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Abstract Genome-wide association studies have demonstrated that most34
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traits are highly polygenic; however, translating these polygenic signals into35

biological insights remains difficult. A lack of satisfactory methods for36

translating polygenic results across species has precluded the use of model37

organisms to address this problem. Here we explore the use of polygenic38

transcriptomic risk scores (PTRS) for translating polygenic results across species.39

Unlike polygenic risk scores (PRS), which rely on SNPs, PTRS use imputed gene40

expression for prediction, which allows cross-species translation to orthologous41

genes. We first developed RatXcan, which is a framework for42

transcriptome-wide association studies (TWAS) in outbred rats. Leveraging43

predicted transcriptome and genotype data from UK Biobank, and the44

genetically trained gene expression models from RatXcan, we scored more than45

3,000 rats using human-derived PTRS for height and BMI. Strikingly, we found46

that these human-derived PTRS significantly predicted analogous traits in rats47

(r = 0.08, P = 8.57 × 10−6; r = 0.06, P = 8.51 × 10−4, respectively). The genes48

included in the PTRS were enriched for biological pathways including skeletal49

growth and metabolism and were over-represented in tissues including50

pancreas and brain. This approach facilitates experimental studies in model51

organisms that examine the polygenic basis of human complex traits and52

provides an empirical metric by which to evaluate the suitability of specific53

animal models and identify their shared biological underpinnings.54

55
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Introduction56

Over the last decade, genome-wide association studies (GWAS) have identified57

numerous genetic loci that contribute to biomedically important traits [Visscher58

et al., 2017]. However, translating these results into biologically meaningful dis-59

coveries remains extremely challenging [Lewis and Vassos, 2020, Martin et al.,60

2019, Alliance et al., 2021]. GWAS have demonstrated that most traits have a61

highly polygenic architecture, meaning that numerous genetic variants with indi-62

vidually small effects confer risk [Loos, 2020]. The cumulative results from GWAS63

can be used to construct polygenic risk scores (PRS), which summarize the effects64

of many loci on a trait [Wray et al., 2007].65

Model organisms provide a system in which the effect of genotype, genetic66

manipulations andenvironmental exposures canbe experimentally tested. Whereas67

the tools for usingmodel organisms to study individual genes arewell established,68

there are no satisfactory methods for studying the polygenic signals obtained69

from GWAS in model organisms. PRS are not suitable because they summarize70

the effects of many single-nucleotide polymorphisms (SNPs) on a trait; however,71

humans SNPs do not have direct homologs in other species, and even if they did,72

they would not be expected to have the same effects or to tag the same causal73

variants.74

To address this problem, we sought to develop a novel method that allows75

translation of polygenic signals from humans to other species and vice-versa.76

This method focuses on gene expression, rather than SNPs, and builds on our77

past work with polygenic transcriptomic risk scores (PTRS) [Liang et al., 2022].78

PTRS are premised on the regulatory nature of most GWAS loci [Maurano et al.,79

2012] and use genetically regulated gene expression (transcript abundance), in-80

stead of SNPs as features for prediction. We recently showed that PTRS are useful81

for translating polygenic signals between different human ancestry groups [Liang82

et al., 2022], supporting the view that the effects of genes on a phenotype are con-83

served across ancestry groups. In the current project we hypothesized that the84

relationships between genes and phenotypes are conserved not only between85

human ancestry groups, but also across species. Thus, we explored whether86

PTRS trained using human data could predict similar traits in another species87

by applying the PTRS to orthologous genes in the target species. We selected88

heterogeneous stock (HS) rats because they are a well characterized, outbred89

mammalian population for which dense genotype, phenotype and gene expres-90

sion data data are available in thousands of subjects [Solberg Woods and Palmer,91

2019] [Chitre et al., 2020].92
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Figure 1. Schematic representation of cross-species polygenic translation framework.
The workflow was divided into 4 stages: a) gene expression prediction training, b) gene-trait association, c) PTRS
fitting in humans, d) PTRS prediction. a) In the gene expression prediction training stage, we used genotype
(117,155 SNPs) and gene expression data (15,216 genes) from samples derived from 5 brain regions in 88 rats. The
prediction weights (rat PredictDB weights) are stored in predictdb.org. Rats used in this stage constitute the training
set. b) In the gene-trait association stage, we used genotype and phenotype data from the target set of 3,407 rats
(no overlap with training set rats). Predicted gene expression (8,567 genes for which prediction was possible) was
calculated for all the 3,407 target set rats, and gene-trait associations were tested using RatXcan (N=1,463-3,110).
We queried human gene-level associations from PhenomeXcan to estimate enrichment levels with our rat findings.
c) Human PTRS weights were fitted using elastic net regression of height and BMI on predicted whole blood gene
expression levels (7,002 genes) in the UK Biobank (N=356,476). d) The human PTRS weights were used for complex
trait prediction in rats. PTRS trained in humans were then used to predict analogous traits in our target rat set.
Prediction performance of PTRS was calculated as the correlation (and partial correlation) between the predicted
scores in rats and the observed traits. Analyses in rats are shown in blue and analyses in humans are shown in pink.
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Results93

Experimental setup94

To build a framework for translating genetic results between species, we followed95

the experimental setup illustrated in Fig. 1. In the training stage (Fig. 1a), we inves-96

tigated the genetic architecture of gene expression and built prediction models97

of gene expression in rats. We used genotype and transcriptome data from five98

brain regions sampled from 88 rats, generated by the NIDA Center for GWAS for99

Outbred rats (Fig. 1a). In the association stage (Fig. 1b), we used their genotype100

data to predict the transcriptome in a non-overlapping target set of 3,407 rats and101

tested for association between the genetically predicted gene expression and 7102

physiological traits by adapting the PrediXcan software, which was originally de-103

veloped for use in humans [Gamazon et al., 2015] to rats (’RatXcan’). The phys-104

iological traits were: body length, body weight, BMI (body length/body weight2),105

three fat pad weights, and fasting glucose. In the discovery stage (Fig. 1c), we de-106

termined the human-derived PTRS weights for height and BMI using data from107

356,476 individuals of European-descent from UK Biobank. In the final stage (Fig108

1d), we used these human-derived weights in conjunction with genetically pre-109

dicted gene expression for rats in the target set. We assessed the prediction per-110

formance by comparing the predictions from the PTRS to the true body length111

(which is equivalent to human height) and BMI for each rat.112

Genetic Architecture of Gene Expression across Brain Tissues113

To inform the optimal prediction model training, we examined the genetic archi-114

tecture of gene expression by quantifying its heritability and polygenicity. Unless115

otherwise specified, we show the results for nucleus accumbens core in themain116

section and for the remaining tissues in the supplement.117

We calculated the heritability of expression for each gene by estimating the118

proportion of variance explained (PVE) using a Bayesian Sparse Linear Mixed119

Model (BSLMM) [Zhou et al., 2013]. We restricted the feature set to variantswithin120

1 Mb of the transcription start site of each gene since this is expected to capture121

most cis-eQTLs. Among the 15,216 genes considered, 3,438 genes were heritable122

in the nucleus accumbens core, with 95% credible sets’s lower boundary greater123

than 1%. The mean heritability ranged from 8.86% to 10.12% for all brain tissues124

tested (Table 1). Fig. 2a shows the heritability estimates for gene expression125

in the nucleus accumbens core, while heritability estimates in other tissues are126

shown in Fig. S1. In humans, we identified a similar heritability distribution (Fig.127

2b, Fig. S2) based on whole blood samples from GTEx.128

Next, to evaluate the polygenicity of gene expression levels, we examined129

whether predictors with more polygenic (i.e., many variants of small effects) or130

more sparse (i.e., just a few larger effect variants) architecture correlated better131
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with observed expression. We fitted elastic net regression models using a range132

of mixing parameters from 0 to 1 (Fig. 2c). The leftmost value of 0 corresponds133

to ridge regression, which is fully polygenic and uses all cis-variants. Larger val-134

ues of the mixing parameters yield more sparse predictors, with the number of135

variants decreasing as the mixing parameter increases. The rightmost value of 1136

corresponds to lasso, which yields themost sparse predictorwithin the elastic net137

family. Similar to reports in human data [Wheeler et al., 2016], sparse predictors138

outperformed polygenic predictors (Fig. 2c).139

Weused the 10-fold cross-validatedPearson correlation (R) betweenpredicted140

and observed values as ameasure of performance (Spearman correlation yielded141

similar results). We observed a substantial drop in performance towards the142

more polygenic end of the mixing parameter spectrum (Fig. 2c). For reference,143

we show similar results using human gene expression data from whole blood144

samples in GTEx individuals (Fig. 2d). Overall, these results indicate that the ge-145

netic architecture of gene expression in rats (detectable at current sample sizes)146

is sparse, similar to that of humans [Wheeler et al., 2016].147

Generation of Prediction Models of Gene Expression in Rats148

Based on the relative performance across different elastic netmixing parameters,149

we chose a value of 0.5, which yielded slightly less sparse predictors than lasso150

but provided robustness to missing or low quality variants; this is the same value151

that we have chosen in the past for humans datasets [Gamazon et al., 2015].152

We trained elastic net predictors for all genes in all 5 brain regions. The proce-153

dure yielded 8,244-8,856 genes across five brain tissues from the available 15,216154

genes (Table 1). The 10-fold cross-validated prediction performance (R2) ranged155

up to 80%with amean of 8.51% in the nucleus accumbens core. Similarly to Fig. 1a156

and b, mean prediction R2 was consistently lower than mean heritability, as is ex-157

pected since genetic prediction performance is restricted by its heritability. Other158

brain tissues yielded similar prediction performance (Table 1). Reassuringly, pre-159

diction performance values followed the heritability curve, confirming that genes160

with highly heritable expression tend to be better predicted than genes with low161

heritability in both rats and humans (Fig. 2a-b). Interestingly, we identified better162

prediction performance in rats than in humans (Fig. S3), despite heritability of163

gene expression being similar across species (Fig. 2a-b).164

In Fig. 3a-b, we show the prediction performance of two of the best predicted165

genes in rats (Mgmt, R2 = 0.72) and humans (RPS26, R2 = 0.74). Across all genes,166

we found that the prediction performance in rats was correlated with that of hu-167

mans (R = 0.061, P = 8.03 ∗ 10−6; Fig. 3c). Furthermore, performance per gene be-168

tween two tissues was similar in both rats (Fig. 3d) and humans (Fig. 3e), namely,169

genes that were well-predicted in one tissue were also well-predicted in another170

tissue. Correlation of prediction performance across tissues ranged from 58 to171
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84% in rats and 42 to 69% in humans.172

Having established the similarity of the genetic architecture of gene expres-173

sion between rats and humans, we transitioned to the association stage.174

Brain Region # # Genes Average Average
Rats Predicted R2 cis ℎ2

Nucleus Accumbens Core (NAcc) 78 8,567 8.51% 9.82%
Infralimbic Cortex (IL) 83 8,856 8.87% 9.77%
Lateral Habenula (LHb) 83 8,244 7.78% 8.86%
Prelimibic Cortex (PL) 81 8,315 9.33% 10.12%
Orbitofrontal Cortex (OFC) 82 8,821 9.13% 9.82%

Table 1. Summary of heritability and prediction performance in rats. The table shows the number of rats
used in the prediction, number of genes predicted per model, the average predicion performance R2, and average
cis-heritability cis ℎ2, for all gene transcripts.

PrediXcan/TWAS Implementation in Rats (RatXcan)175

To extend the PrediXcan/TWAS framework to rats, we developed RatXcan. We176

used the predicted weights from the training stage to estimate the genetically reg-177

ulated expression in the target set of 3,407 rats. We then tested the association178

between predicted expression and seven physiological traits.179

We identified 90 Bonferroni significant genes (P (0.05∕5388) = 9.28 × 10−6) in180

57 distinct loci separated by ±1 MB for rat body length (Fig. 4a) and 21 signifi-181

cant genes in 15 loci for rat BMI (Fig. 4b; Supplementary Table 1). Among the182

top significant genes, Adcy3 was associated with fat traits (P = 7.22 × 10−16) and183

body weight (P = 2.41 × 10−4). The human ortholog, ADCY3, was associated with184

BMI [Speliotes et al., 2010] and was reported to mediate energy homeostasis185

and is considered a promising therapeutic target for obesity [Saeed et al., 2018].186

Similarly, Prlhr was associated with fat traits, body weight, BMI, and body length187

(P = 5.55 × 10−17, P = 2.81 × 10−16, P = 5.12 × 10−12, P = 4.65 × 10−04, respectively).188

The human ortholog, PRLHR, was associated with BMI and body fat percentage189

(P = 1.76 × 10−6, P = 3.62 × 10−6) [Pividori et al., 2020]. PRLHR encodes for a 7-190

transmembrane domain receptor for prolactin-releasing hormone [Ozawa et al.,191

2002]. PRLHRwas found to be associated with lactation, regulation of food intake192

and pain-signal processing [Atanes et al., 2021]. Moreover, both Adcy3 and Prlhr193

have previously been identified as candidate genes for adiposity in the HS rat194

population [Chitre et al., 2020].195

To evaluate whether trait-associated genes in rats were more significantly196

associated with the corresponding trait in humans, we performed enrichment197

analysis. Specifically, we selected genes that were nominally associated with rat198
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Figure 2. Heritability and sparsity of gene expression in both rats and humans. a) cis-heritability of gene
expression levels in the nucleus accumbens core of rats calculated using BSLMM (black). We show only genes (N =
10,268) that have an equivalent ortholog in the GTEx population. On the x-axis, genes are ordered by their
heritability estimates. 95% credible sets are shown in gray for each gene. Blue dots indicate the prediction
performance (cross validated R2 between predicted and observed expression). b) cis heritability of gene expression
levels in whole blood tissue in humans from GTEx. We show only the same 10,268 orthologous genes. On the
x-axis, genes are ordered by their heritability estimates. 95% credible sets are shown in gray for each gene. Pink
dots indicate the prediction performance (cross validated R2 between predicted and observed expression). c) Cross
validated prediction performance in rats (Pearson correlation R) as a function of the elastic net parameter ranging
from 0 to 1. d) Cross validated prediction performance in humans (Pearson correlation R) as a function of the
elastic net parameter ranging from 0 to 1.
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Figure 3. Shared genetic architecture of gene expression in rats and humans a) Comparison of predicted vs.
observed expression for a well predicted gene in rats (Mgmt, R2 = 0.72, R = 0.65, P < 2.20 × 10−16).
b) In humans, predicted and observed expression for RPS26 were significantly correlated (R2 = 0.74, R = 0.86,
P < 2.20 × 10−16). c) Prediction performance was significantly correlated across species (R = 0.06, P = 8.03 × 10−06)
d-e) and across all five brain tissues tested in rats and humans. In rats, within tissue prediction performance
ranged from (R = [0.58 − 0.84], P < 2.20 × 10−16). In humans, the range was [R = 0.42 − 0.69, P < 2.20 × 10−16] .
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body length (P < 0.05) and compared the p-value from the analogous human199

trait (height) against the background distribution. Given the large sample size of200

human height GWAS, we expected the background distribution (shown in pink,201

Fig. 4c) of height gene-based associated p-values to depart substantially from202

the identity line (in gray). The subset of genes that were associated with rat body203

length (in blue, Fig. 4c) showed a major departure from the background distribu-204

tion, indicating that body length genes in rats were more significantly associated205

with human height than expected. To quantify the enrichment, we compared the206

p-value distribution of all the genes with the distribution of the subset of genes207

that were nominally significantly associated with rat body length (P = 6.55×10−10).208

Similar enrichment was found for BMI (Fig. 4d) (P = 8.07 × 10−07). This systematic209

enrichment across human and rat findings further encouraged us to test whether210

PTRS based on human studies could predict analogous traits in rats.211

Transfer PTRS from Humans to Rats212

To test the portability of PTRS across species, we started by calculating the hu-213

man PTRS weights, as described in Liang et al. [2022]. Using 356,476 UK Biobank214

unrelated European descent individuals, we fitted an elastic net regression with215

height as the outcome variable and the imputed gene expression as the predictor216

(height =∑

g 
g ⋅Tg+� with �, an error term and Tg the imputed gene expression in217

humans). We chose to use GTEx whole blood predictors, as it was previously re-218

ported to perform well in humans [Liang et al., 2022]. We applied this procedure219

for a range of elastic net regularization parameters to increase the flexibility of220

the prediction models, resulting in 37 sets of weights. The regularization param-221

eter is a hyper-parameter that can be estimated in a validation set, which could222

be a subset of the target set. Here we show the prediction performance across223

the full range of hyper-parameters (37 models).224

For each rat in the target set, we calculated 37 PTRS (one for each regulariza-225

tion parameter) as the weighted sum of the predicted gene expression in rats226

with the human-derived weights, which were already computed during the asso-227

ciation stage (PTRSrat = ∑


g ⋅ Tg,rat). We used a range of 1 to 2,017 genes, after228

limiting the human genes that had orthologs in rats (28.72%), to discern how pre-229

diction varied as the number of genes changed. The large number of genes used230

for prediction is consistent with prior human literature indicating that the genetic231

architecture of height consists of a large number of genes [Wood et al., 2014].232

Consistent wit prior human literature [Yengo et al., 2018] [Zhao et al., 2015],233

gene set enrichment analyses showed that the genes used to calculate human234

PTRSweightswere substantially enriched for pathways and tissues that contribute235

to skeletal growth and metabolic processes, including myogenesis (P = 1.18 ×236

10−5), adipogenesis (P = 7.74 × 10−17) and fatty acid metabolism (P = 3.97 × 10−15)237

(ST. 16). Tissue analysis revealed that PTRS genes are enriched as diferentially ex-238
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Figure 4. Polygenic Transcriptomic Risk Scores (PTRS) can translate genetic information across species. a)
Manhattan plot of the association between predicted gene expression and rat body length, which is analogous to
human height. b) Manhattan plot of the association between predicted gene expression and rat BMI. In both a) and
b) we label the genes whose human orthologs are at least nominally associated in human data (P < 0.01) ; Grey
dotted line corresponds to the Bonferroni correction threshold of 0.05/5,388 of tests. Red dotted line corresponds
to an arbitrary threshold of 1 × 10−4. Triangular points refer to genes that were significantly associated with body
length at the Bonferroni threshold, where the direction of the triangle corresponds with the sign of the associated
gene. c) Q-q plot of the p-values of the association between predicted gene expression levels in humans
(phenomexcan.org). Pink dots correspond to all genes tested in humans. Blue dots correspond to the subset of
genes that were nominally significantly associated with body length in rats (P < 0.05). d) Q-q plot of the p-values of
the association between predicted gene expression levels in humans (phenomexcan.org). Pink dots corresponds to
all genes in humans. Blue dots correspond to the subset of genes that were nominally significantly associated with
BMI in rats (P < 0.05). e) Correlation between human-derived height PTRS and observed body length in rats for the
37 regularization parameters used in building the PTRS. f) Correlation between human-derived BMI PTRS and
observed BMI in rats for the 37 regularization parameters used in building the PTRS. (The confidence intervals for
models 1 and 2 include zero, not shown.)
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pressed genes in multiple relevant tissues, including pancreas, heart, liver, and239

central nervous system (Fig. S4).240

Strikingly, human-derived height PTRS significantly predicted body length in241

rats; that is, the correlation between PTRS and observed rat body length was sig-242

nificant for all the elastic net regularization parameters that included at least 27243

genes (maximum R = 0.08, P = 8.57 × 10−6; Fig. 4e). To compare our prediction244

performance to that in the human population, we used the partial R2 (R̃2, the245

proportion of variance explained by the predictor after accounting for other co-246

variates) reported by Liang et al. [2022]. The partial R̃2 for body length in rats was247

0.64% (P = 8.57 × 10−6), while in the UK Biobank European test set, the partial R̃2248

for height in humans was 9.40%.249

We applied the same procedure to BMI and again found significant predic-250

tion; the correlation between human-derived BMI PTRS and observed BMI was251

significant across all regularization parameters that included at least 247 genes252

(maximum R = 0.06, P = 8.51 × 10−4; Fig. 4f). The maximum partial R̃2 was 0.36%253

(P = 8.52×10−4). In UKBiobank European test set, the partial R̃2 for BMI in humans254

was 1.45%.255

As anegative control, we compared the correlationbetween thehuman-derived256

height PTRS and observed fasting glucose in the target set of rats. As shown in Fig.257

S5, the correlation was not significant (P = 0.71), confirming that a human-derived258

PTRS can predict a similar trait in rats, but do not predict dissimilar traits.259

Discussion260

Overwhelming evidencedemonstrates thatmost complex diseases are extremely261

polygenic, however there are no methods for translating polygenic results in262

other species. Here, we present a novel analytical framework that facilitates263

cross-species translation of polygenic results, providing a unique and urgently264

needed bridge between the human and model organism disciplines. Translation265

of polygenic information has been challenging because, despite the utility of PRS266

for trait prediction in humans, SNPs do not transfer across species. Our approach267

circumvents this limitation by translating polygenic information to the level of268

genes and then relying on the mapping of orthologous genes between humans269

and another species, in this case rats.270

A critical first step in this project was the development of RatXcan, which is271

the rat version of PrediXcan [Gamazon et al., 2015], which is a well-established272

statistical tool that is used in human genetics. We showed that the genetic archi-273

tecture of gene expression in rats is broadly similar to humans: they are heritable,274

sparse, and the degree of heritablity is preserved across tissues; some of these275

observations are consistent with another recent publication that mapped eQTLs276

in HS rats [Munro et al., 2022]. Interestingly, despite the smaller sample sizes277
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used to train our prediction models, rats showed better prediction than humans.278

This might reflect the fact that HS rats have a preponderance of common alleles279

[Chitre et al., 2020] whereas humans have numerous rare alleles that influence280

gene expression but are difficult to capture in prediction models. The superior281

prediction may also reflect the longer haplotype blocks that are present in HS282

rats relative to humans [Chitre et al., 2020].283

Using RatXcan, we tested gene-level associations of 7 physiological traits that284

had been previously measured in rats. Our main focus was on height and BMI285

because of the availability of large human GWAS that allowed us to develop ro-286

bust human PTRS for those traits and because of the relatively unambiguous sim-287

ilarity between traits in humans and rats. We found substantial enrichment of288

trait-associated genes among orthologous human trait-associated genes, which289

encouraged us to use the human PTRS to try to predict similar traits in the HS290

rats.291

Remarkably, we found that PTRS developed in humans significantly predicted292

both rat body length (which is equivalent to height) and BMI in rats. These re-293

sults demonstrate that PTRS is a viable strategy for translating polygenic results294

between humans and rats. Even though, the proportion of body length variance295

explained by our PTRS was only 0.64% compared to the 9.40% in the European296

target set, that proportion dropped substantially as low as 1.46% when testing297

in non European target sets (See supplementary Table 6 in [Liang et al., 2022]).298

Closer examination of these results revealed that prediction of height improved299

until about 100 genes were included in themodel, whereas prediction of BMI con-300

tinued to improve until about 250 genes were included in the model. It is likely301

that larger and thus more powerful rat transcriptomic datasets would improve302

prediction by increasing the number of genes that contributed to prediction as303

well as the accuracy of prediction. In addition, of the 7,044 genes that were in-304

cluded in the human-derived PTRS, only 2,017 had rat orthologs; increasing our305

knowledge of orthologous genes or identifying other strategies to address this306

limitation might further improve performance.307

The magnitude and significance of prediction using human PTRS for BMI to308

predict rat BMIwas smaller than it was for humanheight to rat body length, which309

was expected given the lower heritability of human BMI. For reference, heritabil-310

ity estimates were more than three-fold lower for human BMI as compared to311

human height: 15% for BMI vs. 55% for height [Liang et al., 2022]. The ability312

to transfer polygenic signals to other species creates novel opportunities to ex-313

plore themechanisms underlying those traits. For example, genes included in the314

human-derived PTRS showed evidence of enrichment in relevant pathways and315

tissues for skeletal and metabolic processes, demonstrating that PTRS can un-316

cover shared underlying biological mechanisms, which can be more intensively317

studied in model systems. It is also possible that PTRS could be used to iden-318
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tify which aspects (e.g. tissues, cell types, etc) of a human trait are recapitu-319

lated by analogous phenotypes in model organism, which could highlight both320

the strengths and limitations of a phenotype that is used to model a disease or321

other human trait.322

For example, PTRS will provide a novel means of validating animal models of323

human disorders, as it will be possible to empirically test whether the genetic324

signature for a particular condition in humans is related to that of analogous325

phenotypes in rodents. Notably, PTRS captures both the magnitude and the di-326

rectionality of each gene’s effect on a phenotype. A potential application of PTRS327

could be to categorize rodents as being more or less susceptible to human traits328

and diseases aimed at quantifying whether non-genetic parameters (e.g., drugs,329

environmental stressors) alter gene expression in a way that modifies the PTRS.330

Another advantage of our approach is that it focuses on the role of several genes331

involved in a phenotype. Thus, PTRS could also serve as a toolkit for identify-332

ing components of molecular networks for drug repositioning, namely studies333

aimed at identifying small molecules and other interventions that can alter the334

global gene expression inmodel organisms in a way that lowers risk, as predicted335

by PTRS analyses.336

There is a widely recognized need formethods to integrate data from genetics337

studies in humans and non-humans [Palmer et al., 2021b]. To address this need,338

several prior efforts combine human genetic results with sets of genes identi-339

fied as differential expressed in various model organisms [Reynolds et al., 2021].340

Two such studies examined the overlap between human GWAS results for traits341

related to human substance use disorder and changes in gene expression in the342

brain, typically following acute or chronic administration of drugs. In two of these343

approaches, gene sets were collected from rodent differential gene expression344

studies that examined the effects of alcohol and/or nicotine and then used a parti-345

tioned heritability approach, which showed enrichment of these genes in human346

GWAS results [Palmer et al., 2021a], although therewas somequestion about the347

specificity of the effects [Huggett et al., 2021]. Another study used a broadly sim-348

ilar approach but also included protein-protein network information [Mignogna349

et al., 2019]. In yet another study that examined polygenicity in rodents, a cross350

was made to introduce genetic variability among mice that all carried the 5XFAD351

transgene, which recapitulates some features of Alzheimer’s disease (AD). By clas-352

sifying mice based on their genotype at 19 markers that were near genes impli-353

cated by human GWAS for AD, they showed evidence of epistatic modulation of354

the phenotypic effects of the 5XFAD allele by these 19 markers [Neuner et al.,355

2019]. While this approach shares the most commonalities with PTRS, Neuner et356

al [Neuner et al., 2019] did not extrapolate GWAS data to transcript abundance,357

did not preserve the weights and directionality available from TWAS and account358

for whether or not the mouse genes showed heritable gene expression differ-359
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ences.360

Our studies are conceptually similar to studies that seek to examine cellular361

andmolecular phenotypes in culturedhuman cells forwhich PRShave been calcu-362

lated [Dobrindt et al., 2020]. In a similar manner, rats or other model organisms363

could be assigned PTRS such that rats with a high or low risk of a uniquely human364

phenotype, such as schizophrenia, could be examined to identify molecular, cel-365

lular or circuit level differences between rats with high or low scores. Similarly,366

just as pharmacological manipulation can be applied to cells in culture that have367

been sorted for PRS or PTRS scores [So et al., 2017], pharmacological treatments368

could be administered to a model species to see if the gene expression pattern369

changed in a manner associated with reduced risk for a disease or other condi-370

tion.371

There are several limitations in the current study that need be addressed in372

the future. The sample size of the reference transcriptome data in rats was lim-373

ited. We would expect better predictability estimates in our elastic-net trained374

models with larger sample sizes. Second, presumably due to the lack of ade-375

quate sample size, we did not have a sufficiently robust PTRS from rats to at-376

tempt rat to human PTRS translation. Third, we suspect that in both humans and377

rats, some gene-level associations may be confounded by linkage disequilibrium378

contamination and co-regulation. This problem is likely to be more serious in379

model organisms where even longer range LD exists. Refining PTRS by integrat-380

ing fine-mapping and co-localization approaches could improve portability across381

species. Finally, integration of other omic data types (e.g., protein, methylation,382

metabolomics) and the use of cell-specific data may improve prediction accuracy383

and cross-species portability. It is worth noting that while we have shown success384

with humans and rats, it is still not clear whether more distantly related species,385

such as non-mammalian vertebrates or even insects, might also lend themselves386

to the PTRS approach.387

Despite these limitations, we have shown that PTRS, which has previously388

beenused to address the difficulty of transferring PRS betweenhuman ancestries389

[Liang et al., 2022], can successfully transfer polygenic results between species.390

One important feature of this approach is its ability to preserve both magnitude391

and directional information about the relationship between gene expression and392

phenotype. This method should support new and transformative experimental393

designs. Most importantly, it provides a method to empirically validate traits that394

are studied inmodel systems. While the validity of these animalmodels has been395

a source of passionate debate, empirical evidence has been most based on a sin-396

gle example. Our polygenic approach provides a more holistic approach that is397

urgently needed.398
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Methods399

Genotype and expression data in the training rat set400

The rats used for this study are part of a large multi-site project focused on ge-401

netic analysis of complex traits (www.ratgenes.org). N/NIH heterogeneous stock402

(HS) outbred rats are the most highly recombinant rat intercross available, and403

are a powerful tool for genetic studies ([SolbergWoods and Palmer, 2019]; [Chitre404

et al., 2020]). HS ratswere created by interbreeding eight inbred strains andmain-405

tained by randomized breeding strategy to minimize inbreeding and control for406

genetic drift.407

For training the gene expression predictors, we used RNAseq and genotype408

data pre-processed for Munro et al. [2022]. We used 88 HS male and female409

adult rats, for which whole genome and RNA-sequencing information was avail-410

able across five brain tissues [nucleus accumbens core (NAcc), infralimbic cortex411

(Il), prelimbic cortex (PL), orbitofrontal cortex (OFC), and lateral habenula (Lhb);412

Table 1]. Mean age was 85.7 ± 2.2 for males and 87.0 ± 3.8 for females. All413

rats were group housed under standard laboratory conditions and had not been414

through any previous experimental protocols. Genotypes were determined us-415

ing genotyping-by-sequencing, as described previously in [Parker et al., 2016],416

[Chitre et al., 2020] and [Gileta et al., 2020]. Bulk RNA-sequencingwas performed417

using IlluminaHiSeq 4000with polyA libraries, 100 bp single-end reads, andmean418

library size of 27M. Read alignment and gene expression quantification was per-419

formed using RSEM and counts were upper-quartile normalized, followed by ad-420

ditional quality controlled filtering steps as described inMunro et al. [2022]. Gene421

expression levels refer to transcript abundance for reads aligned to the gene’s ex-422

ons using the Ensembl Rat Transcriptome.423

For each gene, we inverse normalized the TPM values to account for outliers424

and fit a normal distribution. We then performed PEER factor analysis [Stegle425

et al., 2010]. We regressed out sex, batch number, batch center and 7 PEER fac-426

tors from the gene expression and saved the residuals for all downstream analy-427

ses.428

Genotype and phenotype data in the target rat set429

We used genotype and phenotype data in 3,407 rats (i.e., target set) reported in430

Chitre et al. [2020]. We used phenotypic information on body length (including431

tail), BMI (including tail), bodyweight, fasting glucose levels, and fat pad traits (epi-432

didymal fat, parametrial fat, and retroperitoneal fat). To simplify interpretation,433

we aggregated the results of the three fat traits using the ACAT meta-analysis434

method [Liu et al., 2019]. For each trait, sex, age, batch number and site, were435

regressed out if they were significant and if they explained more than 2 % of the436

variance, as described in [Chitre et al., 2020].437
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Querying human gene-trait association results438

To retrieve analogous humangene-trait association results, wequeried PhenomeX-439

can, a web-based tool that serves gene-level association results for 4,091 traits440

based on predicted expression in 49 GTEx tissues [Pividori et al., 2020]. Ortholo-441

gous genes (N= 22,777)weremappedwith Ensembl annotation, using the biomart442

R package and were one to one matched.443

Estimating gene expression heritability444

We calculated the cis-heritability of gene expression from the training set using a445

Bayesian sparse linear mixedmodel, BSLMM [Zhou et al., 2013], as implemented446

in GEMMA. We used variants within the ±1Mb window up- and down-stream of447

the transcription start and end of each gene annotated by Gencode v26 [Frankish448

et al., 2021]. We used the proportion of variance explained (PVE) generated by449

GEMMA as the measure of cis-heritability of gene expression. We then display450

only the PVE estimates of 10,268 genes that were also present in the human gene451

expression data.452

Heritability of human gene expression, whichwas also calculatedwith BSLMM,453

was downloaded from the database generated by Wheeler et al. [2016]. Genes454

were also limited to the same 10,268 as above.455

Examining polygenicity versus sparsity of gene expression456

To examine the polygenicity versus sparsity of gene expression in rats, we iden-457

tified the optimal elastic net mixing parameter �, as described in Wheeler et al.458

[2016]. Briefly, we compared the prediction performance of a range of elastic net459

mixing parameters spanning from 0 to 1 (11 values from 0 to 1, with steps of 0.1).460

If the optimal mixing parameter was closer to 0, corresponding to ridge regres-461

sion, we deemed gene expression trait to be polygenic. In contrast, if the optimal462

mixing parameter was closer to 1, corresponding to lasso, then the gene expres-463

sion trait was considered to be more sparse. We also restricted the number of464

genes in the pipeline to the 10,268 orthologous genes.465

Training gene expression prediction in rats466

To train prediction models for gene expression in rats, we used the training set467

of 88 rats described above and followed the elastic net pipeline from predictdb.org.468

Briefly, for each gene, we fitted an elastic net regression using the glmnet package469

in R. We only included variants in the cis region (i.e., 1Mb up and downstream of470

the transcription start and end). The regression coefficient from the best penalty471

parameter (chosen via glmnet’s internal 10-fold cross validation [Zou and Hastie,472

2005]) served as the weight for each gene. The calculated weights (ws) are avail-473

able in predictdb.org. For the comparison of number of predictable genes across474

species, we ran the same cross-validated elastic net pipeline in four GTEx tissues475
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with sample sizes similar to that of the rats: Substantia Nigra, Kidney Cortex,476

Uterus and Ovary. To ensure fair comparison, we used the same number of477

genes that were orthologous across all four human tissues and rat tissues.478

Estimating overlap and enrichment of genes between rats and hu-479

mans480

For human transcriptome prediction used in the comparison with rats, we simply481

downloaded elastic net predictors trained in GTEx whole blood samples from482

the PredictDB portal, as previously done in humans [Barbeira et al., 2021]. This483

model was different from the ones used in the UK Biobank for calculating the484

PTRS weights (See Calculating PTRS in a rat target set).485

We quantified the accuracy of the prediction models using a 10-fold cross val-486

idated correlation (R) and correlation squared (R2) between predicted and ob-487

served gene expression [Zou and Hastie, 2005]. For the rat prediction models,488

we only included geneswhose prediction performancewas greater than 0.01 and489

had a non-negative correlation coefficient, as these genes were considered well490

predicted.491

We tested the prediction performance of our elastic net model trained in nu-492

cleus accumbens core in an independent rat reference transcriptome set. We493

predicted expression in the reference set of 188 individuals and compared to494

observed genetic expression in the nucleus accumbens core.495

Implementing RatXcan496

We developed RatXcan, based on PrediXcan [Gamazon et al., 2015] [Barbeira497

et al., 2018] in humans. RatXcan uses the elastic net predictionmodels generated498

in the training set. In the prediction stage, we generated a predicted expression499

matrix for all genes in the rat target set, by fitting an additive genetic model:500

Yg =
∑

kwk,gXk + �501

Yg is the predicted expression of gene g, wk,g is the effect size of marker k for502

gene g,Xk is the number of reference alleles of marker k and � is the contribution503

of other factors that determine the predicted gene expression, assumed to be504

independent of the genetic component.505

We then tested the association between the predicted expression matrix and506

each trait; this was done for available phenotypes. We fitted a linear regression507

of the phenotype on the predicted expression of each gene, which generated508

gene-level association results for all gene trait pairs.509

Estimating overlap and enrichment of genes between rats and hu-510

mans511

We queried PhenomeXcan to identify genes associated with analogous traits in512

humans. PhenomeXcan provides gene level associations aggregated across all513
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available GTEx tissues, as calculated by MultiXcan (and extension of PrediXcan)514

[Barbeira et al., 2019]. To this aim, we adapted MultiXcan to similarly aggregate515

our results across the 5 tested brain tissues in rats. We used a Q-Q plot to inspect516

the level of enrichment across rat and human findings. To quantify enrichment,517

we used a Mann-Whitney test as implemented in R to discern whether the distri-518

bution of the p-values for genes in humans was the same for the genes that were519

and were not nominally significant in rats.520

Calculating PTRS weights in the UK Biobank521

We calculated human-derived height and BMI PTRS weights using elastic net with
a mixing parameter of 0.5, as described in Liang et al. [2022]. We predicted ex-
pression levels in 356,476 UK Biobank unrelated White British participants using
whole blood prediction models trained in GTEx. We used the prediction models
trainedwith UTMOST based on grouped lasso, which borrows information across
tissues to improve prediction performance [Barbeira et al., 2020, Hu et al., 2019].
The predicted expression was generated using high quality SNPs from Hapmap2
[McCarthy et al., 2016]. We performed elastic net regression with height and BMI
as the predicted variables and the predicted expression matrix from 356,476 UK
Biobank unrelated White British individuals. More specifically, for each regular-
ization parameter �, we selected weight parameters 
g that miminized the mean
squareddifference between thepredicted variable Y andpredictionmodelX
+
0where T̂g ∈ ℝN×1 is the standardized predicted expression level of gene g across
N individuals and Ĉl ∈ ℝN×1 is the the observed value of the lth standardized
covariate:


EN = argmin


loss∶l

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
N

∥ Y −X
 − 
0 ∥22 +��∥ 
 ∥1 + �a(1 − �)(∥ 
 ∥)
2
2

X ∶= [T̂1, ..., T̂m, C1, ..., CL]

where 
0 is the intercept, m the number of genes, L is the number of covariates,522

||B||22 is the l2 norm and the ||B||1 is the l1 norm of the effect size vector. � de-523

notes the elastic net mixing parameter and � is the regularization parameter. 37524

different �’s were used, generating 37 different sets of predictors. Covariates in-525

cluded age at recruitment (Data-Field 21022), sex (Data-Field 31), and the first 20526

genetic PCs. Formore details, see Liang et al. [2022]. The values of the regulariza-527

tion parameters were chosen in a region likely to cover a wide range of sparsity528

in the resulting models, from very sparse, containing a couple of genes, to dense,529

containing all genes Liang et al. [2022].530

Calculating PTRS in a rat target set531

To calculate human-derived PTRS for both height and BMI in the target rats, we532

used the predicted gene expression matrix calculated for the association stage.533

19 of 29

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

For each rat, wemultiplied thepredicted expressionwith the correspondingweight534

for that gene, derived from the human PTRS. The aggregated effects of these535

weighted genes are summarized in a single score, PTRS:536

PTRS(rat) = ∑


g ⋅ T̂g(rat)537

We generated 37 PTRSmodels for height and BMI for a range of regularization538

parameters (Fig. 4e-f).539

To identify biologically relevant tissues, pathways and gene sets associated540

with the genes included in the PTRS,we appliedmultiple complementary analyses541

using FUMA v1.3.8 [Watanabe et al., 2017]. These included tissue enrichment542

using differentially expressed genes across 54 specific tissue types from GTEx V8.543

We included multiple gene sets (KEGG, Reactome, GO and Hallmark) from the544

Molecular Signature Database (MsigDB) v7.0.545

Quantifying PTRS prediction performance546

We calculated the Pearson correlation (R) coefficient between PTRS of height and547

BMI and analogous observed phenotypes in rats. To facilitate comparison with548

previous papers, we report partial R̃2. In rats, we used traits that were already549

adjusted for covariates, R̃2 is equivalent to R2. We verified that using Spearman550

correlation did not change the substance of the results (data not shown).551

Code and Data Availability552

The codeused for thiswork is available at https://github.com/hakyimlab/Rat_Genomics_553

Paper_Pipeline. Genotype and expression data are available through [Munro et al.,554

2022]. Prediction models for gene expression in all five brain tissues in rats are555

available at predictdb.org556
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Supplementary information705

Figure S1. Gene expression was heritable [8.86-10.12%] and comparable across
several brain tissues tested (Infralimbic Cortex, IL; Lateral Habenula, LHb;
Prelimibic Cortex, PL; Orbitofrontal Cortex, OFC) in rats. We refer to heritability (ℎ2,
cis-heritability within 1Mb) as the proportion of variance explained (PVE). Across all
brain tissues tested, heritability estimates were significantly correlated (R = [0.58 − 0.83],
P < 2.20 × 10−16).
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Figure S2. Heritability of gene expression was correlated between rats and
humans. We found a significant correlation (R = 0.067, P = 4.34 × 10−12) between
heritability estimates in rats and humans. Confidence intervals are represented as gray
bars. The gray line represents the null distribution.

26 of 29

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

Figure S3. Prediction was greater in rat tissues than that in human GTEx tissues.
The number of predicted genes across all five rat tissues was greater than those in
GTEx human tissues with similar sample size. To ensure fair comparison, we included
the same subset of genes that were orthologous across all tested tissues.
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Figure S4. Tissue analysis revealed substantial enrichment in multiple relevant
tissues, including heart, pancreas, muscle, liver, and central nervous system.
Significantly enriched sets (P < 0.05) are highlighted in red.
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Figure S5. Human derived PTRS weights did not predict observed fasting glucose
levels in rats. Human-dervied height PTRS in rats was not correlated with observed
fasting glucose levels in the target rat set (R = 0.008, P = 7.09 × 10−1), which served as a
negative control.
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