
 
 

  

Laser particle barcoding for multi-pass high-dimensional flow cytometry 
 

Sheldon J.J. Kwok1†, Sarah Forward1, Marissa D. Fahlberg1, , Sean Cosgriff1, Seung Hyung Lee1, 
Geoffrey Abbott1, Han Zhu1, Nicolas H. Minasian1, A. Sean Vote1, Nicola Martino2 and Seok-Hyun Yun2†  
†Correspondence to skwok@laseinno.com or syun@hms.harvard.edu  
 

1LASE Innovation Inc., 16 Tower Office Park, Woburn, MA 01801, USA 
2Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 
Landsdowne St., Cambridge, MA 02139, USA.  
 
 
 
 

ABSTRACT 

Flow cytometry is a standard technology in life science and clinical laboratories used to characterize the 
phenotypes and functional status of cells, especially immune cells. Recent advances in immunology and 
immuno-oncology as well as drug and vaccine discovery have increased the demand to measure more 
parameters. However, the overlap of fluorophore emission spectra and one-time measurement nature of 
flow cytometry are major barriers to meeting the need. Here, we present multi-pass flow cytometry, in 
which cells are tracked and measured repeatedly through barcoding with infrared laser-emitting 
microparticles. We demonstrate the benefits of this approach on several pertinent assays with human 
peripheral blood mononuclear cells (PBMCs). First, we demonstrate unprecedented time-resolved flow 
characterization of T cells before and after stimulation. Second, we show 33-marker deep 
immunophenotyping of PBMCs, analyzing the same cells in 3 back-to-back cycles. This workflow allowed 
us to use only 10-13 fluorophores in each cycle, significantly reducing spectral spillover and simplifying 
panel design. Our results open a new avenue in multi-dimensional single-cell analysis based on optical 
barcoding of individual cells.    
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Introduction 

Fluorescence-based flow cytometry has been a workhorse in the single-cell analysis of surface markers, 
intracellular cytokines, intranuclear proteins such as transcription factors, and cell cycles. Continuing 
advances in high-speed fluidics and multi-color optics, as well as fluorophore chemistry, has enabled high-
parameter measurement (up to ~30 markers) at high speed (>10,000 cells per second) and low cost. While 
these are major advantages in throughput and cost1,2 over technologies such as single-cell mass cytometry 
and sequencing-based proteomic analysis, flow cytometry is facing significant challenges in meeting the 
growing demand to measure more protein markers per cell. Highly multiplexed measurements of immune 
cells to characterize dozens of different cell types have proven to be critical in the development of 
immunotherapies and vaccines3–6, as well as detection of minimal residual disease in leukemia7. However, 
high-marker analysis (>30 protein markers) is challenging due to the ambiguity caused by spectral spillover 
between fluorophores, often requiring months-long optimization of fluorophore-antibody combinations and 
instrument settings8,9. Clinical laboratories that have the labor and time available to optimize a high-marker 
panel may still lack the expertise to design and select the appropriate reagents. Limited availability of well-
validated fluorophores (colors) is an additional barrier, especially for clinical applications which require the 
use of reagents that meet FDA manufacturing requirements. For these reasons, most clinical laboratories 
use standardized panels for immunophenotyping that typically range from 4-12 colors, which restricts the 
types of cells that can be detected at once and increases the number of cell samples required10–12.  

A major advantage of flow cytometry is that, unlike mass cytometry and sequencing, cells are not 
destroyed during optical acquisition. Flow sorters rely on this nondestructive feature. However, current flow 
cytometer analyzers are typically used for one-time measurement of cells. Measuring cells twice using a 
flow sorter is in principle possible, but single-cell information would be lost in the cell collection process. 
This limitation, which has not been openly recognized, makes current flow cytometry unable to address 
the ever growing need to acquire high-dimensional data and temporal responses of single cells13–15. 

Here, we introduce a drastically new approach in flow cytometry based on optical barcoding of 
individual cells. Barcoding techniques have been used previously in cytometry for tracking different 
samples, enabling pooling of samples for faster analysis. These techniques, relying on fluorescence 
intensity differences in flow cytometry16 or a limited set of radioisotopes in mass cytometry17 are only 
suitable for tracking tens of samples at a time. Here, we use laser particles (LPs), recently developed laser-
emitting microparticles18, to tag and track up to millions of cells at a time. This approach enables multi-pass 
flow cytometry, in which the same cells are measured multiple times, using each cell’s unique optical 
barcodes to align and concatenate data from different measurements.  We use this method to acquire flow 
cytometry data from human peripheral blood mononuclear cells (PBMCs). First, we apply our multi-pass 
approach to a common assay involving in vitro stimulation of T-cells in PBMCs. We demonstrate 
unprecedented characterization of the same T cells before and after stimulation, enabling quantification of 
marker downregulation. Second, we applied multi-pass cytometry to high-marker analysis. We developed 
a broad immunophenotyping panel optimized for 3 measurement cycles of leukocyte populations. Our 
“cyclic” approach greatly simplifies high-parameter analysis by requiring a far fewer number of fluorophores 
for the same number of markers. We performed this 33-marker assay on live human PBMCs from a healthy 
donor and validated our results against published data. 
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Results 

Multi-pass flow cytometer instrumentation 

Figure 1 illustrates the general workflow of multi-pass flow cytometry along with the optical measurements 
of cellular barcodes and fluorescent reagents. First, cells are mixed with excess LPs in solution to label 
each cell with a unique, random combination of LPs. Next, cells are stained with a first set of antibody-
fluorophores and then loaded into a flow cytometer capable of exciting and detecting the laser emission 
from LPs and, also, collecting the cells after the flow measurement. We have built such a multi-pass flow 
cytometer using a near-infrared pump laser (1064 nm) to stimulate the laser emission of LPs and four 
fluorescence excitation lasers (405 nm, 488 nm, 560 nm, and 630 nm) to elicit fluorescence. Cells flow 
across the laser beams in a hydrodynamically focused stream at a velocity of ~3.4 m/s. The fluorescence 
signal is split by dichroic filters and detected by avalanche photodiodes, while the lasing signal is detected 
by an infrared linescan spectrometer. Following data acquisition, the antibody-fluorophores in the collected 
cells are deactivated by either the photobleaching of the fluorophores or the release of the antibodies from 
the markers. For the next cycle of measurement, the cells are stained with a subsequent set of antibody-
fluorophores and loaded back into the flow cytometer. In the following sections, we describe each of the 
major workflow steps in detail.  

 

Laser-particle tagging of live human PBMCs 

As LPs, we used InGaAsP microdisks18 of 1.6-1.9 µm in diameter and 220-290 nm in thickness (Fig. 2a). 
Six different compositions of bulk InxGa1-xAsyP1-y epitaxial layers were used to ensure each LP emits a 
lasing peak between 1150 to 1550 nm (Fig. 2b), which leaves the entire visible and near-infrared 
wavelength ranges free for fluorescence labeling. We first coated the semiconductor microdisks with a ~50 
nm layer of SiO2 to ensure stability and confer biocompatibility. We have previously shown that silica-
coated LPs can be internalized into a variety of cell types with overnight incubation18. To shorten the 
tagging time, we functionalized the silica coating surface with polyethylenimine (PEI), a cationic polymer 
known to bind to cell membranes and used for transfection19,20. We found that PEI-silica coated LPs were 
efficiently attached to live human PBMCs within 1 h of incubation (Fig. 2a). A given cell is defined as 
barcoded if it is tagged with 3 or more LPs. Typically, around 85% of cells were tagged with 1 or more LPs, 
and around 50% tagged with 3 or more LPs (Fig. 2c). Another approach for LP tagging involves antibody-
based targeting of LPs to the cell surface through biotin-streptavidin coupling (Supplementary Fig. 1). PEI-
based tagging was the primary method used in this study. 

Using a viability dye that assesses membrane integrity, we found that cell viability is nearly 
unchanged from 93.2% before to 91.6% after LP tagging. Storing the LP-tagged samples in standard wash 
buffer at 4°C for five h reduces viability slightly further to 89.1% (Fig. 2d). There was no measurable 
difference in singlet purity between control and LP-tagged samples at 0 and 5 h, indicating LP tagging 
does not increase cell-cell aggregation. To test whether LP-tagging affects cellular phenotypes, we also 
compared the expression of major immune markers including CD45 (pan immune marker), CD14 
(monocyte marker), CD3 (T-cell marker) and CD20 (B cell marker). There were no significant differences 
in the population percentages of any of these markers when comparing control and LP-tagged samples at 
0 and 5 h (Fig. 2d). Furthermore, using CD3-KromeOrange, we found that the median fluorescence 
intensity decreased approximately ~5% for cells tagged with 3-5 LPs, and ~15% for cells tagged with 10 
LPs (Supplementary Fig. 2).  
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Repeated identification of the same cells  

Cells are collected after each measurement so that the same cells can be measured again in the 
subsequent cycle. In conventional flow cytometers employing hydrodynamic focusing, cells flow through a 
glass flow cell along with sheath fluid and are then diverted into waste following analysis. We developed a 
novel, cell-collecting fluidic channel that recovers all the cells in the focused core stream of 10-20 µm width 
at the exit of the flow cell (Fig. 3a-b). The collection channel consists of a 127 µm diameter needle, followed 
by a polypropylene-based flexible tube connected to a peristaltic pump that controls the flow rate of the 
collected stream (Fig. 3c). With sample input flow rates of 30 µL/min, a sheath flow rate of 9 mL/min, and 
a collection flow rate of ~400 µL/min, we were able to collect nearly 100% of the input cells into a tube. To 
ensure viability of cells in the tube during flow acquisition, we used phosphate-buffered saline (PBS) as 
the sheath fluid, and the cells were collected in serum-supplemented buffer. Immediately after acquisition, 
the cells are washed and resuspended in standard flow cytometry staining buffer. Overall, the cell collection 
and washing process typically recovers 95% ± 2% of live human PBMCs (Fig. 3d). There was no significant 
change to the viability of human PBMCs after 1, 2 or 3 cycles of cell capture (Supplementary Fig. 3).  

Cells measured in different passes were matched using their LP barcodes. Our spectrometer 
measures the lasing spectra with resolution of ~ 0.5 nm. Given that single LPs provide about 800 
distinguishable lasing peaks (from 1150 to 1550 nm), a combination of three random LPs per cell in 
principle can provide 800C3 = 8.5x107 unique spectral barcodes, sufficient for tracking a population of 
1,000,000 cells with < 2% of duplication-induced error (loss). LP barcodes measured in different passes 
were matched by extracting the peak wavelengths and computing the probability of a match by comparing 
pairs of measured spectra. Each potential match is scored depending on the lasing wavelengths detected 
and their emission amplitudes (see Methods). Examples of matched spectra over three cycles are given 
in Fig. 3e. We validated our approach by staining LP-tagged PBMCs with major immune markers (CD45, 
CD14, CD3 and CD19), measuring the same cells twice using the modified flow cytometer, and comparing 
the fluorescence data of cells that were matched using the LP barcodes. We defined an apparently 
correctly matched population in which the fluorescence intensities of the same cells measured in Cycle 0 
and Cycle 1 are strongly correlated (Fig. 3f). This population ranged from 98.5% to 99.4% of the cells. The 
remaining 0.6-1.5% of cells that were apparently correctly matched appear as noise and do not 
meaningfully affect data quality and resolution. We further validated our approach by verifying whether LP 
barcodes could be used to keep track of sample identity. Data from three separately acquired samples 
was pooled together and matched. Less than 2% of the matched cells were erroneously identified as 
belonging to two different samples (Supplementary Fig. 4). Our validation data shows our approach can 
track and match cells between different measurements with high accuracy. 

 

Time-resolved measurements of T cell activation 

One potentially impactful application of multi-pass flow cytometry is time-lapse flow analysis. Multi-pass 
flow cytometry can be used to measure changes in marker expression of individual cells between 
subsequent cycles due to various biological processes either naturally occurring or artificially induced, such 
as cell division, incubation, drug treatments, cell-cell interactions, or stimulations. To measure the same 
markers in successive measurements, we employed chemically releasable antibodies21 (Miltenyi Biotec, 
REAlease), which are designed to be released from live cells with the addition of a chemical reagent. 

We explored time-resolved flow cytometry analysis of T cells upon cell stimulation. Drug treatments 
or immunotherapies can alter the expression of protein markers on certain cell types, reflecting changes 
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in activation state, viability, drug response or resistance22–25. While conventional flow cytometry can 
compare population differences between treated and untreated cells, it cannot identify changes to each 
individual cell, which is especially important for heterogeneous cell samples. In addition, changes in marker 
expression can prevent or impair identification of cell type post stimulation26. Using a basic T-cell panel, 
we measured two different samples of T-cells in human PBMCs from the same donor with and without 
stimulation with phorbol myristate acetate (PMA) and ionomycin. As shown in Fig. 4a, while CD4+CD3+ T 
cells can readily be identified prior to stimulation, CD4 expression is significantly reduced post stimulation, 
making it difficult to re-identify these cells. Furthermore, it is difficult with conventional flow cytometry to 
distinguish whether changes in marker are phenotypic switches or due to expansion or death of specific 
cell types. 

For time-resolved characterization of T-cell stimulation, we tagged human PBMCs with LPs, stained 
with chemically releasable antibodies (CD3, CD8 and CD4) and analyzed for baseline phenotyping (pre 
stimulation) (Fig. 4b). After the acquisition, the antibodies were removed, and the cells were stimulated for 
4 h with PMA/ionomycin. The cells were then re-stained for the same surface markers in addition to 
intracellular cytokines, followed by a second-pass analysis with our cytometer post stimulation. Figure 4c 
shows expression of different markers (CD3, CD8 and CD4) pre and post stimulation for each cell. While 
CD8 and CD3 expression did not change significantly, we identified loss of CD4 expression on T cells that 
was easily identifiable during the first pass. Our time-resolved approach enables gating on pre-stimulation 
markers for downstream analysis, such as identification of cytokine-secreting cells that were CD4+ prior 
to stimulation (Fig. 4d).  

 

Photobleaching of common fluorophores 

To measure different markers in each pass, antibodies need to either be removed or fluorescence signals 
need to be inactivated after each measurement so the cells can be re-stained with a different set of 
fluorophore-conjugated antibodies. While chemically releasable antibodies (Miltenyi Biotec, REAlease) are 
suitable, the limited portfolio of antibodies commercially available makes it difficult to use for high-marker 
panels. There are also a number of approaches for antibody stripping and/or iterative staining on fixed 
cells27–30 (CODEX, CyCIF, IBEX and 4i), but fewer well-validated options exist for live cells.  

We developed and optimized an in-solution photobleaching method that was compatible with live 
cells. To minimize viability loss during photobleaching, we built a device that illuminates cell samples while 
actively cooling to near 4°C (Supplementary Fig. 5). Cells are suspended in a buffer containing an 
antioxidant that prevents reactive oxygen species from damaging cells (see Methods). Using broadband 
light emitting diodes (LED, 440-660 nm), we were able to photobleach a number of commonly used 
antibody-conjugated fluorophores (anti-CD45) in 3 to 25 minutes. A violet LED (400-420 nm) was needed 
to efficiently bleach violet-excitable fluorophores (Fig. 4a). After photobleaching, the fluorescence signal in 
the relevant channels (e.g., both donor and acceptor components for tandem fluorophores such as PE-
Cy7) is similar to an unstained sample (Fig. 4b). Using 10 antibody-conjugated fluorophores at a time, the 
cell viability dropped slightly from 97.2% to 93.4% after a single bleach, and slightly further to 91.1% after 
two bleaches (Supplementary Fig. 6). We found that fluorophores conjugated to markers with higher 
antigen density generally tended to bleach more slowly, presumably because of limited local oxygen supply 
for bleaching. To verify that photobleaching does not change the relative expression of markers on cells 
and does not cause heterogenous cell loss, we performed immunophenotyping of live human PBMC 
sample after photobleaching and compared to a control. We found no significant differences between the 
percentages of CD4+ T cells, CD56+ NK cells, CD20+ B cells and CD14+ Monocytes (Fig. 4c).   
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33-marker, 3-cycle measurement of live human PBMCs  

To demonstrate the utility of multi-pass flow cytometry for high-parameter flow analysis, we designed a 3-
cycle, 33-marker deep immunophenotyping panel of human PBMCs using 10-13 fluorophores per cycle, 
with photobleaching between measurements (Fig. 5d). The 33 markers were chosen to enable 
identification of a variety of cell types including CD4+ T, CD8+ T, regulatory T, and γδ T, B cells, 
plasmablasts, NKT-like cells, NK cells, monocytes, innate lymphoid cells, and dendritic cells. For each cell 
type, differentiation and activation markers were included for sub-categorization, such as for naïve, 
memory, and effector T cells. Live human PBMCs from a healthy donor were used to acquire the data. 
The complete “cyclic” workflow included LP tagging, staining with Cycle 0, acquisition, photobleaching, re-
staining with Cycle 1, acquisition, photobleaching, re-staining with Cycle 2 and a final acquisition. In this 
study, about 50% of the barcoded cells that are acquired in Cycle 2 were successfully matched with 
previous cycles.  

Figure 6a visualizes the matched 33-marker data after dimension reduction using uniform manifold 
approximation and projection (UMAP). At least 6 distinct islands corresponding to different cell types were 
observed, with good separation consistent with high data quality. Cross-referencing the UMAP pattern with 
each measured marker yielded the expected major cell subsets in each island, including CD4+ T cells, 
CD8+ T cells, CD14+ monocytes, CD11c+ dendritic cells, CD123+ dendritic cells CD20+ B cells, and 
CD56+ NK cells. Repeating the 3-cycle measurement on different days with PBMCs from the same donor 
yielded similar results (Fig. 6b). To assess whether the cyclic workflow had any effect on the final results, 
we swapped the order of 10 antibodies between Cycle 1 and Cycle 2 on Day 3 (Fig. 6b). There were no 
significant differences in either the number of cell subsets identified or the quality of the data. The live cell 
fraction measured in Cycle 2 was found to be 87%. There were no significant differences in the viability in 
Cycle 2 for major cell types (Supplementary Fig. 7). 

We computed the compensation matrix used in our study (33 markers over 3 cycles) and compared 
it to a 28-marker panel optimized for conventional single-pass flow cytometry31,32. As expected, there was 
significant reduction in spillover resulting from acquiring fewer colors over multiple passes (Fig. 6c). There 
were 136/1056 (12.9%) pairs with spillover greater than 0.5% in our panel vs. 393/756 (52%) pairs in the 
conventional panel. When comparing panel performance within a given instrument, spillover spread (SS) 
is typically used to indicate how well co-expressing markers can be resolved when stained with a specific 
combination of colors33. We found that the total amount of SS in high-parameter panels increases 
nonlinearly (power law with an exponent of about 3) with each additional color used (Supplementary Note 
1). In contrast, a 3-cycle workflow had significantly reduced SS, over one order of magnitude times lower 
(Fig. 6d; Supplementary Note 1). Supplementary Figure 8 show the SS matrices of the 33 marker, 3-cycle 
panel from this study and the published 28 color panel31.   

Figure 7 show the acquired scatter plots and our gating tree. A manual gating strategy was used 
to distinguish T, B, NK, and myeloid cell subsets, following guidelines from previously published datasets34–

38. Briefly, T-cells and their memory subtypes were identified by surface expression of CD45RA, CCR7, 
CD27, and CD28 on CD3+CD4+ cells or CD3+CD8+ cells. CD4+ helper T cell subtypes were further 
differentiated by expression of CXCR3, CXCR5, and CCR6, and T regulatory cells were defined as 
CD127loCD25+. We characterized unconventional T cells by expression of the γδTCR or CD56 on CD3+ 
cells. Monocytes were defined as CD3-CD19-CD20-CD56-HLA-DR+ cells that expressed CD14 and/or 
CD16, while dendritic cells were gated with the same lineage but were here defined as lacking expression 
of CD14 and/or CD16. They were further characterized by expression of CD123 (pDCs) or CD1c (mDCs). 
Of note, this strategy may miss small subsets of dendritic cells which co-express CD16. B cells were initially 
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defined by expression of HLA-DR, CD19, and CD20, and lack of CD3 and CD56. We used expression of 
IgD, IgM, and IgG to differentiate B cells producing antibodies of different isotypes. Plasmablasts were 
identified by expression of CD19, lack of CD20 and co-expression of CD27 and CD38. Using a combination 
of CD16, CD56, NKG2A, and NKG2C, we identified early, mature, and memory NK cells. Our results are 
consistent with previously published findings on T cells35, B Cells36, Treg and myeloid cells37, as well as NK 
cells38. Importantly, we validated expected co-expression of markers by staining them in different cycles. 
For example, >95% of naïve CD4+ and CD8+ T cells that we have defined by CD45RA (Cycle 2) and 
CCR7 (Cycle 0) also expressed CD27 (Cycle 2) and CD28 (Cycle 0), as anticipated. In addition, all CD20+ 
(Cycle 0) B cells co-expressed CD19 (Cycle 1), consistent with expected healthy human phenotypes. 

 

Discussion 

Over the past decade, the prevailing approach to improve high-marker analysis with flow cytometry has 
been to add more excitation lasers and detectors to the instrument while developing newer fluorophores 
with dissimilar properties in optical absorption and/or emission. Current high-color commercial instruments 
(e.g., BD FACSymphony A5 and Cytek Aurora) use as many as 10 excitation lasers and 30 to 188 
detectors to discriminate more than 30 different fluorophores at a time. However, this approach comes with 
significant cost and compromise. The spectral widths of organic fluorophores are typically 40 to 100 nm, 
and the detectable visible spectrum ranges from 400 nm to 800 nm. As a result, it is relatively routine to 
resolve up to about 10-15 different fluorophores, but beyond that, the assay difficulty increases nonlinearly 
for every fluorophore to be detected due to increasing SS (Supplementary Note 1). Recently introduced 
spectral detection can help distinguish similar colors, but spectral unmixing cannot compensate for photon 
shot noise and still leaves data spread39,40. In all, while an experienced flow cytometry user can design and 
optimize a 10-color experiment in approximately 1-2 weeks, a typical 30-color experiment requires several 
months to develop from scratch8,41,42. The time, technical expertise, reagent limitations, and cost needed 
for current high-marker panel designs have prevented many users from increasing the number of markers 
that are routinely measured.  

Multi-pass flow cytometry based on optical barcoding alleviates this major bottleneck to high-
marker analysis. First, it simplifies a highly complex panel into multiple, easier measurements, enabling 
more markers to be measured with fewer colors. This reduces the time and expertise needed to optimize 
a high-color panel and increases the margin of error afforded for the average user to acquire high quality 
data. Second, when no more than 10-15 easily distinguishable fluorophores are used in each 
measurement, there is no need for expensive, custom antibody reagents conjugated with exotic 
fluorophores of limited availability. Widely available and well-validated antibodies with common 
fluorophores can be used exclusively, significantly cutting reagent costs, lead times, and additional 
experiments needed for antibody validation. In addition, fluorophores which are the most widely available 
(e.g., PE, APC and FITC) can be re-used multiple times. Third, the reduced number of color channels 
simplifies the instrument design, instrument cost and operational complexity. Finally, by overcoming the 
fundamental limitation of SS when measuring many colors at once, multi-pass cytometry can exceed the 
maximum number of markers measured on a flow cytometer (currently, about 40 markers34), accelerating 
immunology and immune-oncology research by enabling analysis of more cell types at once.   

Splitting panels across three cycles can drastically improve data quality. A conventional 30 color 
experiment requires monitoring of 30 detection channels at a time and optimizing 30 x (30-1) = 870 spillover 
matrix elements for compensation. Increased spillover inevitably causes increased SS, and high-
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parameter panels must be carefully designed to mitigate spreading error between co-expressing antigens. 
In comparison, a 3-cycle x 10 color experiment requires monitoring of 10 detection channels at a time and 
optimization of 3 x 10 x (10-1) = 270 spillover matrix elements, with most of these elements having relatively 
low spillover since less colors are used at a time. This dramatic overall reduction of spillover and 
corresponding spread contributes to major improvements of data quality. At the same time, investigators 
can also design panels such that co-expressing markers are split between cycles, thereby eliminating 
spread between these antigens altogether. When panels are split and acquired over several cycles, even 
markers conjugated to the same fluorophore multiple times will not require compensating and exhibit no 
spillover spread between them. In addition, splitting panels between cycles allows for re-using key 
fluorophores. For example, PE is a very bright and widely available fluorophore which could be used 
multiple times to detect low-antigen density markers. 

Measuring tagged cells over multiple cycles inevitably introduces some reduction to cell yield. The 
cell tagging with PEI-coated LPs showed about 50% yield for live human PBMCs with 1 h of mixing (Fig. 
2). This yield stems from the relatively lower internalization efficiency of certain cell types, such as T-cells. 
While minor differences in tagging efficiency for different cell types can be corrected in post-hoc analysis, 
overall cell yield may be a limitation for precious, heterogeneous cell samples such as primary patient 
samples. One approach to increase the tagging yield is to use antibody-based coupling of LPs to the cell 
surface43,44. This approach is similar to cell hashing employed for single-cell sequencing which uses 
antibodies targeting broadly and highly expressed markers. Our initial data shows that this can increase 
tagging yield to over 75% (Supplementary Fig. 1). Another area of potential improvement is matching yield, 
which in this study was around 70% per cycle. This yield is currently limited by the presence of free LPs 
that contributes to matching uncertainty, cells that are excluded because they are part of cell-cell doublets 
in at least one cycle, and LPs that may not be detected and/or become dislodged from the cell (see 
Methods). Optimization of the matching algorithm to include scatter and fluorescence data is also likely to 
improve matching yield.  

Total analysis time is increased with the cyclic workflow due to the additional steps of LP tagging, 
cell capture, photobleaching and re-staining, apart from intentional time delay between measurements in 
time-lapse workflows. Currently, about 1 h is required for each additional cycle; however, only 10 minutes 
of this is hands-on time, and use of automated liquid handlers can shorten the current cell-processing time 
between cycles. LP tagging time and photobleaching time could be reduced further by using antibody-
targeting and spectrum-optimized LEDs, respectively. Of note, LP-tagged samples can be fixed, stored, 
and measured the next day or whenever necessary, which may be a preferred workflow for panels with 
intracellular markers that require overnight fixation. Fixed samples can also be stored for batch analysis to 
reduce variability between specimens in large-scale clinical trials45.  Re-interrogation of samples could also 
be useful for users who wish to use the results of a first cycle of measurement to inform the panel design 
of a subsequent measurement. The multi-pass workflow also requires that cells are run through the 
instrument multiple times, which imparts additional stress to the cells. However, marker expression should 
be minimally affected at the relatively low pressure (<3 psi) and low energy dissipation rate (~105 W/m3) of 
our flow system46–48, and particularly sensitive markers can be deliberately acquired in the initial cycle.  

The multi-pass workflow can also be leveraged in assays that require protocols or treatments which 
compromise fluorophore integrity. Methanol-based fixation often used to measure the phosphorylation 
state of intracellular proteins can quench protein-based fluorophores, rendering them unusable if staining 
precedes fixation49. Permeabilization buffers used to access intranuclear transcription factors often destroy 
signals from GFP and other fluorescent proteins50. In each of these cases, phenotyping cells in an initial 
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cycle followed by fixation/permeabilization and subsequent measurement of intracellular markers enables 
measurement of all desired parameters without any compromise in signal or data quality. 

Cellular barcoding and the multi-pass workflow also expand the utility of flow cytometry beyond 
static profiling to dynamic, time-resolved analysis of cells at high throughput. The ability to track and 
measure cells over time enables study of single-cell responses to stimulation, drug treatments, or other 
interventions. With conventional flow cytometry, only population differences can be identified when 
comparing control and treated samples. With time-resolved flow cytometry, the downregulation or 
upregulation of key biomarkers on individual cells can be identified and also quantified. The degree of 
change in expression of a particular biomarker on a particular cell could be especially useful for precision 
medicine applications. Tracking cells over multiple generations also enables the study of how protein 
expression changes as each cell divides or differentiates, with applications in tumorigenesis and stem-cell 
biology. We also anticipate that further LP barcoding innovation will enable us to couple flow cytometry 
with other optical instruments such as a fluorescence microscope51. The upstream or downstream 
integration of spatial and functional information of single cells, as illustrated in Fig. 1, promises to extend 
the ability to analyze single cells far beyond the current scope of flow cytometry.   
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Fig. 1. Schematic of multi-pass flow cytometry. The major steps include: tagging cells with laser particles (LPs) 
to yield LP-barcoded cells which typically have 3+ LPs, then staining cells with a first set of fluorophore-conjugated 
antibodies, loading the barcoded and stained cells into a flow cytometer that detects fluorescence signals using 
multiple excitation lasers and LP lasing signals using a pump laser and spectrometer, then collecting the cells, de-
staining (e.g. photobleaching of the fluorophores or chemical release of antibodies), re-staining the cells with another 
set of antibodies and measuring them again in the flow cytometer. In addition to flow cytometry, this technology can 
be expanded to further downstream and upstream analysis of the barcoded cells. 
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Fig. 2. Tagging of Human PBMCs with LPs. (a) Left: Scanning electron micrograph of polymer-silica-coated LPs. 
Right: Optical image of live human PBMCs tagged with LPs. (b) Lasing wavelength distribution of the LPs comprising 
107 distinguishable barcodes when used in combinations of 3 or more. (c) Histogram showing distribution of LPs / 
cell, with over 50% of cells having 3 or more LPs. (d) Immunophenotyping data comparing cell viability, singlet purity, 
and frequency of monocytes, T cells and B cells for (i) control, untagged cells at 0 h, (ii) LP-tagged cells at 0 h, and 
(iii) LP-tagged cells at 5 h post tagging.  
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Fig. 3. Repeated measurements of the same cells. (a) Schematic and (b) image of modified fluidics to incorporate 
a needle and collection tube for cell capture. (c) shows fluorescein dye flowing into the needle. (d) Cell collection 
efficiency of live CD45+ human PBMCs over 32 trials of capturing cells using the modified flow cell, with mean of 95 
and standard deviation of 2%. (e) Representative lasing spectra of two LP-tagged cells measured repeatedly over 3 
cycles. An algorithm was used to match cells between measurements using the lasing wavelengths. (f) Validation of 
matching LP spectral barcodes. LP-tagged cells stained with antibody-fluorophores were measured in successive 
cycles (Cycle 0 and Cycle 1) and then matched using their lasing spectra. Plots show strong correlation between 
fluorescence signals measured in the two cycles.  
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Figure 4. Time-resolved flow cytometry. (a) Conventional flow cytometry can identify CD3+CD4+ cells pre-
stimulation (left), but T-cell stimulation results in loss of CD4 signal, making it difficult to identify CD3+CD4+ cells post 
stimulation (right). (b) Time-lapse flow cytometry in which T-cells are measured pre and post stimulation. (c) Plotting 
marker signals measured pre and post stimulation enable identification of markers that are upregulated or 
downregulated (top left). Plotting CD3 Pre vs CD3 Post revealed minimal change with stimulation (top right). Plotting 
CD8 pre vs. CD8 post also revealed minimal change with stimulation (bottom left). Plotting CD4 pre vs. CD4 post 
revealed significant downregulation (bottom right). (d) Gating on pre-stimulation CD4+ cells enables identification of 
cytokine-secreting cells (top). Gating on post-stimulation CD4+ cells identifies significantly fewer cytokine-secreting 
cells due to CD4 downregulation (bottom).   
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Fig. 5. Fluorophore photobleaching for high-marker multi-pass cytometry. (a) Photobleaching time for 
fluorophores conjugated to CD45 excited by a broad-spectrum white light-emitting diode or a 405 nm light-emitting 
diode. (b) Representative data showing complete fluorescence signature erasure via photobleaching. Cells stained 
with CD45-AF647 photobleach in 10 mins to a median fluorescence intensity equal to that of an unstained cell sample. 
(c) Effect of photobleaching on live cells by re-challenging photobleached cells with antibodies targeting co-expressed 
markers. Cells stained with CD45-KrO and CD3-PE were fully bleached, re-stained with CD14, CD20, CD4 and 
CD56, and compared to a unbleached control sample. No significant differences were observed. (d) Panel design of 
high-marker experiment. Antibodies and fluorophores used in each cycle are shown. 
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Figure 6. 33-marker deep immunophenotyping of human PBMC over 3 cycles. (a) UMAP representation of data 
after being combined, matched, and cleaned using doublet discrimination, live/dead gating, and tight gating. Cell 
populations were manually gated and displayed on the UMAP by color. (b) UMAP representation of data taken on 
three different days (Day 1, Day 2, and Day 3) or after swapping reagents between different cycles (Day 3-Swap). 
No significant differences were observed with these datasets. (c) Compensation matrix of 33 marker, 3 cycle panel 
used in this study compared to conventional 28-marker panel in OMIP-060, ref 23. (d) Simulated total spillover spread 
computed for a high-marker panel using a multi-pass 3 cycle vs. a conventional 1 cycle workflow.  
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Figure 7. Manual gating of 33-marker, 3 cycle data. After excluding doublets and dead cells, populations of CD4+ 
and CD8+ T cells, unconventional T cells, myeloid cells, B cells, plasmablasts, and natural killer cells were identified 
via manual gating. Each major cell type was further differentiated into unique subsets using markers characteristically 
expressed on cells from healthy human populations. Axes labels are color coded for the cycle in which the marker 
was measured: Cycle 0 (red), Cycle 1 (blue), Cycle 2 (green).   
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Supplementary Figures 
 

 

 
Supplementary Fig. 1. Comparison between LP tagging using a cationic polymer (PEI) and antibodies (beta-2-
microglobulin).  

 

 

 

 
Supplementary Fig. 2. Dependence of CD3-Krome Orange fluorescence intensity on number of LPs per cell. Box 
plots show line at median, with error bars spanning the 10-90 percentiles.  
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Supplementary Fig. 3. Cell viability of human PBMCs measured after 0,1,2, and 3 successive captures. Plots 

depict all CD45+ singlet events. 

 
 

 

 

 
Supplementary Fig. 4. Validation of LP barcode matching. (a) Three cell samples each with ~200,000 barcoded 
cells were acquired and collected separately over 2 cycles. Data from the 3 samples were concatenated and matched 
to assess the accuracy of matching. (b) 98% of the matched cells were correct in maintaining sample identity across 
cycles. Plot only displays 6,000 cells out of ~360,000 for clarity.   
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Supplementary Fig. 5. Image of custom-built photobleaching device in which to 4 samples are photobleached using 
a bright LED while being cooled to close to 4°C. 

 

 

 

 
 

Supplementary Fig. 6. Viability of live human PBMCs following complete photobleaching of samples stained with 
10 fluorophores (Cycle C0 in Table 1) and subsequently another 10 fluorophores (Cycle C1). The cell viability 
decreases around 3-4% per cycle. Plots depict all singlet events. 
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Supplementary Fig. 7. (a) Viability of cells measured in cycle 3 of the 33-marker, 3 cycle panel. Viability was 
measured using a Live/Dead dye for CD45+ cells, CD3+ T cells, CD20+ B cells and CD14+ Myeloid Cells. (b) Gating 
strategy for basophils.  
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Supplementary Fig 8. The spillover spread matrix (SSM) shows the extent of spread between fluorophores that 
occurs when emitted light from each fluorophore spills into non-primary detectors. (a) SSM computed for the 33-
marker, 3 cycle panel demonstrated in this study.No spillover or spread occurs between fluorophores used in different 
cycles. (b) SSM computed for a published 28-marker, conventional flow cytometry panel (ref 23).  
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