
1 
 

Dynamic DNA methylation reveals novel cis-regulatory elements in murine hematopoiesis 

 

 

Maximilian Schönung1,2, Mark Hartmann1,3, Stephen Krämer1,2,4, Sina Stäble1, Mariam 
Hakobyan1,2, Emely Kleinert1, Theo Aurich5,6, Defne Cobanoglu1,7, Florian H. Heidel8,9, Stefan 
Fröhling10, Michael D. Milsom5,6, Matthias Schlesner4, Pavlo Lutsik11, Daniel B. Lipka1,12 
 
 
1 Section Translational Cancer Epigenomics, Division Translational Medical Oncology, German 
Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Heidelberg, 
Germany 

2 Faculty of Biosciences, Heidelberg University, Heidelberg, Germany 

3 Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent 
Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany 

4 Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer 
Science and Medical Faculty, University of Augsburg, Augsburg, Germany 

5 Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, 
Germany 

6 Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 
Heidelberg, Germany  

7 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, 
Germany 

8 Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany 

9 Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany 

10 Division Translational Medical Oncology, German Cancer Research Center (DKFZ) & 
National Center for Tumor Diseases (NCT), Heidelberg, Germany 

11 Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, 
Germany 

12 Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany 

 
Correspondence to: 

Daniel B. Lipka, Section Translational Cancer Epigenomics, Division Translational Medical 
Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases 
(NCT), Heidelberg, Germany. Email: d.lipka@dkfz.de 
 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.493896doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.02.493896
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

ABSTRACT 

 

 

Background: The differentiation of hematopoietic stem and progenitor cells (HSPCs) to 
terminally differentiated immune cells is accompanied by large-scale remodeling of the DNA 
methylation landscape. While significant insights into the molecular mechanisms of 
hematopoietic tissue regeneration were derived from mouse models, profiling of DNA 
methylation changes has been hampered by high cost or low resolution using the methods 
available. This problem has been overcome by the recent development of the Infinium Mouse 
Methylation BeadChip (MMBC) array, facilitating methylation profiling of the mouse genome 
at single CpG resolution at affordable cost.  
Results: We extended the RnBeads package to provide a computational framework for the 
analysis of MMBC data. This framework was applied to a newly generated MMBC reference 
map of mouse hematopoiesis encompassing nine different cell types. The analysis of 
dynamically regulated CpG sites showed progressive and unidirectional DNA methylation 
changes from HSPCs to differentiated hematopoietic cells and allowed the identification of 
lineage- and cell type-specific DNA methylation programs. Comparison to previously 
published catalogues of cis-regulatory elements (CREs) revealed 12,856 novel putative CREs 
which were dynamically regulated by DNA methylation (mdCREs). These mdCREs were 
predominantly associated with patterns of cell type-specific DNA hypomethylation and could 
be identified as epigenetic control regions regulating the expression of key hematopoietic 
genes during differentiation.  
Conclusions: We established a publicly available analysis pipeline for MMBC datasets and 
provide a DNA methylation atlas of mouse hematopoiesis. This resource allowed us to identify 
novel putative CREs involved in hematopoiesis and will serve as a platform to study epigenetic 
regulation of normal and malignant hematopoiesis. 
 
 
KEYWORDS: DNA methylation, epigenetics, hematopoiesis, hematopoietic stem cells, mouse 
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BACKGROUND 

 

The hematopoietic system of the mouse is among the best studied model systems for 
regenerative tissues. Over the last decades, a roadmap of murine hematopoietic 
differentiation has been generated whereby hematopoietic stem and progenitor cells (HSPCs) 
reside on the top of a hierarchically organized system. These cells give rise to lineage-
committed progenitor cells, which then differentiate into mature hematopoietic cells. This 
differentiation process is tightly regulated in order to ensure faithful production of 
hematopoietic cells according to the actual needs of the organism. Epigenetic regulation plays 
a key role in these processes and DNA methylation has emerged as an indispensable 
epigenetic mark required for maintenance of hematopoietic stem cell (HSC) function and for 
faithful hematopoietic differentiation [1-4]. DNA methylation refers to the covalent 
attachment of a methyl-group to cytosine residues in the DNA, which in mammals mainly 
occurs in a CpG sequence context [5]. This process is catalyzed by three enzymes of the DNA 
methyltransferase (DNMT) family, namely DNMT1, DNMT3A and DNMT3B. The latter two are 
required for the de novo establishment of DNA methylation marks whereas DNMT1 is a 
maintenance DNA methyltransferase, which propagates DNA methylation patterns following 
DNA replication [6].  

The observation that DNMT3A is among the most frequently mutated genes in human acute 
myeloid leukemia (AML) [7, 8] led to a variety of studies investigating the role of DNA 
methylation in healthy and malignant hematopoiesis [9-15]. An initial study using a custom 
array platform revealed global DNA methylation plasticity during murine progenitor 
differentiation and observed a global hypermethylation accompanying lymphoid lineage 
commitment [10]. This work was further refined using reduced representation bisulfite 
sequencing (RRBS) which assessed DNA methylation patterns at single CpG resolution. The 
authors demonstrated that myeloid TF binding sites are methylated during lymphoid 
differentiation, suggesting a suppression of opposing lineage identities [9]. An integrated 
genome-wide DNA methylome and transcriptome map of the HSPC compartment 
subsequently identified a set of genes whose expression is at least in part regulated by DNA 
methylation programming and provided further support for the importance of epigenetic 
programming in normal hematopoiesis [11, 12]. Since an in-depth characterization of 
regulatory sites is required to achieve a comprehensive understanding of hematopoietic 
differentiation processes at the systems level, the robust identification and functional 
annotation of cis-regulatory elements (CREs) via computational epigenomics is a critically 
important task. Many consortia, like The Immunological Genome Project (ImmGen) or the 
Validated Systematic Integration of Hematopoietic Epigenomes (VISION), have intensively 
worked on mapping and stratifying CREs which are dynamically regulated during 
hematopoiesis [16, 17]. However, these CRE catalogues are solely defined by open chromatin 
and histone modification patterns and thus lack a comprehensive annotation of dynamic DNA 
methylation changes in mouse hematopoiesis. In contrast, the Encyclopedia of DNA Elements 
(ENCODE) analyzed DNA methylation, histone marks, CTFTC and DNaseI binding across 
multiple organs and developmental stages during mouse ontogenesis [18]. Nevertheless, this 
consortium did not specifically analyze cell types of the hematopoietic system and their 
registry of candidate CREs (cCREs) is based on H3K4me3, H3K27ac, CTCF and DNaseI, and does 
not include DNA methylation. 
The lack of a systematic DNA methylation layer in current CRE atlases might in part be 
explained by lack of robust, reproducible and cost-efficient methods for DNA methylation 
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analysis in mouse cells. Genome-wide methods include whole-genome bisulfite sequencing 
(WGBS) and reduced representation bisulfite sequencing (RRBS). While RRBS can be 
performed at relatively low costs, this method provides only limited information on the DNA 
methylome with a strong bias towards CpG-dense regions. In contrast, WGBS provides 
unbiased information covering all CpGs throughout the genome. However, this is associated 
with comparatively high costs, resulting from the requirement to sequence with a sufficient 
genome coverage to accurately estimate the DNA methylation level of individual CpGs. As a 
result, WGBS is not amenable for large-scale DNA methylation analysis of mouse models. 
In human studies, these limitations were overcome by the introduction of Infinium DNA 
Methylation Bead Chip arrays, which in their latest version allow the highly reproducible 
analysis of up to 850,000 CpG-sites at low cost, facilitating the study of large patient cohorts 
[19-21]. However, until recently, this technology was not available for mouse samples. This 
changed with the recent introduction of the Infinium Mouse Methylation BeadChip (MMBC) 
array in 2020, which now allows DNA methylome analyses in mice at affordable cost. The 
MMBC array interrogates 285,000 CpG sites across the mouse genome, including promoter 
regions of more than 28,000 protein-coding transcripts and 60,000 enhancers. However, 
meaningful data analysis is likely to still pose a significant hurdle for many groups who do not 
have specialized bioinformatic support in this area.  
We established an easy-to-use computational pipeline for the analysis of MMBC data that is 
based on the RnBeads Bioconductor package [22, 23]. As a proof-of-concept, we applied this 
pipeline to MMBC data generated from nine hematopoietic cell types across all major lineages 
to provide an atlas of DNA methylation patterns of the murine hematopoietic system, which 
can serve as a resource for the scientific community. In-depth analysis of this data set 
identified DNA methylation programs associated with hematopoietic lineage commitment 
and revealed novel candidate CREs which likely contribute to differentiation and regulation 
processes in hematopoiesis. 
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RESULTS 

 

Implementation of an MMBC-array analysis framework in RnBeads 

To facilitate seamless analysis of MMBC-array data, we extended our earlier published R-
package RnBeads and used it to build a comprehensive computational workflow for the 
present study [22, 23]. First, we converted the manifest file provided by the manufacturer 
into an RnBeads-compatible MMBC-array annotation, which we added to the RnBeads.mm10 
companion data package (see Methods for further details). Second, we adapted and 
generalized the core functionality of RnBeads to support the new array type. As a result, our 
RnBeads-based computational workflow allows for an automated and user-friendly 
processing and analysis of MMBC data, which is in full equivalence with the RnBeads 
workflows for 450k/EPIC-arrays. In particular, data loading and quality control of the 
unprocessed IDAT files can be executed using a single R function with global pipeline 
configuration options. The subsequent pre-processing module features several methods for 
background correction, automated filtering and normalization. The majority of QC and 
preprocessing procedures already available in RnBeads for human 450k/EPIC arrays also work 
for MMBC-array data, including: control probe visualization; negative control- and out-of-
band-based background subtraction; multiplicative dye bias correction; and most probe 
filtering steps. Additional downstream analysis modules allow users to perform standard 
exploratory analysis, such as dimensionality reduction; inference of batch effects and major 
covariates; calling of differentially methylated probes (DMPs); and execution of reference-
based cell type deconvolution. Each of the modules generates an interactive HTML-report for 
documentation and reproducibility purposes (Figure 1A). The updated package, featuring 
MMBC support starting from version 2.9.4, is freely available on Bioconductor [24]. 
Furthermore, we generated a comprehensive functional annotation of the MMBC array 
including mapping of probes to regulatory regions in the mouse genome (mm10) and gene 
annotations (Supplementary Table 1). Finally, we established a bioinformatic workflow for de 
novo identification of methylation dynamic CREs (mdCREs) throughout hematopoietic 
differentiation. Integration with published gene expression data allowed us to propose 
putative functional gene annotations for a subset of these novel mdCREs (Figure 1A). 
 

Mouse methylation bead chip reference map of murine hematopoietic differentiation 

To study the DNA methylation patterns across the mouse hematopoietic system, nine 
hematopoietic cell types were prospectively isolated in biological triplicates from bone 
marrow of C57BL/6J mice by fluorescence-activated cell sorting (FACS) using a set of 
established cell surface markers (Figure 1B, Supplementary Figure 1, Supplementary Table 

2). Genomic DNA was purified and analyzed on the MMBC platform, which allows the 
simultaneous analysis of the DNA methylation status of 285,000 CpGs throughout the mouse 
genome. The data was processed using our newly established RnBeads MMBC analysis 
pipeline. We then assessed the quality of the generated MMBC dataset by 1) evaluation of 
the internal control probe intensities for each step of the procedure with respect to their 
expected values; 2) interrogating the median Infinium bead count value and proportion of 
probes with low Infinium bead counts; and 3) assessing the proportion of probes with high 
detection p-values. Our QC assessment confirmed the overall high quality of the data 
generated with the MMBC array. Internal control probes demonstrated expected intensity 
ranges according to the annotation provided by the manufacturer. The median bead count 
was 24 [range 0 to 204] and all samples had more than 261,550 (99.98 %) probes with Infinium 
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bead count >3. The number of low-quality probes with detection p-values > 0.001 ranged 
between 3 and 22 probes across all samples (Supplementary Figure 2A). Per CpG comparison 
of beta-values between biological replicates showed high correlation for all cell types as 
demonstrated for LSK (Pearson correlation, r = 0.998, p < 2.2e-16), further confirming the 
technical reproducibility (Supplementary Figure 2B, C). Additionally, inspection of 
methylation β-values before and after intra-array normalization revealed a minor shift of the 
underlying methylation values, indicating a uniformly high quality of the dataset 
(Supplementary Figure 2D). To further assess the quality of the MMBC data, we compared 
this with previously published data from analogous cell populations generated using either 
tagmentation-based whole-genome bisulfite sequencing (TWGBS), or reduced representation 
bisulfite sequencing (RRBS) data. The TWGBS dataset covered ~2.48 x 105 CpGs (100%) of the 
2.48 x 105 autosomal CpGs present on the MMBC array, while the RRBS dataset covered only 
~2.1 x 104 (9%) of the autosomal CpGs represented on the MMBC array (Supplementary Table 

3). After quality control and coverage filtering, 2.35 x 105 CpGs (95% of autosomal MMBC 
CpGs) and 0.6 - 1.6 x 104 CpGs (2.5 – 6.7% of autosomal MMBC CpGs) remained from the 
TWGBS and the RRBS datasets. Further analysis revealed a high correlation of the MMBC data 
with the published DNA methylation data sets, demonstrating the high quality of our MMBC 
data set (r = 0.98 for TWGBS and r = 0.97 - 0.98 for RRBS; Figure 1C, Supplementary Figure 

3). Unsupervised analysis of DNA methylation patterns in the represented cell types using 
principal component analysis (PCA) showed that replicates from the same cell type cluster 
closely together. Thus, different cell types can be distinguished based on global DNA 
methylation differences whereby the lymphoid and myeloid lineages showed the most 
divergent DNA methylation patterns (Figure 1D, E). Phylogenetic tree analysis recapitulated 
the early branching of the lymphoid and the myeloid arms starting from immature LSK cells 
(Figure 1F). Furthermore, this analysis demonstrated that MEPs branch early from the 
myeloid arm, which is in line with a previously described erythroid/megakaryocytic-priming 
of CD55+ MPPs and CMPs [25]. In summary, we have generated a high quality MMBC 
reference data set of murine hematopoiesis that may serve as a resource for researchers 
working with mouse models spanning a wide spectrum of diseases.  
 
Identification of reference DNA methylation programs allows reliable cell type 

deconvolution from bulk samples 

Previous studies of reference epigenomes have revealed cell type-specific DNA methylation 
patterns and underlined their suitability to infer the cellular composition of bulk samples [26]. 
Based on this knowledge, we tested if our MMBC data set could be used to perform reference-
based cell type deconvolution of murine bone marrow samples. Therefore, cell type-specific 
differentially methylated probes (ctDMPs) were identified using a stringent filtering strategy. 
We selected CpGs which exhibited strong cell type-specific hypomethylation while at the 
same time maintaining uniformly high methylation levels across all other cell types (Figure 

2A; Supplementary Table 4). Data from HSPCs and myeloid progenitor cells (CMPs and GMPs) 
were not included in this analysis, as these cell populations constitute only a minor fraction 
of cells in total bone marrow samples. Methylation data from CD4+ and CD8+ T cells were 
combined and considered as “T cells”, as our filtering strategy did not identify CpGs that 
would allow us to distinguish between these T-cell subsets. In total, this analysis identified a 
set of 201 ctDMPs which were used as features for cell type deconvolution (Figure 2A, B). 
Four different cell type deconvolution algorithms, which had previously been shown to work 
on human DNA methylation array data, were applied to compare their performance on the 
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selected ctDMPs: the reference-based constrained projection (CP) algorithm (“Houseman”); 
the EpiDISH Cibersort (CBS) algorithm; the EpiDISH robust partial correlations (RPC) 
algorithm; and the reference-free constrained non-negative matrix factorization algorithm 
MeDeCom [27-30].The performance of these algorithms was tested on array data generated 
from total bone marrow samples isolated from two C57BL/6 wild type mice carrying either 
the Cd45.1 or the Cd45.2 allele, as well as from two bone marrow samples isolated from a 
myeloproliferative neoplasia mouse model. These mice expressed a conditional JAK2V617F 
knock-in allele which previously caused a shifted in the myeloid and erythroid compartment, 
thus allowing us to test the capability of the algorithms to predict disease-specific changes in 
the cell type composition. Flow cytometry-based measurements of all animals were used as 
a comparator data (Figure 2C). The mean absolute error (MAE) for each cell type was 
calculated as this measure has recently been established as a powerful predictor for the 
comparison of cell type deconvolution algorithms [31]. Overall, all four deconvolution 
algorithms performed comparably well on our test samples and were able to accurately 
discriminate cell types based on the selected ctDMPs. The CP method implemented in 
RnBeads performed best for the prediction of T-cell (MAE: 0.02) and monocyte (MAE: 0.03) 
fractions, whereas B cells were best predicted by EpiDISH (CBS; MAE: 0.04). For neutrophils 
EpiDISH (RPC), MeDeCom and RnBeads (CP) worked similarly well (MAE: 0.07; Figure 2C). The 
power to predict differences in cellular composition using the selected ctDMPs for cell type 
deconvolution was further highlighted by an in-depth analysis of the monocytic 
compartment: all four algorithms predicted an increase in the monocyte fraction in unsorted 
total bone marrow of JAK2V617F mutant mice (Figure 2D), which could be confirmed by flow 
cytometry (Figure 2E, F). Of note, the MEP fraction was systematically predicted to be higher 
than the fraction of MEPs as measured by FACS, resulting in a relatively high MAE (MAE: 0.22-
0.27; Figure 2C). A likely explanation for this finding could be that MEP-specific methylation 
programs also identify other nucleated erythrocyte progenitor cells present in the bone 
marrow. It is well established that nucleated erythrocyte precursors make up ~20% of all 
nucleated bone marrow cells which would fit well with the predicted values [32]. This 
interpretation is further supported by the observed increase in the predicted fraction of MEPs 
in both JAK2V617F knock-in bone marrow samples, which is in line with published data 
demonstrating an increase in erythrocyte progenitors in this model [33]. 
In conclusion, we established an enhanced strategy to define ctDMPs from MMBC array data 
which encompasses the most abundant hematopoietic cell types present in the bone marrow.  
These ctDMPs allow accurate cell type deconvolution independent of the chosen algorithm, 
and facilitate an orientating analysis of aberrant hematopoiesis from bulk bone marrow 
samples. 
 
DNA methylation dynamics during murine hematopoietic differentiation 

Next, we aimed to comprehensively investigate DNA methylation programming during 
hematopoiesis. We calculated pairwise differential methylation between HSPCs and each of 
the remaining eight cell types analyzed to determine all CpGs that show dynamic methylation 
across hematopoietic differentiation (“differentiation-dynamic differentially methylated 
probes”; diffDMPs). In total, we identified 37,512 diffDMPs (Supplementary Table 5; 

Supplementary Table 6), of which 20,195 were found to be differentially methylated in more 
than one cell type (“shared diffDMPs”) while 17,317 diffDMPs were exclusively identified in a 
single cell type (“unique diffDMPs”). During hematopoietic differentiation, DNA methylation 
changes were predominantly characterized by a loss of DNA methylation with 88% (15,278) 
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of the unique diffDMPs and 74% (14,985) of the shared diffDMPs showing hypomethylation 
compared to HSPCs (Figure 3A). Gain of DNA methylation during differentiation from HSPCs 
to differentiated cell types was almost exclusively observed in cells of the lymphoid lineage 
(Figure 3A). The vast majority of diffDMPs determined for CMPs (100%) and GMPs (99.93%) 
were shared diffDMPs. In contrast, unique diffDMPs were typically identified in MEPs and in 
differentiated cell types: in MEPs 49% of diffDMPs were unique to this cell type, followed by 
CD4+ T cells (33% unique diffDMPs), neutrophils (21% unique diffDMPs) and monocytes (11% 
unique diffDMPs). 
Next, we investigated whether shared diffDMPs identify DNA methylation programs that are 
“inherited” along hematopoietic differentiation trajectories. To disentangle the relationships 
of shared diffDMPs across the different cell types, we calculated the percentage of 
overlapping diffDMPs across cell types (Figure 3B, Supplementary Table 7). A large fraction 
of diffDMPs identified in CMPs overlapped with diffDMPs identified in other myeloid cell 
types and in MEPs, indicating that DNA methylation changes at these sites are faithfully 
propagated along the myeloid and the erythrocyte/megakaryocyte differentiation axis 
(Figure 3B, Supplementary Figure 4, Supplementary Table 7). A similar pattern was observed 
for diffDMPs identified in GMPs, where we found that the majority of diffDMPs were shared 
with monocytes (98%) and neutrophils (94%) whereas a much smaller proportion of GMP 
diffDMPs were shared with CMPs (18%). Of note, only very few diffDMPs identified in cells of 
the myeloid lineage were shared with lymphoid cell types and vice versa showing the 
divergence of these lineages at the epigenetic level. Interestingly, 75% of diffDMPs identified 
in CMPs were shared with MEPs, whereas only 29% of GMP diffDMPs were shared with MEPs 
(Figure 3B). This observation is in line with a previously described erythroid/megakaryocytic-
priming of a CD55+ progenitor cells which constitute a substantial fraction of 
immunophenotypic CMPs but are virtually absent in GMPs [25].  
These findings suggested that cell type-specific DNA methylation patterns are established in 
a progressive manner during differentiation and hence might serve as a molecular barcode to 
decipher differentiation trajectories in vivo. This can be exemplified by looking at the DNA 
methylation changes of monocyte-specific diffDMPs along the myeloid differentiation axis. 
Thus, diffDMPs which are hypomethylated in monocytes show the highest DNA methylation 
level in HSPCs and progressively lose methylation along the myeloid differentiation trajectory 
until they reach the lowest level in monocytes. Vice versa, diffDMPs that are hypermethylated 
in monocytes show the lowest DNA methylation level in HSPCs and continuously gain 
methylation along the monocytic differentiation axis (Figure 3C). The progressivity of the DNA 
methylation changes observed during hematopoietic differentiation appears to not only be a 
result of a progressive loss of DNA methylation at single CpG positions, but also involves the 
processive recruitment of neighboring CpGs (Figure 3D). 
 
diffDMPs reveal novel candidate cis-regulatory elements in the murine genome 

The observed “inheritance” of DNA methylation patterns acquired during differentiation 
suggested a potential role of diffDMPs in the regulation of hematopoiesis. To confirm this 
hypothesis, we analyzed the enrichment of binding motifs from known hematopoietic 
transcription factors (TFs) in hypomethylated diffDMPs. We found enrichment of KLF TF-
family motifs in MEPs and enrichment of GATA TF-family motifs in MEPs and CMPs (Figure 

4A). Myeloid lineage-specification was accompanied by an enrichment of CEBP and PU.1 TF 
motifs in hypomethylated diffDMPs found in CMPs and GMPs. Terminally differentiated cell 
types showed characteristic enrichment patterns of TF binding motifs. Thus, diffDMPs 
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hypomethylated in monocytes were enriched for IRF motifs; diffDMPs hypomethylated in 
CD4+ and CD8+ T cells were enriched for TCF and LEF1 motifs; and diffDMPs hypomethylated 
in B cells showed EBF and PAX motif enrichment. This enrichment of lineage-specific TF 
binding motifs in hypomethylated diffDMPs suggests that these sites might have cis-
regulatory potential during hematopoietic differentiation. Hence, these sites could indicate 
the location of cis-regulatory elements (CREs) in the murine genome.  
To further investigate this hypothesis, we compared the diffDMPs to four previously 
published CRE catalogues: candidate CREs from the ENCODE project (ENCODE-CRE; 
n=339,815)[18]; active hematopoietic enhancers (Enhancer-CRE; n=48,396)[34]; open 
chromatin regions (OCRs) identified in the Immunological Genome Project (IMGEN-CRE; 
n=512,595)[16]; and CREs from the validated systematic integration of hematopoietic 
epigenomes (VISION) project (VISION-CRE; n=205,019)[17]. A significant number of CpGs 
covered by the MMBC array overlapped with the individual CRE catalogues (min: 1.96 x 104, 
max: 7.78 x 104 CpGs), covering between 11% and up to 27% of the CREs defined by these 
catalogues (Supplementary Figure 5A; Supplementary Table 8). In total, 119,599 CpGs 
represented on the MMBC array overlapped with known CREs as defined by the 
aforementioned catalogues (Figure 4B). When considering all 37,512 diffDMPs, we found that 
24,656 diffDMPs (66%) overlap with known CREs and hence were defined as methylation-
dynamic CREs (mdCREs; Figure 4B; Supplementary Figure 5B). Importantly, the non-
overlapping fraction of 12,856 diffDMPs (34%) constituted the third-largest region set found 
in a comprehensive overlap analysis of the individual CRE datasets (Supplementary Figure 

5B). This suggests that this subset of diffCpGs might indicate the presence of novel, yet 
unrecognized, hematopoietic CREs and therefore were named “novel methylation-dynamic 
CREs” (novel mdCREs; Figure 4B; Supplementary Figure 5B; Supplementary Table 6). The 
remaining 94,943 CREs (79%), which did not overlap with diffDMPs, were termed chromatin-
dynamic CREs (chromCREs). These chromCREs might represent regions which are either not 
regulated at all during hematopoiesis or they are dynamically regulated exclusively at the 
chromatin level and do not show significant DNA methylation changes. 
To investigate potential differences in genomic features captured by the different catalogues, 
we analyzed the genomic localization of diffDMPs and of the different CRE subsets relative to 
neighboring genes. We found that chromCREs as well as ENCODE-, IMGEN- and VISION-CREs 
are enriched in promoter regions (38%-62%; Figure 4C). In contrast, diffDMPs, Enhancers, 
mdCREs and novel mdCREs are enriched in intronic regions (43%-47%) and distant cis-
regulatory domains (DCRDs; 24%-31%; Figure 4C). The observed similarity in genomic 
distribution of diffDMPs and known hematopoietic enhancers suggested that diffDMPs, as a 
whole might identify both known (mdCREs) as well as novel (novel mdCREs) hematopoietic 
enhancers.  
We next computed a correlation matrix of DNA methylation between all cell types to analyze 
how DNA methylation at these CRE sets could preserve cell type and lineage identity. This 
analysis revealed high correlation across closely related cell types and within the same 
lineages for mdCREs and novel mdCREs, whereas for chromCREs the observed DNA 
methylation patterns hardly allowed discrimination of cell types and lineages (Figure 4D, 

Supplementary Figure 6A&B). This analysis confirmed that chromCREs, in contrast to mdCREs 
and novel mdCREs, are not regulated dynamically at the level of DNA methylation during 
hematopoietic differentiation. To get an estimate of the functional activity of these CRE 
subsets in hematopoiesis, we assessed the expression of associated genes in publicly available 
RNA-seq datasets from murine hematopoietic cells. We annotated all mdCREs, chromCREs 
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and novel mdCREs to the closest gene and correlated the expression of all associated genes 
across different cell types. This analysis revealed high correlation of gene expression across 
related cell types independently of whether they had been associated with mdCREs, 
chromCREs or novel mdCREs (Figure 4E). This indicated that all CRE subsets identify relevant 
cis-regulatory elements, but further suggested that the different CRE subsets might be subject 
to different mechanisms of epigenetic regulation. For instance, chromCREs do not show 
prominent changes in DNA methylation and therefore might be regulated mainly at the 
chromatin level. The mdCREs show dynamic regulation at the level of DNA methylation and, 
presumably, also at the chromatin level, since they had been identified using chromatin-
based methods. In contrast, novel mdCREs are exclusively identified in the present study 
based on dynamic DNA methylation changes during hematopoietic differentiation while 
previous studies investigating chromatin changes in the hematopoietic system failed to 
identify these regulatory elements. In summary, our analysis revealed three different classes 
of CREs: i) CREs which have been identified by chromatin-level characteristics but lack DNA 
methylation dynamics (chromCREs); ii) CREs which have been identified by chromatin-level 
characteristics and which show dynamic DNA methylation changes during hematopoietic 
differentiation (mdCREs); and iii) novel CREs which are so far exclusively characterized by 
dynamic DNA methylation (novel mdCREs). Importantly, the 12,856 novel mdCREs have not 
been described in previous datasets, which underlines the importance of DNA methylation 
analysis for the functional annotation of genomes. This finding further suggests that dynamic 
regulation of DNA methylation might play a key role as an epigenetic regulatory layer in a 
subset of cis-regulatory elements. 
 
Novel mdCREs exhibit cell type-specific DNA methylation programs that can be annotated 

to putative target genes 
Having demonstrated on a global scale that DNA methylation of the novel mdCREs correlates 
with hematopoietic cell-type identity, we performed unsupervised hierarchical clustering to 
characterize the DNA methylation programs encoded by the 12,856 novel mdCREs in more 
detail. This clustering identified nine lineage-specific DNA methylation programs which 
allowed the discrimination of all the cell types analyzed (Figure 5A&B; Supplementary Figure 

7 A&B; Supplementary Table 6). Remarkably, eight clusters showed loss of DNA methylation 
from LSK to more differentiated cell types, whereas one cluster (cluster 7) predominantly 
showed gain of DNA methylation in differentiated lymphoid cells, with a maximum reached 
in CD4+ and CD8+ T cells (Figure 5A&B; Supplementary Figure 7 A&B). Specifically, MEPs 
exhibited loss of DNA methylation in cluster 4; CD4+ T cells demonstrated loss of DNA 
methylation in clusters 1 and 2; both CD4+ and CD8+ T cells were characterized by DNA 
methylation loss in cluster 9; while the entire lymphoid lineage displayed loss of DNA 
methylation in cluster 3. Cluster 8 specifically showed loss of DNA methylation in B cells, and 
cells from the myeloid lineage exhibited loss of DNA methylation in clusters 5 and 6. This 
coordinated methylation programming of CpG sites observed in the novel mdCREs further 
supported the idea that these CpG sites identify regions which exert important regulatory 
functions during hematopoietic differentiation.  
Next, we aimed to identify genes that are likely regulated by the novel mdCREs. Since recent 
reports indicated that the regulatory potential of CREs may expand to a megabase scale [35], 
we developed an heuristic approach to infer putative functional CRE-gene pairs based on a 
systematic integrative analysis of DNA methylation and gene expression patterns (Figure 6A). 
First, all transcription start sites (TSSs) within 1Mb distance of the 12,856 novel mdCREs were 
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determined and selected as “candidate associations”. A total of 406,002 TSSs were identified 
as candidate association, meaning that a median of 25 TSSs (min=1; max=167) were assigned 
to each novel mdCRE. For each candidate association, a linear model was trained assuming 
that the DNA methylation β-values predict the gene expression levels in the same cell 
populations, resulting in the identification of 1,445 significant candidate associations 
(Benjamini-Hochberg adjusted correlation test p-value <0.01). As an additional filter, we used 
the slope of the linear model as a surrogate for the effect size of the regulation. Using these 
stringent criteria, we found 843 significant novel mdCRE-gene pairs, which we propose as 
strong candidates for further functional validation studies (Supplementary Table 9). Looking 
at the genomic distribution of these 843 novel mdCRE-gene pairs, we observed that only 39 
(4.6%) novel mdCREs were located within 5kb to the TSS, whereas the majority of novel 
mdCREs were found to be evenly distributed within 1Mb distance up- or downstream of the 
TSS (Figure 6B) and were associated with a single gene (Figure 6C). Five of the novel mdCREs 
were each associated with more than 20 genes. For example, the methylation of one CpG site 
correlated with the expression of the T-cell receptor beta chain gene cluster, indicating that 
one mdCRE has a regulatory potential for several genes with similar functions. The Thy1 locus, 
in contrast, is an example for a gene locus which is associated with many novel mdCREs. In 
total, 35 novel mdCRE-gene associations were identified within a 1Mb distance of the Thy1 
TSS, of which 10 associations fulfilled the correlation and effect size criteria (Figure 6D). To 
further investigate whether these associated novel mdCREs could function as distal regulatory 
elements, we analyzed HiC data of CD8+ T cells and found that the associated novel mdCREs 
overlapped with high contact domains suggesting a possible physical interaction between 
these novel mdCREs and the Thy1 TSS (Figure 6E).  
Next, we performed a systematic analysis of the cell type- and lineage-specific gene 
expression changes and their association with DNA methylation changes of the novel mdCREs. 
To do so, the expression of genes which are annotated as candidate associations within the 
lineage-specific clusters of co-regulated CpG sites was analyzed (Figure 6F-H; Supplementary 

Figure 8). Genes associated with the erythroid cluster 4 revealed low methylation and high 
gene expression levels in MEPs. In contrast, all other populations showed high methylation 
and low or decreasing gene expression values (Figure 6F). Known erythroid marker genes like 
Pklr or Sphk1 were among the cluster 4 associated genes which showed the strongest increase 
in gene expression accompanied by loss of DNA methylation in MEPs. Similar results were 
obtained for the B cell specific cluster 8 where B cell expression dynamics was compared to 
all other cell types (Figure 6G). In this cluster, B cell marker genes such as Cd19 or Spib 
demonstrated loss of DNA methylation which was paralleled by an induction of gene 
expression. In turn, all other cell types showed stable DNA methylation patterns, 
accompanied by low gene expression levels. A more complex situation was observed for 
genes associated with myeloid cluster 5 (Figure 6H). In this cluster, the expression of myeloid 
(monocyte + neutrophil) marker genes was analyzed for GMPs, neutrophils and monocytes, 
as these cell types showed cluster-specific hypomethylation. Compared to all other cell types, 
myeloid marker genes showed initiation of DNA methylation loss in GMPs whereas the 
strongest hypomethylation was observed in terminally differentiated myeloid cells. This loss 
of DNA methylation was accompanied by a strong increase in expression of these genes from 
GMPs to monocytes/neutrophils. Among those genes, Ifitm6 showed a continuous induction 
from GMPs to neutrophils which is in line with the high expression of type I interferon 
response genes during neutrophil specification [36]. In summary, we developed an algorithm 
which allowed us to propose putative functional gene annotation for a subset of the novel 
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mdCREs. In addition, we identified DNA methylation programs that are defined by co-
regulated novel mdCREs and which are associated with hematopoietic-specific gene 
expression patterns that are progressively established during hematopoietic differentiation.  
 
 
DISCUSSION 

 

Many biological insights into the distinct role of DNA methylation have emerged with the 
advent of array-based DNA methylation profiling technologies. These arrays offer an 
affordable, easy-to-use and robust platform for DNA methylation profiling of hundreds to 
thousands of samples. However, array-based technologies have not been available until 
recently for the study of murine methylomes. This has compromised many mechanistic and 
functional studies investigating the role of DNA methylation changes in mouse models.  
The novel murine methylation bead chip (MMBC) array filled and allows to profile DNA 
methylation of 285k CpG sites across the genome. The potential of this method has recently 
been demonstrated by a mouse DNA methylation atlas encompassing MMBC data for distinct 
tissues, mouse strains, age groups and pathologies [37]. This study also demonstrated the 
robustness and high reproducibility of the DNA methylation measurements generated using 
MMBC. Hence, the MMBC array will help to accelerate the research of epigenetic plasticity in 
homeostasis and disease.  
To establish a computational workflow for the analysis of MMBC datasets, we generated a 
comprehensive annotation of the MMBC array. This includes mapping of probes to nearest 
genes and an annotation of functional genomic elements such as promoters or distal cis-
regulatory domains (DCRDs). Additionally, we expanded the commonly used and highly cited 
RnBeads framework by methods that allow the processing of MMBC data [22, 23]. This 
includes user-friendly functions for quality control, normalization, and differential 
methylation calling. Moreover, RnBeads generates automated reports which document 
analysis parameters and will thus enhance the reproducibility of MMBC data analyses.  
 
In the present study, we chose to profile DNA methylation changes during murine 
hematopoiesis using the MMBC array. The advantage of this system is the well-defined 
differentiation landscape including the opportunity to isolate homogeneous cell populations 
using previously established cell surface markers. This allowed us to assess the robustness of 
the MMBC array by investigating this complex in-vivo differentiation system with a focus on 
the myeloid differentiation trajectory. We observed an accurate clustering of cell types based 
on global DNA methylation changes which indicated that the MMBC array is capable of 
determining cell type-specific DNA methylation programs across closely related cell types. 
Hence, we challenged the MMBC array to test whether it is a suitable tool for DNA 
methylation-based cell type deconvolution. Therefore, we have elaborated a strategy to 
determine highly cell type-specific DNA methylation signatures (ctDMPs) which were defined 
by the highest DNA methylation difference between cell types with a low intra-cell type 
variance at the same time. We hypothesized that these sites possess the potential to 
discriminate true epigenetic plasticity from an impure DNA methylation signal due to a 
heterogenous cell population. To test this, we generated DNA methylation data from mixed 
cellular populations and applied four different published cell type deconvolution algorithms. 
The predicted cell type fractions from each of the algorithms were comparable to the direct 
measurement of the cell type composition by flow cytometry. Moreover, all four algorithms 
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were able to confirm the disease-specific imbalance in the cellular composition of the bone 
marrow of JAK2V617F-mutant mice. In summary, highly cell type-specific DNA methylation 
signatures can be identified with the MMBC array which allow an accurate estimation of cell 
fractions in healthy and diseased tissues, independent of the underlying deconvolution 
algorithm.  
 
Besides the homeostatic state of a cell, the DNA methylation signature harbors information 
about its lineage history and potentially also insights into future fate decisions [38]. This 
implies that cell types of a certain lineage share DNA methylation signatures. To identify such 
programs, we considered the HSPC compartment as a common starting point in 
hematopoiesis and determined differentiation dynamic CpG sites (diffDMPs) for all cell types 
relative to HSPCs. We could identify three properties of these sites: i) diffDMPs of progenitor 
cells were shared with their downstream progeny; ii) the number of diffDMPs increased with 
cellular differentiation states; iii) the DNA methylation level of dynamic CpG sites 
progressively evolved towards differentiated cells. Taken together, this indicated that DNA 
methylation programs progressively and unidirectionally develop along hematopoietic 
differentiation trajectories. Importantly, since CpG sites can only exist in two DNA 
methylation states (methylated or unmethylated), intermediate DNA methylation ß-values 
have to arise from heterogeneity of the investigated sample. Consequently, progressive 
changes of DNA methylation ß-values within diffDMPs either indicate that the isolated cell 
populations are mixtures of cells with heterogenous differentiation states or that at the level 
of individual cells cellular commitment does not occur in a fully coordinated manner. 
However, this problem cannot be addressed with the currently available technologies as 
single-cell long read DNA methylation data would be required to answer this question.  
 
Independent of the mechanisms underlying epigenetic heterogeneity at the population level, 
our study demonstrates pronounced remodeling of the DNA methylation landscape during 
hematopoiesis. These dynamics point towards a regulatory role of DNA methylation in the 
course of cellular differentiation. In fact, a substantial fraction of diffDMPs overlapped with 
previously described CREs which further underlines their regulatory potential. In addition to 
these methylation dynamic CREs (mdCREs), we identified 12,856 diffDMPs which have not 
been described as regulatory regions before. These regions represent novel candidates of 
methylation dynamic CREs (novel mdCREs). Of note, these single CpG sites do not represent 
the whole region of a CRE in the genome but rather flag genomic loci with regulatory 
potential. Importantly, we determined these sites by comparing them to comprehensive CRE 
catalogues which either included histone marks, open chromatin sites, or a combination of 
both [16-18, 34]. However, none of these catalogues takes DNA methylation as a regulatory 
mark into account. We demonstrated that mdCREs can be clustered into programs with cell 
type-specific DNA methylation patterns and that their methylation status strongly correlates 
with expression programs of neighboring genes. This confirms that we generated a unique 
resource of novel DNA methylation-based regulatory elements which are likely involved in 
the regulation of murine hematopoiesis and which are not restricted to CpG-dense regions as 
was the case for previous studies [9].  
The functional annotation of CREs to their target genes is a central task in computational 
epigenomics. Previous studies have shown that interactions between CREs and genes can 
occur on a megabase scale [35]. In consequence, algorithms which focus solely on a distance 
based CRE-to-gene annotation will only include a subset of putative regulatory interactions. 
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To address this issue, we developed a data-driven annotation strategy which incorporates the 
DNA methylation status of CREs and the expression of genes in a region +/- 1 Mb of a TSS. We 
could observe regulatory candidate associations both in the close proximity of TSSs and in 
distant regions. The algorithm can in principle be expanded using different data sources like 
histone marks and will allow the functional annotation of CREs in complex biological systems. 
While the inferred candidate associations propose a biological function of CREs and seem to 
be biologically meaningful, further studies e.g. using massive parallel reporter assays (MPRA) 
will be required to confirm these interactions. 
 
In summary, we generated a reference atlas of dynamic DNA methylation changes during 
murine hematopoietic differentiation using the recently released MMBC array. This atlas 
includes a comprehensive list of CpG sites with dynamic DNA methylation during murine 
hematopoiesis and candidate associations for novel regulatory elements. Moreover, we 
developed a computational pipeline for a fast, robust, reproducible and user-friendly analysis 
of MMBC data and propose and analysis workflow which can be applied to various tissues and 
disease models and thus constitutes a major resource for epigenetic studies in the murine 
system.   
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METHODS 

 

Mice and ethics statement 

C57BL/6J (Cd45.2) and B6.SJL-Ptprca Pepcb/BoyCrl (Cd45.1) mice were bred in-house at the 
German Cancer Research Center (DKFZ) under specific pathogen-free (SPF) conditions. Mice 
at the age of six to sixteen weeks were used for all experiments.  
In addition, bone marrow samples from mice expressing the conditional JAK2V617F mutant 
allele were used [33]. The mutant allele was induced by a Vav1-Cre recombinase. Bone 
marrow was harvested from JAK2V617F-expressing animals (JAK2VF/+ Vav-Cre+) and the 
respective JAK2-wildtype (JAK2+/+ Vav1-Cre+) littermate controls at 10-12 weeks of age. All 
mouse experiments were approved by local authorities according to German and European 
guidelines. 
 
Bone marrow isolation and cell sorting 

Tibiae, femora, iliae, vertebrae, sterna and humeri of sacrificed mice were isolated and 
crushed three times in Iscove's Modified Dulbecco's Medium (IMDM, Gibco) using a mortar 
and pestle. The supernatant was filtered through 40 µm cell strainers (Falcon) and bone 
marrow cells were pelleted by centrifugation. Red blood cell lysis was performed by adding 
ACK lysis buffer (Lonza). The bone marrow cellularity was determined by counting with a 
veterinary hematology analyzer (scil Vet abc Plus+, scil). Lineage depletion was performed for 
the isolation of hematopoietic stem and progenitor cells (LSK, CMP, GMP and MEP) and T cells 
(CD4 T cells and CD8 T Cells). In brief, biotinylated lineage antibodies were added to the 
isolated bone marrow cells (HSCPs: CD5, CD8, B220, CD11b, Gr1 and Ter-119; T cells: CD11b, 
CD16/32, B220 and Ter-119; manufacturer details in Supplementary Table 2) and the labeled 
cells subsequently incubated with Mouse Depletion Dynabeads (Invitrogen). Purification of 
lineage-negative cells was performed using a DynaMag-15 magnet (Invitrogen). Cells were 
stained according to previously established gating strategies for the murine hematopoietic 
system [39, 40](Supplementary Figure 1; Supplementary Table 2). Cell sorting was performed 
using a BD FACS Aria II or III cell sorter (BD Biosciences). In total 3 x 105 cells were sorted per 
tube and snap-frozen on dry ice. 
 
Flow Cytometry 

For flow cytometry, isolated bone marrow cells were stained with specific panels for the 
identification of hematopoietic cell lineages (Supplementary Table 2; Supplementary Figure 

1). All measurements were performed on a LSRII flow cytometer (BD Biosciences).  
 

DNA isolation and Infinium mouse methylation bead chips (MMBC) 

Snap-frozen cell pellets were thawed on ice and DNA was isolated using a QIAamp DNA Micro 
Kit (QIAGEN) according to the manufacturer’s instructions. DNA concentrations were 
measured using the Qubit dsDNA HS Assay Kit (Invitrogen). Integrity of genomic DNA was 
verified by the DKFZ Genomics and Proteomics Core Facility and 100-250 ng subjected to DNA 
methylation analysis using Infinium Mouse Methylation BeadChip arrays (Illumina, San Diego, 
CA, USA). 
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RnBeads-compatible annotation of the MMBC array 

The RnBeadsAnnotationCreator package 
(https://github.com/epigen/RnBeadsAnnotationCreator) was modified to generate an 
RnBeads-compatible annotation of the MMBC array for the mm10 reference genome. In 
short, the Infinium Mouse Methylation Manifest File (version 1.0) was downloaded and 
divided into assay and control probes. The assay probes included 287,050 probes of which 
284,860 probes were annotated to bind in a CG-context, 838 in a CH-context and 1,352 in a 
SNP-context. Among those, 24,860 probes (22,670 CG, 838 CH and 1,352 SNP) were marked 
as “MFG_Change_Flagged” indicating manufacturing related performance problems. These 
probes with additional 26 probes binding on the mitochondrial genome (chrMT) were 
excluded from the reference annotation. This resulted in 262,164 probes which were 
considered for the RnBeads DNA methylation analysis workflow. The control probes were 
annotated as bisulfite-conversion, specificity, non-polymorphic or negative control probes, 
with either an expected high- or background-intensity as provided by Illumina. The resulting 
probe annotations together with further mm10 genome annotations which are required for 
the RnBeads workflow are available as RnBeads.mm10 package from Bioconductor [24].  
 

DNA methylation array data processing 

A pipeline for the analysis of MMBC data was developed within the RnBeads Bioconductor 
environment (Release 3.1.4)[22-24]. In short, IDAT files were imported in RnBeads and a 
quality control report was generated to inspect data quality. Background subtraction 
(“rnb.bgcorr.subtr”) and subsequent intra-array dye bias normalization (“rnb.norm.scaling”) 
with an internal reference were performed. Unreliable probes (Greedycut algorithm with 
detection p-value < 0.01) and probes mapping to sex chromosomes were removed from the 
dataset. For unsupervised inspection of the data, a principal component analysis (PCA) was 
computed based on the 5000 most variable CpGs (mvCpGs) as determined by standard 
deviation.  
 
Functional annotation of the MMBC array 

Gene and genomic region annotation were performed with gtfanno 0.2.0 
(https://github.com/stephenkraemer/gtfanno). For all probes, residence in the following 
genomic regions was considered (in order of precedence): i) promoter (1500 bp upstream to 
500 bp downstream ofTSS); ii) 5'UTR or3'UTR; iii) intron or exon iv) distant cis-regulatory 
domain (DCRD; region +/-100 kb from TSS) v) intergenic (if no other category was met). Based 
on a recent large-scale study of the mouse immune system and its differentiation cascades, 
we used a window of +/-100kb around the TSS for annotating putative enhancer relationships 
[16]. Annotations were performed against Gencode (release M25 for GRCm38/mm10), 
considering only the principal isoform of protein coding genes (based on the APPRIS isoform 
annotations provided with Gencode M25)[41]. If a probe was annotated to several region 
classes, only annotations for the region class with the highest precedence were considered. 
Within the highest ranked region class for each probe, all possible gene annotations were 
kept. For example, a probe may reside in the promoter region of two genes. In this case, both 
gene annotations were kept. The distance of the probe to the TSS (for promoter and DCRD 
annotated probes) or to the center of the exon, intron or UTR is detailed in the annotation 
table to allow for further ranking in cases were multiple genes were annotated to a single 
probe (Supplementary Table 1). A documentation of the annotation workflow is publicly 
available (https://github.com/stephenkraemer/bead_chip_array_annotations).  
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Comparison to data from hematopoietic cell types obtained by reduced representation 

bisulfite sequencing (RRBS) and tagmentation-based whole genome bisulfite-sequencing 

(TWGBS) 

Tagmentation-based whole-genome bisulfite sequencing (TWGBS) data from LSK 
subpopulations (GSE146907) and reduced representation bisulfite sequencing data from 
hematopoietic progenitor and differentiated cell types (RRBS; https://medical-
epigenomics.org/papers/broad_mirror/invivomethylation/index.html) from two previous 
publications was downloaded (Supplementary Table 3)[9, 42]. TWGBS data were processed 
using the Methrix Bioconductor package [43]. All autosomal CpG sites overlapping with the 
MMBC array with a minimal coverage of 10 reads in at least two replicates were considered 
for further analysis. For analysis of the RRBS data, a liftover from mm9 to mm10 was 
performed using the “liftOver” function from the rtracklayer R package and CpG sites 
overlapping with the MMBC array were determined [44]. For RRBS correlation analysis, all 
autosomal CpG sites with a coverage >20 reads were considered. Replicates from the same 
cell type were summarized by mean and plotted against MMBC data using the ggpointdensity 
package (https://github.com/LKremer/ggpointdensity).  
 

Unsupervised phylogenetic analysis 

An unsupervised DNA methylation based phylogenetic reconstruction of the murine 
hematopoietic hierarchy was performed by extracting the 5000 mvCpGs from the dataset and 
calculating the Manhattan distance. The “fastme.bal” function from the ape R package was 
applied to infer phylogenetic trees based on a minimal evolution algorithm  and trees were 
plotted using the ape “plot.phylo” function [45]. 
 
Cell type deconvolution 

To determine a set of CpG sites that could predict the composition of differentiated 
hematopoietic cell types in a tissue with a high accuracy, we calculated differentially 
methylated CpG sites in a one-versus-all fashion between T cells, B cells, Monocytes, 
Neutrophils and MEPs. CpG sites with a maximum methylation of 20% in the query cell type 
and a minimum methylation of 70% in all other cell types with a standard-deviation per group 
<10% and a false-discovery rate adjusted p-value < 0.05 were considered as cell type-specific 
DMPs (ctDMPs). These ctDMPs were then sorted based on the mean methylation difference 
(Dmeth) between the two groups and the top 50 CpG sites with the highest Dmeth were used 
for cell type decomposition (Supplementary Table 4). The cell type contribution in the bone 
marrow of CD45.1, CD45.1 and JAK2V617F-mutant mice was predicted using different 
established algorithms: Houseman’s constrained projection method (RnBeads 
implementation), EpiDISH robust partial correlations (RPC) and Cibersort (CBS) mode as well 
as the reference-free non-negative matrix factorization (NMF)-based method MeDeCom [27-
30]. For MeDeCom, a parameter search was conducted to find the best LMCs (2-10) and λ-
Value (Settings: NINIT=10, NFOLDS=10, ITERMAX=100, NCORES=20). The best results based 
on evaluation of the cross-validation error were achieved for 5 LMCs and a λ-Value of 0.01. 
The fractional cell-type contribution was calculated for the different samples and compared 
to flow-cytometry data obtained from the same samples. The mean absolute error (MAE) was 
calculated using the Metrics R package (https://github.com/mfrasco/Metrics) and used as a 
measure of the predictive power for the different algorithms. 
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Differential methylation calling 

Differentially methylated probes (DMPs) between LSK cells and all other cell types were 
determined in a pair-wise manner using the RnBeads “rnb.execute.computeDiffMeth” 
function. CpG sites with a mean methylation difference of >20% and a false-discovery rate 
adjusted p-value < 0.05 were considered as differentiation dynamic DMPs (diffDMPs) for each 
cell type (Supplementary Table 5). The localization diffDMPs around the TSS of common 
lineage marker genes was plotted using the Gviz Bioconductor package [46]. 
 

Enrichment of transcription factor binding motifs 

Enrichment of known transcription factor binding motifs within each hypomethylated 
diffDMP set was calculated using the HOMER software (v4.8)[47]. In short, the HOMER 
“findMotifsGenome” function was used with each cell-type diffDMP set as input data and all 
remaining CpG sites from the MMBC array (after quality control filtering) as a background set. 
The size of the tested region was fixed as 50 bp upstream and downstream of the input locus. 
Enrichment was calculated as the percentage of target regions with a known motif divided by 
the percentage of background regions with the same motif.  
 

Overlap with known cis-regulatory elements 

Four previously published CRE catalogues were analyzed for overlap with the MMBC array 
and with diffDMPs: ENCODE candidate CREs (ENCODE-CRE), VISION project hematopoietic 
CREs (VISION-CRE), hematopoietic enhancer (Enhancer-CRE) and open chromatin regions 
(OCRs) of the Immunological Genome (IMGEN) consortium (IMGEN-CRE)[16-18, 34]. All CREs 
mapping to autosomes were considered for the analysis. IMGEN-CREs were expanded by 
125bp upstream and downstream as these sites were reported as 250bp width centered on 
the summit [16]. Enhancer-CREs intervals were extracted from Supplementary Table 1 
provided in Lara-Astiaso et al. 2014 [34]. The mm9 interval coordinates were translated to 
mm10 coordinates with the UCSC liftOver command-line program. We used the 
mm9ToMm10.over.chain.gz chain file provided in the UCSC genome browser database 
(https://hgdownload-test.gi.ucsc.edu/goldenPath/mm9/liftOver/mm9ToMm10.over.chain.g
z). 
The number of overlapping CpGs was plotted using the UpSetR package 
(https://github.com/cran/UpSetR). We defined three sets of candidate CREs for further 
analysis based on the overlap between the catalogues used: “methylation dynamic CREs” 
(overlap of diffDMPs with any CRE of the previous catalogues), “chromatin CREs” (regions 
identified in previous CRE catalogues which did not show DNA methylation dynamics in our 
MMBC dataset) and novel “novel methylation dynamic CREs” (novel mdCREs; diffDMPs which 
did not overlap with any of the other sets). The Pearson correlation of the methylation β-
values for these CRE sets was calculated for all profiled cell types.  
 
Clustering of candidate CREs 

The mean methylation β-values of all novel mdCREs were calculated across all biological 
replicates of each cell type and were then transformed to z-scores. For unsupervised 
hierarchical clustering we used Ward’s method on the squared Euclidean distance. We used 
the “cuttree” R function to determine cell type specific DNA methylation programs and 
randomly selected 350 CpG sites from each of these clusters for visualization.  
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Correlation to gene expression data 

RNA-sequencing (RNA-Seq) raw counts were downloaded from the Haemopedia collection 
and processed using the DESeq2 Bioconductor package [48, 49]. Genes with more than 10 
reads over all cell populations were included as expressed genes. The data was subjected to 
variance stabilizing transformation using the DESeq2 „vst” function. The genes associated 
with each CRE (based on the distance definition; see Annotation of the MMBC array) were 
extracted and used for calculation of the Pearson correlation between the cell types.  
 
Identification of putative associations between CREs and target genes 

Differential expression from LSK cells to all differentiated downstream cell populations was 
calculated using the DESeq2 Bioconductor package. Shrinkage of log2 foldchange (log2FC) 
values was performed using the adaptive shrinkage estimator (ashr) as implemented in the 
“lfcShrink” DESeq2 function [49]. Genes with an FDR-adjusted p-value <0.01 and log2FC >2 
were considered as differentially expressed genes (DEGs). Transcription start sites (TSS) of 
expressed genes were gathered from the Ensembl Archive Release 102 (November 2020; 
GRCm38.p6) and all TSSs within a distance of 1Mb to novel mdCREs were mapped. For each 
novel mdCRE/gene pair, the mean methylation β-value and mean vst-adjusted expression 
value were calculated across the replicates of each cell type. These sets of paired 
methylation/expression values were subjected to an association test using Pearson’s 
correlation and a linear model (i.e. expression of the target gene as a function of the 
methylation value). The correlation test p-values were false discovery rate (FDR) adjusted 
using the Benjamini-Hochberg method. Sites with an FDR-adjusted correlation test p-value 
<0.01 were considered as candidate associations. The intensity of association could be 
defined as the slope of the underlying linear model whereby an absolute slope >4 was 
required for putative novel mdCRE/gene pair.  
 
Analysis of HiC data 

HiC data of naïve CD8+ T-cells was downloaded from GEO (GSM5017661) and analyzed using 
Juicebox [50, 51]. Associated novel mdCREs for Thy1 were lifted to mm9 and annotated 
together with the Thy1 TSS.  
 

Data and code availability 

All statistical analyses were performed using R version 4.0.3 and the code is publicly available 
on GitHub (https://github.com/MaxSchoenung/MMBC). The ggplot2 and pheatmap 
(https://github.com/raivokolde/pheatmap) R packages were used for visualization [52]. The 
MMBC data for hematopoietic cell types is available at the NCBI’s Gene Expression Omnibus 
(GEO) data repository (GSE201923). In addition, the following publicly available datasets were 
used for this study: Haemopedia-Mouse-RNASeq 
(https://www.haemosphere.org/datasets/show), LSK TWGBS (GSE146907), Hematopoiesis 
RRBS (https://medical-
epigenomics.org/papers/broad_mirror/invivomethylation/index.html), CD8+ T-cells HiC 
(GSM5017661)[9, 42, 48, 50].  
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Figure 1 | Mouse methylation bead chip reference map of hematopoietic differentiation. 

(A) Schematic depicting the computational pipeline that was developed and implemented 
within the RnBeads Bioconductor package. This pipeline includes quality control, pre-
processing (i.e. background subtraction, filtering, normalization), differential methylation 
calling, cell type deconvolution and de novo identification of methylation dynamic CREs, and 
visualization of the mouse methylation bead chip data. (B) Overview on the hematopoietic 
cell types isolated by flow cytometry and analyzed in the present study. (C) Density dot plot 
showing the correlation of DNA methylation β-values derived from tagmentation-based 
whole genome bisulfite sequencing (TWGBS) and MMBC data of Lin- Sca1+ Kit+ (LSK) cells. All 
CpG sites with >10 reads in at least 2 TWGBS samples were included in this analysis 
(n=234,814 CpGs). Pearson correlation has been calculated. (D) Three-dimensional principal 
component analysis using the 5000 most variable CpG (mvCpG) sites separated major 
hematopoietic cell types and differentiation branches. The axes depict the principal 
components (PC) 1-3. (E) Heatmap depicting the hierarchical clustering of the 5000 mvCpGs. 
Columns represent the cell types and the biological replicates and the rows represent the 
CpGs. Rows were clustered using Manhattan distance and complete linkage. Columns were 
ordered based on known lineage relationships in the hematopoietic system. (F) Phylogenetic 
tree depicting the relationship of all cell types including the replicate information over three 
replicates for each cell type. The phylogenetic tree was calculated based on the methylation 
levels of the 5000 mvCpGs using the Manhattan distance metric. 
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Figure 2 | Cell type deconvolution. (A) Schematic overview of the cell-type deconvolution 
pipeline. Cell-type specific DMPs (ctDMPs) were determined in a one-versus-all manner using 
a stringent filtering strategy. The identified ctDMPs were used as input for 4 different cell type 
deconvolution algorithms. The predicted fractions for C57BL/6 wildtype (CD45.1 & CD45.2) 
and JAK2V617F-mutant mice (n=2) were compared to flow cytometry measurements to assess 
the prediction accuracy. (B) Heatmap depicting the DNA methylation β-values for the ctDMPs. 
(C) Scatter plot comparing the predicted and measured cell type fractions. The mean absolute 
error (MAE) was calculated for each cell type and algorithm. (D) Barplot showing the 
predicted monocyte fractions resulting from the different deconvolution algorithms for 
wildtype (CD45.1 & CD45.2) and JAK2V617F-mutant mice. (E+F) Flow cytometry data assessing 
the fraction of monocytes of all CD45+ cells. Data are shown as barplot (E) and density plot to 
visualize the flow cytometry gating (F).   
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Figure 3 | DNA methylation changes underlying murine hematopoietic differentiation. (A) 
Differentiation dynamic DMPs (diffDMPs; p<0.05 and delta methylation >0.2) were computed 
between LSK cells and all other cell types. Hypo- and hypermethylation refer to loss and gain 
of DNA methylation in the respective cell type as compared to LSK cells. The number of hypo- 
and hypermethylated probes per cell type is depicted as a bar plot. Each set of DMPs has been 
divided into shared DMPs (also differentially methylated in another cell type) and unique 
DMPs. (B) Heatmap showing the percentage of shared DMPs across cell types (row-wise). (C) 
Violin plot showing the DNA methylation change of monocyte-specific diffDMPs from LSKs to 
cell types of the myeloid lineage. The diffDMPs were stratified as hypo- or hypermethylated 
based on the DNA methylation difference to LSK cells. The DNA methylation differences (Δ 
methylation) were calculated by subtracting β-values of LSKs from each cell type. (D) Locus 
plot depicting the genomic region of the myeloid transcription factor Cebpe. Methylation β-
values for the two diffDMPs identified in this region are shown as barplots and significant 
methylation changes are indicated with shaded background.  
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Figure 4 | Differentiation dynamic DMPs mark candidate cis-regulatory elements. (A) 

Enrichment of transcription factor binding motifs in hypomethylated diffDMPs (±50 bp) 
identified in the different cell types. Enriched fold change (circle size) and significant 
enrichments (filled circle) are shown. (B) Venn diagram depicting the overlap of diffDMPs 
(n=37,512) with known CREs (n=119,599 MMBC CpGs overlapping with known CREs). 
chromCREs: chromatin-regulated CREs, i.e. CpG sites overlapping with known CREs but 
without significant methylation changes in hematopoietic differentiation; mdCREs: 
methylation-dynamic CREs, i.e. differentially methylated CpGs overlapping with known CREs; 
novel mdCREs: novel methylation-dynamic CpGs, i.e. differentially methylated CpGs not 
overlapping with known CREs. (C) Genomic localization for probes overlapping with the 
different CRE catalogues and subsets based on the distance to annotated genes. DCRD: 
distant cis-regulatory domain; 5’-UTR: 5’ untranslated region; 3’-UTR: 3’ untranslated region. 
(D) Pearson correlation heatmap of methylation β-values for probes of the different CRE 
subsets (mdCREs, chromCREs & novel mdCREs). (E) Pearson correlation heatmap based on 
RNA-seq data of genes associated with the different CRE subsets (mdCREs, chromCREs & 
novel mdCREs). 
 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.493896doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.02.493896
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5

A B

LSK
MEP

CMP
GMP

CD4+
CD8+

B-Cell

Mono
Neut

LSK
MEP

CMP
GMP

CD4+
CD8+

B-Cell

Mono
Neut

Cluster Cluster

Methylation z-score
-2 -1 0 1 2

Methylation β-Value
0 0.2 0.4 0.6 0.8 1.0

4

1

2

9

3

8

5

6

7

4

1

2

9

3

8

5

6

7

erythroid

CD4+
T cells

CD4/8+
T cells

lymphoid
cells

B cells

myeloid
cells

non-
lymphoid
cells

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.493896doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.02.493896
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

Figure 5 | Cell type-specific DNA methylation programs of novel mdCREs. DNA methylation 
β-values of novel mdCREs were z-score transformed and hierarchically clustered using 
Euclidean distance and Ward’s method. This strategy identified 9 different clusters with cell 
type specific DNA methylation patterns. For display purposes 350 CpG sites were randomly 
selected from each cluster. The z-score transformed methylation β-values of these sites were 
again clustered within each cluster. Plotted are the z-score transformed data (A) as well as 
the corresponding absolute β-values (B) of the same CpG sites in the same order. Please refer 
to Supplementary Figure 7 for heatmaps representing all novel mdCRE CpGs.  
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Figure 6 | Hypomethylation of novel mdCREs is associated with lineage specific gene 

expression patterns. (A) Strategy to annotate novel mdCREs to putative target genes. All 
transcriptional start sites (TSS) within an 1Mb radius to novel mdCREs were mapped. Next, 
Pearson correlation and a linear model (surrogate of DNA hypomethylation effect size) 
between gene expression of associated genes and methylation β-values of novel mdCREs was 
calculated. All associations with an FDR-adjusted correlation p-value <0.01 and an absolute 
slope of >4 were selected as significant candidate associations. (B) Distribution of significant 
candidate associations around TSS. (C) Histogram showing the number of associated genes 
per novel mdCRE. (D) Barplot of FDR-adjusted correlation p-values for novel mdCREs within a 
1Mb distance to the Thy1 TSS and the respective gene expression. Significant candidate 
associations are colored as red bars. (E) HiC contact map for the Thy1 locus showing the 
localization of significant associated novel mdCREs and the Thy1 TSS. (F-H) Scatter plots show 
the methylation β-values and gene expression values (vst-transformed counts) for associated 
novel mdCRE-gene pairs within the different novel mdCRE methylation clusters. Methylation 
z-score heatmaps for the CpG sites in the respective clusters are shown above the scatter 
plots. Cell populations with cluster-specific hypomethylation (F, MEPs for cluster 4; G, B-cells 
for cluster 8; H, myeloid lineage for cluster 5) have been compared to all other cell types (gene 
expression and methylation β-value range in other cell types depicted by error bars). The 
coloring and point size show the log2 fold-change of a differential expression test between 
the respective cell type with the strongest hypomethylation and LSK cells.  
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Supplementary Figure 1 | Gating strategy for the isolation of reference cell types. Flow 
cytometry density plots depicting the cell surface marker-based gating schemes for the 
isolation of hematopoietic cell types. Previous gates are listed above the respective plots. (A) 
Monocytes (CD45+ CD8- CD4- CD11b+ Ly6Chi Ly6G-), Neutrophils (CD45+ CD8- CD4- CD11b+ 
Ly6C- Ly6G+) and B-cells (CD45+ CD8- CD4- CD11b+ B220+) were sorted without linea ge 
depletion. (B) Differentiated cells which are not from the T-cell lineage were depleted for the 
isolation of CD4+ T-cells (CD45+ Lin- CD4+ CD8-) and CD8+ T-cells (CD45+ Lin- CD4- CD8+). (C) 
LSKs (CD45+ Lin- Sca1+ cKIT+), MEPs (CD45+ Lin- Sca1- cKIT+ CD127- CD34- CD16/32-), CMPs 
(CD45+ Lin- Sca1- cKIT+ CD127- CD34+ CD16/32-) and GMPs MEPs (CD45+ Lin- Sca1- cKIT+ 
CD127- CD34+ CD16/32+) were sorted after depletion of differentiated hematopoietic cells. 
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Supplementary Figure 2 | Quality control of MMBC samples. (A) Histograms showing the 
detection p-values for sites on the MMBC with a low detection rate (p-value > 0.001) per cell 
type. The percentage of these sites relative to all sites on the MMBC array is shown on the y-
axis. (B+C) Scatter density plots depicting the methylation β-values of all CpG sites across the 
three biological replicates analyzed from LSK cells on the MMBC array. Pearson’s correlation 
coefficient is provided for each comparison. (D) Density plot showing methylation β-value 
distribution before and after intra-array normalization. 
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Supplementary Figure 3 | Correlation between MMBC and RRBS data. Scatter density plots 
showing the methylation β-values of corresponding CpG sites from RRBS (x-axis) and MMBC 
(y-axis) analyses per cell type. The total number of CpG sites with > 20x read coverage in RRBS 
is annotated together with the Pearson’s correlation coefficient.  
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Supplementary Figure 4 | DNA methylation changes at hypomethylated diffDMPs. Boxplots 
showing the mean methylation β-values over the replicates for cell type specific 
hypomethylated diffDMPs (panel headings) per cell type.  
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Supplementary Figure 5 | Characterization of MMBC probes overlapping with CRE 

catalogues. (A) Barplot showing the number of CREs per catalogue which overlap with the 
MMBC array. (B) Upset plot showing the mutual overlap of CRE-catalogues and diffDMPs. The 
intersection size is showing as column barplots and the catalogue sizes as row barplots. 
Chromatin CREs (chromCREs; grey), methylation dynamic CREs (mdCREs; yellow) and novel 
methylation dynamic CREs (novel mdCRE; orange) have been highlighted.  
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Supplementary Figure 6 | DNA methylation-based clustering of chromCREs. Methylation β-
values of CpG sites from the chromCRE subset were z-score transformed and hierarchically 
clustered using Euclidean distance and Ward’s method. The heatmaps show methylation z-
scores (A) and the respective β-values for 1000 randomly chosen CpG sites in the same order 
(B). 
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Supplementary Figure 7 | Clustering of novel mdCREs. Methylation β-values of all novel 
mdCREs were z-score transformed and hierarchically clustered using Euclidean distance and 
Ward’s method. This strategy identified nine different clusters with cell type specific DNA 
methylation patterns. Depicted are the z-score transformed data (A) and the respective 
absolute β-values (B), which were plotted in the same order.  
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Supplementary Figure 8 | DNA methylation and gene expression dynamics for novel 

mdCRE-gene pairs. Methylation β-values and normalized gene expression were plotted for 
the identified 843 novel mdCRE-gene pairs across all cell types. The novel mdCRE were 
stratified by DNA methylation cluster. 
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