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SUMMARY  

Reference atlases, molecular and spatial maps of mammalian tissues, are critical 
resources for discovery efforts and translational research. Their utility is dependent on 
operationalizing the resulting data by identifying cell types, histological patterns, and predictive 
biomarkers underlying health and disease. The human lymph node (LN) offers a compelling use 
case because of its importance in immunity, structural and cellular diversity, and neoplastic 
involvement. One hematological malignancy, follicular lymphoma (FL), evolves from 
developmentally blocked germinal center B cells residing in and trafficking through these tissues. 
To promote survival and immune escape, tumor B cells undergo significant genetic changes and 
extensively remodel the lymphoid microenvironment. Here, we present an integrated portrait of 
healthy and FL LNs using multiple genomic and advanced imaging technologies. By leveraging 
the strengths of each platform, we identified several tumor-specific features and 
microenvironmental patterns enriched in individuals who experience early relapse, the most high-
risk of FL patients. 
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INTRODUCTION 

A chief aim of several international consortia is the construction of organ atlases from 
healthy and diseased human populations (Liu and Zhang, 2022; Regev et al., 2017; Rozenblatt-
Rosen et al., 2020; Snyder et al., 2019). These efforts are focused on generating atlases from 
human organs and tissues using next generation sequencing (NGS) and spatial approaches such 
as multiplexed antibody-based imaging (Börner et al., 2021; Conde et al., 2022; Eraslan et al., 
2022; Hickey et al., 2021; Jones et al., 2022; Suo et al., 2022). The lymph node (LN) offers unique 
challenges and opportunities due to its importance in host immune responses, structural and 
cellular diversity, distribution in >500 discrete units throughout the human body, and involvement 
in metastasis and hematological malignancies (Grant et al., 2020; Swerdlow et al., 2016).  

Among the primary malignancies of the lymphatic system, follicular lymphoma (FL) is of 
special interest for multiomic examination. FL is a malignancy of germinal center (GC) B cell origin 
that extensively remodels the normal lymphoid tissue microenvironment. The disease trajectory 
of FL patients is remarkably heterogeneous, with many patients slowly progressing over several 
years, and a subset of patients experiencing an aggressive clinical course, often involving 
histologic transformation into diffuse large B cell lymphoma (DLBCL) or other high grade B cell 
lymphomas (Carbone et al., 2019; Casulo et al., 2015; Huet et al., 2018; Scott and Gascoyne, 
2014). In rare instances, spontaneous remission may occur and is thought to require the 
generation of an antitumor response following immunologic stimuli, e.g., viral infection or injury 
(Potts et al., 2017). Lastly, patients who experience progression of disease within 24 months of 
initial treatment (POD24), termed early relapsers, are the subset with the shortest overall survival 
and should be considered the highest risk (Casulo et al., 2015; Casulo et al., 2021; Freeman et 
al., 2019; Maurer et al., 2016; Rodgers et al., 2021). Despite the urgent clinical need, a predictive 
tool and consensus treatment approach for early relapsers does not exist (Rodgers et al., 2021). 
Therefore, a greater understanding of the cell-intrinsic and -extrinsic factors governing 
progression and therapeutic outcomes is needed for risk-adapted management of FL patients. 
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FL B cells exhibit numerous genomic and epigenomic alterations that enable immune 
escape, apoptosis resistance, disease progression, and, in certain patients, histologic 
transformation (Carbone et al., 2019; Kridel et al., 2016; Lackraj et al., 2018; Scott and Gascoyne, 
2014). The tumor microenvironment (TME) plays an integral role in supporting the survival of 
malignant cells throughout the course of disease. Genes expressed by dendritic cells (DCs) and 
macrophages have been associated with shorter patient survival, whereas genes expressed by 
T cells and macrophages are correlated with longer survival in FL (Dave et al., 2004). In a process 
described as “re-education”, FL tumor cells actively subvert the normal functions of non-malignant 
cells within the TME—T cells, follicular dendritic cells (FDCs), macrophages, DCs, and stromal 
cells—to support their survival and growth (Scott and Gascoyne, 2014). Furthermore, acellular 
elements and soluble factors warrant further investigation as they provide the scaffold and 
chemotactic signals required for cell migration within lymphoid microenvironments (Nagarsheth 
et al., 2017; Verdière et al., 2018). 

Importantly, no single technical approach can sufficiently describe the cellular composition 
of normal LNs, nor identify transcriptomic and histological signatures associated with poor survival 
in FL patients. To overcome these challenges, we employed advanced sequencing and imaging 
technologies to generate both a molecular and spatial atlas of human LNs. Data integration 
yielded a unified description of lymphocyte populations, confirmed the extent of myeloid and 
stromal under-sampling from RNA sequencing (RNA-seq), and identified correlations between 
cytokine signatures and cellular communities obtained by the Iterative Bleaching Extends multi-
pleXity (IBEX) imaging method (Radtke et al., 2022; Radtke et al., 2020). We additionally 
identified several cell intrinsic and extrinsic factors enriched in high-risk FL patients including 
enhanced B cell receptor (BCR) signaling and expansion of fibroblasts and extracellular matrix 
(ECM) components within the TME. In summary, this multiscale analysis of normal and malignant 
human LNs constitutes a valuable resource for discovery and translational research efforts. 

 
RESULTS  

Building a cell and tissue-level atlas using diverse lymphoid tissue sources 
 To create atlases of normal and FL LNs, we used state-of-the-art sequencing and imaging 
technologies (Figure 1). The study examined excisional LN biopsies from an ongoing clinical trial 
(NCT03190928), mesenteric LNs deemed grossly normal by an expert hematopathologist (nLN1-
2), and a LN with reactive changes in the form of pronounced follicular hyperplasia (rLN1). The 
latter was included to address inflammation-associated changes versus tumor-induced molecular 
and morphological alterations in the LN. The clinical cohort included 7 FL (FL1-7) patients 
identified as non-progressors at least 2 years from study entry (Non-P), progressors within 2 
years, or early relapsers (*) (Figure 1A, Table S1). Due to their small size and other technical 
constraints, non-FL LNs were limited to single cell RNA-seq (scRNA-seq) and IBEX imaging 
(Figure 1B). Excisional biopsies from FL patients, taken prior to any therapy, were subject to bulk 
RNA-seq, scRNA-seq, IBEX imaging, and additionally prepared as formalin-fixed, paraffin 
embedded (FFPE) samples for routine diagnostic pathology and multiplexed 
immunofluorescence (MxIF) imaging (Figure 1B). IBEX imaging was performed with the nuclear 
marker Hoechst and 39 antibodies targeting diverse cell types in regions of interest averaging 4-
12 mm2 (Figure 1C-D). This approach revealed unique histological patterns that could be 
examined in larger regions (~37-115 mm2) from clinically relevant FFPE samples using key 
markers identified from the IBEX data (Figure 1D). Several analytical methods were integrated, 
resulting in the construction of a molecular and cellular atlas of normal and malignant LNs across 
scales and modalities (Figure 1E, Table S2). 
 
Genomic and transcriptomic characterization of FL heterogeneity 
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 We first evaluated the genomic and transcriptomic landscapes of tumor B cells with whole 
exome sequencing (WES) and bulk RNA-seq. In addition to the expected translocations in the 
gene encoding the anti-apoptotic protein BCL2 (Table S1), diverse genetic lesions were identified 
in recurrently mutated genes previously associated with FL pathogenesis (Figure 2A) (Carbone 
et al., 2019). Alterations in chromatin-modifying genes such as KMT2D, EZH2, ARID1A, and 
CREBBP, as well as genes involved in cell migration and immune regulation (CXCR4, 
TNFRSF14, CIITA) (Carbone et al., 2019), were observed in progressors and non-progressors 
alike (Figure 2A). The cellular composition of FL samples was next evaluated by a recently 
developed deconvolution algorithm (Zaytcev et al., 2020) for data derived from bulk RNA-seq, a 
clinically feasible technology that provides expression data from diverse cell types (Figure 2B, 
Tables S3-S4). For all samples, B cells were the most abundant cell type, representing more than 
60% of deconvolved cells from bulk analysis (Table S2). Myeloid and stromal cells, representing 
less than 2% of deconvolved cells per sample, were broadly classified as macrophages, 
monocytes, fibroblasts, and endothelial cells using lineage-specific genes (Tables S2-S4). In 
addition to analyzing the cellular composition of FL patient samples, malignant B cell receptor 
(BCR) sequences were identified from bulk RNA-seq based on the fraction of dominant 
immunoglobulin (Ig) sequences (Figure 2C) (Bolotin et al., 2017). Dominant clones were found in 
all patients except FL-1, a spontaneous remitter (Table S1). To further evaluate the clonal 
repertoire of FL B cells and overcome challenges arising from matching heavy and light chains 
from bulk suspensions, 5’ scRNA-seq was also performed (Figure 2C). The malignant Ig 
repertoires identified from bulk and scRNA-seq showed a similar monoclonal Ig distribution for all 
samples except for FL-1, confirming the utility of using bulk RNA-seq to deconstruct B cell 
clonotypes.  
 
Cellular composition of human LNs using scRNA-seq 

To evaluate gene expression profiles at single cell resolution, we performed scRNA-seq 
on samples from FL patients. We additionally extended our studies to healthy LNs as a control 
and potential resource for LN atlas building efforts (Figure 2D-F, Figure S1A, Table S2). Distinct 
lymphoid populations varied in their relative abundance across samples (Figure 2F, Figure S1A, 
Table S2). These populations included naïve follicular B cells (MS4A1, CD19, FCER2, SELL), 
germinal center (GC) B cells (CD83, GMDS, AICDA, BCL6, CD81), cycling B cells (MK167, 
UBE2C, CD81), and tumor B cells (BCL2, MME, TCF4) found only in FL samples (Figure 2E-F). 
In-depth analysis of T cells revealed diverse subpopulations of CD4+ and CD8+ T cells including 
T regulatory cells (Tregs, FOXP3, CTLA4, IKZF2, TIGIT), T follicular helper cells (Tfh, PDCD1 
(PD-1), ICOS, TOX2, TIGIT), and distinct populations of CD8+ T cells expressing several 
cytotoxic (GZMA, PRF1, NKG7) and exhaustion/activation-related (LAG3, HAVCR2 (Tim-3), 
TIGIT) markers. These ‘Exhausted CD8+ T cells’ were nearly absent from non-FL LNs but 
enriched in rLN1 and LNs from FL patients, suggesting chronic inflammatory reactions in these 
tissues (Figure 2F). Evaluation of myeloid and stromal populations by scRNA-seq frequently 
requires specialized protocols for tissue dissociation and cell enrichment, increasing the risk for 
altered gene expression profiles (Waise et al., 2019). To minimize these artifacts, we performed 
single cell analysis on suspensions obtained with limited intervention. Although representing a 
small fraction of total cells, pDCs (IRF7, ITGAE, ITM2C, PLAC8, TCF4), macrophages (C1QA, 
IL1B, ITGAX), cDC1 DCs (C1orf54, CADM1, CLNK), and FDCs (CR2, CXCL13, FDCSP) were 
profiled at varying frequencies across normal and FL samples (Figure 2D-F, Table S2).  
 
scRNA-seq derived gene signatures of FL patients 
 We next performed gene set enrichment analysis (GSEA) of scRNA-seq populations to 
identify the biological processes driving early progression and relapse in FL patients (Korotkevich 
et al., 2021). We first explored the gene expression patterns distinguishing B cells in early 
relapsers from B cells in all other samples. The top pathways upregulated in early relapsers all 
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involved BCR signaling (Figure 2G). Several shared genes were identified as the leading-edge 
subset, defined as high scoring genes accounting for the enrichment signal (Korotkevich et al., 
2021). These included mRNAs encoding for CD19, BLNK, SYK, and LYN (Table S2). We next 
compared the B cells from early relapsers to the B cells from all other FL patients. As before, the 
B cells from early relapsers upregulated components of BCR signaling pathways along with 
molecules involved in cytokine signaling, immune activation, and immunoregulation (Figure 2H, 
Table S2). We additionally observed enrichment of a gene set associated with glutamatergic 
signaling including transporters (SLC38A1, SLC2A3, SLC38A2, SLC2A1) and enzymes (GLUL, 
GLS) involved in glucose and glutamine metabolism (Table S2) (Wang et al., 2020). Quite 
surprisingly, the B cells of early relapsers exhibited high expression of genes involved in 
extracellular matrix (ECM) formation including those encoding growth factors, ADAMs, annexins, 
and galectins (Figure 2H, Table S2) (Naba et al., 2012).  

In addition to the unbiased approach described above, we evaluated gene signatures 
correlated with poor outcome in FL patients (Huet et al., 2018) as well as IRF4-associated 
molecular signatures dysregulated in other hematological malignancies (Wang et al., 2014) 
(Figure 2I, Figure S1B-D). As expected, B cells from the early relapsers had elevated levels of 
transcripts from genes correlated with a high risk of progression (Figure S1B) (Huet et al., 2018). 
However, considerable interpatient heterogeneity was observed in the expression of individual 
genes summarized by the Huet module (Figure 2I). Within the IRF4-associated module, the early 
relapsers uniformly showed increased expression of FOXP1 (adjusted p-value < 0.0001, log fold 
change = 1.07) (Figure S1C). This transcription factor has been shown to predict adverse failure-
free survival (FFS) in FL patients treated with rituximab and chemotherapy (Mottok et al., 2018), 
the treatment regimen these patients received following the initial biopsies profiled here (Table 
S1). Of the three early relapsers, FL-4 and FL-7 displayed the highest aggregate expression of 
IRF4-associated genes as shown via violin plot (Figure S2D). These data demonstrate the power 
of scRNA-seq to identify unique patterns of gene expression in malignant cells from FL patients 
including those with poor prognoses and treatment failure. 
 
Assessment of clonotypes and N-glycosylation sites within variable regions of Ig genes 

We next examined Ig clonotypes in our study using directed amplification and sequencing 
of BCRs. Retention of surface Ig expression is critical for malignant cells as it provides a 
mechanism of antigen recognition and survival signaling in the TME. While ~40-50% of FL B cells 
are reported to undergo isotype switching to IgG, IgM is frequently observed in early stages of FL 
and thought to favor GC reentry (Küppers and Stevenson, 2018). The majority of progressors 
expressed IgM heavy chains except for FL-5, whose tumor cells had class switched to IgG (Figure 
S2A). We observed that all dominant FL BCR clonotypes have at least one, and in some cases 
several, de novo N-linked glycosylation sites in their heavy and/or light chain variable regions, 
regardless of progression status, as is typical of FL B cells (Zhu et al., 2002) (Figure S2B). 
Previously, the interaction between glycosylated BCRs on FL B cells and dendritic cell-specific 
intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has been shown to stimulate 
BCR survival signals in malignant cells (Amin et al., 2015; Coelho et al., 2010; Küppers and 
Stevenson, 2018). Given our observation of BCR signaling-related gene expression in early 
relapsers (Figure 2G-H), we believe this mechanism to be active in B cell clones from these 
patients. In summary, bulk and scRNA-seq revealed diverse cell-intrinsic factors governing 
survival and progression in FL patients. 
 
IBEX imaging provides a spatial atlas of the tissue microenvironment 

To provide a spatial context for the cellular heterogeneity observed across normal and FL 
LNs, we performed 40-plex IBEX imaging with 39 markers specific for various cell lineages plus 
the nuclear label Hoechst (Figure 1D, Figure 3A). For accurate identification and quantification of 
cell types in situ, individual cells were segmented using several membrane markers and Hoechst 
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(Figure S3). A deep learning-based approach was applied that assigned cell types based on the 
cosine similarity between cell marker expression and vectors from reference probability tables 
(Figure S3A-C, Table S5). Using this approach, 37 phenotype clusters were identified, resulting 
in a single cell proteomic dataset of 1.8x106 cells from all 10 samples (Figure 3B, Table S2). 
Phenotype clusters were annotated into cell types based on protein biomarker expression, 
visualized using the data dimensionality reduction method Uniform Manifold Approximation and 
Projection (UMAP), and named according to their dominant marker expression and, whenever 
possible, relevant cell ontologies (Börner et al., 2021; Jorgensen et al., 2021) (Figure 3C). Our 
segmentation workflow produced accurate quantification of lymphocytes and, importantly, 
provided an independent confirmation of the rich diversity of T cell populations identified by 
scRNA-seq (Figure 3A-E). Furthermore, IBEX imaging revealed a very high level of heterogeneity 
among B cell populations across FL samples (Figure 3D, Figure S4A-B, Table S2). Although 
myeloid and stromal cell populations were identified using the segmentation approaches outlined 
here (Figure 3B-C), these cell types pose significant challenges due to their complex morphology 
(Germain et al., 2022; Risom et al., 2022). To overcome these challenges, we developed a 
method for profiling myeloid and stromal cells based on the creation of image masks that use 
pixel level data instead of discrete segmented cells (Figure S3D). Cell quantification of multiple 
myeloid and stromal lineages was performed using the indicated markers and normalized across 
samples by area imaged (Figure 3F-I, Table S2). Using this approach, we evaluated the location 
and relative abundance of blood endothelial cells, lymphatic endothelial cells (LECs), FDCs, and 
several fibroblast types including CD49a+ cytokine/chemokine-producing fibroblastic reticular 
cells (FRCs) recently identified in FL LNs (Mourcin et al., 2021) (Figure 3F-I, Figure S4C). 
Quantitative imaging revealed these cell types to be far more abundant than appreciated by 
methods employing routine tissue dissociation approaches (Figure 3G-I, Table S2). The resulting 
data underscore the importance of studying complex cell types in intact tissues. 
  
Cellular composition of normal and malignant follicles  
 Previous studies have linked clinical progression to the distribution of cell types inside and 
outside of B cell follicles (Farinha et al., 2010; Kridel et al., 2017). Among the samples profiled 
here, B cell follicles varied considerably in number and size and were identified as CD20+CD21+ 
structures (Figure S5A). Visual inspection and quantitative analysis revealed differences in the 
presence of CD8+ T cells, tingible body macrophages (CD11c+SPARC+, CD11c+CD68+) and 
FDCs (combinations of CD21+CD23+CD35+) in the neoplastic follicles of FL LNs (Figure 4A-B). 
In agreement with the literature (Börner et al., 2021; Sayin et al., 2018), the secondary follicles of 
non-FL LNs were enriched for GC (BCL6+Ki-67+) B cells, T follicular helper (Tfh: 
CD3+CD4+CD69+PD-1+ICOS+), and tingible body macrophages (Figure 4B). The early 
relapsers had several distinguishing patterns (Figure S5B) including the expansion of desmin+ 
fibroblasts around and within B cell follicles (Figure 4C). While far less abundant than other 
myeloid and stromal cells (Figure 4B), increased proportions of DC-SIGN+ cell subtypes were 
found in the follicles of early relapsers (Figure S5B), providing a potential pro-survival signal for 
malignant B cells via engagement with glycosylated BCRs. In contrast, DC-SIGN is traditionally 
found on CD163+ macrophages in the medulla and subcapsular sinus but absent from the 
secondary follicles of normal LNs (Figure S5B, Figure 4C). IRF4+ tumor B cells, previously 
implicated in aggressive FL cases with poor overall survival (Hsi et al., 2008), were identified in 
direct contact with DC-SIGN+ cells, Tfh cells, and cells expressing vimentin, a recognized 
autoantigen in FL (Cha et al., 2013) (Figure S5C). These findings are concordant with previous 
data demonstrating that IRF4 is upregulated in B cells following BCR engagement and/or T cell 
co-stimulation (Shukla and Lu, 2014). Lastly, the histological patterns identified in all three early 
relapsers—desmin+ FRC expansion around B cell follicles and DC-SIGN+ cells within follicles—
were beginning to emerge in a non-progressor (FL-2) before therapy (Figure 4C), suggesting the 
possibility of incipient progression in this individual. In further support of this hypothesis, our 
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scRNA-seq analyses revealed higher expression of the Huet gene module in this patient (FL-2) 
than in other early progressors (Figure 2I, Figure S1B). In summary, IBEX imaging revealed 
changes to the myeloid and stromal components of the TME with diagnostic and predictive 
potential. 
 
Quantitative analysis of cellular communities in diverse tissue microenvironments  
 Following creation of spatial maps across entire tissue sections and well-defined 
anatomical structures, we next evaluated the cellular ecosystems present in IBEX images. 
Cellular neighborhood analysis was conducted using a graph neural network-encoding approach 
and K-Means clustering to identify individual neighborhoods encompassing similar cell types and 
distributions (Goltsev et al., 2018). Cell-cell interactions were visualized on a schematic 
interaction graph that included 8 cell types identified by object-based segmentation, 13 stromal 
masks, and 5 myeloid masks using the indicated markers (Figure 5A-B). The selected cell types 
(8) covered major lineages identified by IBEX and scRNA-seq analysis, e.g., cycling T and Ki-67+ 
T. The resulting approach yielded 15 neighborhoods named for the dominant cell type within each 
community: 5 B cell-enriched, 6 T cell-enriched, 2 myeloid-enriched, and 2 stromal-enriched 
(Figure 5A-B, Table S2). Importantly, this workflow classified the well-defined anatomical 
structures of non-FL LNs into discrete communities, e.g., GC (B1) and mantle zone (B2) (Figure 
5C, Table S2). In contrast, FL LNs were highly disorganized, frequently lacking the hallmark 
structures of normal LNs (Figure 5D-E, Figure S5D-E, https://doi.org/10.5281/zenodo.6536724). 
Two B cell-enriched clusters (B1-B2) were predominantly located inside the follicles of non-FL 
LNs (Figure 5F, Figure S5D-E). All other B cell-enriched clusters were distributed both within and 
outside of the follicles (B3-B5) with B3 and B4 largely absent from non-FL LNs and expanded in 
certain progressors (Figure 5E, Figure S5D-E). The majority of T cell-enriched communities were 
located in the intrafollicular cortex and/or paracortex (T2-T6); however, one community (T1) was 
found inside the follicles of FL and non-FL LNs alike (Figure S5D-E). The remaining communities 
were myeloid (M1-M2) and stromal (S1-S2) enriched clusters corresponding to anatomical 
structures such as medullary and paracortical sinuses (Figure 5E-F, Table S2). We additionally 
evaluated the cellular neighborhoods of individual follicles using a quantitative and qualitative 
assessment (Figure 5G-H). The community composition of secondary and neoplastic follicles was 
heterogeneous across non-FL and FL samples, respectively (Figure 5G). However, individual 
follicles were more similar within samples than between samples, i.e., two follicles in FL-4 versus 
representative follicles compared between FL-4 and FL-3 (Figure 5G-H). Thus, advanced image 
analysis enabled identification of cellular ecosystems present in non-neoplastic LNs that were 
altered in malignancy. 

Quantifying unique spatial patterns across scales and imaging modalities 
A dominant theme emerging from our IBEX studies was the considerable heterogeneity 

observed across FL samples. Because imaging of complex tissues is known to suffer from under-
sampling, we extended our studies to larger tissue sections using key markers of interest. 
Multiplexed imaging panels, designed based on IBEX data, were applied to serial sections from 
FFPE samples. Following image acquisition, the conservation of histopathological patterns 
between IBEX small ROIs (40-plex, mean imaged area ~9.6 mm2) and MxIF large ROIs (14-plex 
in total, 4 serial sections, mean imaged area ~51.6 mm2) was evaluated (Table S2, Table S6). 
Samples identified to have abundant populations of follicular CD8+ T cells and DC-SIGN+ FDCs 
by IBEX imaging were confirmed to have these unique cell types by MxIF (Figure 6A). The 
presence of desmin+ stromal cells around the follicles of early relapsers and a non-progressor 
was additionally confirmed in FFPE tissue sections with different antibody clones (Figure 6B). 
Encouraged by these results, we next investigated whether follicle shape and size could 
determine whether the ROI selected for IBEX imaging faithfully captured the larger FL sample. 
While there is currently no information relating follicle heterogeneity to clinical outcome, the 
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distinct architectural patterns we observed among FL samples (large versus small follicles, 
irregular versus round, abutting against one another or separate) justified this approach (Figure 
S6A). For quantitative assessment between samples, follicle masks were obtained through 
manual annotation by pathologists using CD20 and CD21 signals (Figure S5A). Using an 
agglomerative clustering approach, follicles were subdivided into seven subtypes and their 
distribution was compared between IBEX and MxIF images (Figure 6C-D). In general, IBEX and 
MxIF images derived from the same donor had follicles of similar shape and size (Figure 6E). 

Having observed concordance between the follicular composition of small IBEX ROIs and 
larger FFPE ROIs (Figure 6E), we next evaluated the community composition of these tissues 
using a similar approach to the one outlined in Figure 5. Following adjustment for a lower 
magnification objective (20X MxIF; 40X IBEX) and alignment of serial images with artifact 
correction (Figure S6B), tessellation masks were calculated from IBEX and MxIF images using 
100 and 50 pixel-sized squares, respectively (Figure S6C). Cellular communities were defined 
based on 11 common markers corresponding to major cell lineages and key anatomical 
structures. As a result, 13 community clusters were obtained using both IBEX and MxIF data: 6 
B cell-enriched clusters, 5 T cell-enriched clusters, and 2 stromal clusters (Figure 6F-G). 
Importantly, this community level analysis provided a qualitative and quantitative means for 
assessing similarities across samples and imaging modalities (Figure 6H-I). Both IBEX and MxIF 
images of two early relapsers (FL-6, FL-7) exhibited reduced T cell-enriched communities (T1, 
T2) and increased proportions of B cells in contact with CD4+ T cells (B1) (Figure 6H). To provide 
a metric for estimating the area of tissue to image for accurate sampling, we evaluated the mean 
tessellation correlation based on different sized ROIs (Figure 6J, Figure S6D). The obtained 
correlations were greater than 0.8, suggesting that IBEX ROIs are fairly representative of whole 
tissue sections.  
 
Integration of omics and imaging technologies for atlas creation efforts  

To reach our goal of creating a reference atlas, we followed several paths to capitalize on 
the strengths of each technology while overcoming platform-specific limitations. First, we 
compared the relative abundance of major cell populations identified by bulk RNA-seq through 
cell deconvolution, scRNA-seq cell typing, and IBEX image analysis using cell segmentation and 
masks (Figure 7A). In general, similar proportions of major lymphocyte populations were observed 
across technologies (Figure 7A). However, myeloid and stromal cell populations were significantly 
underrepresented in RNA-seq datasets generated without specialized tissue dissociation 
methods or cell enrichment (Figure 7A). On average, IBEX images had 36 times more cells than 
paired scRNA-seq datasets (Table S2), empowering the study of rare cells that may require 
analysis of tens of thousands of cells via scRNA-seq (Figure 7B).  

As cytokines and chemokines are essential for normal tissue organization and 
malignancy-induced remodeling (Nagarsheth et al., 2017), we next evaluated correlations 
between gene signatures curated from bulk RNA-seq with cellular communities derived from IBEX 
images (Figure 7C-D, Table S7, Figure S7A-B). Given gene and protein level evidence for ECM 
remodeling among early relapsers (Figure 2H, Figure 4C), we first explored gene signatures 
associated with fibrosis, including matrix metalloproteinases, collagen deposition, and 
(myo)fibroblasts (Figure 7C, Figure S7A). The T2 community, rich in FRCs expressing CD49a 
(ITGA5) and desmin (Des) (Figure S7A), was primarily found in the paracortex of non-FL LNs and 
the follicles of certain FL patient samples, including two early relapsers (Figure 5). Furthermore, 
the T1 community was correlated with gene signatures associated with B cell antibody production, 
Th2 immunity, and T cell exhaustion (Figure 7C-D, Table S7). These molecular features are in 
line with the cellular composition (PD-1+ Tfh cells, B cells, and CXCL13+ FRCs) and expansion 
of the T1 community in the follicles of an early relapser (FL-7) (Figure 5).  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.494716doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494716


 

9 
 

In addition to these fibroblast-associated gene signatures, bulk RNA-seq identified 
cytokines strongly correlated with IBEX communities, including the major pro-fibrotic factor TGF-
β and its isoforms (Figure S7A-B, Table S7) (Luzina et al., 2015; Prud'homme, 2007). Several 
chemokines (CCL4, CCL5, CXCL13) involved in the recruitment of diverse cell types to the TME 
were also found (Table S7). Our scRNA-seq analysis revealed elevated CCL4 and the CXCL13-
CXCR5 gene pair in FL B cells from two early relapsers (FL-4, FL-7) (Figure 7E-G). LAG3+ CD8+ 
T cells, present only in rLN1 and FL LNs (Figure 2F), showed elevated levels of CCL4-CCR5, 
CCL5-CCR5, and CXCL13-CXCR5 gene pairs (Figure 7E-G). Increased numbers of CD8+ T cells 
infiltrated the follicles of two early relapsers (FL-4, FL-7, Figure 4A-B, Figure 6A), suggesting a 
potential mechanism involving tumor B cell recruitment of CD8+ T cells through the secretion of 
CCL4 and other soluble factors. We used IBEX imaging to confirm the presence of CXCL13+ FL 
B cells, described before (Husson et al., 2002), and expansion of CXCL13+ FDCs and CD49a+ 
FRCs in FL patients, also described before (Mourcin et al., 2021) (Figure 7H). Lastly, we 
evaluated the extent of stromal desmoplasia (collagen deposition, ECM remodeling) in these 
samples. Dense networks of lumican+ fibers were found around the follicles of early relapsers 
(Figure 7I, Figure S7C), likely providing a pauci-cellular or acellular boundary around malignant 
B cells.  

 
 
DISCUSSION  

Atlases constructed from even a modest number of samples, such as outlined here, 
represent critical resources for discovery efforts and translational research (Börner et al., 2021; 
Conde et al., 2022; Eraslan et al., 2022; Jones et al., 2022; Liu and Zhang, 2022; Regev et al., 
2017; Rozenblatt-Rosen et al., 2020; Snyder et al., 2019). Accordingly, our multi-scale, 
multimodal approach yielded several insights and technical advances. One advance is our 
detailed annotation of the diverse cell types and anatomical structures present in normal and 
malignant LNs. Another key finding is the identification of several distinguishing features in the 
TMEs of early relapsers, the most high-risk of FL patients. These included the upregulation of 
FOXP1 by tumor B cells, a prognostic biomarker for adverse response to immunochemotherapy 
in FL patients (Mottok et al., 2018). The malignant B cells of early relapsers exhibited several 
characteristics consistent with antigen engagement within the TME, e.g., high levels of IRF4 
protein and upregulation of BCR signaling pathways. We also report the expansion of desmin+ 
fibroblasts and ECM deposition around the follicles of patients who relapsed within 2 years of 
frontline therapy. The histological patterns we identified in 40-plex images were confirmed in 
clinically relevant FFPE samples using whole slide imaging with a reduced marker set. In addition 
to highlighting IBEX as a potential biomarker discovery platform, this work suggests that 
antibodies directed against FOXP1, IRF4, desmin, vimentin, lumican, and DC-SIGN may warrant 
inclusion in established diagnostic panels for risk-adapted management of FL patients. To this 
end, immunohistochemical (IHC) evaluation of intratumoral vimentin was recently identified to 
predict histologic transformation in FL patients (Madsen et al., 2019) and IHC of FOXP1 has been 
proposed as a low cost screen for high risk patients (Mottok et al., 2018). 

Using NGS and advanced imaging technologies, we profiled cell suspensions via bulk 
RNA-seq, 36,212 cells via scRNA-seq, and 1.8x106 cells via object-based segmentation of IBEX 
images from non-FL donors and untreated FL patients prospectively enrolled in a clinical trial. 
Three patients were later identified as early relapsers; however, the biopsies described here were 
collected prior to any therapeutic intervention. Through the application of advanced deconvolution 
(bulk RNA-seq) and clustering (RNA-seq and IBEX) algorithms, cell populations were annotated 
into distinct cell types: 10 using bulk sequencing data, 22 employing scRNA-seq methods, and 
37 based on IBEX with object-based segmentation. Myeloid and stromal cells pose several 
challenges for accurate quantification including the requirement for enzymatic tissue 
disassociation and inaccurate cellular segmentation for single cell and spatial assays, respectively 
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(Germain et al., 2022; Gerner et al., 2012; Risom et al., 2022). For this reason, we developed a 
workflow that phenotyped diverse myeloid and stromal populations using pixel-based tessellation 
masks in intact tissues. Imaging studies, 95.9 mm2 (IBEX, 10 samples) and 361.1 mm2 (MxIF, 7 
samples) in total area, provided additional insight into the location and cell-cell interactions of 
diverse cell types. To empower future atlas studies, we have made these datasets publicly 
available for exploration using the ASCT+B Reporter (https://hubmapconsortium.github.io/ccf-
asct-reporter/) (Börner et al., 2021) (https://doi.org/10.5281/zenodo.6536724).  

Bulk RNA-seq has provided insight into the mutational burden, copy number alterations, 
and cellular composition of various tumors (Rozenblatt-Rosen et al., 2020). Additional studies 
characterized genomic aberrations and transcriptomic differences in FL B cells shown to correlate 
with progression (Dave et al., 2004; Huet et al., 2018; Pastore et al., 2015). The cost-effectiveness 
of bulk RNA-seq, in combination with previously reported mutations and disease-associated gene 
expression signatures, make this an attractive approach for stratifying patients for personalized 
treatment options. Here, we extend the utility of bulk analysis by correlating gene signatures 
associated with cell types and states to cellular communities found in situ. Despite these 
advances, our results demonstrate that bulk RNA-seq data does not provide the same level of 
detailed information on the gene expression profiles necessary for molecular dissection of rare 
subpopulations of cells (Hwang et al., 2018; Rozenblatt-Rosen et al., 2020).  

To resolve heterogenous expression patterns at single cell resolution, we additionally 
profiled normal and FL LNs using scRNA-seq. Importantly, the data we collected from normal 
mesenteric LNs may contribute to a contemporary map of the human lymphatic system, one of 
the last frontiers of anatomical medicine. Our scRNA-seq studies also revealed the existence of 
multiple subclones in FL patients with dominant clones emerging in clinical cases associated with 
early progression and relapse after therapy. Others have speculated on the critical role for antigen 
selection in the clonal evolution of FL B cells (Bahler et al., 1992). Given previous studies 
demonstrating spontaneous apoptosis of isolated FL cells in vitro, along with the identification of 
self-reactive tumor cells in FL patients (Cha et al., 2013; Sachen et al., 2012), a compelling 
argument can be made for TME-derived autoantigens driving positive selection of malignant 
clones. Within the TME, T cells have been shown to express multiple immune checkpoint 
inhibitors in scRNA-seq datasets derived from FL patients (Andor et al., 2019). We also observed 
the enrichment of CD8+ T cells expressing several markers associated with T cell dysfunction 
and/or exhaustion including PDCD1 (PD-1), LAG3, HAVCR2 (TIM3), and CTLA4 (Armengol et 
al., 2021). Interestingly, these CD8+ T cells also expressed molecules related to cytotoxic T cell 
function such as PRF1, GZMA, and NKG7 (Ng et al., 2020; Szabo et al., 2019). The co-expression 
of markers associated with cytolytic activity and immune inhibition suggests the presence of an 
anti-FL response that might be re-invigorated for therapeutic purposes. Although initial efforts 
using T-cell directed cell therapies in FL have shown great promise, including among high-risk 
patients, mechanisms of immune evasion and resistance remain largely unknown (Fowler et al., 
2022).  

We also evaluated the composition of normal and FL LNs using a high content imaging 
method. IBEX spatially resolved myeloid, stromal, and rare (<0.05%) cells that were completely 
absent or significantly undercounted in RNA-seq datasets. Using 19 myeloid and stromal-
enriched antibody targets, in combination with analytical methods optimized for typing irregular 
shaped cells, we quantified diverse myeloid and stromal subsets within major and minor 
anatomical structures of the LN. In single tissue sections, we visualized changes to the stromal 
and myeloid components of the FL TME including loss of FDC meshworks, reduction in tingible 
body macrophages, cell-cell contacts between DC-SIGN+ cells and FL B cells, and expansion of 
CD49a+ lymphoid stromal cells (Carbone et al., 2019; Kridel et al., 2017; Mourcin et al., 2021; 
Verdière et al., 2018). The ability to phenotype diverse cell populations across spatial scales—
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whole tissue sections, major anatomical structures, proximity communities—presents an 
opportunity to resolve the confusing literature concerning cellular distribution patterns and clinical 
outcome in FL (Glas et al., 2007; Kridel et al., 2017; Verdière et al., 2018). Granular phenotyping 
with high content imaging will aid these efforts by 1) distinguishing between tumor promoting and 
tumor suppressing cell types, 2) identifying not one but a series of spatial patterns contributing to 
progression, and 3) interrogating the cellular ecosystems of FL B cells. 

Although IBEX is fully compatible with FFPE samples (Radtke et al., 2022), the 
construction of multiplexed imaging panels is a time and resource intensive process (Hickey et 
al., 2021). An additional consideration is the total time required to image large >10 mm2 regions 
of interest with cyclic imaging methods such as IBEX. To overcome these challenges, we 
performed MxIF on serial FFPE sections using 4 distinct panels comprised of antibodies directed 
against key biomarkers identified via IBEX. Notably, this approach provided a means to validate 
unique spatial patterns, such as DC-SIGN+ FDCs, using an orthogonal method and alternative 
antibody clones. As an additional resource, we devised analytical approaches to compare 
morphological features shared between IBEX and MxIF images prepared from the same patient. 
Here, the shape, size, and distance between B cell follicles yielded a unique structural fingerprint 
for assessing the similarities between small and large ROIs. Following alignment of serial sections 
into one composite image, we evaluated communities shared between IBEX and MxIF images. 
The resulting workflow offers a means to 1) identify key spatial patterns and biomarkers of interest 
using high content imaging, 2) apply predictive markers to diagnostic samples, 3) compare 
samples acquired through complementary platforms, and 4) calculate the area required to 
adequately profile a sample. This last point is especially relevant given the growing need for 
operator-independent strategies for accurate sampling of heterogeneous TMEs (Berry et al., 
2021). 

A challenge for tumor atlas efforts is to go beyond a detailed description of tissues to a 
greater understanding of how genetic alterations and spatial patterns contribute to pathogenesis, 
clonal evolution, and treatment response. To achieve this aim, multimodal data must be fully 
integrated. Here, we highlight several biological features enriched in FL patients who progressed 
early and relapsed shortly after therapy. Using scRNA-seq, B cells from early relapsers were 
distinguished for their significant upregulation of pathways involved in BCR signaling, cytokine 
signaling, and immune activation. IBEX imaging revealed high numbers of IRF4+ FL B cells in 
direct contact with DC-SIGN+ and vimentin+ cells in the TMEs of these patients, suggestive of 
active signaling and BCR engagement through endogenous lectins and/or autoantigens, 
respectively (Amin et al., 2015; Carbone et al., 2019; Cha et al., 2013; Shukla and Lu, 2014). FL 
B cells are known to engage in a bidirectional crosstalk with lymphoid stromal cells, including 
cytokine/chemokine-producing fibroblasts (Mourcin et al., 2021). We hypothesize that these 
interactions, coupled with matrisome-associated factors produced by FL B cells, results in the 
expansion and fibrogenic potential of desmin+ fibroblasts found around the follicles of early 
relapsers. Bulk RNA-seq and IBEX community analysis confirmed the expression of fibroblast 
and cytokine genes, e.g., TGF-β, known to impact ECM deposition and functional remodeling of 
LN tissues. As with other cancers (Risom et al., 2022), stromal desmoplasia was shown to be a 
distinctive feature in this patient cohort, distinguishing early relapsers from other FL patients 
based on further evaluation of FFPE tissue sections with MxIF imaging. Advanced fibrotic lesions 
are often poorly vascularized and characterized for the dense physical barriers they form, two 
properties that can significantly impair drug delivery (Pakshir et al., 2020). Together, these 
findings strongly encourage careful examination of anti-fibrotic agents, coupled with therapies that 
blunt BCR signaling, for the treatment of FL patients who relapse after frontline therapy. 

In summary, we present a comprehensive molecular and spatial atlas of normal and 
malignant LNs taken from untreated FL patients in the context of a prospective clinical trial. In so 
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doing, we have addressed several key questions in the field including: What unique information 
is provided by bulk RNA-seq, scRNA-seq, and multiplexed tissue imaging? How can we 
effectively integrate these datasets to leverage the strengths of each technology? How 
extensively are myeloid and stromal cells under-sampled by sequencing approaches? Most 
importantly, this work presents the unique opportunity to profile the TMEs of FL patients prior to 
therapeutic intervention. Despite the urgent clinical need, there are several impediments to the 
careful examination of relapsed FL including its broad clinical and genetic heterogeneity and 
challenges with recruiting sufficient numbers of patients with adequate tissue biopsies for large 
studies (Rodgers and Barr, 2021). Therefore, this work may inform the selection of novel 
therapeutic approaches for early relapsers, the highest priority in follicular lymphoma clinical trials 
(Maddocks et al., 2017). The extension of these studies to a greater number of samples with 
divergent clinical outcomes will only highlight the value of this approach by identifying predictive 
biomarkers and histological patterns of early disease progression and treatment resistance.  

 
LIMITATIONS OF THE STUDY  

The primary limitation of this study is the modest number of samples evaluated using 
single biopsies collected from different sites of the human body. Non-neoplastic LNs are known 
to exhibit anatomical and functional differences depending on their site of drainage (Grant et al., 
2020). While challenging to implement, the intra-tumor heterogeneity observed among FL patients 
provides significant rationale for multi-site profiling (Araf et al., 2018; Haebe et al., 2021). An 
additional constraint is the lack of paired bulk RNA-seq and MxIF datasets from non-FL LNs due 
to technical challenges with performing paired analyses from these small LNs. As we did not 
employ dissociation or enrichment protocols for single cell analysis of myeloid and stromal cells, 
these populations are significantly underrepresented in our single cell datasets as compared to 
other studies that explicitly examined these populations (Buechler et al., 2021; Mourcin et al., 
2021). Finally, extensive domain expertise is needed to carefully annotate the vast diversity of 
cell types present in these samples, especially cells of the stromal lineage that are known to vary 
across tissues and disease states (Pradhan et al., 2021). We anticipate these classifications will 
evolve with technologies and additional multiomic studies arising from atlas efforts.  
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FIGURE TITLES AND LEGENDS 

 
Figure 1. Construction of cellular atlases from human lymph nodes using multiple state-of-the-art 
omics and imaging technologies.  
(A) Tissue microenvironments (TME) were profiled in 3 non-follicular lymphoma (FL) samples and 7 
excisional biopsies from FL patients. Follicular dendritic cells (FDCs), fibroblastic reticular cells (FRCs). 
Schematic shows enlarged and stylized secondary and neoplastic follicles. (B) Paired samples from normal 
and FL patients were profiled using multiple assays. Normal LNs were examined only by single cell 
technologies (scRNA-Seq and IBEX). Tissue microenvironment (TME), multiplex immunofluorescence 
(MxIF). (C) Schematic depicting IBEX imaging technique. (D) Protein biomarkers targeted with IBEX or 
MxIF (*) grouped by cell type. (E) Comparison of information provided by each technology. Resolution 
provided as an estimate only and based on analyses/results described in this work. For scRNA-seq: 
Clonotypes require TCR and BCR sequencing. Spatial patterns can be inferred. 
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Figure 2. Cellular composition and gene expression patterns of normal and FL samples. 
(A) Genomic alteration landscape. Each line provides the detected mutations and fusions (cyan - missense 
mutation, green - nonsense mutation, violet - frameshift mutation, pink box - fusions) patients annotated 
based on progression status. (B) Cell composition reconstruction from bulk RNA-seq data using Kassandra 
algorithm. (C) B cell receptor calling from RNA-seq. Bubble corresponds to a unique or group of similar 
CDR3 sequences from heavy immunoglobulin genes. Size of circle corresponds to clonotype abundance. 
Bulk RNA-seq (bulk), scRNA-seq (scRNA) here and throughout. (D) Uniform manifold approximation and 
projection (UMAP) plot of 36,212 single cells from all samples. (E) Dot plot showing the expression of 
selected markers used for cell annotation of scRNA-seq clusters. Plasma cells (PCs), plasmacytoid 
dendritic cells (pDCs), Exhausted (Ex), and Cytotoxic (Cyt). (F) scRNA-seq frequencies of indicated cell 
types from each patient. (G) Gene set enrichment analysis of B cells from early relapsers (*) compared to 
all other samples plotted as enrichment score on the x-axis compared to the -log10 of the adjusted p-value 
on the y-axis. The pink box shows a cutoff of adjusted p-value < 0.05. Each point represents a gene set, 
with top scoring gene sets labeled. (H) Same as G but only comparing B cells from early relapsers to other 
FL samples. (I) Dot plot depicting dynamic expression of individual genes associated with Huet gene 
signature.  
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Figure 3. IBEX imaging provides an in-depth spatial survey of complex tissues. 
(A) Representative IBEX images of selected markers, scale bar 30 μm. Vimentin (vim), Desmin (des), 
Collagen IV (Coll IV). Row 3: Cell segmentation plot and cell typing plots for the same region of interest. 
Row 4: IBEX images of myeloid markers (left), segments and masks of immunofluorescence (IF) signal 
(middle), and tessellation masks of 4 myeloid populations (right). Row 5: IBEX images of stromal markers 
(left), segments and masks of IF images (middle), and tessellation masks of 5 stromal populations (right). 
(B) Heatmap of normalized mean marker expression used to define cell populations. 37 discrete marker 
clusters were identified using cell segmentation. (C) UMAP plot of 0.9x106 cells from all samples, colored 
by cell populations identified by IBEX. (D) Quantification of major B cell subpopulations obtained from IBEX 
imaging and normalized by area imaged per sample. (E) Quantification of major T cell subpopulations 
obtained from IBEX imaging and normalized by area imaged per sample. (F) Heatmap of the normalized 
mean marker expression of select protein biomarkers for myeloid cell phenotyping by tessellation masks. 
(G) Quantification of major myeloid subpopulations obtained from IBEX imaging where cells are expressed 
as tessellation square counts per sample. (H) Heatmap of the normalized mean marker expression of select 
protein biomarkers for stromal cell phenotyping by tessellation masks. (I) Quantification of major stromal 
subpopulations obtained from IBEX imaging where cells are expressed as tessellation square counts per 
sample. Non-progressors (Non-P), Early relapsers (ER*).  
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Figure 4. Assessing the cellular composition and histological patterns of secondary and neoplastic 
follicles using IBEX imaging. 
(A) IBEX images depicting differences in the shape and cellular composition of B cell follicles from FL 
patients, scale bars 200 μm or 50 μm (blue and magenta insets). White arrowheads denote tingible body 
macrophages. (B) Quantification of major B, T, myeloid, and stromal cells found within B cell follicles, 
obtained from IBEX imaging and normalized by area imaged per sample. (C) IBEX images depicting 
histological patterns shared among early relapsers: Desmin+ fibroblastic reticular cells (FRCs) inside and 
around B cell follicles, IRF4+ tumor B cells in contact with IRF4+ FRCs, and DC-SIGN+ myeloid or stromal 
cells in B cell follicles. Scale bar is 100 μm, 50 μm (Inset 1), and 25 μm (Insets 2 and 3). 
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Figure 5. Cellular communities are shared across normal LN samples but exhibit considerable 
heterogeneity in tumor samples.   
(A) Overview of proximity community cluster analysis to identify cell-cell interactions using both cell 
segments and masks (myeloid and stromal cells). (B) Left: heatmap showing the relative content of cell 
types identified in each proximity community cluster. Right: heatmap showing the proportion of myeloid and 
stromal masks in proximity radius of specified cell community. Each community (one single row) contains 
both segmented cells from the left heat map and masks for cell types from the right heat map. (C-D) IBEX 
images depicting well organized secondary follicles in non-FL LN (C) and disorganized follicle in FL LN (D) 
with corresponding community plots pseudo-colored as indicated in B, scale bar 100 μm. (E) Bar plots 
showing the 11 most abundant proximity communities identified by IBEX for the whole imaged section. (F) 
Bar plots showing proportion of proximity communities identified by IBEX in the follicles. (G) Differential 
composition and distribution of B cell follicle communities across all normal and FL samples based on 
principal component analysis (PCA). (H) Spatial maps showing community composition of different FL 
samples pseudo-colored according to legend in (B). Insets: community plot images of B cell follicles for 
selected patients. 
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Figure 6. Comparison of spatial patterns and cellular communities between IBEX and MxIF images.  
(A) Confocal microscopy images from fixed frozen (IBEX) or FFPE (MxIF) samples from the same patients. 
Scale bar (Left, CD21 panels 50 μm; Right, CD8 panels 100 μm). (B) Confocal microscopy images from 
FFPE (MxIF) samples. Scale bar 200 μm. (C) Heatmap showing 7 follicle types based on shape, size, and 
tissue distribution (minimum distance to other follicles). Right graph: number of follicles corresponding to 
each cluster for all samples.  (D) Follicle shape, size, and distribution in IBEX and MxIF images, CD21 
(Cyan). Bottom row: Follicles color-coded based on types described in (C). (E) Follicle composition of IBEX 
and MxIF imaged samples based on typing strategy detailed in C. (F) Heatmap of mean mask percentages 
per tessellation square of 11 markers measured both by IBEX and MxIF to detect tessellation community 
clusters. (G) IBEX and MxIF images with corresponding tessellation masks showing community clusters 
(25 μm). White lines on images (right) indicate borders of community clusters shown in adjacent plots (left). 
(H) Tessellation community plots showing the extent of correspondence between IBEX and MxIF images, 
color-coded based on heatmap in F. (I) Tessellation community maps for MxIF and IBEX images from one 
representative FL sample. (J) Percent similarity of IBEX and MxIF community composition depending on 
the area of tissue imaged and analyzed. Dots indicate the size of the IBEX region of interest. 
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Figure 7. Integration of omics and imaging technologies reveals extent of stromal under-sampling 
and remodeling in FL TME.  
(A) Percentage of major cell populations B cells, CD4+ and CD8+ T cells, myeloid, and stromal 
cells measured by bulk RNA-seq (Bulk RNA), scRNA-seq (scRNA), and IBEX. Percentages for B 
cells, CD4+ T cells, and CD8+ T cells are compared between IBEX segmentation, scRNA-seq 
cell typing, and Kassandra reconstruction. Myeloid cells are compared between Kassandra 
reconstruction from bulk RNA-seq data and IBEX tessellation squares normalized by area of 
tissue imaged. Stromal cells are derived from IBEX tessellation squares normalized by area. (B) 
Heatmap showing the estimated number of cells to be profiled by scRNA-seq to identify a cluster 
(cell phenotype) originally identified by IBEX. Values were calculated assuming 50 cells need to 
be sequenced for accurate clustering and based on the average frequency of a given cell across 
all samples imaged by IBEX. (C) Heatmap showing correlations between expression of fibroblast 
gene signatures measured by bulk RNA-seq (Table S7) with proximity community clusters 
described in Figure 5. (D) Heatmap showing correlations between expression of cytokine gene 
signatures measured by bulk RNA-seq (Table S7) and proximity community clusters described in 
Figure 5. (E) UMAP of 36,212 single cells from all samples pseudo-colored for CCR5 (blue) and 
CCL5 (red) gene expression in the indicated cell types. (F) UMAP of 36,212 single cells from all 
samples pseudo-colored for CCR5 (blue) and CCL4 (red) gene expression. (G) UMAP of 36,212 
single cells from all samples pseudo-colored for CXCR5 (blue) and CXCL13 (red) gene 
expression. (H) IBEX images demonstrating CXCL13+ FDCs and FRCs. Scale bar is 100 µm 
(large) and 20 µm (small). (I) IBEX and MxIF images of ECM expansion in one patient sample. 
 
 
METHODS 
 
Clinical study details 
 All patients were enrolled on a prospective clonal evolution study for adults with grade I-II 
or 3A follicular lymphoma who have not received systemic therapy and are without evidence of 
histologic transformation [NCT03190928]. All patients consented to the trial. The primary endpoint 
of the study is time to initiation of frontline systemic therapy. The primary objective is to analyze 
the molecular biology of patients with progression within 2 years of study entry (‘early 
progressors’) compared to patients who do not progress and need therapy within 2 years of study 
entry (‘non-progressors’). The secondary objective is to characterize the molecular biology of 
patients who relapse <2 years after frontline therapy (‘early relapsers’). Baseline staging 
procedures include computed tomography (CT) and fluorodeoxyglucose (FDG)-positron emission 
tomography (PET) scans along with bone marrow biopsy with aspirate, and patients are staged 
by the Lugano criteria (Cheson et al., 2014). All patients are offered excisional LN biopsy, if 
feasible. Enrolled patients are assigned a baseline FLIPI score (Solal-Celigny et al., 2004) and 
initially assessed by uniform protocol-defined treatment criteria to determine need for immediate 
frontline therapy. For those who do not meet criteria for treatment, they are monitored with clinic 
visits every 4 months for 2 years, every 6 months in years 3-5, and then annually until they meet 
criteria for treatment. CT scans are every 8 months for 2 years, then annually. FDG-PET scans 
are repeated at 2 years and any time of suspected progression. Normal human mesenteric LNs 
were obtained from patients undergoing elective risk-reducing gastrectomies or colon resections 
for colon adenocarcinoma at the National Cancer Institute (NCI) based on an Institutional Review 
Board (IRB) approved tissue collection protocol (#13C-0076). Biopsies of these LNs were grossly 
normal as determined by the operative surgeon and histopathologically normal as determined by 
an expert pathologist. Follicular hyperplasia was identified in one sample (rLN1) based on 
standard diagnostic evaluation with hematoxylin and eosin (H&E). See Table S1 for clinical and 
pathological characteristics of patients. BCL2 rearrangements were identified using fluorescence 
in situ hybridization (FISH), the gold standard for translocation detection in lymphoma FFPE 
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(Allahyar et al., 2021). Representative sections from all samples were evaluated using H&E 
staining before multimodal analysis. 
 
Sample preparation from human tissues 

The size of the LNs ranged from less than 1 cm (nLN1, nLN2), 2 cm (rLN1), to 6 cm (FL1-
7) in diameter. Unfixed LN were measured (L x W x H), cut along the longitudinal axis, and 
macroscopically inspected. For routine assessment, the LN was sectioned into slices <4mm in 
thickness and prepared as FFPE samples as previously described (Jonigk et al., 2011). 
Depending on the size of the LN, samples were additionally prepared as snap frozen tissue blocks 
(< 5mm3) and cell suspensions (at least 20% of total LN volume). All clinical stains were performed 
with automated immunostainers, BenchMark Ultra (Roche) or BOND-Max (Leica Biosystems), 
according to the manufacturers’ instructions.  Diagnostic panels consisted of CD20 (clone L26), 
CD10 (clone SP67), CD3 (clone 2GV6), BCL2 (clone SP66), BCL6 (clone EP278), Ki-67 (clone 
MIB-1), CD21 (clone EP3093), CD23 (clone IB12), and IgD (clone 92). 

For bulk and scRNA-seq, cell suspensions were prepared by manual disruption of the 
tissues and frozen down viably. Following tissue homogenization, cells were frozen and stored at 
-150°C in liquid nitrogen. Prior to sequencing, single cell suspensions were thawed rapidly in a 
37°C water bath until ice had just disappeared, then transferred to a 50 ml tube and washed with 
50 ml of cold (4°C) 1xPBS.  Viable cells were enumerated manually using trypan blue exclusion. 
For IBEX imaging, human LNs (1 cm3 or smaller in size) were fixed with BD CytoFix/CytoPerm 
(BD Biosciences) diluted in PBS (1:4) for 2 days. Following fixation, all tissues were washed briefly 
(5 minutes per wash) in PBS and incubated in 30% sucrose for 2 days before embedding in OCT 
compound (Tissue-Tek) as described previously (Radtke et al., 2022; Radtke et al., 2020). Non-
FL LNs (nLN1, nLN2, rLN1) were only analyzed by scRNA-seq and IBEX imaging.  
 
Whole exome sequencing (WES) analysis 

Low quality reads were filtered using FilterByTile/BBMap v37.90 (Bushnell, 2014) and 
aligned to human reference genome GRCh38 (GRCh38.d1.vd1 assembly) using BWA v0.7.17 (Li 
and Durbin, 2009). Duplicate reads were removed using Picard’s v2.6.0 MarkDuplicates (“Picard 
Toolkit”, 2019. Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad 
Institute). Indels were realigned by IndelRealigner and recalibrated by BaseRecalibrator and 
ApplyBQSR using tools taken from GATK v3.8.1 (Auwera and O'Connor, 2020). Somatic single 
nucleotide variations (sSNVs), small insertions, and deletions were all detected using Strelka v2.9 
(Saunders et al., 2012).  
 
Bulk RNA-seq processing and analyses 

RNA was isolated from cell suspensions using the AllPrep kit (Qiagen) and libraries were 
generated using the TruSeq Stranded mRNA Library kit (Illumina). Paired end sequencing was 
performed on an Illumina NextSeq2000. RNA-seq reads were aligned using Kallisto v0.42.4 to 
GENCODE v23 transcripts 69 with default parameters. The protein-coding transcripts, 
immunoglobulin heavy, kappa and lambda light chains, and TCR-related transcripts were 
retained. Noncoding RNA, histone, and mitochondria-related transcripts were removed, resulting 
in 20,062 protein coding genes. Gene expression was quantified as the sum of the transcripts 
and re-normalized per million (TPM) and log2-transformed (Goldman et al., 2020).  
 
Deconvolution of bulk RNA-seq 

The Kassandra machine learning algorithm was used to predict cell percentages from bulk 
RNA-seq (Zaytcev et al., 2020). The model consisted of a two-level hierarchical ensemble that 
used LightGBM as building blocks. The model was trained on artificial RNA-seq mixtures of 
different cell types (T cells, B cells, NK, macrophages, cancer-associated fibroblasts, and 
endothelial cells) obtained from multiple datasets of sorted cells. All datasets were isolated from 
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poly-A or total RNA-seq profiled human tissues with read lengths higher than 31 bp and at least 
4 million coding read counts. These datasets passed quality control by FASTQC with minimal 
contamination (< 2%). The model was trained to predict the percentage of RNA belonging to 
specific cell types. Predicted percentages of RNA were later converted into percentages of cells 
using the methodology described previously (Racle et al., 2017). For Figure 2, Figure 7C-D, and 
Figure S7A-B, gene signature scores were calculated using the ssGSEA algorithm from the GSVA 
R package (Hänzelmann et al., 2013). Raw scores were medium scaled to (-2, 2) or to (-3, 3) 
range. See Tables S2-S4. 
 
scRNA-seq processing and analysis 

Viable cells were diluted in 1xPBS such that when loaded on the 10x Genomics Chromium 
Controller they were at a capture number of ~6,000 cells. After capture, single cell RNA-seq/VDJ 
libraries were generated using the 10X Chromium Single Cell 5’ gene expression/V(D)J kit and 
processed according to the manufacturer’s instructions. Sequencing of libraries was performed 
on an Illumina NOVA-Seq and cycling was performed according to the manufacturer’s 
suggestions. All samples had captures performed on the same day with reagents from the same 
kit. All were sequenced together on multiple sequencing runs to achieve target depth.  

FAST-Q files were processed through the 10X Cell Ranger Pipeline v5.0.1 with alignment 
to a GRCh38 reference (refdata-gex-GRCh38-2020-A for gene expression reads and refdata-
cellranger-vdj-GRCh38-alts-ensembl-5.0.0 for TCR and BCR enriched reads). A classical scRNA-
seq analysis pipeline was performed as described in (Luecken and Theis, 2019). The Cell Ranger 
4.0 tool and Scanpy 1.7.1 package with Python 3.6 were used (Wolf et al., 2018). Cells with less 
than 1,000 unique molecular identifiers (UMIs), more than 10,000 UMIs, and cells with more than 
10% mitochondrial gene UMIs were removed. These criteria were empirically selected after initial 
data analysis in Cell Ranger. These thresholds were applied to minimize several technical clusters 
(small number of UMIs, high mitochondrial gene expression, and lack of meaningful marker 
genes). Selection of the top 3,000 over-dispersed genes was performed as described (Stuart et 
al., 2019). Next, log-transformation of the data and linear regression of expression data against 
the number of UMIs and number of genes in cells was performed followed by kNN graph 
construction. The Leiden algorithm was used for cell clustering with the top 3,000 marker genes 
and not the whole transcriptome. Elbow plot analysis was used to determine how many PCs were 
needed to capture the majority of the variation in the data (Traag et al., 2019). Data were 
visualized with UMAP. After overall analysis of all datasets, we selected the subset of T cells, B 
cells, and other cells and performed an analysis of each subset. Cell types were identified based 
on marker gene expression. Moreover, cells from the same cell type were selected based on the 
Leiden clusters and not the UMAP coordinates. 

MIXCR v.2.1.7 (Bolotin et al., 2015) was used to analyze BCR sequences from RNA-seq 
data. Single clonotypes were grouped into clones with unique VDJ combinations and identical 
CDR3 nucleotide sequences. B cell clones were further aggregated into clone groups if the VDJ 
combination was the same and if the CDR3 nucleotide sequences differed no more than 1 
nucleotide (Figure S2A). For definition of CDRs and de novo N-linked glycosylation sites (Figure 
S2B), BCR sequences, heavy and light chain, from scRNA-seq data were identified by Loupe 
VDJ Browser analysis and assigned to individual single cells. Predominant BCR clonotypes were 
further analyzed by porting the amino acid sequences into abYsis (http://www.abysis.org/abysis/). 

Gene set enrichment analysis was performed using the C2CP gene set from the mSigDB 
(Liberzon et al., 2015). Analysis was performed in R v4.1.3 using fgsea v1.20.0 (Korotkevich et 
al., 2021). Analysis was performed on a ranked gene set resulting from the log fold change values 
from differential expression analysis using the FindMarkers function in Seurat v4.1.0 (Hao et al., 
2021). Ribosomal genes were removed before analysis was performed. Plots were generated in 
ggplot2 v3.3.5 (Wickham, 2016). Dot plots were generated using the DotPlot function in Seurat. 
Gene module scores for individual cells were generated using the AddModule function in Seurat, 
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with the number of control features set to the same length as the gene set of interest. Gene 
modules were visualized using the VlnPlot function in Seurat. For Figure 2G-H, the B cell 
populations included cycling B, tumor B, GC B, memory B, naïve B, and FCRL4+ B single cell 
clusters. 
 
High content imaging using IBEX 

High content imaging was performed on fixed frozen sections as described previously 
(Radtke et al., 2022; Radtke et al., 2020). Briefly, 20 μm sections were cut on a CM1950 cryostat 
(Leica) and adhered to 2 well Chambered Coverglasses (Lab-tek) coated with 15 μl of chrome 
alum gelatin (Newcomer Supply) per well. Frozen sections were permeabilized, blocked, and 
stained in PBS containing 0.3% Triton X-100 (Sigma-Aldrich), 1% bovine serum albumin (Sigma-
Aldrich), and 1% human Fc block (BD Biosciences). Immunolabeling was performed with the 
PELCO BioWave Pro 36500-230 microwave equipped with a PELCO SteadyTemp Pro 50062 
Thermoelectric Recirculating Chiller (Ted Pella) using a 2-1-2-1-2-1-2-1-2 program. A complete 
list of antibodies and an IBEX LN antibody panel can be found in Table S6.  Cell nuclei were 
visualized with Hoechst (Biotium) and sections were mounted using Fluoromount G (Southern 
Biotech). Mounting media was thoroughly removed by washing with PBS after image acquisition 
and before chemical bleaching of fluorophores. After each staining and imaging cycle, samples 
were treated for 15 minutes with 1 mg/mL of LiBH4 (STREM Chemicals) prepared in diH2O to 
bleach all fluorophores except Hoechst and Alexa Fluor 594.  
  
Whole slide MxIF imaging of FFPE tissue sections 
            5 µm tissue sections were cut from FFPE samples and placed onto glass slides. Prior to 
immunolabeling, tissue sections were baked in a 60°C oven for 1 hour to adhere the tissues to 
the slides. Deparaffinization was performed with 2 exchanges of 100% xylene (10 minutes per 
exchange) followed by 100% ethanol for 10 minutes, 95% ethanol for 10 minutes, 70% ethanol 
for 5 minutes, and 10% formalin for 15 minutes. Antigen retrieval was performed by incubating 
slides in AR6 buffer (Akoya Biosciences) for 40 minutes in a 95°C water bath. After 40 minutes, 
slides were removed from the water bath and allowed to cool on the bench for 20 minutes. 
Blocking and immunolabeling was performed using the PELCO BioWave Pro 36500-230 
microwave according to the steps outlined in Table S6. Prior to immunolabeling, tissue sections 
were outlined with an ImmEdge pen to create a hydrophobic barrier (Vector laboratories) and then 
rehydrated with PBS. Following a 30-minute incubation in blocking buffer, tissue sections were 
incubated with primary antibodies, washed 3 times in PBS, and then incubated with appropriate 
secondary antibodies. Directly conjugated primary antibodies were applied last after blocking with 
5% normal rabbit and/or goat sera (Abcam). Cell nuclei were visualized with Hoechst (Biotium) 
and sections were mounted using Fluoromount G (Southern Biotech).  
 
Image acquisition and alignment 

Representative sections from different tissues were acquired using an inverted Leica TCS 
SP8 X confocal microscope equipped with 20X (NA 0.75) and 40X objectives (NA 1.3), 4 HyD 
and 1 PMT detectors, a white light laser that produces a continuous spectral output between 470 
and 670 nm as well as 405, 685, and 730 nm lasers. Panels consisted of antibodies conjugated 
to the following fluorophores and dyes: Hoechst, Alexa Fluor (AF)488, AF532, phycoerythrin (PE), 
PE/iFluor594, eF570, AF555, AF594, iFluor (iF)594, AF647, eF660, AF680, and AF700. All 
images were captured at an 8-bit depth, with a line average of 3, and 1024x1024 format with the 
following pixel dimensions: x (0.284 μm, 40X), y (0.284 μm, 40X), x (0.568 μm, 20X), y (0.568 
μm, 20X), and z (1 μm). Images were tiled and merged using the LAS X Navigator software (LAS 
X 3.5.5.19976). For IBEX tissue imaging, multiple tissue sections were examined before selecting 
a representative tissue section that contained several distinct follicles, often resulting in unusually 
shaped region of interests. For multiplexed imaging of FFPE tissue sections, whole tissue 
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sections were imaged using a 20X objective. To ensure proper alignment over distinct imaging 
cycles, careful attention was paid to the quality of image stitching achieved with the Leica software 
and z-stacks were set by manual inspection of notable features such as unusually shaped nuclei 
throughout the tissue volume. These unusual features were matched across the z-stack and over 
multiple cycles of IBEX as outlined in a detailed protocol (Radtke et al., 2022). Fluorophore 
emission was collected on separate detectors with sequential laser excitation of compatible 
fluorophores (3-4 per sequential) used to minimize spectral spillover. The Channel Dye 
Separation module within the LAS X 3.5.5.19976 (Leica) was then used to correct for any residual 
spillover. For publication quality images, gaussian filters, brightness/contrast adjustments, and 
channel masks were applied uniformly to all images. Image alignment of all IBEX panels was 
performed as described previously (Radtke et al., 2022; Radtke et al., 2020) using SimpleITK 
(Lowekamp et al., 2013; Yaniv et al., 2018). Software can be downloaded via a zip file from the 
Imaris extensions code repository 
(https://github.com/niaid/imaris_extensions/archive/refs/heads/main.zip). Installation instructions 
are available online: [https://github.com/niaid/imaris_extensions] and in the README.md file 
which is part of the zip file. Additional details can be found in the XTRegisterSameChannel 
SimpleITK Imaris Python Extension YouTube tutorial (https://youtu.be/rrCajI8jroE). Please see 
sample data on Zenodo for usage of the software [https://doi.org/10.5281/zenodo.4632320].  

To obtain multiplexed images of FFPE tissue sections, serial sections were imaged with 
4 distinct panels of antibodies containing Hoechst and 2-8 antibodies per panel (Table S6). 
Following image acquisition, images were aligned using Hoechst as a fiducial.  As a first 
approximation, a pathologist manually obtained rotation matrices for cell-cell alignment across 
serial sections using downsampled Hoechst channels and GIMP (GNU Image Manipulation 
Program) image editor. Following image rotation for alignment, the register_translation function 
from the skimage python package was used to find a translation vector. Upon identification of a 
suitable rotation matrix and translation vector based on Hoechst+ nuclei, these parameters were 
applied to all serial image stacks. The register_translation function uses cross-correlation in 
Fourier space, optionally employing an upsampled matrix-multiplication DFT (Discrete Fourier 
transform) to achieve arbitrary subpixel precision (Guizar-Sicairos et al., 2008). Artifacts (such as 
fluorophore aggregates and uneven staining) were manually masked by 3 pathologists. 

IBEX image analysis: Object-based segmentation 

Object-based cellular segmentation was performed using a convolutional neural network 
(CNN)-based approach with Mask R-CNN  architecture and ResNet-50 as a backbone (He et al., 
2017). As an input three channels were used: Hoechst for nuclei, CD45 as a base membrane, 
and composite of several other membrane markers (CD138, CD163, CD94, CD69, CD8, CD4). 
Composite images were made by choosing the brightest pixel across all marker channels for each 
separate pixel position. Final images were normalized to a range of 0-1 by dividing by the maximal 
possible intensity value (255). The prediction window size was set to 256 pixels on each side. To 
stitch prediction tiles, the original images were cropped into intersecting windows with 136 pixel 
steps. A 60 pixel buffer was used on every side of prediction window (256 - 60 * 2) for predicted 
cell selection in overlapping areas. Buffer size was chosen as a half of a maximum potentially 
possible cell side size. The training settings for the deep learning algorithms used in this work are 
given in Table S5. 

 
IBEX image analysis: Cell typing 

 Among the 39 antibodies included in the multiplexed imaging panels, three distinct staining 
patterns were observed: membrane or cytoplasmic (all markers except for BCL6, Ki-67, FOXP3, 
IRF4, CD68), nuclear (BCL6, Ki-67, FOXP3, IRF4), and endosomal/lysosomal (CD68). The CNNs 
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were trained to recognize the presence or absence of a biomarker based on these patterns of 
expression for individual cells. The input image consisted of three channels: Hoechst, marker of 
interest, and segment mask for a cell of interest. Input images were cropped to 128x128 pixels, 
corresponding to the cell bounding box and its nearest environment, and normalized to values 
ranging from 0-1, dividing by the maximal possible intensity value. All three networks had the 
same architecture (ResNet-50) with two neurons in the last layer (signal present/signal absent) 
with Softmax activation function in the output layer. The Softmax activation function allows 
normalization of the CNN’s output to values from 0 to 1, where 1 corresponds to positive 
expression, 0 corresponds to negative expression of a given marker, and 0.5 corresponds to an 
uncertain prediction (hard case for NN, outcomes have equal weights). This approach is also 
sensitive to the spatial distribution of each specific marker. Every possible ground truth cell type 
can be expressed as a sequence of markers that must be present (encoded as 1), may be present 
(creating two versions of this cell type, with 0 and 1) and must be absent (encoded as 0). For 
example, a particular cell may be defined as a B cell if this cell is CD20+ (encoded as 1), CD21+/- 
(encoded as 1 or 0), and CD3- (encoded as 0)). Cosine similarity is calculated between every 
sequence of cell expression and every cell type encoding vector. The final cell type is defined as 
the closest match based on probability. Cell annotations and counts across samples can be found 
in Table S2. 
 
Tessellation masks for myeloid and stromal cells 

Masks for certain immune, myeloid, and stromal markers were generated by Otsu’s 
method (Otsu, 1979). The following markers were masked for IBEX images: CD11c, CD21, CD23, 
CD31, CD35, CD39, CD49a, CD68, CD163, CXCL13, Collagen IV, DC-SIGN, Desmin, Lumican, 
Lyve-1, SPARC, α-SMA, and Vimentin. The following markers were masked for MxIF images: 
CD3, CD8, CD20, CD21, CD68, DC-SIGN, Desmin, Lumican, PD-1, SPARC, and α-SMA. All 
channel masks were inspected by pathologists and compared to the raw immunofluorescence 
signal. In a few select instances of poor algorithm performance, thresholds were manually 
corrected using Fiji. We define a tessellation as a process of splitting a mask derived from a 
marker of interest into non-intersecting squares that covers a full image area. A signal density 
heatmap is then created by computing the percentage of positive pixels in each of these squares. 
Every square can be roughly considered as a “pseudo-cell” measuring 16x16 pixels for stromal 
and myeloid subpopulations identified in IBEX images. Percentages of masks in each square 
“pseudo-cell” is equivalent to mean cell marker expression for object-based cellular segmentation.  

For phenotyping stromal cells from IBEX imaging data, tessellation-based analysis was 
performed with over a dozen markers (CD21, CD23, CD31, CD35, CD39, CD49a, CXCL13, 
Collagen IV, Desmin, Lumican, Lyve-1, SPARC, α-SMA, and Vimentin), including several markers 
not exclusive to stromal cells (e.g. CD39, CD49a, SPARC). For markers expressed by stromal 
and non-stromal elements, e.g. CD39 on Tregs, stromal masks were first created to mark an area 
of interest based on co-localization with lineage-defining markers, e.g. CD31 for endothelial cells 
and vimentin for mesenchymal cells. For well-described stromal markers (CD31, Lyve-1, CD21, 
Desmin, Vimentin, Lumican), tessellation masks were created directly from the channel data and 
thresholded by 0.2, an empirically derived parameter. To elaborate, this limit (0.2) corresponded 
to the value where the amount of ‘masked pixels’ and ‘empty pixels’ were equal and intersected 
on an x-y plot with the ‘mask threshold’ on the x-axis and ‘fraction of pixels covered by mask’ on 
the y-axis (Figure S3D). Clustering was then performed on masked pixel data using the 
unsupervised clustering algorithm Phenograph (Levine et al., 2015) with cosine distance metric 
and 30 nearest neighbors. For phenotyping myeloid cells from IBEX imaging data, a similar 
approach was implemented using 5 markers (CD11c, CD163, CD68, DC-SIGN, and SPARC) 
where only the SPARC marker was not exclusive to macrophages and dendritic cells. Although 
CD1c and HLA-DR were detected on myeloid cell subtypes, these markers are also expressed 
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on B cell subpopulations. Due to contaminating signal from B cells, the dominant population in FL 
samples, CD1c and HLA-DR were excluded from myeloid cell phenotyping. For CD68 and CD163 
markers, the tessellated mask was an integration of pixel-level data and corresponding 
macrophage segment masks. To exclude empty tessellation squares, we filtered empty squares 
by a 0.1 threshold. A different masking strategy was applied for myeloid cells in order to detect 
the pseudopodia of these cell types which typically cover less area than stroma. K-Means was 
used as a clustering algorithm. These tessellation-based approaches were also used to define 
cellular communities present in both IBEX and MxIF images using 100 and 50 pixel-sized 
squares, respectively. For these analyses we used 11 markers and the K-Means clustering 
algorithm. Cell annotations and counts across samples can be found in Table S2. 
 

Follicles shape analysis of IBEX and MxIF images 

To compare the follicle shape across small and large ROIs acquired using distinct imaging 
methods and sample preparations (IBEX/fixed frozen versus MxIF/FFPE), masks were applied to 
B cell follicles and sample parameters were calculated. B cell follicle masks from IBEX images 
were obtained by manual annotation from pathologists based on concentrated areas positive for 
CD20 and CD21 and reduced lumican signal for most samples (Figure S5A).  Follicle masks were 
created based on CD21 and CD20 signal alone for MxIF images. Once masks were generated, 
the area, minimal distance to the nearest follicle, elongation, and compactness were calculated 
for each follicle. As a final step agglomerative clustering with ward linkage was performed on 
given follicle shape parameters (Ward Jr, 1963). The following elongation formula was used:  

𝑚!,! +𝑚#,# +#$𝑚!,! −𝑚#,#&
# + 4𝑚!,#

#

𝑚!,! +𝑚#,# −#$𝑚!,! −𝑚#,#&
# + 4𝑚!,#

#
 

Compactness formula where A and P stand for area and perimeter correspondingly: $%&
'!
. 

  

Community analysis of IBEX images 

To perform community analysis, a cell neighborhood graph was generated with Delaunay 
triangulation algorithm from SciPy spatial algorithms package using coordinates derived from cell 
centroids (Virtanen et al., 2020). In this graph, each cell is represented as a node, and adjacent 
cells are connected via edges. To remove outlier edges, we aggregated lengths of all edges for 
all cells in the dataset across all samples, and a threshold value was selected as the 95th 
percentile of all lengths – 28.4 µm, edges longer than this threshold were removed. After this 
operation, we assigned features for every node in the graph, which used this model: 1) cell type 
assigned as categorically encoded vector, 2) percentages of selected binary masks in 56.8 µm 
radii underneath this cell, 3) median distance of edges connected to this node. Using this graph, 
an Adversarially Regularized Variational Graph Auto-Encoder (Fey and Lenssen, 2019; Pan et 
al., 2018) was trained to obtain short descriptive vector representation of cell neighborhoods in 
an unsupervised, generative-adversarial manner. The framework consists of two models - a 
variational graph autoencoder and an adversarial model (3 layered perceptron). The latter model 
is used for regularization of the main graph autoencoder model. During training, the autoencoder 
learns to correctly predict node edges and reject randomly added non present edges. In parallel 
the discriminator model is trained to distinguish between learned autoencoder representations 
and their random permutations, thus regularizing the model to closely follow the latent data 
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distribution, since the autoencoder is rewarded for correct generation of data, close to the real 
distribution. Thus, in the process of training, an autoencoder model learns representation of tissue 
topology, since it can reconstruct correct contacts for a given cell and has learned representations 
that closely follow the true data distribution. These representations, or embeddings, learned by 
the autoencoder, allow clustering and detection of cell similarities by topological features of the 
given tissue. 

The model was trained for a fixed number of epochs (100) and the model with lowest loss 
was selected for downstream analysis. The trained autoencoder predicted embedding vectors for 
all samples in the cohort and these vectors were then clustered using the K-means algorithm to 
obtain 15 different clusters, which represent neighborhoods of cells or communities. To facilitate 
community description, the mean cell composition and mean mask percentages were calculated 
for each community. Communities were grouped based on the dominant cell type and 
morphological structures present in them: B- and T- cells enriched neighborhoods, myeloid- and 
stroma- enriched neighborhoods. Communities were visualized by drawing cell contours and 
coloring them according to community type. A detailed description of IBEX communities (Figure 
5) and comparison with MxIF communities (Figure 6) can be found in Table S2. The training 
settings for the deep learning algorithms used in this work are given in Table S5. 

 
Slide concordance analysis  

Tessellation-based communities were used to analyze the concordance of small IBEX 
ROIs with large, full tissue section ROIs from MxIF. For each sample, we performed sampling 
with window side sizes varying from 2,500 to 17,000 pixels (2.02-98.8 mm2) with 500 pixel steps 
(284 µm). Crops were sampled uniformly, with distances between centers equaling 200, 300, 400, 
and 500 pixels for sides of 2500-4000, 4500-6000, 6500-8500, and 10000-17000 pixels 
correspondingly. Crops with a tissue area of less than 50% were excluded from further analysis. 
We then measured the Pearson correlation between the percentage of tessellation communities 
for given crops and the full slide. Graphics displays mean correlation for given crop size. 

 
Predicting the number of cells to be sequenced based on IBEX data 
 For Figure 7B, we predict the number of cells that need to be profiled by scRNA-seq based 
on frequencies obtained from IBEX imaging data. Cell numbers were calculated based on cell 
frequencies obtained from the entire 1.8x106 cell IBEX dataset. A cluster size of 50 cells was used 
to estimate the number of cells to be sequenced.   
 
Correlation analysis between RNA-seq and IBEX communities 
 For Figure 7C-D and Figure S7A-B, fibroblast and cytokine gene signatures were manually 
curated from the literature (see Table S7). Pairwise correlations were performed between RNA-
seq gene signatures, described in Deconvolution of bulk RNA-seq, and IBEX communities, 
described in Community analysis of IBEX images. 

 
LIFE SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

CD20 (clone L26) 
 

Ventana Medical 
Systems 

Cat#760-2531; 
RRID: 
AB_2335956 
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CD10 (clone SP67) 
 

Ventana Medical 
Systems 

Cat#790-4506; 
RRID: 
AB_2336021 

CD3 (clone 2GV6) 
 

Ventana Medical 
Systems 

Cat#790-4341; 
RRID: 
AB_2335978 

BCL2 (clone SP66) 
 

Ventana Medical 
Systems 

Cat#790-4604; 
RRID: NA 

BCL6 (clone EP278) 
 

Cell Marque Cat#227R-28; 
RRID: NA 

Ki-67 (clone MIB-1) 
 

Agilent Cat#M7240; RRID: 
AB_2142367 

CD21 (clone EP3093) Ventana Medical 
Systems 

Cat#760-4438; 
RRID: NA 

CD23 (clone IB12) Leica Biosystems Cat# NCL-CD23-
1B12; RRID: 
AB_442058 

IgD (clone 92) Agilent Cat# A0093; RRID: 
NA 

CD20 AF488 (clone L26) 
 
 

Thermo Cat#53-0202-82; 
RRID: 
AB_10734358 

CD20 eF660 (clone L26) 
 
 

Thermo Cat#50-0202-82; 
RRID: 
AB_11150959 

SPARC AF532 (goat polyclonal, custom 
conjugate from company) 

R&D Cat#AF941; RRID: 
AB_ 2892754 

CD10 PE (clone FR4D11) Caprico Biotechnologies Cat#103926; 
RRID: NA 

CD10 PE (clone HI10a) BioLegend Cat#312204; 
RRID: AB_314915 

CD3 AF594 (clone UCHT1) BioLegend Cat#300446; 
RRID: 
AB_2563236 

BCL2 AF647(clone 100) BioLegend Cat#658705; 
RRID: 
AB_2563279 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.494716doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494716


 

35 
 

Collagen IV (rabbit polyclonal) Abcam Cat#Ab6586; 
RRID: AB_305584 

Goat anti-rabbit IgG AF700 Thermo Cat#A21038; 
RRID: 
AB_2535709 

IgD AF488 (clone IA6-2) BioLegend Cat#348216; 
RRID: 
AB_11150595 

CD21 AF532 (clone Bu32), custom conjugate 
from company 

BioLegend Cat#NA; RRID: 
AB_2892739 

CD138 PE (clone MI15) BioLegend Cat#356504; 
RRID: 
AB_2561878 

BCL6 AF647 (clone K112-91) BD Biosciences Cat#561525; 
RRID: 
AB_10898007 

CD31 AF700 (clone WM59) BioLegend Cat#303133; 
RRID: 
AB_2566326 

HLA-DR AF488 (clone L243) BioLegend Cat#307620; 
RRID: AB_493175 

CD23 AF532 (clone EBVCS-5), custom 
conjugate from company 

BioLegend Cat#NA; RRID: 
AB_2892740 

CD1c PE (clone L161) BioLegend Cat#331506; 
RRID: 
AB_1088999 

CD163 AF647 (clone GH1/61) BioLegend Cat#333620; 
RRID: 
AB_2563475 

CD11c AF700 (clone B-Ly6) BD Biosciences Cat#561352; 
RRID: 
AB_10612006 

CD8 AF488 (clone SK1) BioLegend Cat#344716; 
RRID: 
AB_10549301 

CD4 AF532 (clone RPA-T4) Thermo Cat#58-0049-42; 
RRID: 
AB_2802361 
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FOXP3 eF570 (clone 236A/E7) Thermo Cat#41-4777-82; 
RRID: 
AB_2573609 

CD25 AF647 (clone M-A251) BioLegend Cat#356128; 
RRID: 
AB_2563588 

Ki-67 AF700 (clone B56) BD Biosciences Cat#561277; 
RRID: 
AB_10611571 

ICOS AF488 (clone CS98.4A) BioLegend Cat#313514; 
RRID: 
AB_2122584 

SPARC AF532 (goat polyclonal, custom 
conjugate from company) 

R&D Cat#AF801; RRID: 
AB_2892755 

PD-1 PE (clone EH12.2H7) BioLegend Cat#329906; 
RRID: AB_940483 

CD69 AF647 (clone FN50) BioLegend Cat#310918; 
RRID: AB_528871 

CD39 FITC (clone A1) BioLegend Cat#328206; 
RRID: AB_940425 

Lyve-1 AF532 (goat polyclonal, custom 
conjugate from company) 

R&D Cat#AF2089; 
RRID: 
AB_2892756 

CD35 PE (clone E11) BioLegend Cat#333406; 
RRID: 
AB_2292231 

CD68 AF647 (clone KP1) Santa Cruz Cat#sc-20060; 
RRID: 
AB_2891106 

a-SMA AF488 (clone 1A4) Thermo Cat#53-9760-82; 
RRID: 
AB_2574461 

a-SMA eF660 (clone 1A4) Thermo Cat#50-9760-82; 
RRID: 
AB_2574362 

Lumican AF532 (goat polyclonal, custom 
conjugate from company) 

R&D Cat#AF2846; 
RRID: 
AB_2892757 
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IRF4 PE (clone IRF4.3E4) BioLegend Cat#646404; 
RRID: 
AB_2563005 

DC-SIGN AF647 (clone 9E9A8) BioLegend Cat#330112; 
RRID: 
AB_1186092 

Desmin AF488 (clone Y66) Abcam Cat# Ab185033; 
RRID: 
AB_2892748 

CD49a AF647 (clone TS2/7) BioLegend Cat#328304; 
RRID: 
AB_1236407 

CD94 AF488 (clone DX22) BioLegend Cat#305506; 
RRID: AB_314536 

Vimentin AF532 (clone O91D3) custom 
conjugate from company 

BioLegend Cat#NA; RRID: 
AB_2892753 

CD45 PE/iFluor594 (clone F10-89-4) Caprico Biotechnologies Cat#1016185; 
RRID: 2892742 

CD44 AF647 (clone IM7) BioLegend Cat#103018; 
RRID: AB_493681 

BCL2 (clone SP66) Abcam Cat# Ab236221; 
RRID: NA 

Donkey anti-rabbit IgG AF594 Thermo Cat#A-21207; 
RRID: AB_141637 

CD10 (polyclonal) R&D Cat#AF1182; 
RRID: AB_354652 

Donkey anti-goat IgG AF680 Thermo Cat#A-21084; 
RRID: AB_141494 

CD21 (clone SP186) Abcam Cat#Ab240987; 
RRID: NA 

Donkey anti-rabbit IgG AF555 Thermo Cat#A-31572; 
RRID: AB_162543 

CD68 iFluor594 (clone KP1) Caprico Biotechnologies Cat#1064135; 
RRID: 2892745 

DC-SIGN (clone h209) LS Bio Cat#LS-B3782; 
RRID: 
AB_10689801 
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Donkey anti-rat IgG AF647 Jackson 
ImmunoResearch 

Cat#712-605-153; 
RRID: 
AB_2340694 

SPARC (polyclonal) R&D Cat#AF941; RRID: 
AB_355728 

HI-6B Multiplex Panel - Human CD3, CD4, CD8, 
FoxP3 

Cell IDx Cat#HI06B-005 

CD3 (clone SP7) Abcam Cat#Ab16669; 
RRID: AB_443425 

Goat anti-rabbit IgG AF532 Thermo Cat#A-11009; 
RRID: 
AB_2534076 

PD-1 (polyclonal) Novus Cat#AF1086; 
RRID: AB_354588 

Donkey anti-goat IgG AF555 Thermo Cat#A-21432; 
RRID: 
AB_2535853 

Chemicals, peptides, and recombinant proteins 

Trypan Blue Exclusion Thermo 15250061 

Triton X-100 Sigma-Aldrich Cat#T8787 
 

Tween 20  Millipore Sigma Cat#9005-64-5 

PBS, pH 7.4 GIBCO Cat#10010-023 

BD Cytofix/Cytoperm  
 

BD Biosciences Cat#554722 

Optimal cutting temperature (OCT) compound  Sakura Cat#4583 

Sucrose  Millipore Sigma Cat#S0389 

Bovine Serum Albumin  Millipore Sigma  Cat#A1933 

Human Fc-block 
 

BD Biosciences Cat#564219 

diH2O 
 

Quality Biological Cat#351-029-101 

Fluoromount-G Southern Biotech Cat#0100-01 
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Hoechst 33342 
 

ThermoFisher Scientific Cat#H3570 

Lithium borohydride (purchase in 1 gram 
aliquots) 

STREM Chemicals Cat#93-0397 

Chrome Alum Gelatin  
 

Newcomer Supply Cat#1033A 

AR6 buffer 10X  
 

Akoya Biosciences Cat#AR600250ML 

Ethanol, 200 Proof  
 

Decon Labs, Inc. Cat#2701 

Formalin, 10% neutral buffered  
 

Cancer Diagnostics, Inc. Cat#FX1003 

Xylene, histology grade 
 

Newcomer Supply Cat#1446C 

ImmEdge Pen Vector Laboratories Cat#H-4000 

Normal Rabbit Serum Abcam Cat#Ab7487 

Normal Goat Serum Abcam Cat#Ab138478 

Critical commercial assays 

Chromium Next GEM Single Cell 5' Kit v2, 16 
rxns 

10X Genomics Cat#PN-1000263 

Chromium Next GEM Chip K Single Cell Kit, 48 
rxns 

10X Genomics Cat#PN-1000286 

Chromium Single Cell Human BCR Amplification 
Kit, 16 rxnsv 

10X Genomics Cat#PN-1000253 

Library Construction Kit, 16 rxns 10X Genomics Cat#PN-1000190 

AllPrep kit  Qiagen Cat# 80204 

TruSeq Stranded mRNA Library kit  Illumina Cat# 20020594 

Deposited data 

RNA-seq data  This paper TBD 

Imaging data (IBEX and MxIF) This paper TBD 

ASCT+B Tables This paper TBD 
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Software and algorithms 

Leica Application Suite X (LAS X) Leica Microsystems RRID:SCR_01367
3 

Imaris and Imaris File Converter (x64, version 
9.5.0) 

Bitplane RRID:SCR_00737
0 

Python (version 3.7.0 and higher) 
 

Python RRID:SCR_00839
4 

SimpleITK Imaris Python Extension (Radtke et al., 2022) https://doi.org/10.5
281/zenodo.46323
20 

BostonGene Software This paper TBD 

GraphPad Prism, version 8 GraphPad Software RRID:SCR_00279
8 

Adobe Photoshop CC 2020 Adobe  

Adobe Illustrator CC 2020 Adobe  

Adobe After Effects CC 2020 Adobe  

Adobe Media Encoder CC 2020 Adobe  

Other 

2-well chambered coverglass  Lab-Tek Cat#155380 

Dissecting mat, flexible, polypropylene  Newcomer Supply Cat#5218A 

Dissecting needles  Newcomer Supply Cat#5220PL 

Histomolds, 15mm x 15mm x 5mm  Sakura Cat#4566 

Sterile disposable scalpels #11  Newcomer Supply Cat#6802A 

VWR Superfrost Plus micro slides VWR Cat#48311-703 

EasyDip slide staining kit 
 

Newcomer Supply Cat#5300KIT 

EasyDip anodized aluminum jar rack holder  
 

Newcomer Supply Cat#5300JRK 

Wash N’Dry cover slip rack  
 

Electron Microscopy 
Sciences 

Cat#70366-16 

 
SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 
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Contents: 
Figure S1: Evaluation of gene expression profile and cellular composition of normal and FL LNs 
using scRNA-seq. 
Figure S2: RNA-seq assessment of clonotypes and N-glycosylation sites within variable regions 
of immunoglobulin genes. 
Figure S3. Artificial intelligence (AI)-driven pipeline for multiplexed image analysis.  
Figure S4: IBEX imaging allows detailed spatial profiling of tumor B, myeloid, stromal, and other 
cell types in situ. 
Figure S5. Visualization and quantification of histological patterns and cellular communities using 
IBEX. 
Figure S6. Workflows for comparing spatial patterns between IBEX and MxIF images. 
Figure S7. Integration of multimodal technologies to evaluate normal and FL LNs. 
Table S1. Clinical and pathological characteristics of non-FL and FL samples.  
Table S2. Comparison of samples across omics and imaging platforms (Included as separate 
dataset). 
Table S3. Differentially expressed genes from bulk RNA-seq reported as fold change values 
(Included as separate dataset). 
Table S4. Cell-specific gene expression and cell annotations for bulk RNA-seq based 
deconvolution. 
Table S5. Training settings for deep learning algorithms used in this study. 
Table S6. IBEX and MxIF imaging panels for fixed frozen and FFPE tissues. 
Table S7. Bulk RNA-seq gene signatures used for cell community assessment.  
Accompanying Datasets: https://doi.org/10.5281/zenodo.6536724 
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