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Abstract

Signal peptides are short amino acid segments present at the N-terminus of newly synthesized pro-
teins that facilitate protein translocation into the lumen of the endoplasmic reticulum, after which
they are cleaved off. Specific regions of signal peptides influence the efficiency of protein translo-
cation, and small changes in their primary structure can abolish protein secretion altogether. The
lack of conserved motifs across signal peptides, sensitivity to mutations, and variability in the
length of the peptides, make signal peptide prediction a challenging task that has been exten-
sively pursued over the years. We introduce TSignal, a deep transformer-based neural network
architecture that utilizes BERT language models (LMs) and dot-product attention techniques.
TSignal predicts the presence of signal peptides (SPs) and the cleavage site between the SP and
the translocated mature protein. We show improved accuracy in terms of cleavage site and SP
presence prediction for most of the SP types and organism groups. We further illustrate that
our fully data-driven trained model identifies useful biological information on heterogeneous test
sequences.

1 Introduction

Signal peptides (SPs) are short amino acid chains found at the N-terminus of newly synthesized
proteins. Their role is to facilitate the translocation of proteins, after which they are cleaved off
from the mature protein by signal peptidases (SPases). SPs may direct proteins to the secretory
(Sec) pathway (in all organisms) or twin-arginine translocation pathway (TAT), which is found only
in prokaryotes and in plant chloroplasts. Proteins enter the Sec pathway in an unfolded state, while
those going through the Tat pathway fold before the translocation.

Almost all SPs overall contain a tripartite structure with, generally positively charged, N-region, H-
region (hydrophobic region) and a cleavage site-containing C-terminal region. In SPs cleaved by SPase
I the cleavage site is preceded by a generally polar C-region, while SPs cleaved by SPase II have a three
residue lipobox instead of the C region (Owji et al., 2018) (see Fig. 1) and also a cysteine residue after
the cleavage site (Tokunaga et al., 1982). SPs processed by SPase IV do not have a tripartite structure,
but instead contain a translocation-mediating basic region. Each of the aforementioned SP regions,
which can vary in length and residue composition, dynamically interact with various components of the
Sec or Tat machinery in order to facilitate protein translocation (Owji et al., 2018). While SPs have
recognizable regions, they lack clear consensus motifs. Consequently, the exact sequence properties of
functional SPs have not been determined. This makes SP prediction challenging, which is evident in
the problems of identifying translocation-abolishing point mutations (Liu et al., 2012; Rajpar et al.,
2002).

Many of the previous machine learning approaches for signal peptide detection and cleavage site
prediction rely on different types of hidden Markov models (HMMs) (Reynolds et al., 2008; Viklund
et al., 2008; Tsirigos et al., 2015; Käll et al., 2004). Deep learning approaches have also been employed
for the feature representations of the sequence residues. However, the final prediction is still carried
out by structured prediction algorithms, using the deep residue representations as the inputs for
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conditional random fields (CRFs) (Zhang et al., 2020; Savojardo et al., 2018; Teufel et al., 2022). Non
machine-learning methods have also been employed. Homology-based search algorithms are used to
detect the presence of SPs and report putative cleavage sites by aligning the queries to annotated
sequences (Frank and Sippl, 2008; Wishart et al., 2007). Despite several approaches to design and
optimize SP prediction methods, no single approach provides robust SP identification. This difficulty
is highlighted by the fact that protein database Uniprot relies on four separate SP prediction programs
for SP assignment (Consortium, 2019).

An important aspect is that both HMMs and CRFs rely on a matrix of transition probabilities
between consecutive amino acids. Using this matrix, prior information about the structure of SPs
can be hard-coded into a model by constraining the transitions known to be biologically impossible to
have zero probability. As a concrete example, state transition matrices can be restricted to produce
only contiguous SP predictions and ensure they always start at the N-terminus of the sequence (Owji
et al., 2018), while cleavage sites for SPase II cleaved proteins can additionally be constrained to
always be followed by a cysteine residue (Tokunaga et al., 1982). While incorporating such inductive
bias is generally found useful for classical HMM and CRF models, we do not enforce any such prior
information. Here, we developed a new data-driven prediction method, TSignal, that uses transformer-
based architectures both for the residue representation, as well as the prediction network. We utilize
rich representations of amino acid sequences obtained from a BERT LM, and further train the BERT
model together with self-attentive prediction methods. Using data from large databases of known
signal peptides we demonstrate that our model achieves state-of-the-art performance compared to
previous best approaches, including SignalP 6.0 (Teufel et al., 2022).

2 Materials and methods

A protein is defined by its amino acid sequence a = (a1a2...an) together with an associated label for
each amino acid residue y = (y1y2...yn). We consider the following eight labels, yi ∈ Y = {Sec/SPase I,
Sec/SPase II, Sec/SPase IV, Tat/SPase I, Tat/SPase II, intracellular, transmembrane, extracellular}.
The model distinguishes between five different SP types: secretory pathway directed peptides cleaved
by SPase I, II and IV, and Tat pathway directed peptides cleaved by SPase I and II. Our model solves
the cleavage site prediction task by predicting sequences of labels. The model predicts residue ai to
be part of a signal peptide if its predicted label ŷi corresponds to one of the five SP types we train
for. The predicted SP type is inferred from the label ŷ1 associated with residue a1, while the cleavage
site is determined by the first residue ac that is predicted to have one of the three non-SP labels
ŷc ∈ {intracellular, transmembrane, extracellular} following a sequence of predicted SP labels. This
denotes that the cleavage site is located between residues ac−1 and ac. Additionally, each sequence
a originates from one of the four organism groups g ∈ {eukarya, gn-bacteria, gp-bacteria, archaea},
corresponding to eukaryotes, gram-negative bacteria, gram-positive bacteria and archaea. Thus, each
data item can be represented by a triplet (a,y, g).

The structures of the SP types predicted by TSignal are shown in Figure 1. Although we do not
explicitly utilize this information, we show that the model can intrinsically learn this type of structural
information and generalize on diverse protein sequences.

2.1 Transformer models

Contrary to previous approaches that use HMMs or CRFs, our transformer model does not have any
hard-coded knowledge of signal peptide structures. Instead, TSignal builds on the transformer model
architecture which was initially developed for sequence translation tasks in the natural language field
(Vaswani et al., 2017). We use a contextual protein embedding model trained on 216 million protein
sequences called ProtBERT (Elnaggar et al., 2021). ProtBERT is a character-level adaptation of the
auto-encoder BERT LM that is trained only on the masked-token prediction task. We use this model
to retrieve the 1024 dimensional representations of all residues in each amino acid sequence, resulting
in an R1024×N representation for each sequence, with N being the maximum sequence length. To
further adjust the ProtBERT model for signal peptide sequences, we integrate the BERT model as
part of our model and train it together with the sequence prediction model, using a similar approach
to SignalP 6.0. The 1024×N sequence representations retrieved by ProtBERT are used as keys and
values for the transformer decoder, along with the label queries in the multi-head attention blocks
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MSSG LVPRG SGMKETAAA KFERHMDSPDLGTDDDDKMAE...
N H C MP

SSSS SSSSS SSSSSSSSS OOOOOOOOOOOOOOOOOOOOO...
Sec/SPase I

Cleavage site

N: N-region

H: H-region

C: C-reigon

MP: Mature protein

RR: Twin-arginine motif

L: Lipobox

Cys: Cysteine residue

BR: Basic region

MP: I O M
Intercellular; Extracellular;
Transmembrane

S,T,L,W,P: corresponding SP type labels

Note. Only the cleavage sites are exper-
imentally verified. Region labels are not
necessarily correct, and they are shown
here for illustrative purposes only.

MSN RR LFLKSIPIMA AAGAVGMAGLARA ANPMVAETDPA...
N RR H C MP

TTT TT TTTTTTTTTT TTTTTTTTTTTTT OOOOOOOOOOO...
Tat/SPase I

Cleavage site

MNKFVKS LLVAGSVAA LAA C SSSNNDAAGNGAATFGGYS...
N H L Cys MP

LLLLLLL LLLLLLLLL LLL O OOOOOOOOOOOOOOOOOOO...
Sec/SPase II

Cleavage site

MNEFPVN RR FFLFTLGATAASAIL LKG C GNPPSSSGGGT...
N RR H L Cys MP

WWWWWWW WW WWWWWWWWWWWWWWW WWW O OOOOOOOOOOO...
Tat/SPase II

Cleavage site

MNEKG FTLIEMLVVMLVISILLLITIPNVTKHNSIKKG...
BR MP

PPPPP OMMMMMMMMMMMMMMMMMMMOOOOOOOOOOOOO...
Sec/SPase IV

Cleavage site

MRIFVYGSLRTKGNSHWMTNALLLGEYSIDNLYLYSLGH...
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII...

non-SP
MP

Figure 1: Examples of input sequences and associated labels for TSignal. Secretory path directed
SPs cleaved by SPaseI have all three of the N, H and C subregions. Tat directed proteins present the
twin-arginine (RR) motif in their SPs and the SP also has its N and H regions delimited by the RR
motif. SPase II cleaved proteins do not present a proper C region but instead have three amino acids
belonging to a region called lipobox (L), which is always followed by a Cys residue. SPase IV cleaved
SPs only have a small basic region (BR) at the N-terminus. Amino acid sequence of an intracellular
protein that does not contain a signal peptide is included as a reference.

of the decoder. This way, we effectively train a sequence-to-sequence transformer architecture, as
described by Vaswani et al. (2017). TSignal model architecture is shown in Figure 2 and described in
more detail below.

2.1.1 Encoder model

Transformer encoders use initial embedding layers to map tokens from one-hot vectors to dense rep-
resentations. The positional encoding and multi-head attention mechanism are then able to extract
contextual vector representations of these input tokens.

Initial embedding: Each amino acid ai of a sequence a = (a1a2 . . . an) is initially one-hot encoded
into 21-dimensional standard unit column vector c(i) (from 20 unique amino acids and one additional
padding token). For the whole sequence a this results in a binary one-hot encoded matrix A =
(c(1), . . . , c(n)) of size 21-by-n. If n is smaller than the maximum sequence length N in a mini-batch,
then A is padded with N −n one-hot vectors corresponding to an additional padding token, forming a
matrix of size 21-by-N . The initial embedding involves a linear transformation that maps each one-hot
encoded amino acid to a dense d-dimensional1 representation using a matrix Wa ∈ Rd×21. Collectively
for the whole sequence a this can be written as a matrix multiplication I = WaA ∈ Rd×N .

Positional encoding: The encoder model uses a linear positional encoding2. Since the amino acid
indices will always be ordered from 1 to N (we assume the left-most amino acid is always the first
N-terminus residue), we can directly define our positional representation for the amino acids as WP ∈
Rd×N . With the above definitions, the initial positionally encoded embedding matrix for a sequence
is:

E0 = I +WP = WaA+WP . (1)

Transformer encoder: Representation ET
0 = (e0,1, . . . , e0,N )T ∈ RN×d from Eq. (1) is then passed

to multiple transformer block layers, where e0,i is the d-dimensional initial representation of amino
acid residue at position i. The core idea of transformer blocks is to process sequential information
using only attention mechanisms, without any recurrent neural networks. In particular, transformers
use dot-product attention. In one attention head h of layer l, attention weights wl,h

ij for a query

1We use d = 1024 but we use symbol d in method description for clarity.
2This linear transformation is a very large input embedding layer that can encode positions in much larger sequences,

but we preserve linear algebra notation for consistency.
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a =MRVARLPL. . .

Wa ∈ Rd×21

WP ∈ Rd×N

[1,2,3,...]

...

Transformer
Encoder
Layer

E0 ∈
Rd×N

30x

ProtBERT
Encoder

WG ∈ Rd×4 Concat(N) Concat(d)
R(dS+d)×(N+1)

g ∈ {eukarya, gn-bacteria
gp-bacteria, archaea}

E30

RdS×(N+1)

y ={BOS}SSS...

Wy ∈ Rd×9

Concat(d)

Transformer
Decoder
Layer

D0 ∈
R(dS+d)×(N+1)

3x

TSignal
Decoder

Rd×(N+1)

Concat(d)

WO

RdS+d+32

ŷ =SSS...

Sine-based positional encoding
WS in the manuscript

summation WP linear positional encoding WG ∈ R1024×4 linear encoding of
organism group

Wa ∈ Rd×21

Wy ∈ Rd×9
Linear input embedding

Concat(N)

Concat(d)

Concatenate along sequence dimension

Concatenate along model dimension

d = 1024: model dimension

dS = 128: sinusoidal positional encoding dimension

N : (padded) sequence length

Figure 2: TSignal architecture consists of ProtBERT encoder and multi-head attention based trans-
former decoder. Initial embedding involves a dense representation and a linear positional encoding.
ProtBERT embeddings are concatenated with organism group and positional representations prior to
using them as key and value vectors in the decoder, together with query vector from dense represen-
tations of the sequence labels. See Section 2.1 for an in-depth description of the TSignal model.

residue i and key residue j are computed using the d-dimensional residue representations from the
previous layers el−1,i and el−1,j . This is done by first mapping the two vectors el−1,i and el−1,j into
a dot-product suitable space and then computing their dot product

wl,h
ij = (eTl−1,iWQ,l,h) · (eTl−1,jWK,l,h) ∈ R, (2)

where · denote the vector dot-product and WQ,l,h,WK,l,h ∈ Rd×d/H are the query and key linear layers
of attention head h at layer l, and H is the total number of heads per layer (model dimension d is

usually chosen to be exactly divisible by H). For a given query residue i, the attention weights wl,h
ij , j ∈

{1, 2, ..., N} are normalized with softmax transformation, denoted as w̃l,h
ij . These attention weights

are then used to compute a weighted average of the vectors formed by a third linear mapping (called
value matrix) WV,h,l ∈ Rd×d/H of the intermediate vectors that map the previous layer representations
el−1,j into value vectors

e′l,h,i =
L∑

j=1

w̃l
i,j(e

T
l−1,jWV,l,h). (3)

Multiple such attention “heads” are used in each layer, allowing the model to attend, at each
step, to various parts of the sequences using different pairs of linear mappings (WQ,l,h,WK,l,h), where
h ∈ {1, . . . ,H} and l ∈ {1, . . . , L}. Lets define the key, query and value matrices computed by an
attention head at layer l as

Kl,h = ET
l−1WK,l,h

Ql,h = ET
l−1WQ,l,h

Vl,h = ET
l−1WV,l,h.

(4)

Note that the product Ql,hK
T
l,h gives all the unnormalized weights wl,j

ij from Equation (2). The
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weighted average from Equation (3) for head h can be written compactly, for the whole sequence as

E′
l,h = Attention(Ql,h,Kl,h, Vl,h) = Softmax

(
Ql,hK

T
l,h√

d

)
Vl,h, (5)

and the resulting sequence representations E′
l,h ∈ RN×d/H from all heads h ∈ {1, . . . ,H} are stacked

to obtain the intermediate matrix representation E′
l = (E′

l,1, . . . , E
′
l,H) ∈ RN×d.

Finally, the intermediate representation E′
l given by the multi-head attention at layer l is passed

to a two-layered feed-forward network of the form F (E′
l) = ReLU(E′

lW1)W2. Usually, W1 is chosen to
expand the model’s dimension from d to ed, W1 ∈ Rd×ed , with ed being some expanding dimension,
ed > d, and W2 ∈ Red×d map the vectors back to dimension d (the network applies this transformation
to each residue, individually). Skip connection and layer normalization layers are also added from
El−1 to E′

l and from E′
l to the output of the feed-forward network block, giving the layer’s output

representations El. The whole process is repeated for each layer of the network. For notational
simplicity, we also omitted the bias terms in our notations, but all linear operators except the initial
embedding and positional encoding use a bias term. We refer to Vaswani et al. (2017) for further
details of attention mechanisms and to Elnaggar et al. (2021) for details of the ProtBERT model.

2.1.2 Decoder model

Transformer decoders use similar input embedding and positional encoding layers as the encoder, but
their inputs are now the labels.

Initial Embedding: In the first step, decoder processes the output labels y = (y1, . . . , yn) similarly
as the encoder processes the residues in the sequence a = (a1, . . . , an). An important difference is that
we append y0 = {BOS} (beginning of sequence) token, which will be used by the model to predict the
first label y1. The matrix Y ∈ R9×(N+1) consisting of the one-hot label representations as columns is
mapped to a dense representation using ID = WyY ∈ Rd×(N+1), where Wy ∈ Rd×9 is the initial label
embedding layer for all nine unique labels (eight real labels and {BOS}).

Positional encoding: We use a different type of positional encoding for the decoder part of our
model. One alternative to modeling positional vectors using a linear layer, as in Section 2.1.1, is to use
a sinusoidal function. The resulting fixed matrix WS ∈ RdS×(N+1) (for a sequence of length N with
an additional element y0 = {BOS}) is defined element-wise as:

WS(2k + 1, i) = sin
(
i/100002k/d

)
WS(2k + 2, i) = cos

(
i/100002k/d

)
,

(6)

where 2k+1 and 2k+2 refer to the odd and even dimensions in our dS-dimensional positional encoding
vector (here, dS ̸= d) with k ∈ {0, . . . , dS/2− 1} and i ∈ {1, . . . , N + 1} is the sequence residue index.

For the decoder, the fixed dS-dimensional positional information WS is concatenated with the d-
dimensional vector representations of the labels ID. The initial label sequence representation matrix
is given by D0 = ID ⊕ WS ∈ R(d+dS)×(N+1), where ⊕ denotes the concatenation operator and the
sequence length is increased by one to N + 1 because of the additional y0 token. We choose this
sinusoidal positional encoding for the decoder as it does not need any further training. Because of the
limited amount of data, we hypothesize that another linear positional encoding would be difficult to
converge well (note that the linear positional encoding in the encoder is already pre-trained on large
amounts of data).

We concatenate an additional d-dimensional vector g ∈ Rd×1 representing the organism group of
the input sequence (obtained using a linear layer WG ∈ Rd×4) to the encoder’s final layer residue
representations EL. The result is also concatenated with the same sinusoidal positional encoding WS ,
in order to have the same type of positional information in the label and residue representations,
forming E = (EL ⊕ g) ⊕ WS ∈ R(d+dS)×(N+1), where the first concatenation is along the sequence
dimension N for EL ∈ Rd×N and gT ∈ Rd×1 and the second one along the model’s dimension d (see
Supplementary Section 3 for the predictive performance effect of the additional positional encoding
used on the encoder’s outputs).

Transformer decoder: Compared to the encoder layers, the decoder contains both a self-attention
module, as well as an additional cross-attention layer which “looks” at the input vectors from the
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encoder. The first step of a decoder layer is a self multi-head attention, similar to the transformer
encoder. Label representations are contextualized using the matrix from the previous layer Dl−1, as
described in Equations 4-5 (with El replaced byDl). We denote this intermediate matrix of the decoder
as D′

l ∈ R(d+dS)×(N+1). The label vector representations of D′
l are then used as queries in the second

multi-head attention layer, together with the representations from the encoder E ∈ R(d+dS)×(N+1).
Concretely, similarly as in Equation 4, values from D′

l mapped into queries are attending to key
and value mappings from E ∈ R(d+dS)×(N+1) to yield an additional intermediate representation D′′

l .
Lastly, a two-layered feed-forward network retrieves the next layer’s representations of the decoder
Dl ∈ R(d+dS)×(N+1), like the ones in the encoder layers.

During training, the self attention module in the decoder layers computes all contextual values at
once (all pairs (yi, yj) are considered) and therefore vectors representing yi have access to yj , j ≥ i.
This induces undesired behaviour, as we wish to extract the amino acid labels based only on the
previous labels. This issue is addressed by adding an additional {BOS} (beginning of sequence) token
at the start of the label sequences and using appropriate masking. The mask is a matrix filled with
zeros and −∞ above the diagonal and it can be added to the unnormalized attention weights Ql,hK

T
l,h

(see Equation 5). This ensures that the attention weights of current and future labels will be 0, and
y1 will be predicted based only on the input retrieved by the encoder (as {BOS} does not contain
any label information). Padding also uses a similar masking approach, where the attention to {PAD}
tokens are zeroed.

The type of SP can only be correctly predicted when considering all residues forming an SP, and
this requires the model to capture long range context. In contrast, the exact cleavage site prediction
can be hindered by the fact that close residues have similar representations because of the context, and
therefore we concatenate a one-hot representation of residue k for the associated label prediction ŷk.
We hypothesize that this allows the model more freedom in terms of the optimal amount of context
it can add in its representations, and we observed consistent improvements when using this addition,
which supports this claim.

Label predictions yk are finally computed based on the encoder’s last layer representations (eL,1, eL,2,
. . . , eL,N ), the previously predicted labels during inference (and previous true labels during training)
(y0, ŷ1, . . . , ŷk−1), as well as an additional one-hot encoded residue c(k) at the position where label k
is being predicted. During inference, the model predicts ŷk sequentially based on its own generated
label sequence (y0, ŷ1, . . . , ŷk−1) as well as the encoder representations

p(yk) = p(yk|ŷk−1, ŷk−2, . . . , ŷ1, y0, eL,1, . . . , eL,N , c(k)), (7)

and ŷ1 will be predicted based the special token y0 = {BOS}, that we also use during training.

Concretely, p(yk) = Softmax
(
(D3,k ⊕ ck)

T
WO

)
, where D3,k ∈ Rd+dS×1 is the decoder’s last layer

representation of the previous residue label (since the outputs are shifted to the right by one position
due to the {BOS} token), ck ∈ R21×1 is the one-hot representation of the kth amino acid and WO ∈
Rd+dS+21×8 is a linear layer.

2.2 Architecture details

We use a dropout of 0.1 on all transformer decoder weights. The position-wise feed-forward network of
our decoder has an almost fourfold expanding dimension, from the original 1152 to 4096 (d+dS = 1152,
from the original representation d = 1024 and the concatenated sinusoidal positional information
dS = 128). The ProtBERT encoder and transformer decoder have 30 and 3 layers of 16 attention
heads, respectively. We initialize the decoder parameters with the Xavier Uniform initializer described
by Glorot and Bengio (2010).

For better generalization, we used stochastic weight averaging which helps avoid sharp local minima
solutions (Izmailov et al., 2018). We chose constant learning rates of 10−5 and 10−4 for ProtBERT
and decoder parameters respectively, ensuring as much exploration of the local minima as possible,
without risking divergence. SWA weights are updated after each training epoch. For further details
and insights on the effect of SWA we refer to Supplementary Section 4.

We also experimented with three other model variants that utilize the ProtBERT model in different
ways. Based on the F1 scores from a CS prediction comparison, we chose the model setup presented
in Section 2.1. See Supplementary Section 7 for details.
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2.3 Dataset

We use the same dataset D as Teufel et al. (2022), which contains sequences from Uniprot (Con-
sortium, 2019) and Prosite (Sigrist et al., 2012) for proteins containing SPs as well as UniProt and
TOPDB (Dobson et al., 2015) for soluble and transmembrane proteins, where only the expert-reviewed
sequences are considered. The dataset contains 19174 protein sequences grouped into four organism
groups: eukaryotes, gram-negative bacteria, gram-positive bacteria, and archaea. Every residue in
each protein sequence has an annotated label that tells whether the residue belongs to the mature
protein or the SP which will be cleaved, as well as the type of SP (yi ∈ Y). We use the same
three-fold homology partitioning D = (D1,D2,D3), with the exception that we further split each
partition into Di = (Di,train,Di,test), where Di,train have 90% of the original Di and Di,test the re-
maining 10%. We then train the model on Di,train,Dj,train, validate on Di,test,Dj,test and then test on
Dk = (Dk,train,Dk,test). We therefore train and validate on different homology partitions than the test
partition, ensuring a fair comparison against SignalP 6.0.

We do not use all the sequences in D for the benchmark comparisons. Instead, we compare the
predictive performance of TSignal and all other models on a benchmark subset DB ⊂ (D1 ∪D2 ∪D3).
DB was created in SignalP 5 (Almagro Armenteros et al., 2019) such that sequences in DB have at
most 25% sequence identity to the training data set used by DeepSig (Savojardo et al., 2018), and
therefore all comparisons between TSignal, DeepSig and SignalP 6.0 are fair.

2.4 Evaluation

For cleavage site prediction, we use precision and recall as our main performance evaluation metrics.
The precision and recall are computed for each SP type and organism group individually. We consider
a cleavage site prediction to be correct if ip ∈ [ic − tol, ic + tol], where ip is the predicted index of
the cleavage site, ic is the true (annotated) index and the tolerance tol ∈ {0, 1, 2, 3}. Additionally, a
cleavage site is only considered correct if the predicted signal peptide type is correct. For example, in
the case where a signal peptide exists in a sequence but the predicted signal peptide type is not correct,
the CS prediction is accounted as both a false positive (for the SP type which is wrongly predicted)
and a false negative (for the true SP type). To have a single metric for the model’s performance, we
use F1 score defined as F1 = 2·prec·rec

prec+rec . To summarize the results across all signal peptide types and

organism groups, we report the average F1 score and weighted F1 score (weighted by the number of
data points in each group).

To assess the SP presence prediction performance, we use Matthew’s correlation coefficient (MCC).
We compute two separate metrics, MCC1 which considers only soluble and transmembrane proteins
as negative samples, and MCC2 which also counts other SP types as negative samples.

3 Results

In Sections 3.1 and 3.2 we report benchmark comparisons on Sec/SPase I and II and Tat/SPase I
sequences (because only these SP types have numeric results reported in (Teufel et al., 2022)) from DB

described in Section 2.3. This allows us to directly compare our results to the results of the previous
state-of-the-art method, SignalP 6.0. The CS-F1 performance on the whole data D is reported in
Supplementary Section 8, where we also report the Sec/SPase IV and Tat/SPase II performance.

3.1 Signal peptide prediction comparisons

We first assess the SP prediction performance on the sequences found in DB using the MCC metric. We
evaluate MCC1 for TSignal, SignalP 6.0 and a few other popular models for SP prediction: DeepSig
(Savojardo et al., 2018), PRED-TAT (Bagos et al., 2010), LipoP (Juncker et al., 2003), and Phobius
(Käll et al., 2004). For the task of separating various types of SPs (MCC2), we only compare TSignal
to SignalP 6.0 (because other models were not trained to distinguish all SP types considered in this
work). Figure 3 shows the MCC values (we report the numeric values achieved by TSignal and SignalP
6.0 in Supplementary Table 4). We observe small but consistent improvements on Sec and Tat SPase
I, and a slight decrease in Sec/Spase II SP type prediction performance compared to most of the
previous approaches.As we show later, the model learns to detect the RR motif for Tat predictions,
so the increased Tat/SPase I performance suggest our model finds causal features, important for good
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Figure 3: A comparison of SP predictions for TSignal and other models on the benchmark dataset
DB using the average MCC metrics: MCC1 on left and, MCC2 on right. The height of the bar
plots represent the mean MCC result across five different runs, and the approximated 95% confidence
interval is shown by the black vertical lines plotted on top of the bars. Organism groups are shown
on the x-axis, and the SP-type that is tested on the y-axis. The benchmark data set DB is homology
partitioned only between the train and test set of TSignal, SignalP 6.0 and DeepSig, and results for
other models are likely overestimates. Missing bars in the plots correspond to the respective model
not being trained on that particular organism group or SP type.

generalization. The weighted MCC1 and MCC2 scores across all organism groups and SP types for
TSignal are 0.8579± 0.0022 and 0.8396± 0.014 respectively, while SignalP 6.0 has 0.8578 and 0.8365.
We therefore note similar, or even a slight improvement, on the SP type prediction accuracy compared
to previous state-of-the-art method.

To further test TSignal’s ability to recognize difficult-to-predict signal peptides, we assessed its ca-
pability in identifying four signal peptide-containing sequences that were earlier identified in a separate
study that will be published separately (Kellosalo et al. unpublished; see Supplementary Section 2 and
Fig. 1). These four sequences were identified in a screen for functional signal peptides that mediate
protein secretion in mammalian cells and were not recognized to contain an SP by existing prediction
methods. Distinctively, all of these sequences contain basic amino acids dispersed throughout the signal
peptide sequence. Basic residues are typically contained at the N terminus of SPs, yet these previously
unidentified sequences are sufficient to facilitate protein secretion in human cells (Supplementary Fig.
2). We postulate that in this case imposing specific transitions through structured prediction models
may hinder the prediction of unusual sequences. Here, we tested the same models we compare against
for the SP type and CS predictive performance using their publicly available webservers: DeepSig,
PRED-TAT, LipoP, Phobius, and SignalP 6.0. DeepSig classifies three of these sequences as contain-
ing a transmembrane (TM) domain and Phobius reports a TM domain in all four sequences, but none
of the methods classifies any of those four sequences as containing a SP. By contrast, TSignal predicts
a TM domain in two of the four sequences and correctly determines a SP in the other two. The four
sequences and their TSignal predictions are reported in Supplementary Fig. 2.

3.2 Cleavage site prediction comparison

We now test the CS prediction accuracy using the CS-F1 score. We only compare against SignalP 6.0
as the other methods do not predict all three SP types considered. Figure 4 shows that our model
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Figure 4: A comparison of CS predictions between TSignal and SignalP 6.0 on the benchmark dataset
DB using the average F1 score. The height of the bar plots represent the mean F1 result across
5 different runs, and the approximated 95% confidence interval is shown by the black vertical lines
plotted on top of the bars. Organism groups and tolerance levels are shown on the x-axis, and the
SP-type that is tested on the y-axis. SignalP 6.0 results were computed using the precision and recall
scores reported in their manuscript.

compares favourably to SignalP 6.0 for most organism groups and SP types on DB (we report the
numeric values of the F1 score, precision and recall in Supplementary Tables 1, 2 and 3). Particularly
interesting is that the cleavage site of Sec/SPase II SPs are more accurately predicted by our fully
data-driven model, although the presence of Cys residues restricts the number of possible cleavage
sites, and should help structured prediction models. We additionally note that Tat CS predictions are
also better, even though the CRF model SignalP 6.0 is explicitly trained to detect the twin-arginine
motif. In terms of overall performance, TSignal outperforms SignalP 6.0 on the majority of signal
peptide types and organism groups with weighted F1 score of 0.8127± 0.005 compared to SignalP 6.0
0.7976.

We also compare TSignal to PRED-TAT, LipoP, Phobius, and DeepSig on Sec/SPase I and no-SP
sequences from DB . The results for these models were assessed using their publicly available web
servers. We only use Sec/SPase I sequences since all these models have been trained (at least) on
Sec/SPase I and no-SP sequences. We report these results in Figure 5. Note that DB was homology
partitioned to DeepSig’s training data in (Almagro Armenteros et al., 2019), so comparing TSignal
to it is fair, while all other results may be overestimates, due to the lack of homology-based test set
partitioning of this experiment.

The predictions of TSignal are carried on diverse sequences, as we predict the sequences on the
homology split test set, and from those extract the no-SP and Sec/SPase I sequences present in DB .
Although the models we compare against in Figure 5 are likely trained on sequences that are similar
to those we use to test them, we still notice considerable improvements across most tolerance levels
for Sec/SPase I CS predictions, and therefore we can be fairly confident our model outperforms these
previous methods. Note that we could not include SignalP 6.0 here, as that would require access to
their predicted test sequence labels, which we do not have.
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Figure 5: A comparison of CS predictions between TSignal and other popular models. We use the
publicly available website tools for each of the tested models. The height of the bar plots represent
the mean F1 result across five different runs, and the approximated 95% confidence interval is shown
by the black vertical lines plotted on top of the bars. Tolerance levels and organism groups are shown
on the x-axis and y-axis, respectively. The results were computed using only Sec/SPI sequences from
the benchmark dataset DB , since the other models were not trained for all SP types considered here.

3.3 Model performance analysis

To assess the ability of TSignal model to learn and generalize useful and interpretable information about
an SP when predicting its type and CS, we employ a similar approach as Simonyan et al. (2014). As
our training procedure is fully data-driven, we investigate the model’s ability to learn the information
which can be useful for structured prediction models. We compute the average input importance
scores for each residue in aligned sequences. We investigate 26 Tat/SPase I sequences that have the
“RRXFLK” motif and 1682 Sec/SPase II sequences. We align the Tat/SPase I sequences wrt. the RR
motif and the Sec/SPase II wrt. the Cys residue that is always present in the first position after the CS.
We denote ic+1 to be the first residue after the cleavage site. We compute the input importance scores
of the predictions for the test set, to investigate whether this information is generalized on sequences
that are dissimilar to those used in the training. We refer to Supplementary Section 6 for more details
on how we extract residue importance scores.

In Figure 6, the top panel shows how the model distinguishes the twin-arginine motif. The twin-
arginine motif clearly has a high relative importance in the Tat prediction. The bottom panel illustrates
the relevance of the cysteine residue (positioned at ic+1) for Sec/SPase II CS predictions. We also
align Sec/SPase I sequences on the CS and plot them together. The red curve (Sec/SPase I) shows no
relative importance of the ic+1 residue compared to the other residues surrounding the CS, whereas
in Sec/SPII, there is a very clear spike on the position matching the ic+1 (Cys residue).

Next we evaluated how the performance of TSignal model increases with the amount of training
data. Figure 7 shows that the model performance increases consistently as more training data is used,
while the variance of the score estimates decreases. We assume that as more SP-protein pairs become
available, the performance of our architecture will also steadily increase.

We also check the model’s probability calibration. To a large degree the confidence scores of the
model reflect the actual probability of the given prediction being correct in Supplementary Section 5.
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(denoted as E0 in this work) of the RR motif. On the bottom panel the sequences are aligned by
the residue ic+1 following the CS. For Sec/SPase II residue ic+1 is cysteine and it has a high relative
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Figure 7: Performance of the TSignal model as a function of the amount of training data. F1 score
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the validation and testing data fixed. The test-train procedure is repeated five times, and we report
the mean and 95% confidence interval (the shaded areas). Results are plotted for tolerances zero and
three, for Sec/SPase I SPs from all organism groups.
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4 Conclusion

We introduce, to our knowledge, the first deep learning model for signal peptide and cleavage site
prediction, which does not use known biological properties of SPs explicitly (see Figure 1). Our
results show that a transformer-based model provides competitive signal peptide prediction results
and improves the accuracy of cleavage site prediction compared to the current state-of-the-art method.
Indeed, on several organism groups, our transformer-based model outperforms previous methods. Our
analysis also demonstrates that the model performance increases consistently with the amount of data.
In other words, as more and more experimentally verified SP sequences will become available, data-
driven end-to-end training of expressive deep learning models is likely to further improve the predictive
performance. We also note that the amount of variability in TSignal’s performance is small, which
indicates reliable performance evaluations as well as robust predictions.

Model interpretability is generally difficult to obtain for deep learning models and they are usually
regarded as “black-boxes”. We show that our model generalizes biologically relevant information on
homology partitioned data. In addition to the state-of-the-art cleavage site prediction performance, this
further illustrates our model’s promising generalization potential on diverse sequences. Furthermore,
it represents another argument for fully data-driven models, as information that was previously used
in structured prediction models is learned by a model using a fully data-driven approach. We also
note that hypotheses regarding the importance of various other motifs or specific residues could also
be tested using the saliency map approach.
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