
bioRxiv preprint doi: https://doi.org/10.1101/2022.06.02.494457; this version posted June 3, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1	<i>massDatabase</i> : utilities for the operation of the public compound and pathway database
2	Xiaotao Shen ^{1+*} , Chuchu Wang ²⁺ , and Michael P. Snyder ^{1*}
3 4 5	¹ Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94304, USA. ² Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
6	⁺ These authors contributed equally.
7	* To whom correspondence should be addressed.
8	1
9	Abstract
10	Summary: One of the major challenges in LC-MS data (metabolome, lipidome, and exposome) is
11	converting many metabolic feature entries to biological function information, such as metabolite annotation
12	and pathway enrichment, which are based on the compound and pathway databases. Multiple online
13	databases have been developed, containing lots of information about compounds and pathways. However,
14	there is still no tool developed for operating all these databases for biological analysis. Therefore, we
15	developed massDatabase, an R package that operates the online public databases and combines with other
16	tools for streamlined compound annotation and pathway enrichment analysis. <i>massDatabase</i> is a flexible,
17 10	simple, and powerful tool that can be installed on all platforms, allowing the users to leverage all the online
18 19	public databases for biological function mining. A detailed tutorial and a case study are provided in the Supplementary Materials .
20	Availability and implementation: <u>https://massdatabase.tidymass.org/</u> .
20 21	Contact: shenxt@stanford.edu and mpsnyder@stanford.edu
22	Supplementary information: Supplementary data are available at <i>Bioinformatics</i> online.
23	Supprementary mornanes supprementary and are available at Drowyor martes eminer
24	1 Introduction
25	Liquid chromatography coupled to mass spectrometry (LC-MS) is a comprehensive, unbiased technology
26	to research small compounds, which has become increasingly popular in dietary, environmental, and
27	biomedical studies (Wishart, 2016). One of the major challenges in LC-MS data (metabolome, lipidome,
28	and exposome) is the post-processing of a large number of metabolic feature entries to achieve clear
29	biological evidence, such as the compound annotation and pathway enrichment. Therefore, the databases
30	for compounds and pathways are essential for these analyses. Multiple public databases for compounds and
31	pathways are available online, which benefits the community (Go, 2010). However, the existence of an
32	automated, multiple compound/pathway query processing package in R is still a demand. So far, although
33	several R packages have been developed to extract online databases, most of them only support one or
34	limited databases and have different design concepts and output formats. In addition, they can not be
35	combined with other existing tools for a straightforward subsequent analysis, which limits their further
36 27	applications.
37 38	Here, we presented the massDatabase package to overcome the challenges mentioned above while
30 39	accessing the online databases, particularly to (1) support most of the commonly used online public databases (11 databases, Table S1), (2) operate (extracting, downloading, reading, and converting) the
39 40	online public databases, and (3) combine the online public databases with existing tools for subsequent
40 41	compound annotation, and pathway enrichment analysis (Fig. 1).
••	compound antonion, and particip on contention analysis (1 15, 1).

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.02.494457; this version posted June 3, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1 2 3 4 5 6

Fig. 1. The overview of (a) the online databases that massDatabase support, (b) the functions used to process databases, and (c) the combination with other tools in the tidyMass project.

5 2 Features and methods

6 Using *massDatabase*, users can extract compound/pathway information from the online databases (11
7 databases, **Table S1**) and download them. In addition, *massDatabase* can also be combined with other tools
8 for metabolite annotation and pathway enrichment analysis. The *massDatabase* can be installed on Mac
9 OS, Windows, and Linux.

10

11 2.1 Online databases operation

The functions in *massDatabase* could be grouped into four classes. (1) Request specific information of one item (compound, pathway, reaction, *etc.*) online using the web crawler, (2) download the corresponding database, (3) read the downloaded databases (csv, mgf formats, *etc.*) as R object (list or data frame), and (4) convert the databases to other formats that could be used for other tools (**Fig. 1**).

16

17 2.2 Combination with other tools

18 The users can download the online databases and then convert them to the formats supported by the 19 packages in the tidyMass project using *massDatabase*. Currently, two packages from tidyMass projects 20 could combine with *massDatabase*. Users can download the compound databases (MS^1 or MS^2 spectra 21 databases), convert them to the database format in the *metID* package, and then use them for compound 22 annotation by *metID*. Furthermore, users can also download the pathway databases, convert them to the 23 pathway database format in the *metPath* package, and then use them for pathway enrichment analysis by 24 *metPath*.

25

26 3 Case study

27 We applied massDatabase to a published study from our lab (Liang et al., 2020) as a case study for

28 exemplifying the value of *massDatabase* in biological function mining by integrating with the online public

- 29 databases. The MS² spectra databases from HMDB, MassBank, and MoNA were first downloaded and
- 30 converted to databases format in *metID*. And the pathway database from KEGG is downloaded and
- 31 converted to pathway database format in *metPath*. Then the metabolic feature table was annotated by *metID*

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.02.494457; this version posted June 3, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

- 1 which is based on the public databases from *massDatabase* and our in-house library. Then all the annotated
- 2 metabolites were used for pathway enrichment analysis using *metPath*. The top enriched pathways include
- 3 Steroid hormone biosynthesis, Phenylalanine metabolism, Caffeine metabolism, Linoleic acid metabolism,
- 4 Primary bile acid biosynthesis, *etc.*, which are most consistent with the original analysis (Fig. S1) (Liang
- 5 et al., 2020). These results indicate that massDatabase is a powerful tool for utilizing online public
- 6 compound and pathway databases for automated and reproducible analysis of LC-MS-based metabolomics
- 7 data (Supplementary Material).
- 8

9 4 Conclusion

- 10 massDatabase is developed to operate public databases in untargeted LC-MS-based data (metabolome,
- 11 lipidome, and exosome). It allows users to extract, download, read databases, and convert database formats
- 12 to different formats required by other tools. To our best knowledge, it is the first R package allowing users
- 13 to operate most of the commonly used online public databases for subsequent biological function mining.
- 14
- 15 **Funding:** This work received no external funding.
- 16 *Conflict of Interest*: M.S. is a co-founder and member of the scientific advisory boards of the following:
- 17 Personalis, SensOmics, Filtricine, Qbio, January, Mirvie, and Oralome.
- 18

19 References

- Go,E.P. (2010) Database resources in metabolomics: an overview. J. Neuroimmune Pharmacol., 5, 18–
 30.
- Liang,L. *et al.* (2020) Metabolic Dynamics and Prediction of Gestational Age and Time to Delivery in
 Pregnant Women. *Cell*, 181, 1680–1692.e15.
- Shen,X. *et al.* (2021) metID: an R package for automatable compound annotation for LC–MS-based data.
 Bioinformatics, 38, 568–569.
- Shen,X. *et al.* (2022) TidyMass: An Object-oriented Reproducible Analysis Framework for LC-MS Data.
 bioRxiv, 2022.03.15.484499.
- Wishart,D.S. (2016) Emerging applications of metabolomics in drug discovery and precision medicine.
 Nat. Rev. Drug Discov., 15, 473–484.
- 30
- 31
- 01
- 32
- 33
- 55
- 34
- 35