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ABSTRACT

It has been shown that different inhibitory cell types underlie brain rhythmic and cross-frequency coupling output, but exactly
how inhibitory cell types manifest their contributions to these outputs is far from clear. Brain rhythms and their couplings are
functionally important in cognition and behaviour, and thus it is essential that we determine and understand these contributions.
To do this, one needs simultaneous access to multiple cell types and population brain output in functionally relevant states. This
is extremely challenging to do with experiments alone, and here we use mathematical models of different types to gain insight
into the contributions of the different inhibitory cell types. We focus on theta and gamma rhythms in the hippocampus and
use a previously developed detailed model to develop precise hypotheses of how these rhythms are generated and coupled.
We find critical contributions by four different cell types - pyramidal cells, parvalbumin-expressing (PV+) basket cells (BCs),
cholecystokinin-expressing (CCK+) BCs and bistratified cells. We develop a reduced population rate model (PRM) based
on these hypotheses and do extensive explorations and visualizations of the PRM to obtain testable predictions. We find
that CCK+BCs exhibit a much higher degree of control relative to PV+BCs for theta or gamma rhythm dominance and thus
their coupling, and that coupling from PV+BCs to CCK+BCs more strongly affects theta frequencies relative to coupling from
CCK+BCs to PV+BCs. As it is now possible to target these specific inhibitory cell types in the behaving animal, experimentally
testing these hypotheses and predictions would be possible. Moreover, our work shows that a variety of mathematical model
types creates new insights that would not be revealed with a single model type.

Introduction
We are now firmly in an era of distinct interneuron or inhibitory cell types, and it is apparent that the different interneuron
types need to be considered from functional viewpoints in cognition and behaviour1–4. There is a wide range of rhythmic brain
frequencies that have been recorded in local field potentials (LFPs) and electroencephalograms (EEGs) arising from dynamic
interactions of excitatory and inhibitory cell types in brain circuits5. Moreover, it is becoming clear that cross-frequency
coupling (CFC) between high and low frequency rhythms may play functional roles in sensory, motor and cognitive events6.

The hippocampus is a heavily studied brain structure that expresses such rhythmic activities with well-defined behavioural
correlates7, 8. In particular, the theta oscillation (≈3-12 Hz) is a prominent LFP rhythm that is most robustly recorded from the
CA1 region of the hippocampus9. This rhythm enables multiple timescale organization of neuronal assemblies facilitating
the spatio-temporal encoding of events during episodic recall10. Indeed, it has been suggested that ‘the single theta cycle is a
functional unit capable of representing distinct temporal-spatial content at different phases’11. Interestingly, disruptions of
hippocampal theta rhythms are associated with memory impairments12. Higher frequency gamma rhythms (≈ 20-100 Hz)
occur nested in these theta oscillations13, 14, and CFC of these rhythms are considered central to hippocampal function15, 16 with
possible causal roles17. Dynamic modulation of theta/gamma rhythms during sleep18, visual exploration19 and association with
working memory20, 21 have been documented. It is perhaps not surprising that mounting evidence points to specific changes in
theta-gamma coupling with memory impairments, disease and its progression22–27.

While it has been shown that specific cell types contribute in particular ways to generating theta and gamma rhythms,
exactly how they contribute to control these rhythms and how they mutually interact is far from clear. In trying to understand
the contributions of specific cell types, it has long been noted that there is a separation between perisomatically and dendritically
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targeting interneuron types onto pyramidal cells4, 28. Thus, one can consider a dichotomy in the inhibitory control of pyramidal
cell excitability. Further, Freund29 has described another dichotomy of perisomatically targeting cholecystokinin-expressing
(CCK+) and parvalbumin-expressing (PV+) basket cells (BCs) in a ‘rhythm and mood’ fashion29, 30, with PV+BCs contributing
in a precise clockwork fashion and CCK+BCs in a highly modulatory way. Many mathematical models have been created to help
decipher the complexity of excitatory and inhibitory interactions underlying theta and gamma rhythms and their couplings31. In
particular, circuit models that include explicitly-identified and characterized cell types have been developed32–34.

Bezaire and colleagues developed a full-scale model (FSM) of the CA1 hippocampus that exhibits theta and gamma
rhythms32. This is a biophysically detailed microcircuit model with 338,740 cells that includes pyramidal (PYR) cells,
PV+BCs, axo-axonic cells (AACs), bistratified cells (BiCs), CCK+BCs, Schaeffer Collateral-associated (SCA) cells, oriens-
lacunosum-moleculare (OLM) cells, neurogliaform (NGF) cells, and ivy cells. The FSM provides a realistic representation
of the hippocampus which is grounded upon a previously compiled, extensive quantitative analysis35. The authors used their
FSM to shed light on the generation mechanism of theta rhythms by describing the activities of the nine cell types during theta
rhythms. In broad terms, the FSM distinguished the importance of certain cell types against others, and predicted that cell type
variability is necessary for theta rhythms to occur.

The very complexity of the FSM poses a challenge in the elucidation of explicit mechanisms producing theta rhythms and
theta-gamma coupling from an inhibitory cell type perspective. On the one hand, we very much need cellular-based network
models to help us untangle the various facets of the interacting dynamics of the network system that produces theta and gamma
rhythms and their coupling as this cannot come from experiments alone. Simply identifying and targeting the many different
inhibitory cell types during ongoing behaviours and rhythmic activities is an immense, ongoing experimental challenge that
is extremely laborious36–38. On the other hand, the presence of nonlinearity, high-dimensionality and degeneracy in detailed
models makes it difficult to extract explicit mechanisms.

In this paper, we build on our previous work39 and take a deep dive into the FSM of Bezaire and colleagues32. We leverage
these examinations to develop precise hypotheses of how theta and gamma rhythms are generated, interact with each other, and
how the different cell types mediate these interactions. We identify four cell types (PYR cells, PV+BCs, BiCs, CCK+BCs) that
are deemed essential, and we confirm this by selective deactivation of their interconnections. We build a population rate model
(PRM) using these four cell types and find a parameter set that can capture the developed hypotheses. We then do systematic
parameter explorations of the PRM to expose dynamic ’balances’ underlying the rhythmic expressions in the network system.
We exploit detailed visualizations of the system and predict that CCK+BCs exhibit a much higher degree of control relative to
PV+BCs for the dominance of either theta or gamma rhythms in the network system, and thus theta-gamma coupling. Given
that it is possible to specifically target PV+BCs and CCK+BCs in the behaving animal36, this prediction opens up a plethora
of possibilities that can be experimentally examined. Moreover, our work shows that developing, analyzing and combining
different mathematical model types can bring about multi-scale insights that would not be possible if only one model type were
used.

Results
To have a starting basis for examinations using the FSM, we reproduced theta-gamma rhythmic output in the FSM of Bezaire
et al.32. This is shown in FIGURE 1. In FIGURE 1A, we present a stylized schematic of the nine different cell types in the
FSM. Connections between the different cell types are represented by grey lines between them. Grey circles by a given cell
type indicates that they are interconnected, and incoming grey lines to the different cell types represent external drives. The
thickness of the lines and circles is representative of the relative strength of these various connections. They reflect computed
effective weights (EWs) and external drives in the FSM. The specific values are given in the Methods (see TABLE 1 for drives,
and TABLES 2-3 for EWs). The raw unfiltered LFP output from the network model is shown in FIGURE 1B(i) with its power
spectra in FIGURE 1B(ii). The raster plot output for each of the nine cell types is given in FIGURE 1C(i) for 4 seconds. As
has been shown experimentally, these rhythms can be generated intra-hippocampally and do not require the medial septum
(MS)40, 41. This does not mean that the MS is not important for theta rhythms. Rather, it implies that the expression of these
rhythms does not have explicit reliance on the MS and can be generated by hippocampal circuitry on its own.

Anatomy of a theta cycle in the full-scale model (FSM)
Bezaire and colleagues32 identified a number of model properties as important for theta rhythms. They showed that diverse
inhibitory cell types and the existence of recurrent excitation are necessary for the presence of these rhythms. They also
performed mutation simulations and identified the cell types that were necessary for the rhythm versus those that could be
removed without having much of an effect on theta rhythmicity in the network. Specifically SCA, OLM and ivy cell types were
found to not be necessary for the rhythm. On the other hand, BiCs, PV+BCs and PYR cells were necessary and further, these
cell types are strongly theta modulated (see Figure 5A in32, and we quantify this modulation in more detail in SUPP FIG 1).
The remaining cell types are CCK+BCs, AACs and NGF cells.
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Figure 1. Output of the original full-scale model (FSM).
A. Stylized schematic of the 9 different cell types that are present in the FSM. These cell types are pyramidal (PYR) cells,
paravalbumin-expressing basket cells (PV+BCs), axo-axonic cells (AACs), bistratified cells (BiCs), cholecystokinin-expressing
(CCK+) BCs, Schaeffer Collateral-associated (SCA) cells, oriens-lacunosum-moleculare (OLM) cells, neurogliaform (NGF)
cells, and ivy cells. In the figure, they are referred to as PYR, PV, AAC, BiC, CCK, SCA, OLM, NGF, Ivy, respectively.
Connectivities are represented by grey lines - see text for details. B(i) unfiltered LFP output (units of mV). B(ii) PSD (power
spectral density) of LFP (units of mV2/Hz). C(i) 4 second (s) raster plot. C(ii) 300 millisecond (ms) raster plot, as taken from
the last 300 ms of the simulation. Raster plots are of the excitatory cell types (PYR) and the eight inhibitory cell types (BiC, PV,
CCK, OLM, AAC, NGF, IVY, SCA) as in the original CA1 FSM that includes 311,500 PYR (in blue); 2,210 BiC (in orange);
5,530 PV (in red); 3,600 CCK (in green); 1,640 OLM (in grey); 1,470 AAC (in grey); 3,580 NGF (in grey); 8,810 IVY (in
grey) and 400 SCA (in grey). The colours match those of the stylized cells in the schematic of A.

To further distill the essence of cell types that would be sufficient to have theta rhythms in the FSM, we examined external
drives and connections between all of the cell types given their numbers and synaptic weights, where computed EWs are
representative of cell numbers and synaptic weights (see Methods). Based on this examination, we noted that the AACs have
the lowest external drive (not including OLM cells which have zero external drive), and that the NGF cells have either zero
or minimal (EWs<1) inputs to them. This can also be easily discerned from the schematic of FIGURE 1 where connection
strengths are visualized in a relative fashion. Given this, we considered that PYR cells, PV+BCs, BiCs and CCK+BCs are the
critical cell types for the existence of theta rhythms. Focusing on these four cell types, we now move on to develop precise
hypotheses of theta-gamma rhythm generation in the FSM. Given the high level of biophysical detail in the FSM, it is reasonable
to consider it as a biological proxy. Thus, it would be reasonable to extrapolate any determined insights of understanding
theta-gamma rhythms and couplings to the biological hippocampal system.

We now zoom in on 300 msec of the full 4 sec raster plot output to be able to do a careful examination of the cell firings
in the FSM. This is shown in FIGURE 1C(ii) where only a handful of theta cycles are present and gamma firings can be
easily seen. We observe certain dynamics that speak to particularly important connections between the four cell types. At the
beginning of any given theta cycle the PYR cells start firing as a result of (noisy) external excitation they receive to initiate
the theta rhythm. By virtue of their recurrent connectivity, more and more cells can participate and the PYR cell activity (i.e.,
the number of PYR cells that are active) is elevated due to the progressive recruitment of PYR cells. This activity increase
is easily seen in the PYR cell raster plot (FIGURE 1C(ii)). We already know from our previous modeling work that theta
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rhythm expression is possible with a large enough number PYR cells that have some recurrent connectivity39. In that work, we
distinguished the PYR cell population, and not any of the inhibitory cell populations, as the theta rhythm initiators. Further, we
showed the promotion of increased PYR cell clustering as the recurrent excitation increased (see Figure 6 in39). The importance
of having these ’rare’ recurrent connections for the presence of theta rhythms was already noted by Bezaire et al32.

Continuing on, we see that at some critical point the PYR cell activity exceeds a certain threshold that leads to significant
activation of the BiCs as well as concurrent enhancement of the PV+BC activity. The strong activation of these PV+ cell types
(i.e., PV+BCs and BiCs) in turn strongly inhibits the PYR cells, effectively silencing them. That is, the activity of the PYR
cells is sharply terminated once it reaches a threshold due to concurrent PV+ cell activation. Once the PYR cell activity drops,
so does the PV+ cell activity which then eventually leads to the PYR cells being able to start firing again. For this, enough PYR
cells need to be sitting near their firing threshold. We now evaluate these observations by selectively deactivating connections
in the FSM.

Dissecting the theta/gamma FSM circuit
We test the sharp theta termination by directly by removing either PV+BC or BiC connections to the PYR cells. In FIGURE 2A
& B, we show that these removals abolish theta rhythms. That is, the theta bursts simply can’t be terminated as the inhibitory
connections from PV+BCs or BiCs are no longer there. In SUPP FIGURE 2, we show that theta rhythms are also abolished if
the connections from PYR cells to either PV+BCs or BiCs are removed. This is because in the absence of these connections, the
PYR cells can’t activate these PV+ cells (BiCs or BCs) once they exceed a critical threshold of activity and as a result the PV+
cells can’t silence them back to sharply terminate their activity and allow another (theta) cycle to begin. With these connection
removals, the PYR cells only exhibit a gamma rhythm due to being entrained by the gamma firing inhibitory cells. We note that
these simulations in which we removed particular connections expose different aspects relative to the muting experiments done
by Bezaire et al.32. In Bezaire’s case, muting the cells essentially removed the particular cells from the overall circuit. Here, in
removing particular connections, we show the contribution of specific cellular pathways in the generation of theta rhythms.

Figure 2. FSM output when connections between different cell types are removed.
A. PV to PYR connections removed. B. BiC to PYR connections removed. C. PYR to PYR connections removed. D. CCK to
PV connections removed. Each part shows a schematic illustration that highlights the particular connections that are removed,
and (i) show the last 300 ms of raster plot firings for PYR, BiC, PV and CCK cells. (ii) unfiltered LFP. (iii) PSD of LFP. Units,
colors and naming abbreviations are the same as FIGURE 1;

As already noted above, the initiation of the theta rhythm is known to be due to the PYR cell population39. The requirement
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of recurrent connectivity is shown in FIGURE 2C where connections between PYR cells are removed to reveal the loss of
theta rhythms. The inhibitory cells contribute to the net input that the PYR cells receive but are not directly responsible for the
initiation of the theta rhythm. If there is a reduction in the net input received by the PYR cells and/or the PYR cells are less
excitable, then theta rhythms would not be able to be initiated. Interestingly, in our previous modeling we had found that the
LFP theta frequency has a linear correlation with the net input received by the PYR cells39, and in the FSM of Bezaire et al32,
the particular theta frequency is in line with this correlation. Details are provided in the Methods.

Along with PV+BCs and the BiCs, Bezaire et al.32 showed that CCK+BCs are pivotal for theta rhythms since there is
no theta rhythm with the muting of this cell type. In the FSM there are connections from CCK+BCs to PV+BCs, BiCs and
PYR cells. Removing connections from CCK+BCs to BiCs does not eliminate the theta rhythm, but the rhythm is lost if
connections from CCK+BCs to either PYR cells or PV+BCs are removed. For the connection removal to PYR cells, this is not
surprising given the above described observation of PV+BCs and BiCs terminating the theta burst. However, the loss of theta
with the connection removal to PV+BCs is not so intuitive. FIGURE 2D shows the simulation in which removing the CCK+BC
connections to PV+BCs results in a clear loss of the theta rhythm.

Looking at the zoomed in raster plots of the focused four cell types in FIGURE 1C(ii), one can clearly discern higher
frequency gamma rhythms expressed in PV+BCs and CCK+BC+ as well as in the PYR cells where the slower frequency theta
rhythms are also apparent. Theta and gamma rhythms are both present in the LFP signal as seen from the power spectrum
(FIGURE 1B(ii)) The gamma rhythm seen in the LFP output is produced by the gamma-paced entrainment of the noisy-firing
PYR cells as follows: The PV+BCs and the CCK+BCs fire at gamma frequencies and organize themselves into coherently
firing populations. The PV+BCs and the CCK+BCs also form connections with the PYR cells. As a result, during a theta cycle
these gamma-firing cells periodically inhibit the noisy firing PYR cells forcing them to burst in a gamma-paced manner. This
results in a gamma rhythm being present with the progressive recruitment of PYR cells toward the peak of the theta cycle.
Because the amplitude of the gamma LFP maximizes at peak of the PYR cell theta burst (which corresponds to the peak of the
theta cycle), the amplitude of the gamma rhythm is coupled with the phase of theta, giving rise to phase-amplitude coupling of
the theta and gamma rhythms.

A reduced circuit model
From the FSM simulations and analyses described above we now have precise cell-based hypotheses of how theta/gamma
rhythms are generated in CA1 hippocampus. Namely, the theta rhythm is initiated by the PYR cell population, sharply
terminated by PV+BCs and BiCs, and connections from CCK+BCs to PV+BCs are essential for theta rhythms. By removing
particular connections in the FSM, these hypotheses were tested and confirmed. Given this, we feel confident to consider a
reduced circuit model that is derivative of the FSM. This reduction consists of the four different cell types (as rationalized above),
and only those connections deemed essential in light of the hypotheses developed in an effort to minimize the complexity of the
network system. A schematic of this reduced circuit model relative to the FSM is shown in FIGURE 3. This reduced circuit
model motivates the creation of a population rate model (PRM).

Figure 3. Rationalized reduction in complexity of CA1 hippocampus model circuit.
The left side shows the stylized schematic of the FSM. Detailed descriptions of color and naming abbreviations are given in
FIGURE 1. The right side shows a stylized schematic of the reduced model with 4 cell types and excitatory (Exc) and
inhibitory (Inh) connections between them and inputs (incoming arrows). The rationale used to consider this reduced model is
given in the main text.
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Figure 4. Output of the reduced population rate model (PRM).
A. PRM output of the activity of each cell type population (see TABLE 4 for parameter values). B. PRM output when CCK to
PV connections are removed. C. PRM output when PV to PYR connections are removed. D. PRM output when BiC to PYR
connections are removed. Naming and color scheme of the 4 cell types is the same as in FIGURE 1. Each part shows a
schematic illustration that highlights the particular connections that are removed.

Population rate model (PRM) reproduces precise hypotheses
Considering the reduced circuit model shown in FIGURE 3, we set up a population rate model (PRM) that is able to exhibit
multi-modal (theta/gamma) oscillations. The equations are provided in the Methods. Using this PRM we were able to find a set
of parameter values that give rise to theta-gamma rhythms as shown in FIGURE 4A. We refer to these parameter values as
‘reference parameters’, and the values are provided in the Methods (TABLE 4). These theta-gamma rhythms are in accordance
with the developed hypotheses. That is, the presence of theta rhythms requires PV+BC and BiC to PYR cell connections as well
as CCK+BC to PV+BC connections. In line with the hypotheses, theta rhythms are lost when these various connections are
removed, as in FIGURE 4B-D. It is interesting that this reference parameter set produces activities of CCK+BCs and PV+BCs
that fire alternately as has been experimentally shown36. We now undertake a full-blown parameter variation exploration of the
PRM and perform analyses and visualizations of thousands of simulations to see what insights and predictions can be obtained.

PRM theta frequency relationships agree with predictions and recurrent collaterals are required
In our previous work we showed that the LFP population theta frequency is correlated with the net input received by the PYR
cells39. Further, this correlation was found to be mostly due to the excitatory external drive and the inhibitory input, and not
mainly due to recurrent collateral inputs - see Figure 7d(i-iii) in39. We found that as excitatory or inhibitory input to PYR
cells increased, the theta frequency increased. The 2-D heat maps of FIGURE 5 show that this is also the case with the PRM.
Specifically, increasing the excitatory input to PYR cells (iPY R) led to increases in the theta frequency as shown in FIGURE
5A(i) where iPY R varies along the x-axis. Increasing the inhibitory input in the form of larger connection weights (i.e., more
negative values) from BiCs (wBiC→PY R) or from PV+BCs (wPV→PY R) to the PYR cells also resulted in theta frequency increases.
This is shown in FIGURE 5B(i) & C(i) where wPV→PY R and wBiC→PY R, respectively, vary along the x-axis of the 2-D heat maps.
However, modulating the recurrent excitation (wPY R→PY R) did not produce changes in theta frequencies. To show this more
directly, we plot theta frequency versus the different parameters in 1-D plots in FIGURE 5A(ii). This plot shows that there is
no change in the theta frequency as the recurrent excitatory weight (wPY R→PY R) is changed (blue triangles), but that there is a
frequency increase as the excitatory drive iPY R is increased (red circles). Additional plots in FIGURE 5B(ii) & C(ii) show that
as inhibitory input to the PYR cells increases, due to either increasing synaptic weights from BiCs (wBiC→PY R) (blue circles in
C(ii)) or from PV+BCs (wPV→PY R) (green circles in B(ii)), the theta frequency increases. The particular values shown in these
plots are shown as horizontal or vertical lines (red part of the lines) in the 2-D heat maps of FIGURE 5A(i), B(i) & C(i).
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Figure 5. Theta Frequency Control in PRM.
Theta frequency changes in the PYR cells for changes in parameter set pairs. A. Heat map for (iPY R −wPY R→PY R) is shown in
(i) and a plot from a slice is shown in (ii). B. Heat map for (wPV→PY R −wPY R→PV ) is shown in (i) and a plot from a slice is
shown in (ii). C Heat map for (wBiC→PY R −wPY R→BiC) is shown in (i) and a plot from a slice is shown in (ii). The contours in
the heat maps encompass the 6 highest power values, i.e., where there are high activity values at theta frequencies. ’Slices’ of
the heat maps are from the indicated dashed black lines, and the plots are specifically shown for ranges indicated by the red part
of the dashed black lines, as chosen to more easily see the trends in theta frequency changes.

Given the different and reduced structure of the PRM, we do not expect a direct correspondence between PRM and
FSM-generated frequencies. However, it is reassuring that we obtain similar relationships - that is, increases or decreases
in theta frequency as previously predicted using the detailed model. This implies that usage of this PRM can produce valid
relationships relative to the biological system as represented by the detailed model. We do note that there is much richness in
the PRM that can be exposed due to the expansive exploration made possible by its much reduced nature relative to the detailed
model. For example, there are parameter regimes in which the theta frequency decreases (rather than increases) when wPV→PY R
connection weights are increased - specifically, for the lower weight (less negative) values of wPV→PY R. This can be seen in the
particular heat map of FIGURE 5B(i). For completeness, we show the heat maps of theta frequency for the other three cell
types (PV+BCs, BiCs, CCK-BCs) in SUPP FIG 3.

As was previously shown in32, 33, 39, recurrent connections (wPY R→PY R) are needed for the existence of theta rhythms. To
visualize this, we compute 2-D difference heat maps that represent the subtraction of the normalized gamma power from the
normalized theta power. Blue is used to show where theta rhythms dominate, and red where gamma rhythms do. See Methods
for details regarding these computations. In this way, we are able to nicely visualize how different parameters affect theta
and gamma rhythms and their coupling. In SUPP FIG 4, we show difference heat maps for a wide range of iPY R −wPY R→PY R
parameter values, and from it, it is abundantly clear that a non-zero value of wPY R→PY R is needed to have theta rhythms. In
SUPP FIG 4, we also show a plot of the activities of the four different cell types when there is no recurrent excitation - theta
rhythms are not present.

Use of PRM predicts stronger control by CCK+BCs relative to PV+BCs for theta-gamma rhythms
In FIGURE 6A & B, we respectively show 2-D difference heat maps of iCCK − iPV and wPV→CCK −wCCK→PV parameter sets.
FIGURE 6A(i) & B(i) maps show parameter ranges that were chosen to clearly show regimes of theta or gamma rhythm
dominance, whereas FIGURE 6A(ii) & B(ii) maps show parameter ranges that are the same for both x- and y-axes. What is
abundantly clear in these difference heat maps is that CCK+BCs relative to PV+BCs can more strongly control the level of theta
versus gamma rhythm dominance. That is, a small change in the amount of input being received by CCK+BCs from PV+BCs
(wPV→CCK) can switch the dominance of whether theta or gamma rhythms are dominantly expressed. Between the blue (theta
dominance) and red (gamma dominance) is a (yellow) region where both rhythms are present - i.e., theta-gamma coupling
exists. To more easily visualize this, we add a black line to the difference heat maps where switching between gamma or theta
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Figure 6. CCK+BCs more strongly control rhythm expression and theta frequencies.
Difference Maps: [(Normalized power of theta) - (Normalized power of gamma)] are shown in A and B. Positive (blue) values
mean that theta rhythms are dominant, and negative (red) values mean that gamma rhythms are dominant. ‘Yellow’ values
mean that theta and gamma powers are comparable so that there is theta-gamma coupling (or that both theta and gamma powers
are very small). The difference map plots show CCK+BCs and PV+BCs from drive A(i) and connection perspectives B(i), and
when viewed for the same parameter range values A(ii) and B(ii). Black lines are added to delineate theta and gamma dominant
regions. Given the angle of these lines, it is clear that CCK+BCs have a higher level of control relative to PV+BCs in
determining whether theta or gamma rhythms are dominant, and hence coupled, since the slopes are steeper for changes from
CCK+BC perspectives. C(i) shows the theta frequency heat map for wPV→CCK −wCCK→PV connection weights and a plot of
the theta frequency to show that PV+BC to CCK+BC connection more strongly affect the theta frequency is shown in C(ii). As
in Figure 5, the dashed black lines show the ‘slices’ taken from the heat map in plotting the theta frequency versus either
wPV→CCK (red dots) or wCCK→PV (blue trianges) for ranges indicated by the red part of the dashed black lines.

dominance would occur, or where there is theta-gamma coupling. This theta-gamma coupling is easily seen in the activities of
the four cell types in FIGURE 4A for the reference parameters. In particular, in the PYR cell (blue) activity, but also in the
PV+BC (red) and CCK+BC (green) activities. This stronger control by CCK+BCs relative to PV+BCs is less obvious in the
difference heat maps when the drive to either CCK+BCs (iCCK) or PV+BCs (iPV ) (FIGURE 6A(ii)) is considered for the same
parameter values. That is, the slope of the black line on the iCCK versus iPV difference heat map (FIGURE 6A(ii)) is less steep
than that of the black line on the wPV→CCK versus wCCK→PV difference heat map (FIGURE 6B(ii)). For completeness, we show
the difference maps of theta frequency for the other three cell types (PV+BCs, BiCs, CCK-BCs) in SUPP FIG 4. Overall, it is
clear that the CCK+BCs more strongly control the theta-gamma coupling in the system relative to the PV+BCs.

An interesting observation is that the theta frequency is more strongly affected by modulating connection strengths from
PV+BCs to CCK+BCs than the other way. This is visualized in the frequency heat map shown in FIGURE 6C(i). Similar to
FIGURE 5, we show a theta frequency plot (FIGURE 6C(ii))) as these connections are varied, with horizontal or vertical dashed
line representing the particular values in the plot where wPV→CCK (horizontal) or wCCK→PV (vertical) changes occur. It is clear
that the theta frequency minimally changes with wCCK→PV modulation, unlike with wPV→CCK modulation. For completeness,
we show the heat maps of theta frequency for the other three cell types (PV+BCs, BiCs, CCK-BCs) in SUPP FIG 4.

FSM provides support for PRM predictions
The prediction of the importance of CCK+BCs for theta-gamma coupling from the PRM was possible because of the extensive
and systematic parameter exploration that could be carried out in the reduced circuit model (FIGURE 3). However, we were
able to probe this thoroughly in a ’clamped’ version of the detailed model network. We did this with a ’slice’ of the FSM as used
before by Chatzikalymniou et al.39. We performed a grid search of each of the postsynaptic weights received by PV+BCs from
the different cell types to find out how these weights impact the PV+BC activity. In particular, we found that a small increase
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in the synaptic weight from CCK+BCs to PV+BCs could lead to a large decrease in PV+BC firing, akin to a ’bifurcation
point’ in dynamical systems parlance. This was not observed with changes in any of the other synaptic weights from other cell
types examined. Details are provided in the Methods. These observations indicate that a strong disinhibition of the PV+BCs,
specifically mediated by the CCK+BCs, induces a sudden increase in the PV+BC firing rate and thus important in mediating
the sharp termination of PYR cell firing for theta rhythms.

Experimentally, CCK+BCs and PV+BCs show complementary activities and CCK+BCs inversely scale with PYR cell
activities36 This would be in line with disinhibition of PV+BCs by CCK+BCs and its subsequent effect on PYR cell firing.
Additionally, Fasano et al.42 have shown that CCK+BCs, as identified by atypical vesicular glutamate transporters, alter theta
oscillations.

Discussion
In this paper, we presented a detailed explanation of how theta and gamma rhythm mechanisms could arise in the CA1
hippocampus and showed that CCK+BCs play a controlling role in theta-gamma coupled rhythms. We built upon earlier
modeling studies that brought together minimal33 and detailed32 CA1 microcircuit models with defined inhibitory cell types
that produce theta rhythms and showed that large enough PYR cell networks could initiate theta rhythms with inhibitory
cell populations ‘regularizing’ the rhythm. We termed this an ‘inhibition-based tuning’ mechanism39, 43. The theta rhythm
generation is initiated by the PYR cell population which also sets the theta frequency, but the termination of the theta bursts is an
inhibition-mediated mechanism which contributes to the robustness and stability of the rhythm. In their original study, Bezaire
and colleagues32 described the preferential discharge of the PYR cells at the trough of the LFP analog and the subsequent
strong recruitment of PV+BCs and BiCs to silence the PYR cells, but the specifics leading to the termination of the theta burst
were not parsed out. They also described the progressive recruitment of PYR cell firings towards the peak of the theta cycle, but
the prominent role of the PYR cells as theta rhythms initiators was first demonstrated and discussed in Chatzikalymniou et al39.

From our explorations of the detailed model here, we directly showed that PV+BCs and BiCs are responsible for the sharp
termination of PYR cell firing. Of note, we found that CCK+BCs, more than any other inhibitory cell type, play a key role in
PV+BC firing. Gamma rhythms arose from CCK+ and PV+ basket cell networks being sufficiently driven. Using the four cell
types of PYR cells, PV+BCs, CCK+BCs and BiCs, we generated theta-gamma rhythms in a reduced population rate model
(PRM). The PRM reproduced the specific contributions of these four different cell populations seen in the detailed full-scale
model (FSM). From extensive simulations and visualization analyses of the PRM, we predicted that CCK+BCs more strongly
controlled theta-gamma rhythms than PV+BCs. We further predicted that PV+BC to CCK+BC connections can more strongly
affect theta frequencies relative to CCK+BC to PV+BC connections. We note that these predictions ’fell out’ of the dynamic
circuit interactions in the PRM with its particular cell type activities. While we were able to capture much with our many 2D
visualization plots from our thousands of simulations, further insights may be possible by doing theoretical analyses of the
PRM. This type of extensive exploration can be done using such reduced models that have much less parameters relative to
detailed models. Importantly, as the PRM was built based on precise hypotheses developed from the biophysically detailed
FSM, the predictions arising can be considered to be more biologically plausible from cell type specifics, relative to a ‘generic’
PRM. As tools to identify and target CCK+BCs have been developed36, we can envisage designing experiments to directly test
predictions arising from our work.

The initiation of theta rhythms by the PYR cell population in the hippocampus is also likely to be the case in the biological
system since the existence of ‘threshold behaviour’ in initiating hippocampus population bursts has been shown before by de la
Prida et al44. Also, theta-resonant behaviour is expressed by PYR cells45, 46. Interestingly, in another network modelling study,
the necessity of PYR cells to be near their threshold for firing was exploited to explain how reduced excitatory fluctuations
could lead to hyper-excitability in mouse models of Rett syndrome47.

The high frequency gamma rhythms seen in the model LFP (entwined with the slower frequency theta rhythm) is more akin
to the so-called ING (interneuron network gamma) rather than PING (pyramidal-interneuron network gamma) mechanism48.
That is, the PV+ and CCK+ BC networks have appropriate ‘input and balance’ to create coherent network output at gamma
frequencies, which is then imposed onto the PYR cell population. It is not a PING mechanism since gamma coherence does not
(overall) rely on phasic input from PYR cells – indeed, CCK+BCs do not receive any PYR cell input in the FSM of Bezaire
et al32. The fact that there is a phasic aspect to the theta/gamma rhythms in the model is related to the described PYR cell
clustering aspects. PING and ING certainly help us think about what sort of excitatory and inhibitory balances might be key, but
the additional cell types and the multi-modal oscillation considerations here supercede these classical ideas. What ultimately
matters is what experiments can be done to differentiate and understand the contributions from the various excitatory and
inhibitory cell types in producing the circuit output, such as considered by Tiesinga and Sejnowski many years ago in another
context49.

Our results are of course limited by what exists in the detailed FSM which was put together as carefully as possible given a
‘knowledge base’ of the available experimental data at the time35. For example, we did not try to include PYR cell to CCK+BC
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connections in the PRM since they are not present in the FSM even though such connections likely exist36. Also, we did not
include CCK+BC to PYR cell connections in the PRM even though they are present in the FSM. This does not negate the PRM
results here. Rather, our interpretation would be that CCK+BC to PV+BC connections are more critical rhythm controllers than
connections from CCK+BCs to PYR cells. We note that the AACs form strong connections with the PYR cells in the FSM
and it is likely that they contribute to the termination of the theta burst along with the PV+BCs and BiCs. We rationalized not
including them in the PRM not only because we were trying to minimize the number of different cell types, but also because
they were not strongly driven in the FSM.

While the theta mechanism presented in this study is based on the specific connectivity of the FSM network, the relative
strength of connections between inhibitory populations evidently changes across the septo-temporal axis of the CA1 and
across layers50, 51. Navas-Olive et al51 have shown that PV+BCs preferentially innervate PYR cells at the deep sublayers while
CCK+BCs are more likely to target the superficial PYR cells. Also, there is different innervation of PYR cells by BiCs and
OLM cells in deep versus superficial PYR cells. How these differential connectivities affect theta-gamma rhythm control could
be understood by examining various dynamic balances in the PRM. Further, specific known motifs that include VIP+ cell
types52 are indirectly encompassed in the PRM via the inputs received by the different cell types and so their contributions can
be indirectly considered in the theta/gamma mechanisms. Moving forward, one could imagine expanding the PRM to include
additional cell type populations and connectivities to develop further hypotheses and to obtain predictions for experimental
examination.

The plethora of inhibitory cell types with particular biophysical characteristics and connectivities in the hippocampus53

make it challenging to figure out their particular contributions to dynamic network oscillations in the behaving animal. As theta
and gamma oscillations and their coupling reflect cognitive processing and are potential disease biomarkers, and involve the
various inhibitory cell types, we cannot ignore the potential roles played by these different types of interneurons. Interestingly,
it has been shown that timescale gradients are significantly correlated with inhibitory cell-type markers54. In conclusion, our
work presented here shows that we can determine specific contributing roles of various inhibitory cell types by developing
hypothesis-driven population rate models from detailed biophysical models. As tools to identity and control particular inhibitory
cell types become more available, one can imagine leveraging these tractable PRM models for prediction and experimental
design.
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Methods
Detailed CA1 microcircuit: full-scale model (FSM)
The original fullscale CA1 microcircuit repository which can be found at ModelDB at: https://senselab.med.
yale.edu/ModelDB/showModel.cshtml?model=187604. A new model version in python is now also available
at: https://github.com/dhadjia1/ca1-microcircuit. Analysis of simulation outputs can be recreated us-
ing the publicly available SimTracker tool55. Documentation on SimTracker and installation instructions can be found at:
https://simtrackercode.readthedocs.io/en/compiled/. It is recommended that users install SimTracker
first and then install and register the CA1 model under SimTracker, to take advantage of the visualization functionalities of the
SimTracker package. This tool is offered both as a stand-alone, compiled version for those without access to MATLAB (for
Windows, Mac OS X, and Linux operating systems), and as a collection of MATLAB scripts for those with MATLAB access.
Once the SimTracker and the CA1 repository are installed, users can run simulations either on their local machines using a
small scale of the CA1 network, or on supercomputers as needed for full scale network simulations. To reproduce the findings
presented here, one needs to first familiarize oneself with the CA1 microcircuit background and code.

A 10% ’slice’ of the FSM32 is used in39. It is created from the FSM by reducing the volume and the number of cells by a
tenth, as well as dividing all the connections in the network by a factor of ten so that we have a ‘slice’ and not a normalization
of the FSM. The grid search is carried out using this model. In the FSM there are eight different inhibitory cell types and
excitatory PYR cells. All of these cell types are connected in empirically specific ways based on an extensive knowledge-based
review of the literature35. The cells are evenly distributed within the various layers of the CA1 (stratum lacunosum-moleculare,
radiatum, pyramidale, oriens) in a three-dimensional prism. Afferent inputs from CA3 and entorhinal cortex (EC) are also
included in the form of Poisson-distributed spiking units from artificial CA3 and EC cells (referred to as ’other input’ in TABLE
1). We note that although there are layer-dependent specifics regarding how the different cell types are arranged in the FSM,
there are not any differences along the longitudinal axis. As such, the connection probabilities in any particular part of the
longitudinal axis would be the same. Power spectral densities of FSM LFP output shown in FIGURES 1-2 are generated using
a Welch periodogram python code -the same as that used in analyzing the population rate model described below.
Input currents to individual cells of the FSM
In order to obtain the input currents received by a cell in the FSM, the Network Clamp tool of the SimTracker software
package55 was used. Using data obtained from the full-scale CA1 microcircuit simulations of Bezaire et al.32 that are available
on the CRCNS repository at: https://portal.nersc.gov/project/crcns/download/index.php, and the
Network Clamp tool, one can explore the activity of any single neuron within the network. In this manner, we investigated five
PYR cells and the input currents each of them received from all the other cell types in the network in the control network. We
computed the mean net input current (-9.35 nA) across these five PYR cells, as well as the standard deviation in the net input
current (0.13 nA). From a periodogram of the FSM of Bezaire et al, the theta frequency is 8.5 Hz. From the linear correlation
between theta frequency and input current that we previously obtained39, this frequency value would be due to an input current
around 10 nA. Thus, the computed net input current here reasonably agrees with this relationship.

Grid search details using the network clamp technique
Using the Network Clamp tool, we can take a snapshot of the incoming synaptic input received by any particular cell in the
network. We used it to undertake an in-depth exploration of the control of PV+BC activity due to inputs from other cell types.
We applied it as follows: First, we obtained the output of an initial full-network simulation and ran network clamp simulations
on a PV+BC. We altered the incoming afferent synapse weights (but not the incoming spike trains) and examined how PV+BC
activity was affected. This approach gives an estimate of how the synaptic weights affect the PV+BC firing. From this, one can
gain insight into how the post-synaptic weights might affect the full network simulations.

The manner in which we undertook our exploration is illustrated in FIGURE 7. We used the following pipeline of analysis:

1. Explore the post-synaptic weights onto a given PV+BC. Starting from a given set of reference values (r.v.), vary the
post-synaptic weights from all eight pre-synaptic cell types to the PV+BC, and search the range of post-synaptic weights
for each pre-synaptic cell type. The range used is [-50% (r.v.), +50% (r.v.), 25%] (start value, end value, step), and as
such it contains 5 values which are: -50% (r.v.) | -25% (r.v.) | r.v. | +25% (r.v.) | +50% (r.v.). Explore the co-variation of
these values. Since every post-synaptic weight can take 5 values and that we explore a set of eight post-synaptic weights,
we have a total of 58 = 390,594 configurations.

2. Perform network clamp simulations for all configurations and store the voltage trace of the PV+BC for each configuration.

3. Calculate the inter-spike intervals (ISIs) of every voltage trace using the open-source eFEL library (https://github.
com/BlueBrain/eFEL).

4. Plot the mean ISI across all configurations. This is shown in FIGURE 7.
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Figure 7. The PV+BC ISIs as a function of the configuration number of the post-synaptic weight combinations.
We iterate over the post-synaptic PV+BC weights according to the process described Methods. A. Recursive algorithm of the
grid search over a range of five post-synaptic weights per cell type. B. Iteration over the postsynaptic weights gives rise to a
fractal-like pattern in which similar patterns recur at progressively smaller scales. (i) On the largest scale we identify a group of
five repetitive motifs where each motif corresponds to a given AAC post-synaptic weight value. (ii) Within each of these motifs
another group of five repetitive motifs corresponds to the five BiC post-synaptic weight values. (iii) Equally within each one of
these five motifs another group of five similar motifs corresponds to the five CCK+BC post-synaptic weight values and so on.
Incremental increases of the other five post-synaptic cell weights which don’t influence PV+BC firing significantly.
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Observations
In FIGURE 7, we show the result of a grid search representing the co-variation of eight post-synaptic conductances. Following
the simple visualization scheme shown in FIGURE 7A, we can easily discern the effect that each presynaptic cell has on
the firing rate of the PV+BC. We distinguish a number of patterns. As expected, incrementally strengthening the inhibitory
PV+BCs post-synaptic weights decreases the PV+BC firing rate (larger ISIs). However, for a critical value of the CCK+BC to
PV+BC conductance, we noticed a sudden decrease in the PV+BCs firing frequency which can be up to 20Hz. This transition
always occurred at a critical value of the CCK+BC to the PV+BC conductance. Once that critical value is reached, a small
increase in the rest of the conductances, especially the PV+BC to PV+BC, mediates an abrupt elevation of the PV+BC mean
firing rate (by means of ISI). This observation reveals that, provided that the network operates close to this critical point, small
changes in the CCK+BC activity can induce a sudden change (increase or decrease) of the PV+BC firing rate. Such a critical
value always exists regardless of the combination of the rest of the post-synaptic conductances.

In essence, our grid search shows that if one sits close to a critical point (a point representing a post-synaptic conductance
configuration in close to a sharp transition of the PV+BC ISI), a small decrease in the CCK+BC to PV+BC conductance induces
a vast increase in the firing rate of the PV+BCs, even by 20 Hz. This would support the argument that a strong disinhibition
of the PV+BCs, mediated by the CCK+BCs can induce a sudden increase in the PV+BC firing rate and mediate the sharp
termination of the PYR population. If the FSM dynamics follow those of our grid search of the clamped network model, then
a strong inhibition of the CCK+BCs would effectively release the PV+BCs from the CCK+BC inhibition causing a sudden
increase in the firing rate of the PV+BC.

High performance computing simulations
We implement our simulations on Scinet56, 57 on the Niagara clusters, using 10-12 nodes per simulation with 40 cores per node.
Each FSM simulation takes approximately 8 hours real time to be executed. Several FSM simulations were carried out with
removal of particular connection. The grid search of post-synaptic weights was also carried out on scinet using 1 node (40
cores per node) and took approximately 3 hours.
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FSM parameter value sets
To rationalize the focus on a subset of the several different cell types in the FSM, we considered the ’Other Input’ (external
drives) received by different cell types (see TABLE 1). From this table, it is clear that AACs receive the smallest amount of
other input.

Cell Type Other Input Number of Cells
PYR cell 2,914 311,500
CCK-BC 3,327 3,600
PV-BC 2,661 5,530
BiC 1,864 2,210
OLM cell 0 (NONE) 1,640
AAC 1,117 1,470
Ivy cell 1,154 8,810
SCA cell 1,680 400
NGF cell 3,661 3,580

Table 1. Number of cells and other input to each cell type in the FSM of Bezaire et al.32.

As well, we extracted connectivities between all the different cell types in the FSM. Specifically, we compute an effective
weight (EW) which is the connection probability times the synaptic weight. The EWs are shown in TABLES 2 and 3. Note that
computed EW values are multiplied by 100 to reduce decimal zeroes.
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Connection Number of Connection Synaptic EW Value
Coupling Connections Probability Weight (nS) (× 100)
PYR->PYR 197 0.00063 70.0 4.4
PYR->BiC 3 0.0014 5.7 0.80
PYR->PV 8 0.0015 2.1 0.32
PYR->OLM 13 0.0079 0.6 0.47
PYR->CCK - - - 0 (NONE)
PYR->AAC 1 0.00068 0.12 0.0082
PYR->Ivy - - - 0 (NONE)
PYR->NGF - - - 0 (NONE)
PYR->SCA - - - 0 (NONE)
BiC->BiC 16 0.0072 5.1 3.7
BiC->PYR 1410 0.0045 5.1 2.3
BiC->CCK 26 0.0072 8.0 5.8
BiC->PV 40 0.0072 90.0 64.8
BiC->OLM 29 0.018 0.2 0.35
BiC->AAC 11 0.0075 6.0 4.5
BiC->Ivy 12 0.0014 5.0 0.68
BiC->NGF - - - 0 (NONE)
BiC->SCA 3 0.0075 8.0 6.0
CCK->CCK 35 0.0097 3.6 3.5
CCK->PV 18 0.0033 72.0 23.8
CCK->PYR 1125 0.0036 4.2 1.5
CCK->BiC 7 0.0032 5.6 1.8
CCK->OLM 9 0.0055 5.6 3.1
CCK->AAC 5 .0034 5.6 1.9
CCK->Ivy 20 0.0023 2.4 0.55
CCK->NGF - - - 0 (NONE)
CCK->SCA 3 0.0075 5.6 4.2
PV->PV 39 0.0071 1.6 1.1
PV->PYR 958 0.0031 2.2 0.7
PV->CCK 25 0.0069 1.2 0.8
PV->BiC 16 0.0072 2.9 2.1
PV->OLM - - - 0 (NONE)
PV->AAC 10 0.0068 0.12 0.8
PV->Ivy 13 0.0015 0.16 0.024
PV->NGF - - - 0 (NONE)
PV->SCA 2 0.005 0.6 0.3
OLM->OLM 6 0.0037 1.2 4.4
OLM->PV 27 0.0049 11.0 5.4
OLM->CCK 88 0.024 12.0 28.8
OLM->BiC 11 0.0050 1.1 0.55
OLM->PYR 1520 0.0049 3.0 1.5
OLM->AAC 7 0.0048 1.2 0.57
OLM->Ivy - - - 0 (NONE)
OLM->NGF 28 0.0078 0.98 0.77
OLM->SCA 10 0.025 1.5 3.8

Table 2. Connectivities based on32 Appendix values for PYR cells, BiCs, CCK-BCs, PV-BCs and OLM cells.
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Connection Number of Connection Synaptic EW Value
Coupling Connections Probability Weight (nS) (× 100)
AAC->AAC - - - 0 (NONE)
AAC->PYR 1271 0.0041 6.9 2.82
AAC->BiC,PV,OLM,CCK,Ivy,NGF,SCA - - - 0 (NONE)
Ivy->Ivy 24 0.0027 0.57 0.16
Ivy->PYR 1485 0.0048 0.41 0.20
Ivy->BiC 6 0.0027 0.77 0.21
Ivy->PV 15 0.0027 7.0 1.90
Ivy->OLM 25 0.015 0.57 0.87
Ivy->CCK 39 0.011 0.37 0.40
Ivy->NGF 11 0.0031 0.57 0.18
Ivy->SCA 5 0.013 0.37 0.46
Ivy->AAC 4 0.0027 0.57 0.16
NGF->NGF 17 0.0047 1.6 0.76
NGF->PYR 1218 0.0039 0.65 0.25
NGF->BiC,PV,OLM,CCK,Ivy,SCA,AAC - - - 0 (NONE)
SCA->SCA 6 0.015 6.0 9.0
SCA->PYR 1558 0.005 4.6 2.3
SCA->BiC 7 0.0032 3.6 1.15
SCA->PV 14 0.0025 7.8 1.95
SCA->OLM 8 0.0049 5.1 2.5
SCA->CCK 50 0.014 5.1 7.1
SCA->Ivy 44 0.0050 5.1 2.6
SCA->NGF - - - 0 (NONE)
SCA->AAC 4 0.0027 3.6 0.98

Table 3. Connectivities based on32 Appendix values for AACs, Ivy cells, NGF cells and SCA cells.
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Population Rate Model (PRM)
In order to disambiguate the respective role of cell types and their mutual connectivity motifs in the generation and control
of theta-gamma coupling in the hippocampus, we developed a reduced, system-level population rate model (PRM). This
phenomenological model combines connections and cell types that are identified as critical in generating oscillatory activity
and theta-gamma coupling based on previous work39 and systematic parameter exploration of the detailed model32 here. The
purpose of the PRM is the identification and analysis of key mechanisms involved in cross-frequency interactions and oscillatory
control over hippocampal microcircuits, following the formalism of population-scale mean-field models.

The PRM describes the time evolution of PYR cell, CCK+BC, PV+BC and BiC mean firing rates (rPY R,rBiC,rCCK and rPV )
as a function of their mutual connectivity motif (FIGURE 3), synaptic weights (wn→m, for n,m = PY R,BiC,CCK and/or PV )
membrane rate constants (αPY R,αBiC,αCCK and αPV ), synaptic and axonal delays (τ), population-specific inputs (iPY R, iBiC, iCCK
and iPV ) as well as intrinsic random fluctuations, and how these collectively contribute to the generation of rhythmic firing
rate modulations. The resulting model builds on the well-known Wilson-Cowan58formalism, resulting in the following set of
nonlinear delayed stochastic differential equations,

α
−1
PY R

drPY R

dt
= −rPY R + ro f [IPY R]+

√
2DPY RξPY R(t) (1)

(2)

α
−1
BiC

drBiC

dt
= −rBiC + ro f [IBiC]+

√
2DBiCξBiC(t) (3)

α
−1
CCK

drCCK

dt
= −rCCK + ro f [ICCK ]+

√
2DCCV ξCCK(t) (4)

α
−1
PV

drPV

dt
= −rPV + ro f [IPV ]+

√
2DPV ξPV (t) (5)

(6)

where ro represents the maximal firing rate of the neurons. Fluctuations in mean firing rates results from the nonlinear
integration of presynaptic inputs Im (here and below, m = PY R,BiC,CCK or PV ) combined to the effect of random perturbations
of variance Dm in which ξm are uncorrelated zero mean Gaussian white noise process such that < ξm(t)ξn(s)>= δnm(t − s),
where <> is a temporal average and δ is the Dirac delta function. Presynpatic inputs Im scale firing rates through the firing rate
response function

f [Im] =
1

1+ e−β Im
(7)

whose gain β reflects the steepness of the response. The presynaptic inputs IPY R, IBiC, ICCK and IPV are given by

IPY R = wPY R→PY RrPY R(t − τ)+wBiC→PY RrBiC(t − τ)+wPV→PY RrPV (t − τ)+ iPY R (8)
IBiC = wPY R→BiCrPY R(t − τ)+ iBiC (9)

ICCK = wCCK→CCKrCCK(t − τ)+wPV→CCKrPV (t − τ)+ iCCK (10)
IPV = wCCK→PV rCCK(t − τ)+wPV→PV rPV (t − τ)+wPY R→PV rPY R(t − τ)+ iPV (11)

(12)

Cell-type specific inputs (iPY R, iBiC, iCCK and iPV ) represent external stimuli modulating the excitability of the different cell
populations. A minimal time delay of τ = 5ms was included to represent finite axonal and synaptic conduction. The parameters
αm represents the membrane rate constant and sets the time scale at which populations respond to stimuli. The coupling
constants wm→n represent the synaptic weights from population m to population n for n,m = PY R,BiC,CCK and/or PV .
Reference parameter values that produce the control output shown in FIGURE 4A are given in TABLE 4.

The PRM exhibits co-modulated oscillations within the gamma and theta frequency ranges. Since the PYR cells constitute
the majority of the cells in the network, it is reasonable to consider the PYR cell activity as an LFP proxy. In the absence
of multi-compartment representations, various LFP proxies have been used59 that include number of ’firing cells’60 which
is in essence the PYR cell activity in the PRM. Co-modulated oscillations result from a combination of excitation-inhibition
relaxation oscillations and delay-induced oscillations whose peak frequency and power - and resulting dominance - are
controlled by a combination of parameters which we explore systematically in FIGURES 5 and 6.
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Symbol Definition Value
β Response function gain 10au
τ Conduction delay 5ms
αPY R PYR cell rate constant 50Hz
αBiC BiC rate constant 50Hz
αCCK CCK+BC rate constant 80Hz
αPV PV+BC rate constant 100Hz
wPY R→PY R PY R → PY R coupling 0.03au
wPY R→BiC PY R → BiC coupling 0.04au
wPY R→PV PY R → PV coupling 0.02au
wBiC→PY R BiC → PY R coupling -0.03au
wCCK→CCK CCK →CCK coupling -0.15au
wCCK→PV CCK → PV coupling -0.15au
wPV→PV PV → PV coupling -0.055au
wPV→PY R PV → PY R coupling -0.04au
wPV→CCK PV →CCK coupling -0.075au
iPY R Input to PYR cells 0.07au
iBiC Input to BiCs -1.05au
iCCK Input to CCK+BCs 0.7au
iPV Input to PV+BCs 0.45au
DPY R Noise variance to PYR cells 0.001au
DBiC Noise variance to BiCs 0.001au
DCCK Noise variance to CCK+BCs 0.001au
DPV Noise variance to PV+BCs 0.001au
ro Maximum firing rate 30Hz

Table 4. Reference parameter values for the PRM.

Simulations and visualizations of the PRM
Each of the thousands of simulations was performed for a duration of 2.0 s with a step size of dt = 0.001 s. The differential
equations were integrated using a forward Euler method and the output from each of the four different cell type populations
in the model was filtered using a band pass filter. For consideration of the theta (θ ) band frequency, the output was filtered
between 3−15 Hz while for consideration of the gamma (γ) band frequency, the output was filtered between 15−100 Hz. The
peak frequency was obtained by finding the frequency corresponding to the highest peak in a Welch periodogram (using the
welch function of the scipy.signal module in Python with nperseg = 1024). The power of the peak frequency was also recorded
from the Welch periodogram. Python code to automate the sets of simulations and create all the subsequent visualisations are
given in: https://github.com/FKSkinnerLab/PRM.git

Heat Maps and Contours: Two-dimensional heat maps of θ and γ frequencies and power were created for different sets of
parameters. For each pair of parameter values that were explored, the range of values for each parameter was divided into 300
equally spaced intervals, creating a 300x300 grid in the two dimensional parameter space. For each point in the grid, the model
was simulated using the corresponding values for the parameters being explored while keeping all the other parameters at their
reference values. The corresponding frequency and power for the θ and γ bands were recorded for each point in the grid. Power
contours were added to the frequency heat maps to create the plots shown in FIGURES 5 and 6. Six evenly spaced contours
were drawn that are representative of the entire range of power values over that grid (using the MaxNLocator function of the
matplotlib.ticker module in Python), and were added to the frequency heat map.
Power Difference Maps: For comparing the relative power of the θ and γ oscillations, each of the individual power maps were
normalised within their range of values, and the difference of (θ − γ) normalized powers is calculated. A positive (negative)
result indicates a stronger θ (γ) rhythm due to its larger normalized power.
Theta Frequency Plots: For each of the θ frequency plots shown in FIGURES 5 and 6, one of the parameters was held
constant at a value such that a range of θ frequencies over an entire range of values of the other parameter that was being
explored had reasonably large power values. The other parameter was varied across the chosen range and the θ frequency of
the PYR cell was recorded for each point after filtering the output. The ranges and constant values were chosen such that the
power of the θ oscillations never fell below 10% of its maximum value over the previously explored parameter space for the
iPY R −wPY R→PY R and wPV→CCK −wCCK→PV ranges, and 25% for the wBiC→PY R −wPY R→BiC and wPV→PY R −wPY R→PV ranges.
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Supplementary Material

• SUPP FIG 1: Theta phase preference detail. LFP showing two theta cycles over 300ms with respective histogram
plots of the eight inhibitory cell types and the PYR cells showing peak cellular firings relative to the LFP trough.

• SUPP FIG 2: Additional connection removals in the detailed model.
A. Removing PYR cell to PV+BC connections. (i) Raster plots of cell firings (ii) unfiltered LFP, (iii) Welch’s Periodogram
of LFP. B. Removing PYR cell to BiC connections. (i) Raster plots of cell firings (ii) unfiltered LFP, (iii) Welch’s
Periodogram of LFP. C. Removing PV+BC to CCK+BC connections. (i) Raster plots of cell firings (ii) unfiltered LFP,
(iii) Welch’s Periodogram of LFP.

• SUPP FIG 3: Theta frequency heat maps for other cell types.
BiC, PV+BC and CCK+BC cell types of the PRM for the same parameter sets in Figure 5 of main text are shown. Only
PYR cell theta frequency heat maps are shown in the main text.
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• SUPP FIG 4: Difference heat maps.
Normalized theta and gamma power for ipyr −wpyr,pyr are shown for all 4 cell types in difference heat maps (see Methods).
Also shown is a plot of the output of cell activities with reference parameter values but when connections between PYR
cells are removed (wpyr,pyr = 0).

• SUPP FIG 5: Additional difference heat maps.
BiC, PV+BC and CCK+BC cell types of the PRM for the parameter sets in Figure 6 of main text are shown. Only PYR
cell heat maps are shown in the main text.
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