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Abstract 33 

The ability to differentiate stem cells into human cell types is essential to define basic 34 

mechanisms and therapeutics, especially for cell types not routinely accessible by biopsies. But 35 

while engineered expression of transcription factors (TFs) identified through TF screens has been 36 

found to rapidly and efficiently produce some cell types, generation of other cell types that require 37 

complex combinations of TFs has been elusive. Here we develop an iterative, pooled single-cell 38 

TF screening method that improves the identification of effective TF combinations using the 39 

generation of human microglia-like cells as a testbed: Two iterations identified a combination of 40 

SPI1, CEBPA, FLI1, MEF2C, CEBPB, and IRF8 as sufficient to differentiate human iPSC into 41 

microglia-like cells in 4 days. Characterization of TF-induced microglia demonstrated molecular 42 

and functional similarity to primary microglia. We explore the use of single-cell atlas reference 43 

datasets to confirm identified TFs and how combining single-cell TF perturbation and gene 44 

expression data can enable the construction of causal gene regulatory networks. We describe 45 

what will be needed to fashion these methods into a generalized integrated pipeline, further ideas 46 

for enhancement, and possible applications. 47 

Introduction 48 

Recent advances and applications of single-cell assays, exemplified by collaborative 49 

efforts such as the Human Cell Atlas (HCA)1, have begun to provide a comprehensive view of cell 50 

types and cellular states within the human body. Such maps are crucial for understanding human 51 

development and diseases. From a synthetic biology perspective, these maps can be mined for 52 

promising targets for cell fate engineering, with significant implications for disease modeling, cell 53 

therapy, and regenerative medicine. Previously, we reported the construction of a comprehensive 54 

human transcription factor library (TFome)2. In that study we used an unbiased approach for 55 

screening differentiation and identified 290 transcription factors (TFs) that induced differentiation 56 
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of human induced pluripotent stem cells (hiPSCs) into various cell types. While the unbiased 57 

screening method led to many interesting discoveries, it does not guarantee the generation of any 58 

particular cell type. For those wishing to differentiate stem cells into a specific cell type of interest 59 

for studying diseases and creating therapeutics, the availability of experimental and computational 60 

pipelines for the identification of TFs to produce target cell types would be of great benefit. In this 61 

study, we picked a target cell type for which TF-based differentiation method has not yet been 62 

found, the microglia, for a proof-of-principal for developing new screening methodologies. 63 

Microglia are the resident immune cells of the brain, which originated from erythro-myeloid 64 

progenitors (EMPs) in the yolk sac3,4. They play important and diverse roles in brain development 65 

and maintaining homeostasis5–9. Recent studies have demonstrated the link between 66 

neuroinflammation and neurodegenerative disease, such as Alzheimer’s Disease (AD)10,11, and 67 

along these lines, microglia have been shown to be an important cell type in AD and other 68 

neurodegenerative diseases12–15. However, functional studies to define therapeutics targeting 69 

human microglia have been greatly hindered by the limited availability of human brain biopsies16,17. 70 

The supply issue cannot simply be mitigated by using murine models, because differences 71 

between human and mouse microglia limit the transferability of knowledge18,19. Producing human 72 

microglia-like cells from hiPSCs might fill this gap. Several studies have accomplished this goal 73 

through a process of embryoid body formation, growth factor treatment, and, in some cases, co-74 

culturing with neurons20–28. These protocols draw inspiration from the natural developmental 75 

stages of microglia and have timelines ranging from 30-74 days. As the effects of extrinsic factors 76 

on cell fate are frequently mediated by TFs, and building on top of our group’s and others’ prior 77 

research in using TFs to accelerate differentiation2,29–31, we hypothesized that direct 78 

manipulations of TF expression could differentiate hiPSCs to microglia in a shorter timeframe. 79 

In this study, we conducted two sequential iterations of pooled TF screening. Each round 80 

of screening involves creating a barcoded TF library, pooled transfection into iPSCs for inducing 81 
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differentiation, and subsequent single-cell transcriptome analysis. From the analysis, TFs are 82 

ranked by their ability to induce microglial gene expression, and the top hits then characterized 83 

for their ability to induce differentiation into microglia (Figure 1a, 2a). We identified a TF 84 

combination that produced cells transcriptionally resembled microglial cells in four days without 85 

the need for media exchange. We demonstrated that these TF-induced microglia-like cells 86 

(TFiMGLs) shared molecular and functional features of human primary microglia. Our barcoding 87 

and amplification strategy allow for simultaneous detection of cell and TF barcodes from the high 88 

throughput single-cell experiments, thus empowering us to analyze the regulatory relationships 89 

between TFs and other genes. We also constructed a human single-cell transcriptome reference 90 

by integrating publicly available scRNA-seq datasets of 225 samples representing 59 tissue types, 91 

to which TF differentiated single cells could be mapped. We expect the methodology described 92 

in this study to be broadly adopted to cell fate engineering and enable researchers to more 93 

effectively select TFs to generate novel iPSC-derived cell types. 94 

Results 95 

First round of pooled screening identified initial TFs for inducing microglia gene 96 

expression 97 

To identify TFs that differentiate hiPSCs to microglia, our strategy is to first transfect and 98 

stochastically integrate a pool of TFs into the cells, followed by differentiation induction and single-99 

cell RNA sequencing (scRNA-seq). From the scRNA-seq data, we use gene-expression profiles 100 

to determine which cells are differentiating into microglia, and identify the TFs that were 101 

transfected into these cells. To begin with, we surveyed previous literature on microglial 102 

development3,6,8,32,33, epigenetic and transcriptomic patterns34–38, and gene regulatory networks39. 103 

We shortlisted 40 TFs for the first pooled TF screening (Supplementary Table S1). We cloned 104 

each TF into the pBAN2 vector for genomic integration with PiggyBac transposase and 105 

doxycycline (Dox)-inducible expression. To distinguish between exogenous and endogenous TF 106 
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transcripts, we added a 20-nucleotide (nt) barcode between the stop codon and the poly-A 107 

sequence of each TF (Supplementary Figure S1). We transfected the 40 TF vectors into 108 

600,000 hiPSCs from a healthy donor (PGP1) with mass ratio between TF and transposase DNA 109 

being 4:1, with the assumption that each cell can uptake and integrate multiple TFs into their 110 

genome. After puromycin selection for TF-integrated cells, we induced differentiation by Dox for 111 

four days (Figure 1a). With flow cytometry we observed that 0.3-0.5% of the cells expressed 112 

microglial surface proteins, including CX3CR1, P2RY12, and CD11b (Figure 1b). 113 

After four days of differentiation, we observed that 30% of the cells lost expression of a 114 

stem cell marker, TRA-1-60 (Figure 1c). To pinpoint which of the 40 TF(s) were inducing 115 

microglial gene expression, we sorted all differentiated (TRA-1-60 negative) cells for scRNA-seq 116 

(Figure 1a). We performed two independent transfections (Supplementary Figure S2), and 117 

spiked in 10% non-induced hiPSCs into each replicate as undifferentiated control during scRNA-118 

seq. After observing reproducible differentiation between the two replicates (Figure 1d), we 119 

pooled the data together for downstream analysis. We observed expression of microglia genes 120 

(ITGAM, P2RY12, CX3CR1, TMEM119, TREM2), as well as a cluster of cells with high expression 121 

of POU5F1, marking stem cells (Figure 1d, e). Through amplicon sequencing of co-amplified TF 122 

and cell barcodes from cDNAs (Figure 1f), we quantified expression of exogeneous TF(s) in 123 

single cells in parallel (Supplementary Figure S3). In the Dox-induced cells, an average of 6.9 124 

TFs (median 6, first quantile 4, third quantile 9) were expressed per cell. And 877 (8.5%) out of 125 

10285 single cells had no TF expression, consistent with the 10% stem cell spike-in (Figure 1g). 126 

We compared TF expression levels in cells with or without microglial RNA expression to 127 

identify TF(s) correlated with a higher expression of microglial genes. Presumably these TFs were 128 

the key TFs that had the potential to drive microglial differentiation. We identified three TFs likely 129 

to cause microglial gene expression: SPI1, FLI1, and CEBPA (Figure 1h). SPI1, which encodes 130 

PU.1 protein, is a known TF required for microglia development32,33. CEBPA is a known critical 131 
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regulator for myeloid differentiation40. FLI1, while hasn’t yet been reported for microglial 132 

differentiation, has been reported to interact with RUNX141 and SPI142, where both TFs are 133 

indispensable for tissue-resident macrophage development43. 134 

We wanted to understand if these TFs could lead to microglial differentiation individually, 135 

or if they needed to be used combinatorically. Individually expression of CEBPA and FLI1 in 136 

hiPSCs led to almost complete cell death, indicating the need for additional TFs to stabilize the 137 

induced gene expression network. Expression of SPI1 alone was also ineffective, leading to only 138 

induction of CD11b in 3% cells (Supplementary Figure S4), indicating that multiple TFs are 139 

needed for the microglia differentiation. 140 

We then tested combinations of TFs. Pooled transfection of CEBPA+FLI1 (“C+F pool”) or 141 

CEBPA+SPI1 (“C+S pool”) led to improved microglial marker expression, while 142 

CEBPA+FLI1+SPI1 (“C+F+S pool”) produced the most positive cells, reaching 14% CD11b+, 54% 143 

P2RY12+ after four days (Figure 1i). However, we observed no expression of CX3CR1, a 144 

chemokine receptor important for microglia activation and migration44,45. Because pooled 145 

transfection and PiggyBac integration of three plasmids does not guarantee that every cell 146 

expressed all three TFs, we built polycistronic expression cassettes by linking the TFs with 2A 147 

peptides. A previous study reported that the gene position in the cassette affects their relative 148 

expression level, with the first gene being the highest-expressed46. Therefore, we arranged the 149 

TFs in different orders (Supplementary Figure S5). We named the construct by ordering letters 150 

corresponding to each TF corresponding to their order on the plasmid. For example, SPI1-T2A-151 

FLI1-P2A-CEBPA was named “MG3.1-SFC”. Transfection and induction of the MG3.1-CFS and 152 

FCS cassettes both led to dramatic cell death by day 4, consistent with the previous observation 153 

that sole CEBPA and FLI1 expression caused cell death. MG3.1-SFC, which positioned SPI1 at 154 

the front, produced cells expressing two microglial genes, CD11b+ and P2RY12+ cells (37% and 155 

6% of cells, respectively), but no CX3CR1 expression (Figure 1i). The differences between cells 156 
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derived using the MG3.1-SFC cassette and the microglia-like cells from the C+F+S pool are 157 

potentially due to different dosages of the TFs. While individual cells within the C+F+S pool may 158 

have expressed variable dosage combination of the three TFs, MG3.1-SFC likely induced a fixed 159 

dosage ratio for all cells. Critically, the lack of CX3CR1 expression and the low percentage of 160 

CD11b- and P2RY12-positive cells from all 3-TF conditions indicated that additional TFs were 161 

needed for efficient microglia differentiation from hiPSCs. 162 

 163 

Second iteration of pooled TF screen using MG3.1-SFC as baseline identified additional 164 

TFs for improved microglia differentiation 165 

Recognizing that the three TFs identified in the first iteration were in themselves 166 

inadequate to differentiate microglia, we pursued a second iteration of our screen. To build upon 167 

the hits from the first pooled screen and identify additional TFs essential for microglia 168 

differentiation, we performed a second pooled screen. For this iteration, we used the top three 169 

TFs from the first iteration as baseline and tested the addition of other TFs (3+X) (Figure 2a). To 170 

determine what TFs should be included in the second pool, we performed a bulk RNA-seq 171 

analysis for MG3.1-SFC and compared it with published data on human primary microglia 172 

(GSE89189, GSE99074)21,35. Based on differential gene expression analysis using DESeq247, we 173 

first picked 25 TFs included in the first pool that still had lower expression levels in MG3.1-SFC 174 

than primary microglia. We then included six new TFs that are significantly higher in primary 175 

microglia. By looking at which TFs regulate the genes that have lower expression in MG3.1-SFC 176 

using Molecular Signatures Database (MSigDB)48 regulatory target gene sets, we included IRF2 177 

and ELF1. Additionally, using CellNet49, a computational tool that can classify bulk transcriptomic 178 

data and predict missing gene regulators, we added six more TFs to the pool. Lastly, referring to 179 

a recent single-cell study on fetal microglia development50, we added SPIB, ETS1 and ELK3. 180 

Thus, the second TF pool contained a total of 42 TFs (Supplementary Table S2). 181 
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To ensure each cell expressed both the SPI1-T2A-FLI1-P2A-CEBPA cassette and 182 

additional TFs from the second pool, we cloned the SFC cassette into a bleomycin-resistant 183 

vector and the new TF pool into a puromycin-resistant vector (Figure 2b). We transfected 600,000 184 

PGP1 hiPSCs in duplicates and performed dual-drug selection for genomic integration. After four 185 

days of TF expression, we performed the same process of scRNA-seq and TF barcode amplicon 186 

sequencing as in the first iteration (Supplementary Figure S6). As controls, we spiked in 5% 187 

undifferentiated hiPSCs and 10% MG3.1-SFC during single-cell encapsulation to mark the 188 

differentiation starting point of two iterations. We applied this approach to two pools of cells. 189 

When we analyzed TF barcodes in this experiment, we observed two clusters of cells on 190 

UMAP that corresponded to hiPSCs and MG3.1-SFC, while also showed new clusters of cells 191 

that express additional TFs (Figure 2c, d). When we counted TF barcodes, we observed that out 192 

of the total 8051 single cells from two independent transfections, 284 (3.5%) cells had no TF 193 

barcode and 613 (7.6%) cells had only the barcode for MG3.1-SFC. On average each cell 194 

expressed five TFs (median 4, first quantile 3, third quantile 7) (Figure 2e, f, Supplementary 195 

Figure S7), with most cells (88.9%) expressing the SFC cassette plus at least one other TF. 196 

To determine which of the new TFs lead to improved microglia differentiation, we analyzed 197 

their effects on microglial gene expression. We were especially interested in increasing 198 

expression of CX3CR1, which was not expressed in MG3.1-SFC. We observed significantly 199 

higher (p < 0.01) number of MEF2C and KLF6 barcode in cells expressing CX3CR1 (Figure 2g), 200 

suggesting their ability to induce CX3CR1 expression. It’s worth noting that MEF2C was also 201 

present in the first screening but failed to reach significance for upregulating CX3CR1, indicating 202 

the use of the SFC cassette as baseline enabled other influential TFs to be found. MEF2C also 203 

reached high ranking for TMEM119 (Figure 2g). The SFC cassette ranked at the top for inducing 204 

ITGAM and P2RY12 expression, which is expected from the results of the first iteration. In this 205 

round of screening, CEBPB and IRF8 emerged as high-potential TFs for promoting ITGAM or 206 
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P2RY12 expression (Figure 2g). From this second pooled TF screening, additional TFs of interest 207 

found were MEF2C, CEBPB, IRF8, KLF6, and BHLHE41. 208 

To validate that these additional TFs can promote microglial gene expression, we 209 

individually expressed them in addition to SFC (SFC+1). When compared with MG3.1-SFC, 210 

SFC+CEBPB increased the percentage of CD11b+ cells from 37% to 98% (Figure 2h) but led to 211 

more cell death at day 4. SFC+MEF2C and SFC+IRF8 increased P2RY12 expression from 6% 212 

to 45% (Figure 2h). Most importantly, SFC+MEF2C and SFC+KLF6 increased CX3CR1+ cells 213 

from 0% to 20% and 2% respectively (Figure 2h). These results agreed well with the predictions 214 

from single-cell TF barcode analysis, indicating the validity of using pooled TF screening for 215 

inferring causality between TF and target gene expression. 216 

To see if microglia differentiation can be further promoted by delivering more TFs to each 217 

cell, we chose the three TFs from the SFC+1 experiment that led to highest increase in 218 

percentage of microglial gene-expressing cells, CEBPB, IRF8, and MEF2C, to add to the SFC 219 

set. We combined MEF2C, CEBPB and IRF8 into polycistronic cassettes. Because MEF2C 220 

demonstrated ability to induce both CX3CR1 and P2RY12, we put it in the first place and varied 221 

the position of CEBPB and IRF8, producing two cassettes: MIC and MCI (Figure 2i). We also 222 

varied the position of FLI1 and CEBPA in the first construct to produce SFC and SCF, keeping 223 

SPI1 in the front to avoid excessive cell death during differentiation. We tested all four 224 

combinations of the two 3-TF cassettes (SFC-MIC, SFC-MCI, SCF-MIC, SCF-MCI) for their ability 225 

to induce microglia differentiation (Figure 2i). Encouragingly, all 6-TF cocktails produced cell 226 

pools with increased expression of microglial proteins when compared with MG3.1-SFC (Figure 227 

2j). We observed that the most effective combination was MG6.4-SCF-MCI, resulting in 66% 228 

CD11b+, 93% P2RY12+ and 16% CX3CR1+ cells at day 4, compared with 37%, 6%, and 0% 229 

respectively for MG3.1-SFC, the baseline of the second iteration. These results highlighted the 230 

value of the second iteration and demonstrated the utility of iterative TF screening for cell fate 231 
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engineering. We term cells differentiated using MG6.4-SCF-MCI Transcription Factor-induced 232 

MicroGlial-Like cells, or TFiMGLs. 233 

 234 

TFiMGLs are phagocytic, responsive to disease-relevant stimulation, and share molecular 235 

signatures with primary microglia 236 

To determine the differentiation dynamics of TFiMGLs, we performed bulk RNA-seq 237 

analysis of the cells on 0, 1, 2, 3, 4, 6 days post induction of the six TFs. We observed a rapid 238 

induction of all six TFs on day 1, and they reached plateau on day 2 (Figure 3a). This 239 

accompanied a quick downregulation of POU5F1 on day 1 and followed by upregulation of 240 

microglial genes from day 2 and onwards (Figure 3b). Principal component analysis (PCA) 241 

reflected a similar trend, where a rapid differentiation occurred on day 1 and 2, followed by a 242 

gradual deceleration from day 3 to day 6 (Figure 3c). In a plot of PC1 and PC2, the day 4 and 243 

day 6 transcriptomes are close together, suggesting a stable window for functional investigation. 244 

For downstream characterizations of TFiMGLs, we chose to differentiate cells for 4 days. 245 

Brightfield microscopy analysis of TFiMGLs revealed rapid morphological change from 246 

day 1 to day 6 (Supplementary Figure S8). Immunofluorescence analysis confirmed the loss of 247 

pluripotency marker OCT4 and expression of key microglial proteins: CD11b, P2RY12, and 248 

CX3CR1 (Figure 3d). TFiMGLs demonstrated reproducible differentiation between replicates, 249 

with 53.9 ± 0.57% (SD, n=3) CD11b+, 93.1 ± 0.50% (SD, n=3) P2RY12+ and 14.8 ± 0.68% (SD, 250 

n=3) CX3CR1+ cells (Figure 3e). 251 

As brain resident macrophages, microglia play important roles in brain development and 252 

homeostasis. Microglia’s abilities to respond to signals related to degenerating neurons and 253 

phagocytose are integral parts of their function21. To investigate if TFiMGLs could mimic the 254 

phagocytosis function of microglia, we incubated TFiMGLs with pHrodo green labeled S. aureus 255 
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particles for 0.5, 2 and 4 hours, and performed flow cytometry and microscopy. While 0.5-hour 256 

incubation showed minimal phagocytosis activity, nearly all cells were positive for pHrodo green 257 

at 2 hours and the intensity grew even stronger at 4 hours (Figure 3f, Supplementary Video S1-258 

2). Microscopy analysis at 4 hours with co-staining of microglia surface proteins confirmed the 259 

intracellular position of these particles (Figure 3g). ADP is one of the substances released from 260 

injured neurons and works as an signal to stimulate microglial responses51,52. To study if TFiMGLs 261 

are responsive to ADP stimulation, we incubated TFiMGLs with calcium indicator Fluo-4 and then 262 

stimulated with ADP containing media. We imaged the cells at a three-second interval. We 263 

observed a rapid increase in calcium signal when ADP was added (Figure 3h, i, j; 264 

Supplementary Video S3), suggesting TFiMGLs are responsive to ADP stimulation. 265 

To assess how accurately TFiMGLs recapitulate the transcriptome of human microglia, 266 

we compared TFiMGLs bulk-RNA-seq data to previously published bulk RNA-seq data for human 267 

primary microglia and iPSC-derived microglia (GSE89189, GSE99074)21,34,35. To minimize 268 

potential batch effects that might hinder meaningful comparison between datasets, we aligned all 269 

raw FASTQ files to the same reference genome and applied a negative binomial regression-270 

based batch effect correction method, ComBat-seq53, before downstream analysis. From the PCA 271 

analysis, we observed that the transcriptomes of TFiMGLs from days 2-6 more closely resembled 272 

primary microglia of different sources than to iPSCs or hematopoietic progenitors (HPCs), 273 

suggesting a successful microglial fate induction (Figure 4a). We also observed that TFiMGLs 274 

were distinct from monocytes or dendritic cells, two related cell types from the myeloid lineage. 275 

To investigate if TFiMGLs express genes that are enriched in primary microglia, we performed 276 

Gene Set Enrichment Analysis (GSEA)54 on TFiMGLs versus iPSCs using two microglial gene 277 

collections from the MSigDB derived from human brain scRNA-seq (M40168; M39077). We 278 

observed significant positive microglial gene enrichment scores using both collections (M40168: 279 

score = 0.72, p-value = 9.01e-10, gene set size = 313; M39077: score = 0.66, p-value = 9.01e-280 
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10, gene set size = 391), indicating TFiMGLs upregulated those microglia-enriched genes (Figure 281 

4b). To further investigate if TFiMGLs achieve transcriptomic similarity to primary microglia, we 282 

also used a previously published collection of 881 microglia-enriched genes34 to cluster the 283 

samples from Figure 4a. While the transcriptome of day-1 TFiMGLs clustered closer to iPSCs, 284 

day-2 and later TFiMGLs clustered closer to primary microglia, with key microglial genes 285 

increasingly upregulated by the day (Figure 4c). Similar to what we saw in Figure 4a, TFiMGLs 286 

were distinct from monocytes or dendritic cells by measuring the 881 genes. These analyses 287 

demonstrate that the TFiMGLs have lost iPSC-like identity and now closely resemble microglia. 288 

Microglia are able to respond to signals indicating brain infection and inflammation, such 289 

as IFNγ, beta amyloid, and TDP-43. IFNγ is a known activator of microglia secreted by T 290 

lymphocyte55. Beta amyloid (Aβ) is a key molecule in AD pathology which has been shown to 291 

elicit microglia response56. TDP-43, whose aggregation is considered a hallmark of ALS and is 292 

present in the vast majority of amyotrophic lateral sclerosis (ALS) patient, had also been also 293 

shown to activate microglia57. To investigate how TFiMGLs respond to IFNγ, fibrillar Aβ (fAβ) and 294 

TDP-43, we treated TFiMGLs in triplicates with each of the three molecules for 24 hours and 295 

harvested cells for RNA-seq. PCA analysis revealed transcriptomic changes in the IFNγ and TDP-296 

43 treated group, while the fAβ-treated group showed minimal differences (Figure 4d, 297 

Supplementary Figure S9). We confirmed fAβ formation by conducting an in vitro amyloid 298 

fibrillation experiment that showed the Aβ peptide could form fibrils after 1 hour of incubation 299 

(Supplementary Figure S10). Pathway analysis of differentially expressed genes from the IFNγ 300 

treated group included “response to virus” and “response to bacterium” (Figure 4e, 301 

Supplementary Figure S11), corresponding to the role of IFNγ production as a response to 302 

infection. Top upregulated genes by IFNγ included CXCL10, CXCL11, IRF1 and IL18BP 303 

(Supplementary Figure S11), which aligns with the IFNγ response genes revealed by an 304 

independent single-cell level human-derived macrophage stimulation study58. For the TDP-43 305 
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treated cells, top differentially regulated pathway included “myeloid leukocyte mediated immunity” 306 

and “myeloid cell activation involved in immune response” (Figure 4f, Supplementary Figure 307 

S12), demonstrating that TFiMGLs were activated by the TDP-43 treatment. Collectively, these 308 

results suggest that TFiMGLs exhibited microglia-like responses to infection- and ALS-related 309 

stimulations. 310 

 311 

Single-cell atlas reference mapping confirmed microglia-like fate induction 312 

There is the opportunity to map cell states precisely leveraging advances in single-cell 313 

analysis technologies. Up until this point, we have been using a group of cellular markers to 314 

determine cell type. While this is a common practice in both primary human tissue and stem cell 315 

differentiation studies, it is now possible to define cell types based on more comprehensive 316 

molecular profiles, including the whole transcriptome. We aspired to develop a strategy that might 317 

be generally applicable to leveraging single-cell atlas data to guide cell fate engineering efforts.  318 

To achieve this goal, there are several important prerequisites: 1) reference single-cell 319 

data sets from all developing human tissue types, capturing different developmental stages; 2) 320 

data integration methods to combine these different reference data sets to create a 321 

comprehensive cell atlas; 3) reference mapping methods to project iPSC-derived cell data onto 322 

the combined reference and quantitative assessment of similarity to differentiating cell classes; 4) 323 

existence of perturbation libraries that are scRNA-seq compatible, which include but not limited 324 

to open reading frame (ORF) and CRISPR libraries. While advances have been made and 325 

continue for #2-4, incomplete reference data continues to be an acute problem. 326 

To explore this idea of atlas-guided cell fate engineering, despite limitations in available 327 

reference data, we re-examined the previously described two pooled TF screen for microglia 328 

differentiation. We built a refence data set by compiling scRNA-seq data from published datasets 329 
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generated through 10x Chromium platform. In total, the final single-cell atlas contains 225 330 

samples from 59 organ or tissue types, with a total of 1,004,650 single cells (Supplementary 331 

Table S3). The majority of the data was obtained from PanglaoDB59, where all raw reads from 332 

different studies were aligned and processed together. We added other data sets representing 333 

brain60 and endometrium61 which were under-represented in PanglaoDB. We carefully filtered all 334 

raw data downloaded from PanglaoDB for cell, gene, UMI number and mitochondria gene ratio 335 

(Supplementary Table S4). In its current form, the cells in the atlas are annotated according to 336 

their organ or tissue of origin; cellular level annotation for all 59 studies have yet to be defined. 337 

To reduce batch variability across different studies, the data were integrated with 338 

Harmony62 (Figure 5a; Supplementary Figure S13). Qualitative assessment of the UMAP plots 339 

post-integration indicated co-clustering of cells in related tissues from different studies, 340 

exemplified by the overlap between “Primary brain” with “Embryo forebrain” datasets, as well as 341 

between the “Pancreatic islets” with “Pseudoislets” datasets (Supplementary Figure S13). To 342 

visualize where microglia are located on this map, we acquired cell annotation information for the 343 

“Primary brain” dataset60. We observed a cluster containing microglia on the right of the UMAP 344 

plot (Figure 5b). To see if any of the TF differentiated cells can be mapped closely to microglia, 345 

we projected the scRNA-seq data from the two pooled TF screens onto the integrated atlas using 346 

Symphony63 (Figure 5c, d). In the projections, we observed 4.3% and 26.5% cells from the first 347 

and second screen being projected to the microglia-containing cluster. This increase in 348 

percentage is like because the top hits from the first screen, SPI1, FLI1, and CEBPA were the 349 

baseline for the second screen. Because we have identified SPI1, CEBPA, FLI1, MEF2C, CEBPB, 350 

and IRF8 as the inducers for differentiating iPSCs to microglia-like cells, we wanted to see if their 351 

barcode expression lead to co-localization with microglia on the reference atlas. We saw CEBPA 352 

barcode had high expression in the microglia cluster, as well as a few others (Figure 5e), 353 

indicating its ability to activate a broad range of genes. SPI1 barcode, on the other hand, had a 354 
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distinct enrichment in the microglia cluster (Figure 5f), suggesting a microglia specific gene 355 

induction. We observed the co-expression of SPI1, FLI1, and CEBPA by the SFC cassette led to 356 

a strong mapping to the microglia cluster (Figure 5g). We also visualized the expression of FLI1, 357 

MEF2C, CEBPB, and IRF8 individually (Supplementary Figure S14). While they did not show 358 

obvious enrichment in microglia cluster themselves, combined reads from the all six TFs still 359 

showed a strong induction towards microglia (Figure 5h). This single-cell atlas reference mapping 360 

analysis confirmed microglial fate induction by the six TFs with a comprehensive comparison with 361 

1,004,650 single cells from 59 organ or tissue types. 362 

 363 

Regression analysis revealed causal TF-gene regulatory relationships 364 

Accumulating scRNA-seq data of human cell types provide ever-expanding information 365 

about what genes define a cell fate. As a result, a complete knowledge map of what TFs turn on 366 

what genes is instrumental for cell fate engineering. A tremendous amount of insight on this 367 

subject  have been produced by computational methods for inferring TF-gene regulatory network 368 

(GRN)64,65 and databases based on TF-binding sites66,67, TF-gene co-expression68,69, and protein-369 

protein interaction70,71. However, the only way to acquire a definitive causal TF-gene regulatory 370 

relationship map is by introducing the TF perturbations and observing their effects in a highly 371 

multiplexed way. Our two pooled TF screens combined with scRNA-seq readout enabled us to 372 

explore this exact idea. Taking advantage of our experimental design that captured both TF 373 

barcode and cellular RNA expression, and by implementing a stepwise regression model (Online 374 

Methods), we were able to construct GRNs from the two pooled screens (Figure 6). In our dataset, 375 

each TF transgene was represented by two distinct values: counts from barcode amplicon 376 

sequencing, and counts from their RNA molecules in scRNA-seq. Although the counts from 377 

scRNA-seq might contain reads from endogenous TF expression, the two measurements 378 

correlated well for most TFs (Supplementary Figure S15), the exception being a few TFs with 379 
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low expression. We reasoned that TFs that had higher correlation between their barcode and 380 

RNA measurements demonstrated higher consistency between experiments, which were more 381 

reliable to produce accurate regression results using the two matrices. Thus, by selecting TFs 382 

had a correlation coefficient greater than 0.3 between the two measurements, we selected 18 383 

TFs from the first iteration and 21 TFs from the second iteration for regression analysis. We 384 

observed extensive gene expression changes caused by CEBPA and the triple TF cassette 385 

MG3.1_SFC expression (Figure 6a, f), as well as slightly smaller networks from CIITA, SPI1, 386 

ERG2, JUN, CEBPB, ZFP36, and BHLHE41 (Figure 6b-e, g, h, Supplementary Figure S16). 387 

Among 672 edges, we observed 76% to be positive regulations. Some TFs (CIITA, SPI1, JUN) 388 

only showed positive edges in current thresholding conditions (Abs(coefficient) > 0.1 & -log10(p-389 

value) > 20), indicating they were mostly activating other genes. Other TFs (CEBPB, ZFP36, 390 

BHLHE41) showed negative edges, indicating their repressive roles. We also observed several 391 

genes simultaneously connected with more than one TFs (Supplementary Figure S17). For 392 

example, RAB13, a membrane trafficking regulator, was upregulated by both CEBPA and CEBPB; 393 

HMGA1, a master regulator of chromatin structure, was downregulated by both BHLHE41 and 394 

CEBPA; FLNC, an actin crosslinking protein, was upregulated by JUN while downregulated by 395 

CEBPA. There are many more regulatory relationships we listed in detail from these two pooled 396 

screens (Supplementary Table S5-6). With larger perturbation libraries, higher-throughput 397 

scRNA-seq, and more scalable regression analysis methods, we believe a more complete 398 

knowledge map of causal TF-gene regulatory relationships could be built and greatly facilitate cell 399 

fate engineering efforts. 400 

Discussion 401 

Differentiating human cell types from stem cells provides is essential for basic research 402 

and therapeutics development, especially when the desired cell types are not easily obtainable 403 

from accessible human tissues. Advances in the understanding of developmental biology has 404 
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fueled the discovery and application of protocols to differentiate specific cell types from iPSCs. 405 

Some of this work has been translated into treatment strategies that are now being investigated 406 

with clinical trials for devastating diseases like age-related macular degeneration72 and type 1 407 

diabetes73. Differentiated iPSCs have now also become routinely used in laboratories for studying 408 

disease mechanisms and testing drugs74. Recent global efforts on building single cell atlases of 409 

cellular development have expanded the knowledge of human development and diseases, but 410 

also present a key resource for cell fate engineering. Combined with technological advancements 411 

in genetic library construction, high-throughput screening and sequencing technologies, to the 412 

field is primed for investigating how to engineer cell fate in a systematic and multiplexed fashion, 413 

as performed in this work. 414 

Our study demonstrated the feasibility of combining an iterative genetic library screen with 415 

high-throughput scRNA-seq for cell fate engineering. Using microglia, a cell type which previously 416 

did not have a TF-driven differentiation protocol, as a model target, we performed two iterations 417 

of our design-screen-validate workflow and identified SPI1, CEBPA, FLI1, MEF2C, CEBPB, and 418 

IRF8 as a potent recipe for driving microglia differentiation from hiPSCs within 4 days, a dramatic 419 

reduction from the standard 35 days through growth factor-based protocols26. Characterizations 420 

of TFiMGLs indicated that they possessed transcriptomic and functional resemblance to primary 421 

human microglia.  We also explored the possibility of using single-cell atlas for guiding cell fate 422 

engineering by building a single-cell reference and mapping our pooled screen scRNA-seq data 423 

to it. We observed an increased percentage of microglia mapping cells from the second iteration 424 

when compared to the first. The high expression of key TFs like CEBPA and SPI1 in the microglia 425 

containing cluster also confirmed their ability to drive microglia differentiation from iPSCs. By 426 

doing genome wide regression analysis between TF barcode counts and gene expression levels, 427 

we revealed TF-gene regulatory relationships present in these pooled screens. 428 
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During this study, we noted several technological challenges that could be addressed in 429 

future studies. Most current TF-based differentiation protocols rely on a one-time induction of TF 430 

expression, while lacking the capability for sequential induction. Despite this, current strategies 431 

have successfully generated certain cell types, including multiple types of neurons75, endothelial 432 

cells2, and the induction of iPSC itself76. However, during development in vivo coordinated gene 433 

programs are sequentially activated, as observed in time-resolved transcriptomic analysis of 434 

developing tissues77. This feature could be re-created by identifying orthogonal induction system 435 

with a comparable strength to the doxycycline-inducible system or developing tunable gene 436 

circuits. With these tools, it will be possible to test whether sequential TF expression can lead to 437 

improved differentiation accuracy. In addition to temporal control of TF expression, the ability to 438 

regulate expression levels of individual TFs could also lead to improvements in differentiation. 439 

There were two manifestations of this pattern in the current study. In the first case, although 440 

CEBPA and FLI1 expressed by themselves led to cell death, the presence in the SFC cassette 441 

enabled cell survival and differentiation. The reduced expression levels of CEBPA and FLI1 likely 442 

and potential interactions with other TFs could also explain why we were able to observe an 443 

extensive GRN for CEBPA from the first pooled screen, which would not be possible due to toxicity 444 

in CEBPA-expressing cells. The second case can be observed in the effect that different 445 

sequential arrangements of TFs in the polycistronic cassettes led to different levels of downstream 446 

microglial protein expression. The effect of TF stoichiometry on differentiation efficiency has also 447 

been observed for cardiac myocyte programming78. While the positional effects in a polycistronic 448 

cassette offer one way to explore the stoichiometry space, development of new titratable 449 

promoters allowing turning of individual genes could be an important tool for cell fate engineering. 450 

We demonstrated the potential for using primary single-cell atlas to guide iPSC 451 

differentiation efforts. We note that these approaches will improve with better quality atlases. A 452 

cell atlas with wide representation of human tissues, deep sequencing coverage, and reliable 453 
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cellular-level annotation is ideal for guiding cell fate engineering. A number of methods for scRNA-454 

seq datasets integration have been developed79, with the goal of enabling comparison between 455 

batches of data. However, because construction of a comprehensive cell atlas would need to 456 

integrate data from tens to hundreds of separately acquired datasets, the accuracy and 457 

computational efficiency of current integration strategies require improvement. We also note, that 458 

current reference mapping methods were designed to project new data from the same tissue to 459 

old datasets, or projecting data from the same tissue but acquired by different modalities. As a 460 

result, these methods are not optimized for iPSC-derived cells with incomplete conversions, 461 

leading to partially resemble multiple primary cells types. A reference mapping method that 462 

provides probability-based quantitative measurement and rejection options is needed to address 463 

this issue. Furthermore, we believe experimental strategies might be devised to improve mapping 464 

of differentiated iPSCs to single cell reference data sets. For example, spiking in a standard set 465 

of differentiated cell types could be used as landmarks to validate single cell profile mapping. 466 

As demonstrated in this study, we used microglia as a model target to develop iterative 467 

screening methods for identifying TFs that drive iPSC differentiation towards a specific cell type. 468 

We found that the combination of SPI1, CEBPA, FLI1, MEF2C, CEBPB, and IRF8 could produce 469 

microglia-like cells from iPSCs in as quickly as four days. We built computationally a 470 

comprehensive single-cell reference atlas and used it to validate the results from our iterative 471 

screening. We also used a stepwise regression model to discover TF-gene regulatory relationship 472 

from the scRNA-seq data. We believe the TFiMGLs can be used as a model for human microglia 473 

and facilitate basic and translational research that would benefit from a rapid turnaround time. We 474 

also envisage that the methods of iterative pooled TF screen, single-cell reference atlas mapping, 475 

and TF-gene regulation analysis will find their utility in other cell type targets for iPSC 476 

differentiation. 477 
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Figure 1. First round of pooled screening identified initial TFs for inducing microglia gene 481 
expression. (a) Workflow of the first pooled TF screen. (b) Flow cytometry analysis of stem cell 482 
(TRA-1-60) and microglia (P2RY12, CD11b, CX3CR1) proteins in the PGP1 + 40 TF pool before 483 
and after Dox induction. (c) Cells with low TRA-1-60 expression in the Dox+ group were sorted 484 
for scRNA-seq. (d) Clustering of two independently transfected and differentiated PGP1 iPSC 485 
pools. Colors represent clusters identified by Seurat at 0.3 resolution. (e) Expression of microglia 486 
(ITGAM, CX3CR1, TMEM119, P2RY12, TREM2) and spiked-in stem cell (POU5F1) gene in 487 
scRNA-seq. (f) Primer designs for co-amplification of TF and cell barcodes in 10x Genomics 3’ 488 
workflow. (g) Number of TFs per cell counted from normalized and binarized TF expression matrix. 489 
(h) Ranking of the 40 TFs after Wilcoxon rank sum test with the two tested groups being with or 490 
without microglia gene expression. Blue highlights top-ranking TFs. (i) Flow cytometry validation 491 
of top-ranking TFs for inducing microglia protein expression. C = CEBPA, F = FLI1, S = SPI1. 492 
“Pool” means pooled transfection, no polycistronic cassette used. 493 
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Figure 2. Second iteration of pooled TF screen using MG3.1-SFC as baseline identified additional 497 
TFs for improved microglia differentiation. (a) Workflow of the second pooled TF screen. (b) 498 
Polycistronic cassette design for performing dual-drug selection to achieve 3+X TF screen. (c) 499 
Normalized mRNA expression from the polycistronic cassette (SPI1, FLI1, CEBPA) and stem 500 
cells (POU5F1). (d) TF barcode counting enabled identification of stem cells (“No TF BC”), 501 
MG3.1-SFC and cells with additional TFs (“SFC+X”). (e) Example histograms of TF barcode raw 502 
counts in single cells. (f) Number of TFs per cell counted from normalized and binarized TF 503 
expression matrix. (g) Ranking of the 42 TFs after Wilcoxon rank sum test with the two tested 504 
groups being with or without microglia gene expression. Blue highlights top-ranking TFs. Grey 505 
highlights the SFC polycistronic cassette. (h) Flow cytometry validation of top-ranking TFs for 506 
improving microglia protein expression. (i) Polycistronic cassettes design for varying TF orders. 507 
(j) Flow cytometry analysis of different arrangements of the six-TF recipe in comparison with 508 
MG3.1-SFC. 509 
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Figure 3. TFiMGLs differentiate quickly, are phagocytic and responsive to ADP stimulation. (a) 513 
Expression of the six induced TFs over time measured by bulk RNA-seq. n = 2 for each day. Error 514 
bar represents standard deviation. (b) Expression of stem cell (POU5F1) and microglia (ITGAM, 515 
CX3CR1, TMEM119, P2RY12, TREM2) genes over time measured by bulk RNA-seq. (c) PCA 516 
plot for the transcriptome of TFiMGLs (MG6.4) over time. (d) Immunofluorescence of stem cell 517 
(OCT4), Dox-induced (PU.1), and microglia (CD11b, P2RY12, CX3CR1) proteins on day 4. Scale 518 
bar: 20 µm. (e) Flow cytometry quantification of microglia protein expression on day 4 (n=3). (f) 519 
Flow cytometry analysis of the uptake of pHrodo-labeled S. aureus Bioparticles over time (n=3). 520 
(g) Microscopy analysis of particle uptake combined with microglia surface protein staining. (h) 521 
Calcium imaging with Fluo-4 after stimulation with 150 µM ADP and peak quantification. Images 522 
taken once every three seconds. ADP was added at t0. (i) Quantification of fluorescent signals 523 
from all cells in the field of view in panel h over a period of 10 minutes. (h) Peak dynamics analysis 524 
shows a fast rise and slow decay pattern of the intracellular calcium concentration. 525 
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Figure 4. Transcriptome analysis of TFiMGLs on different days and under disease relevant 529 
stimulations. (a) PCA of bulk RNA-seq data from multiple sources containing primary microglia. 530 
MG: Microglia; DC: dendritic cell; HPC: hematopoietic progenitor; iMGL: growth factor-induced 531 
microglia-like cell; Mono: monocyte; iPS: induced pluripotent stem cell. (b) GSEA of TFiMGLs 532 
versus iPS using two microglia marker gene sets from MSigDB: M40168 and M39077. (c) 533 
Heatmap and clustering with 881 microglia specific genes previously reported (Ref. Gosselin). (d) 534 
PCA of TFiMGLs’ transcriptome after 24 hours treatment with IFNγ, fAβ, or TDP43.  (e-f) Pathway 535 
analysis of significantly differentially expressed genes after treatment with IFNγ or TDP43. 536 
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Figure 5. Single-cell atlas reference mapping confirmed microglia-like fate induction. (a) 540 
Harmony-integrated single-cell reference atlas with 225 samples from 59 organ or tissue types, 541 
with a total of 1,004,650 single cells. UMAP plot is colored by sample. Sample annotation is 542 
acquired by manual curation of each study. (b) UMAP is colored by the cellular level annotation 543 
from the “Primary_brain” dataset downloaded from “Organoid Report Card”. Red cells are 544 
microglia. The red dashed box highlighted the cluster containing microglia. (c) Symphony 545 
projection of cells from the first pooled screen (PGP1+40TFs) to the reference atlas. The red 546 
dashed box highlighted the 4.3% cells mapped to the microglia-containing cluster. (d) Symphony 547 
projection of cells from the second pooled screen (MG3.1+42TFs) to the reference atlas. The red 548 
dashed box highlighted the 26.5% cells mapped to the microglia-containing cluster. (e-h) 549 
Expression of key TF barcodes in the projected cells. CEBPA, SPI1, and the SFC cassette 550 
showed high expression in the microglia-containing cluster.  551 
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Figure 6. TF-gene regression analysis for studying causal gene-regulatory networks. Nodes’ label 557 
starts with “tf_” represent the TF captured by single-cell barcode sequencing. All other nodes 558 
represent genes captured by scRNA-seq. The width of edges is correlated with coefficient values. 559 
The larger the value the wider the edge. A red edge means upregulation while a green edge 560 
means downregulation. Edges were selected with these criteria: Abs(coefficient) > 0.1 & -log10(p-561 
value) > 20. (a) Global network for the first pooled screen. Sub-network for (b) tf_CIITA, (c) 562 
tf_EGR2, (d) tf_SPI1, (e) tf_JUN. (f) Global network for the second pooled screen. Sub-network 563 
for (g) tf_EGR2 and (h) tf_JUN. 564 
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Online Methods 593 

Barcoded TF expression vector construction. All TFs used in this study were obtained from 594 
the TFome collection2 in pDONR format. For expression in hiPSCs, a PiggyBac integrating Dox-595 
inducible vector pBAN2  was used. To create barcoded pBAN expression vector (pBAN-BC), the 596 
original pBAN was digested with AgeI and KpnI, followed by ligation of a gBlock (IDT DNA) 597 
containing the same excised piece with an additional 20-bp random barcode. After bacteria 598 
transformation, individual colonies were expanded and extracted for plasmid DNA. Gateway 599 
cloning was used to transfer each TF from pDONR to pBAN-BC vector. Barcode sequence for 600 
each TF was confirmed by Sanger sequencing. 601 

Cell culture. hiPSCs were culture in mTeSR Plus media (Stemcell Technologies, 100-0276) on 602 
multi-wells plates coated with Matrigel (Corning, 354277) or Cultrex (Bio-Techne Corporation, 603 
3434-005-02). For passaging, cells were dissociated with TrypLE Express (Life Technologies, 604 
12604013) and seeded into fresh plate and media containing 10 µM Y-27632 ROCK inhibitor 605 
(Millipore, 688001) for 24 hours. Daily media change was performed until cells were ready for 606 
another passaging or downstream experiments. 607 

Nucleofection, TF integration and differentiation. TF (pBAN-TF-BC) and Super PiggyBac 608 
(SPB) Transposase (System Biosciences, PB210PA-1) expression vectors were mixed at a mass 609 
ration of 4:1 and transfected into hiPSCs using P3 Primary Cell 4D-Nucleofector X Kit L (Lonza, 610 
V4XP-3024) on a 4D-Nucleofector X Unit (Lonza, AAF-1002X) following manufacturer’s 611 
instructions. For the two pooled TF screenings, 600,000 cells were transfected with 5 µg of DNA 612 
and seeded into one well of a 6-well plate. For individual TF combinations, 120,000 cells were 613 
transfected with 2.5 µg of DNA and seeded into one well of a 12-well plate. Program CB150 was 614 
used for the nucleofections. 48 hours after nucleofection, 1 µg/mL of puromycin (Gibco, A1113803) 615 
or 50 µg/mL of zeocin (Gibco, R25001) was added to the culture for the selection of TF-integrated 616 
cells. Cells were passaged again when reaching 80% confluency. For induction of TF expression, 617 
cells were seeded into mTeSR Plus media containing 0.5 µg/mL doxycycline (Sigma-Aldrich, 618 
D3072) and 10 µM Y-27632 ROCK inhibitor and were changed into media only containing 619 
doxycycline after 24 hours. 620 

Flow cytometry and sorting. For cytometry analysis, cells were dissociated with TrypLE Express 621 
for 5 minutes at 37 degree, diluted with twice the volume of Cell Staining Buffer (Biolegend, 622 
420201) and centrifuged at 200 g for 3 minutes to remove the digesting enzyme. Cells were then 623 
incubated with 25 µg/mL of Human Fc Block (BD Biosciences, 564219) diluted in Cell Staining 624 
Buffer for 15 minutes on ice, followed immediately by staining with fluorescently conjugated 625 
antibodies or isotype controls at proper dilution for 30 minutes on ice. Antibodies were diluted in 626 
Cell Staining Buffer and Human Fc Block was not removed from the mixture. After antibody 627 
staining, cells were washed twice with Cell Staining Buffer before being put through 35 µm nylon 628 
mesh into a 5 mL round bottom polystyrene tube (Falcon, 352235). Flow cytometry data was 629 
acquired on a BD LSRFortessa Cell Analyzer. For cell sorting, the staining protocol was the same 630 
except for that Cell Staining Buffer was replaced with mTeSR Plus media in order to maintain the 631 
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best viability of cells. Cell sorting was performed on a BD FACSAria Cell Sorter. Flow cytometry 632 
antibodies used in this study were: FITC-TRA-1-60 (BD Biosciences, 560380), BV421-CX3CR1 633 
(Biolegend, 341620), PE-P2RY12 (Biolegend, 392104), APC-CD11b (Biolegend, 101212). 634 
Isotype controls used were: BV421- Rat IgG2b (Biolegend, 400640), PE-Mouse IgG2a (Biolegend, 635 
400214), APC- Rat IgG2b (Biolegend, 400612). 636 

scRNA-seq library preparation. scRNA-seq experiments were performed using 10x Genomics 637 
Chromium Single Cell 3' Reagent Kits v3 or v3.1 following the manufacturer’s instruction. 5000 638 
single cells were calculated as targeted input for each sample. For the first iteration, 10% of stem 639 
cells were spiked in as undifferentiated control. For the second iteration, 5% stem cells and 5% 640 
MG3.1-SFC were spiked in as undifferentiated and initial differentiation control. The only 641 
modification made to the protocol was at the Sample Index PCR step, where 5 µL of the PCR mix 642 
was taken out and mixed with 0.5 µL 1000X SYBR Gold (Invitrogen, S11494) for a qPCR reaction. 643 
The optimal amplification cycle was determined as the cycle just before half maximum of the total 644 
signal. Final libraries were sequenced on NextSeq 500 or NovaSeq with a goal of at least 30,000 645 
reads per cell. 646 

TF barcode amplicon library preparation. Because after the cDNA amplification step in the 10x 647 
scRNA-seq protocol the amplicons contained cell barcodes, UMIs, and TF barcodes, these 648 
cDNAs could be used as the template for further amplification of TF-cell barcodes. Two sequential 649 
PCR reactions were performed, each was accompanied by a SYBR Gold spike-in qPCR to 650 
determine the optimal cycle number as described in “scRNA-seq library preparation”. For PCR1, 651 
NGS10x-F-i7-BC-PCR1F and i5000 were used as primers. A 50 µL PCR1 reaction contains 25 652 
µL Q5 Hot Start High-Fidelity 2X Master Mix (New England Biolabs, M0494L), 5 µL amplified 653 
cDNA, 2.5 µL of both primers at 10 µM stock concentration, and 15 µL nuclease-free water. PCR1 654 
program was initial denaturation, 98 degrees, 30 seconds; 11-13 cycles (qPCR determined) of 98 655 
degrees, 10 seconds, 67 degrees, 30 seconds, 72 degrees, 30 seconds; final extension, 72 656 
degrees, 2 minutes. PCR1 reaction was purified with 1.2X SPRIselect beads (Beckman Coulter, 657 
B23318) following standard protocol. The sample was eluted in 20 µL water. For PCR2, i7000, 658 
P5, and P7 were used as primers. A 50 µL PCR2 reaction contains 25 µL Q5 Hot Start High-659 
Fidelity 2X Master Mix, 10 µL PCR1 product, 2.5 µL of all three primers at 10 µM stock 660 
concentration, and 7.5 µL nuclease-free water. PCR2 program was initial denaturation, 98 661 
degrees, 30 seconds; 4-5 cycles (qPCR determined) of 98 degrees, 10 seconds, 67 degrees, 30 662 
seconds, 72 degrees, 30 seconds; final extension, 72 degrees, 2 minutes. PCR2 product was 663 
purified the same as PCR1. Final libraries were submitted for MiSeq v3 with paired-end reads of 664 
80 cycles from either direction. 665 

Primer sequences: 666 

NGS10x-F-i7-BC-PCR1F: 667 
GGAGTTCAGACGTGTGCTCTTCCGATCTCTTTTCCAAGCACCTGCTACATAG 668 
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i5000: 669 
AATGATACGGCGACCACCGAGATCTACACaactcgctACACTCTTTCCCTACACGACGCTCTTC670 
CGATCT (lower case region represents a sample-specific barcode) 671 

i7000: 672 
CAAGCAGAAGACGGCATACGAGATtcgccttaGTGACTGGAGTTCAGACGTGTGCTCTTCCGA673 
TCT (lower case region represents a sample-specific barcode) 674 

P5: AATGATACGGCGACCACCGA 675 

P7: CAAGCAGAAGACGGCATACGA 676 

Analysis of scRNA-seq and TF barcode-seq data. For scRNA-seq, raw FASTQ files were 677 
aligned to GRCh38 and quantified using Cell Ranger. Detailed information about cell number, 678 
read depth and gene detected is visualized in Supplementary Figure S2 and S6. Seurat was 679 
used to performed cell filtering, data normalization and clustering. The generated Seurat object 680 
also contained the single-cell raw expression matrix for all genes. For TF barcode-seq, in the 681 
paired-end MiSeq data, one of the read pair contains the 20 bp TF barcode while the other one 682 
contains the 16 bp cell barcode and the 12 bp UMI. By matching the names of the reads within 683 
the pair, three sequences were compiled into one table with three columns: TF-BC, cell-BC, UMI. 684 
To remove duplicated reads from the same molecule, duplicated rows that has the same value 685 
for all three columns were removed. Then the table was counted and reshaped into a frequency 686 
table where the row names represent cell and column names represent TF. This table contains 687 
the raw counts of each TF barcode in all single cells. Because the TF barcodes were amplified 688 
from the cDNA during library preparation, we normalized the TF barcode count with the number 689 
of total RNA UMIs detected in each cell, reasoning that cells with more total UMIs were likely to 690 
have more reads for TF barcode. The raw gene expression matrix and normalized TF count matrix 691 
were used to identify which TF barcodes were likely to induce microglial gene expression. 692 
Specifically, the expression of microglial genes was binarized, with any cell had a non-zero 693 
expression being 1. Then between the two groups of cells 0 or 1 microglial gene expression, a 694 
Wilcoxon rank sum test was performed for all barcoded TFs to determine which TF(s) had a higher 695 
expression in cells expressing microglial genes. The TFs were ranked by -log10(p-value). 696 

Bulk RNA-seq library preparation. Cultured cells were dissolved directly with TRIzol (Thermo 697 
Fisher Scientific, 15596018) for total RNA purification with Direct-zol RNA MiniPrep Kit (Zymo 698 
Research, R2050). RNA concentration was quantified with Qubit RNA HS Assay Kit (Thermo 699 
Fisher Scientific, Q32852). RNA integrity was confirmed by presence of 18S and 28S bands on a 700 
2% E-Gel EX Agarose Gel (Thermo Fisher Scientific, G402002). Between 100 ng to 1000 ng total 701 
RNA was used as input for mRNA enrichment using NEBNext Poly(A) mRNA Magnetic Isolation 702 
Module (New England Biolabs, E7490), followed by library construction with NEBNext Ultra II 703 
Directional RNA Library Prep Kit (New England Biolabs, E7760S) following the manufacturer’s 704 
instructions. Biopolymers Facility at Harvard Medical School performed library QC and 705 
sequencing. 706 
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Analysis of bulk RNA-seq data. For both in-house generated sample and datasets downloaded 707 
from GEO, raw FASTQ files were aligned to GRCh38 and quantified using STAR 2.5.2b. 708 
Regularized-logarithm (rlog) transformation was applied to the raw counts before visualization 709 
using PCA. For analysis where data from multiple sources were involved, ComBat-seq was used 710 
for batch correction before PCA. Differential gene expression analysis was conducted with 711 
DESeq247. Pathway enrichment and GSEA analysis were performed with clusterProfiler80. 712 

Immunofluorescence (IF). IF experiments were performed in µ-Plate 96 Well Black plate (ibidi, 713 
89626). After media removal, cells were fixed with 4% paraformaldehyde (Electron Microscopy 714 
Sciences, 15710) in 1x phosphate buffered saline (PBS) (Thermo Fisher Scientific, 10010072) for 715 
15 minutes at room temperature (RT). Cells were rinsed three times with PBS before proceeding 716 
to permeabilization or blocking. For staining of Oct-3/4 and PU.1, cells were permeabilized, while 717 
not for cell surface proteins’ staining. Permeabilization was conducted with 0.25% Triton-X-100 718 
(Thermo Fisher Scientific, 85111) in 1x PBS for 15 minutes at RT followed by three rinses with 719 
PBS. Cells were then blocked with 1% bovine serum albumin (BSA) in PBS for one hour at RT. 720 
For primary and secondary antibody staining, antibodies were diluted in PBS with 1% BSA and 721 
incubated with cells for one hour at RT. Three 5-minute washes with PBS were used to remove 722 
excessive antibodies after staining. Cells were directly imaged in plate on a Nikon Ti2 Eclipse 723 
inverted microscope with a Plan Apo Lambda DM 60× (1.4 NA, Ph3) oil objective and an Andor 724 
Zyla sCMOS camera. Images were acquired by NIS-Element AR software. All antibodies were 725 
used at 1:200 dilution. Primary IF antibodies used in this study were: Oct-3/4 (Santa Cruz 726 
Biotechnology, sc-5279), PU.1 (Thermo Fisher Scientific, PA5-17505), CD11b (BioLegend, 727 
101202), P2RY12 (Thermo Fisher Scientific, 702516), CX3CR1 (Abcam, ab8021). 728 

Phagocytosis assay. Differentiated cells were incubated with 20 µg/mL of pHrodo Green S. 729 
aureus BioParticles (Thermo Fisher Scientific, P35382) for 0-4 hours in mTeSR Plus media in the 730 
presence of 100 µg/ml Penicillin-Streptomycin (Corning, 30-002-CI). After removal of excessive 731 
particles with PBS washes, cells were harvested for antibody (CX3CR1, P2RY12, CD11b) 732 
staining and flow cytometry analysis as described in previous section. Remaining stained cells 733 
after flow cytometry was transferred into µ-Plate 96 Well Black plate for fluorescence microscopy 734 
to confirm the intracellular localization of the particles. This step needs to be conducted swiftly 735 
after flow cytometry in order to avoid changing of cellular morphology due to cell death. 736 

Calcium imaging. Calcium imaging experiment was conducted in standard 12-well cell culture 737 
plates. Differentiated cells were incubated with 1 µg/mL Fluo-4 AM calcium indicator (Thermo 738 
Fisher Scientific, F23917) in 1 mL of mTeSR Plus media for 30 minutes in a cell culture incubator. 739 
Excessive dye was washed away with two 1 mL media washes. After adding 1 mL of fresh mTeSR 740 
Plus, the cells were put on stage in a microscope inside the incubator. Images acquisition started 741 
without stimulation for 90 seconds to determine baseline signal. One image was acquired every 742 
three seconds, the fastest possible on the instrument. After 90 seconds 1 mL of media containing 743 
150 µM ADP was added to the cells while imaging was continuing. The total length of imaging 744 
was 10 minutes. Fluorescent signal was quantified and plotted in MATLAB. 745 
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Amyloid fibrillation. Aβ fibrillation experiments were performed using SensoLyte Thioflavin T β-746 
Amyloid (1-42) Aggregation Kit (AnaSpec, AS-72214) according to manufacturer’s instruction. 747 
The reaction was set up in µ-Plate 96 Well Black plate. Data was acquired on a plate reader with 748 
excitation/emission = 440 nm/484 nm at 37 degree once every 5 minutes for 3 hours. 749 

Preparation of datasets for building single-cell reference atlas. Files containing raw counts 750 
of 10x Genomics Chromium scRNA-seq data for different human tissues were download from 751 
PanglaoDB (https://panglaodb.se/index.html). Human primary brain single-cell data from 752 
gestational weeks 6-22 were downloaded from Organoid Report Card 753 
(https://cells.ucsc.edu/?ds=organoidreportcard). Human endometrium single-cell data were 754 
download from GEO GSE111976. All sample went through manual cell filtering using Seurat with 755 
different filters on number of gene, UMI, and percentage of mitochondria genes (Supplementary 756 
Table S4). Tissue annotation was compiled through manual curation of each study by checking 757 
what tissue/cell types were used (Supplementary Table S3). All raw counts were merged into 758 
one sparse matrix, which was then used as input for data integration. 759 

Single-cell atlas integration and mapping. Data integration and projection using Harmony and 760 
Symphony was carried out following instructions from the authors on GitHub 761 
(https://github.com/immunogenomics/harmony; https://github.com/immunogenomics/symphony). 762 
For Harmony integration, RunHarmony function was used. Parameters different from default 763 
settings were epsilon.cluster=-Inf, epsilon.harmony=-Inf. Batch correction were performed based 764 
on tissue types labeld in Figure 5a. For reference mapping with Symphony, 765 
buildReferenceFromSeurat function was used to create the reference object, and mapQuery 766 
function was used to map iPSC-derived cells to the reference atlas. Due to the size of the data, 767 
these steps were performed on the O2 cluster of Harvard Medical School with at least 180 Gb 768 
memory and 8 cores. Most R objects along the pipeline could be saved as standard R files for 769 
repeated analysis, except for the UMAP model file, which required saving and loading through 770 
the “uwot” package81. Code used for integration and projection, together with key reference and 771 
annotations files that could be of use for future explorations are shared along with this manuscript. 772 

TF-gene stepwise regression model construction. The stepwise regression (or stepwise 773 
selection) is a regression model that iteratively adds and removes predictors in the predictive 774 
model to find the subset of variables in the data set resulting in the best performance, and 775 
consequently lowering the perdition error in the model. During the process, the value of the 776 
statistical test is used to screen the variables. If the value is less than or equal to 0.05, then the 777 
variable enters the regression model, and the selected variable is the independent variable of the 778 
regression model. For the construction of the model: 779 
Step 1: Establish 𝑃  regression models between the independent variables 𝑋!, 𝑋", … , 𝑋# 780 
(𝑛𝑢𝑚𝑏𝑒𝑟 = 	𝑃) and the dependent variable 𝑌 respectively, 781 

Y = 𝛽$ + 𝛽%𝑋% + 𝜖, 𝑖 = 1,…𝑝		 782 
Calculate the statistical value of the F-test with the regression coefficient 𝐹!

(!),…,	𝐹#
(!), and take 783 

the maximum value 𝐹%!
(!), 784 
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𝐹%!
(!) = max 9𝐹!

(!), … , 𝐹#
(!): 785 

For a given significance level 𝛼,  the threshold value is 𝐹!. If 𝐹%!
(!) > 𝐹!	, then 𝑋%! will be included 786 

in the regression model and recorded as the set of selected variable indicators as 𝐼!. 787 
Step 2: Establish a binary regression model of the dependent variable 𝑌 and the independent 788 
variable subset {𝑋%!, … , 𝑋!},  {𝑋%!, … , 𝑋%!(!},  {𝑋%!, … , 𝑋%!)!}, calculate the statistical value of the F-789 
test with the regression coefficient 𝐹*

(") and take the maximum value 𝐹%"
("), 790 

𝐹%"
(") = max 9𝐹!

("), …𝐹%!(!
(") , 𝐹%!)!

(") , … , 𝐹#
("): 791 

For a given significance level 𝛼, record the corresponding critical value as 𝐹("). If 𝐹%"
(") > 𝐹(")	, 792 

then the variable is introduced into the regression model. Otherwise, the variable introduction 793 
process is terminated. 794 
Step 3: Repeat Step 2 with the subset of variables {𝑋%!, 𝑋%", 𝑋*}. This step is repeated by selecting 795 
an independent variable that is not introduced into the regression model until the test does not 796 
introduce any variables. 797 
TF-gene network visualization. Both p-values and coefficients in the regression analysis work 798 
together to represent relationships in the model about the significant factors. The coefficients 799 
describe the mathematical relationship between each independent variable and the dependent 800 
variable. The p-values for the coefficients indicate whether these relationships are statistically 801 
significant. We selected the 250 TF-gene combinations from the first pooled screen and 422 in 802 
the second with the criteria Abs(coefficient) > 0.1 & -log10(p-value) > 20, then visualized them in 803 
GEPHI. Nodes are the genes and TFs, edges are the regression coefficients (an unstandardized 804 
effect size because they indicate the strength of the relationship between variables), and colors 805 
are based on the modularity from the network module algorithm82. 806 
  807 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.03.494617doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494617


References 808 
1. Regev, A., Teichmann, S. A., Lander, E. S., Amit, I. & Benoist, C. Science forum: the 809 

human cell atlas. elife (2017). 810 
2. Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate 811 

engineering. Nat. Biotechnol. 39, 510–519 (2021). 812 
3. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive 813 

macrophages. Science 330, 841–845 (2010). 814 
4. Hoeffel, G. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to 815 

adult tissue-resident macrophages. Immunity 42, 665–678 (2015). 816 
5. Crotti, A. & Ransohoff, R. M. Microglial Physiology and Pathophysiology: Insights from 817 

Genome-wide Transcriptional Profiling. Immunity 44, 505–515 (2016). 818 
6. Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. 819 

Immunol. 32, 367–402 (2014). 820 
7. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic 821 

surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005). 822 
8. Matcovitch, O. Microglia development follows a stepwise program to regulate brain 823 

homeostasis. Natan 824 
9. Salter, M. W. & Beggs, S. Sublime microglia: expanding roles for the guardians of the CNS. 825 

Cell 158, 15–24 (2014). 826 
10. Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health 827 

and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017). 828 
11. Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 829 

23, 1018–1027 (2017). 830 
12. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 831 

332–337 (2019). 832 
13. Keren-Shaul, H. et al. A Unique Microglia Type Associated with Restricting Development 833 

of Alzheimer’s Disease. Cell 169, 1276–1290.e17 (2017). 834 
14. Yeh, F. L., Hansen, D. V. & Sheng, M. TREM2, microglia, and neurodegenerative diseases. 835 

Trends Mol. Med. 23, 512–533 (2017). 836 
15. Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in alzheimer’s disease. 837 

Cell 170, 649–663.e13 (2017). 838 
16. Dello Russo, C. et al. The human microglial HMC3 cell line: where do we stand? A 839 

systematic literature review. J. Neuroinflammation 15, 259 (2018). 840 
17. Timmerman, R., Burm, S. M. & Bajramovic, J. J. An Overview of in vitro Methods to Study 841 

Microglia. Front. Cell Neurosci. 12, 242 (2018). 842 
18. Smith, A. M. & Dragunow, M. The human side of microglia. Trends Neurosci. 37, 125–135 843 

(2014). 844 
19. Watkins, L. R. & Hutchinson, M. R. A concern on comparing’apples’ and’oranges’ when 845 

differences between microglia used in human and rodent studies go far, far beyond simply 846 
species …. Trends in neurosciences (2014). 847 

20. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem 848 
cells. Nat. Med. 22, 1358–1367 (2016). 849 

21. Abud, E. M. et al. iPSC-Derived Human Microglia-like Cells to Study Neurological 850 
Diseases. Neuron 94, 278–293.e9 (2017). 851 

22. Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to 852 
microglia-like cells. Nat. Neurosci. 20, 753–759 (2017). 853 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.03.494617doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494617


23. Haenseler, W. et al. A Highly Efficient Human Pluripotent Stem Cell Microglia Model 854 
Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. 855 
Stem Cell Rep. 8, 1727–1742 (2017). 856 

24. Douvaras, P. et al. Directed differentiation of human pluripotent stem cells to microglia. 857 
Stem Cell Rep. 8, 1516–1524 (2017). 858 

25. Takata, K. et al. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a 859 
Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity 860 
47, 183–198.e6 (2017). 861 

26. McQuade, A. et al. Development and validation of a simplified method to generate human 862 
microglia from pluripotent stem cells. Mol. Neurodegener. 13, 67 (2018). 863 

27. Speicher, A. M., Wiendl, H., Meuth, S. G. & Pawlowski, M. Generating microglia from 864 
human pluripotent stem cells: novel in vitro models for the study of neurodegeneration. Mol. 865 
Neurodegener. 14, 46 (2019). 866 

28. Xu, R. et al. Human iPSC-derived mature microglia retain their identity and functionally 867 
integrate in the chimeric mouse brain. Nat. Commun. 11, 1577 (2020). 868 

29. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined 869 
factors. Nature 463, 1035–1041 (2010). 870 

30. Tsunemoto, R. et al. Diverse reprogramming codes for neuronal identity. Nature 557, 375–871 
380 (2018). 872 

31. Busskamp, V. et al. Rapid neurogenesis through transcriptional activation in human stem 873 
cells. Mol. Syst. Biol. 10, 760 (2014). 874 

32. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-875 
dependent pathways. Nat. Neurosci. 16, 273–280 (2013). 876 

33. Smith, A. M. et al. The transcription factor PU.1 is critical for viability and function of 877 
human brain microglia. Glia 61, 929–942 (2013). 878 

34. Gosselin, D. et al. An environment-dependent transcriptional network specifies human 879 
microglia identity. Science 356, (2017). 880 

35. Galatro, T. F. et al. Transcriptomic analysis of purified human cortical microglia reveals 881 
age-associated changes. Nat. Neurosci. 20, 1162–1171 (2017). 882 

36. Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the human 883 
prefrontal cortex. Nature 555, 524–528 (2018). 884 

37. Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 539 885 
(2018). 886 

38. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional 887 
signature in microglia. Nat. Neurosci. 17, 131–143 (2014). 888 

39. Wehrspaun, C. C., Haerty, W. & Ponting, C. P. Microglia recapitulate a hematopoietic 889 
master regulator network in the aging human frontal cortex. Neurobiol. Aging 36, 2443.e9-890 
2443.e20 (2015). 891 

40. Avellino, R. & Delwel, R. Expression and regulation of C/EBPα in normal myelopoiesis and 892 
in malignant transformation. Blood 129, 2083–2091 (2017). 893 

41. Lichtinger, M. et al. RUNX1 reshapes the epigenetic landscape at the onset of 894 
haematopoiesis. EMBO J. 31, 4318–4333 (2012). 895 

42. Starck, J. et al. Spi-1/PU.1 is a positive regulator of the Fli-1 gene involved in inhibition of 896 
erythroid differentiation in friend erythroleukemic cell lines. Mol. Cell. Biol. 19, 121–135 897 
(1999). 898 

43. Hoeffel, G. & Ginhoux, F. Ontogeny of Tissue-Resident Macrophages. Front. Immunol. 6, 899 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.03.494617doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494617


486 (2015). 900 
44. Bazan, J. F. et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 901 

385, 640–644 (1997). 902 
45. Hughes, P. M., Botham, M. S., Frentzel, S., Mir, A. & Perry, V. H. Expression of fractalkine 903 

(CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent 904 
CNS. Glia 37, 314–327 (2002). 905 

46. Liu, Z. et al. Systematic comparison of 2A peptides for cloning multi-genes in a 906 
polycistronic vector. Sci. Rep. 7, 2193 (2017). 907 

47. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and  dispersion 908 
for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 909 

48. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set 910 
collection. Cell Syst. 1, 417–425 (2015). 911 

49. Cahan, P. et al. CellNet: network biology applied to stem cell engineering. Cell 158, 903–912 
915 (2014). 913 

50. Kracht, L. et al. Human fetal microglia acquire homeostatic immune-sensing properties 914 
early in development. Science 369, 530–537 (2020). 915 

51. Inoue, K. Purinergic systems in microglia. Cell Mol. Life Sci. 65, 3074–3080 (2008). 916 
52. Di Virgilio, F., Ceruti, S., Bramanti, P. & Abbracchio, M. P. Purinergic signalling in 917 

inflammation of the central nervous system. Trends Neurosci. 32, 79–87 (2009). 918 
53. Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch effect adjustment for RNA-919 

seq count data. NAR Genom. Bioinform. 2, lqaa078 (2020). 920 
54. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 921 

interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–922 
15550 (2005). 923 

55. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and 924 
cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018). 925 

56. Zhong, L. et al. Amyloid-beta modulates microglial responses by binding to the triggering 926 
receptor expressed on myeloid cells 2 (TREM2). Mol. Neurodegener. 13, 15 (2018). 927 

57. Zhao, W. et al. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. 928 
Exp. Neurol. 273, 24–35 (2015). 929 

58. Zhang, F. et al. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype 930 
expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. 931 
Genome Med. 13, 64 (2021). 932 

59. Franzén, O., Gan, L.-M. & Björkegren, J. L. M. PanglaoDB: a web server for exploration of 933 
mouse and human single-cell RNA sequencing data. Database (Oxford) 2019, (2019). 934 

60. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. 935 
Nature 578, 142–148 (2020). 936 

61. Wang, W. et al. Single-cell transcriptomic atlas of the human endometrium during the 937 
menstrual cycle. Nat. Med. 26, 1644–1653 (2020). 938 

62. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. 939 
Nat. Methods 16, 1289–1296 (2019). 940 

63. Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. 941 
Nat. Commun. 12, 5890 (2021). 942 

64. Van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory 943 
network analysis. Nat. Protoc. 15, 2247–2276 (2020). 944 

65. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. & Guthke, R. Gene regulatory 945 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.03.494617doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494617


network inference: data integration in dynamic models-a review. Biosystems 96, 86–103 946 
(2009). 947 

66. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene 948 
regulation in eukaryotes. Nucleic Acids Res. 34, D108-10 (2006). 949 

67. Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of 950 
transcription factor binding profiles. Nucleic Acids Res. 50, D165–D173 (2022). 951 

68. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: 952 
integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021). 953 

69. Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of 954 
transcriptional and post-transcriptional regulatory networks in human and mouse. Database 955 
(Oxford) 2015, (2015). 956 

70. Oughtred, R. et al. The BioGRID database: A comprehensive biomedical resource of 957 
curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021). 958 

71. Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, 959 
and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 960 
49, D605–D612 (2021). 961 

72. Maeda, T., Sugita, S., Kurimoto, Y. & Takahashi, M. Trends of Stem Cell Therapies in Age-962 
Related Macular Degeneration. J Clin Med 10, (2021). 963 

73. de Klerk, E. & Hebrok, M. Stem Cell-Based Clinical Trials for Diabetes Mellitus. Front. 964 
Endocrinol. (Lausanne) 12, 631463 (2021). 965 

74. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a 966 
decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017). 967 

75. Flitsch, L. J., Laupman, K. E. & Brüstle, O. Transcription Factor-Based Fate Specification 968 
and Forward Programming for Neural Regeneration. Front. Cell Neurosci. 14, 121 (2020). 969 

76. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic 970 
and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). 971 

77. Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–972 
205 (2021). 973 

78. Wang, L. et al. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and 974 
quality of induced cardiac myocyte reprogramming. Circ. Res. 116, 237–244 (2015). 975 

79. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA 976 
sequencing data. Genome Biol. 21, 12 (2020). 977 

80. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. 978 
Innovation (N Y) 2, 100141 (2021). 979 

81. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and 980 
Projection for Dimension Reduction. arXiv (2018). doi:10.48550/arxiv.1802.03426 981 

82. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of 982 
communities in large networks. J. Stat. Mech. 2008, P10008 (2008). 983 

 984 
 985 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.03.494617doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494617

