM NaCl, 1 mM EDTA, 10 mM 577 

NaF, 1 mM Na2MoO4, 2 mM Na3VO4, 10% [v/v] glycerol, 2 mM DTT, and 1 mM 578 

PMSF). Proteins were fractionated by SDS-PAGE, transferred onto PDVF 579 

membranes, and immunoblotted with rabbit anti-pMAPK antibodies (α-pMAPK; Cell 580 

Signaling Technology). 581 

 582 

Measurements of stomatal aperture and number  583 

Leaf pieces were cut from tomato leaflets and floated on stomatal buffer (25 mM 584 

MES-KOH [pH 6.15] and 10 mM KCl) for 3 h under light to allow stomata to fully 585 

open (Melotto et al., 2006; Guzman et al., 2020). Leaf pieces were then floated on 586 

water (control) and suspensions (1x108 CFU/mL) of Pst DC3000 or Pf A506. At the 587 

indicated times, leaf pieces were removed, dried with a filter paper, and placed on an 588 

Elite HD+ silicon rubber mixture (Zhermack) to create an impression of the leaf 589 

abaxial surface (Weyers and Johansen, 1985). Once hardened, the silicone rubber 590 

mixture was covered with clear nail varnish, which was allowed to dry, transferred to 591 

a glass slide, and observed under an Axio Zoom.V16 microscope (Zeiss). For each 592 

data point, the width and length of approximately 100-200 stomatal apertures were 593 

measured by using the Fiji package (https://fiji.sc/) and used to calculate the 594 

Stomatal Aperture Index. Images were also used to calculate the Stomata Number 595 

Index (Zhang et al., 2020). 596 

 597 
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RNA-seq cDNA library preparation  598 

Total RNA was isolated with the RNeasy Plant Mini Kit (QIAGEN) from wild-type and 599 

bsk830-1 tomato leaves inoculated by vacuum with P. fluorescens A506 or mock-600 

inoculated (three biological replicates for treatment, in total 12 samples collected at 6 601 

h post-inoculation). RNA integrity was evaluated using the 4200 TapeStation System 602 

(Agilent Technologies). RNA-Seq cDNA libraries were prepared from RNA samples 603 

using the NEBNext Ultra™ II mRNA Library Prep Kit for Illumina and then PCR-604 

amplified using NEBNext Multiplex Oligos for Illumina (New England Biolabs). 605 

Quality and average size of cDNAs in the library were evaluated using the 4200 606 

TapeStation System (Agilent Technologies). 607 

 608 

Next-generation sequencing and data analysis 609 

Libraries were sequenced using a NextSeq™ 500 system (Illumina) at the Genomics 610 

Research Unit of the Faculty of Life Sciences, Tel Aviv University. FASTQ files 611 

obtained from the sequencing were analyzed by Partek® Flow® 8.0 using the 612 

Solanum lycopersicum SL3.0 assembly (NCBI ID 393272). Raw reads with Phred 613 

quality scores of less than 20 were trimmed from the 3′ end, followed by removal of 614 

adaptor sequences. High quality trimmed reads (Phred score ~34 and read length 75 615 

bp) were aligned to the reference genome by STAR 2.7.3a (Dobin et al., 2013). 616 

Gene expression quantification was performed using the Partek E/M algorithm (Xing 617 

et al., 2006), and normalized to RPKM (reads per kilobase of transcript per million 618 

mapped reads) (Mortazavi et al., 2008). Gene-specific analysis was performed on 619 

15,575 detected genes (false discovery rate [pFDR] < 0.05). Overlap of differentially 620 

expressed genes in wild-type and bsk830-1 plants was visualized using the eulerr R 621 

package (Larsson, 2020). Gene ontology (GO) enrichment analysis was performed 622 
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using g:Profiler (version e105_eg52_p16_e84549f) with a significance threshold of 623 

pFDR < 0.05 (Raudvere et al., 2019). The term size of functional categories was 624 

limited to 10-150 to exclude GO terms associated with general processes, and 625 

electronic GO annotations were discarded to increase GO term accuracy. 626 

 627 

Statistical analysis 628 

Experiments were performed at least three times. Statistical significance is based on 629 

either one- or two-way ANOVA followed by Tukey’s post-hoc test performed in the R 630 

environment. The multcompView R package (Graves et al., 2019) was used to 631 

assign a compact letter display to indicate the statistical differences in post-hoc 632 

tests.  633 

 634 

Accession numbers 635 

Sequence data from this article can be found in the Solanaceae Genomics Network 636 

database (https://solgenomics.net/) under the following accession numbers: Bsk880 637 

(Solyc01g080880), Bsk260 (Solyc04g082260), Bsk600 (Solyc06g076600), Bsk750 638 

(Solyc09g011750), Bsk000 (Solyc10g085000), Bsk890 (Solyc11g064890), Bsk830 639 

(Solyc12g099830), Fls2.1 (Solyc02g070890), Fls2.2 (Solyc02g070910), Fls3 640 

(Solyc04g009640). RNA-seq reads generated in this work are available under 641 

accession number GSE199518 in the NCBI Gene Expression Omnibus (GEO) 642 

database.  643 
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Table 1. Functional categories overrepresented in DEGs of Pf treated bsk830 plants.  935 

Up-regulated genes 

Term name Term ID -log10(padj) 

response to chitin GO:0010200 5.53039 

regulation of jasmonic acid mediated signaling pathway GO:2000022 5.42490 

cellular response to fatty acid GO:0071398 4.02940 

jasmonic acid mediated signaling pathway GO:0009867 3.47824 

cellular response to jasmonic acid stimulus GO:0071395 3.37033 

lignin metabolic process GO:0009808 3.19087 

regulation of defense response to insect GO:2000068 3.18180 

phenylpropanoid metabolic process GO:0009698 2.80966 

phenylpropanoid biosynthetic process GO:0009699 2.19778 

regulation of anion channel activity GO:0010359 2.09635 

Down-regulated genes 

Term name Term ID -log10(padj) 

photosynthesis, light reaction GO:0019684 44.88674 

photosynthetic electron transport chain GO:0009767 21.43202 

photosynthesis, light harvesting GO:0009765 17.15130 

photosynthesis, light harvesting in photosystem I GO:0009768 14.07682 

electron transport chain GO:0022900 14.04188 

photosynthetic electron transport in photosystem I GO:0009773 13.60706 

NAD(P)H dehydrogenase complex assembly GO:0010275 11.56992 

photosystem II assembly GO:0010207 7.293742 

response to high light intensity GO:0009644 5.682999 

glucose metabolic process GO:0006006 5.284815 
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FIGURE LEGENDS 936 

Figure 1. Interaction of Bsk830 with Fls2 and Fls3. A, Yeast cells expressing 937 

individual Bsk proteins fused to the GAL4 DNA-binding domain (bait), and the kinase 938 

domain of Fls2 (Fls2KD) and Fls3 (Fls3KD) fused to the GAL4 DNA-activation domain 939 

(prey) were grown on synthetically defined medium lacking Leu and Trp (SD–LW), 940 

SD–LW lacking His and Ade (SD–LWHA), or SD–LW supplemented with 941 

Aureobasidin A (SD–LW+AbA). Empty vectors (EV) were used as negative controls. 942 

Nomenclature and accession numbers of tomato Bsk family members are reported in 943 

the Materials and Methods section. B, The indicated proteins were fused to C-LUC 944 

or N-LUC and co-expressed via A. tumefaciens GV2260 in N. benthamiana leaves. 945 

Luciferase activity was quantified by measuring relative luminescence at 48 h after 946 

agro-infiltration. Data from three independent experiments is shown. Circles 947 

represent individual data points, and letters represent statistical significance 948 

determined by one-way ANOVA and Tukey’s post-hoc test (P < 0.05). 949 

 950 

Figure 2. Bsk830 localizes to the plasma membrane. A, Putative myristoylation and 951 

palmitoylation sites at the N-terminus of Bsk830. Bsk830-YFP (B), Bsk830G2A-YFP 952 

(C), or Bsk830C(3,11,12)A-YFP (C) fusion proteins were co-expressed via A. 953 

tumefaciens GV2260 in N. benthamiana leaves with the plasma membrane marker 954 

Flot1b-mCherry. Fluorescence was monitored in epidermal cells by confocal 955 

microscopy at 48 h after agro-infiltration. YFP, mCherry, and merged fluorescence 956 

images are shown. The region marked in the merged image by a dotted square is 957 

magnified in the inset panel. Fluorescence intensity was measured in the YFP and 958 

mCherry channels along the dotted line. Scale bars represents 20 μm, except for the 959 

inset image, where it represents 10 μm. 960 
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 961 

Figure 3. Bsk830 is required for flagellin-mediated immunity. A, Wild-type and 962 

bsk830 mutant plants were inoculated by dipping into a bacterial suspension 963 

(107 CFU mL−1) of Pst DC3000 or Pst DC3000ΔfliC. Bacterial populations were 964 

measured in leaves at 0 and 2 days post-inoculation (dpi). Circles represent 965 

individual data points of three biological replicates, and letters represent statistical 966 

significance determined by two-way ANOVA and Tukey’s post-hoc test (P < 0.05). B 967 

and C, ROS production. Leaf discs were treated with 100 nM of flg22, flgII-28, or 968 

water. Luminescence was measured for 30 min after flg22 treatment (B) and for 45 969 

min after flgII-28 treatment (C). ROS production was normalized to the ROS amount 970 

produced by wild-type plants at its peak. Data are means ± SD of three biological 971 

replicates.  972 

 973 

Figure 4. bsk830 mutant plants are compromised in stomatal immunity. A and B, 974 

Wild-type and bsk830 mutant plants were inoculated with Pst DC3000 by dipping 975 

(107 CFU mL−1) (A) or vacuum-infiltration (105 CFU mL−1) (B). Bacterial populations 976 

were measured in leaves at 0 and 2 days post-inoculation (dpi). Data from three 977 

independent experiments is shown. C and D, Stomatal aperture index (aperture 978 

width divided by the stomata length) was determined in leaves after 0, 1, 2.5, and 4 h 979 

floating on suspensions (108 CFU mL−1) of Pst DC3000 (C) and Pf A506 (D), or 980 

water (mock). Circles represent mean of three biological replicates. Letters represent 981 

statistical significance determined by one-way (A and B) or two-way (C and D) 982 

ANOVA and Tukey’s post-hoc test (P < 0.05). 983 

 984 
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Figure 5. A, Euler diagram representing differentially expressed genes (DEGs) 985 

(pFDR < 0.05, fold change > 3, Pf vs. mock treatment comparison) in wild-type and 986 

bsk830-1 plants. B, Loss of function in Bsk830 alters expression of genes involved in 987 

JA biosynthesis, catabolism, signaling, and response. Each row represents a single 988 

gene accompanied by its Solanaceae Genomics Network accession number. Genes 989 

not characterized in tomato are annotated with name of the Arabidopsis gene with 990 

the highest protein similarity obtained by BLAST. The legend corresponds to relative 991 

log2 fold change values calculated based on a Pf vs. mock treatment comparison 992 

performed for either wild-type or the bsk830 mutant line. Grey rectangles represent 993 

genes with no fold change value available.   994 

 995 

Figure 6. A, Plants of the indicated genotypes were inoculated by dipping with a 107 996 

CFU mL−1 bacterial suspension of Pst DC3000 (COR+) or Pst DC3118 (COR–). 997 

Bacterial populations in leaves were measured at 0 and 2 dpi. B, Plants of the 998 

indicated genotypes were vacuum-infiltrated with a Pf A506 suspension (108 CFU 999 

mL−1). After 24 h, plants were inoculated by placing a droplet of a suspension 1000 

carrying Botrytis cinerea spores (2 × 105 conidia mL−1). Lesion area was measured 1001 

at 3 dpi. In (A and B) data from three independent experiments is shown. Letters 1002 

represent statistical significance determined by two-way ANOVA and Tukey’s post-1003 

hoc test (P < 0.05).   1004 
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SUPPLEMENTAL TABLES AND FIGURE LEGENDS 1005 

Supplemental Table S1. List of differentially expressed genes. 1006 

 1007 

Supplemental Table S2. Primers used in this study. 1008 

 1009 

Supplemental Figure S1. A, Expression in yeast of the kinase domain of Fls2 1010 

(Fls2KD) and Fls3 (Fls3KD) fused to the GAL4 DNA-activation domain (GAL4-AD). B, 1011 

Expression in leaves of N. benthamiana plants of Fls2KD and Fls3KD fused to the C-1012 

terminal half (C-LUC) of the luciferase protein. Proteins were detected by 1013 

immunoblot analysis using anti-HA antibodies (α-HA) or anti-luciferase antibodies (α-1014 

LUC). 1015 

 1016 

Supplemental Figure S2. Bsk830 is not phosphorylated in vitro by Fls2 and Fls3. 1017 

Phosphorylation of the maltose binding protein (MBP)-Bsk830 fusion by the 1018 

cytoplasmic domain of Fls2 (Fls2CD) and Fls3 (Fls3CD) fused to MBP was assayed in 1019 

vitro in the presence of [γ-32P]ATP. Proteins were fractionated by SDS-PAGE, blotted 1020 

onto a PVDF membrane and exposed to autoradiography, or stained with 1021 

Coomassie Blue. 1022 

 1023 

Supplemental Figure S3. Sequence of the Bsk830 deletions in the tomato bsk830-1 1024 

and bsk830-2 mutant lines. Multiple sequence alignment of the Bsk830 region 1025 

flanking the gRNA-targeted site in wild-type, bsk830-1, and bsk830-2 plants. In 1026 

green, the ATG translation start site; in blue, the PAM motif; in pink, the gRNA. A red 1027 

dotted line represents sequences deleted in the mutant lines. 1028 

 1029 
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Supplemental Figure S4. Tomato bsk830 mutant plants are not impaired in flg22- 1030 

and flgII-28-induced MAPK activation. Leaf discs of wild-type, bsk830-1, bsk830-2, 1031 

fls2.1/fls2.2 and fls3 mutant plants were floated overnight in water and treated with 1 1032 

μM of flg22 (A) or flgII-28 (B). Samples were harvested at 0, 5 and 20 min after 1033 

treatment and analyzed by immunoblots with anti-pMAPK antibodies (α-pMAPK). 1034 

Ponceau S staining of RuBisCO is shown as a loading control. Data are 1035 

representative of three biological repeats. 1036 

 1037 

Supplemental Figure S5. Stomatal number index of wild-type, bsk830-1, and 1038 

bsk830-2 tomato plants. The number of stomata and epidermal pavement cells was 1039 

manually counted in a 0.5 mm2 leaf area and the stomatal number index was 1040 

calculated as the percentage of stomata per total cells. Approximately 30 images 1041 

were analyzed for each plant genotype. 1042 
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