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Abstract Genome-wide association studies have demonstrated that most35

traits are highly polygenic; however, translating these polygenic signals into36

biological insights remains difficult. A lack of satisfactory methods for37

translating polygenic results across species has precluded the use of model38

organisms to address this problem. Here we explore the use of polygenic39

transcriptomic risk scores (PTRS) for translating polygenic results across species.40

Unlike polygenic risk scores (PRS), which rely on SNPs for predicting traits, PTRS41

use imputed gene expression for prediction, which allows cross-species42

translation to orthologous genes. We first developed RatXcan, which is a43

framework for transcriptome-wide association studies (TWAS) in outbred rats.44

Leveraging predicted transcriptome and genotype data from UK Biobank, and45

the genetically trained gene expression models from RatXcan, we scored more46

than 3,000 rats using a human-derived PTRS for height. Strikingly, we found that47

human-derived height PTRS significantly predicted body length in rats (P<0.013).48

The genes included in the PTRS were enriched for biological pathways including49

skeletal growth and metabolism and were over-represented in tissues including50

pancreas and brain. This approach facilitates experimental studies in model51

organisms that examine the polygenic basis of human complex traits and52

provides an empirical metric by which to evaluate the suitability of specific53

animal models and identify their shared biological underpinnings.54

55
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Introduction56

Over the last decade, genome-wide association studies (GWAS) have identified57

numerous genetic loci that contribute to biomedically important traits [Visscher58

et al., 2017]. GWAS have demonstrated that most traits have a highly polygenic59

architecture, meaning that numerous genetic variants with individually small ef-60

fects confer risk [Loos, 2020]. However, translating these results into meaning-61

ful biological discoveries remains extremely challenging [Lewis and Vassos, 2020,62

Martin et al., 2019, Alliance et al., 2021].63

Model organisms provide a system in which the effect of genotype, genetic64

manipulations andenvironmental exposures canbe experimentally tested. Whereas65

the tools for usingmodel organisms to study individual genes arewell established,66

there are no satisfactory methods for studying the polygenic signals obtained67

from GWAS in model organisms.68

The cumulative results from GWAS can be used to construct polygenic risk69

scores (PRS), which summarize the effects of many loci on a trait [Wray et al.,70

2007]. However, PRS can not be used to translate to model organisms because71

human SNPs do not have direct homologs in other species, and even if they did,72

they would not be expected to have the same effects or to tag the same causal73

variants.74

To address this problem, we sought to develop a novel method that allows75

translation of polygenic signals from humans to other species and vice-versa.76

This method focuses on gene expression, rather than SNPs, and builds on our77

past work with polygenic transcriptomic risk scores (PTRS) [Liang et al., 2022].78

PTRS are premised on the regulatory nature of most GWAS loci [Maurano et al.,79

2012] and use genetically regulated gene expression (transcript abundance), in-80

stead of SNPs, as features for prediction. We recently showed that PTRS are use-81

ful for translating polygenic signals between different human ancestry groups82

[Liang et al., 2022], supporting the view that the effects of genes on a phenotype83

are conserved across ancestry groups. In the current project, we hypothesized84

that the relationships between genes and phenotypes are conserved not only85

between human ancestry groups, but also across species. Thus, we explored86

whether PTRS trained using human data could predict similar traits in another87

species by applying the PTRS to orthologous genes in the target species. We se-88

lected heterogeneous stock (HS) rats because they are a well characterized, out-89

bred mammalian population for which dense genotype, phenotype and gene ex-90

pression data are available in thousands of subjects [Solberg Woods and Palmer,91

2019, Chitre et al., 2020, Keele et al., 2018, Crouse et al., 2022].92
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Figure 1. Schematic representation of cross-species polygenic translation framework.
The workflow was divided into 4 stages: a) gene expression prediction training, b) gene-trait association, c) PTRS
fitting in humans, d) PTRS prediction. a) In the gene expression prediction training stage, we used genotype
(117,155 SNPs) and gene expression data (15,216 genes) from samples derived from 5 brain regions in 88 rats. The
prediction weights (rat PredictDB weights) are stored in predictdb.org. Rats used in this stage constitute the training
set. b) In the gene-trait association stage, we used genotype and phenotype data from the target set of 3,407 rats
(no overlap with training set rats). Predicted gene expression (8,567 genes for which prediction was possible) was
calculated for all the 3,407 target set rats, and gene-trait associations were tested using RatXcan (N=1,463-3,110).
We queried human gene-level associations from PhenomeXcan to estimate enrichment levels with our rat findings.
c) Human PTRS weights were fitted using elastic net regression of height on predicted whole blood gene expression
levels (7,002 genes) in the UK Biobank (N=356,476). d) The human PTRS weights were used for complex trait
prediction in rats. PTRS trained in humans were then used to predict the analogous height trait in our target rat set.
Prediction performance of PTRS was calculated as the correlation (and partial correlation) between the predicted
scores in rats and the observed traits. Analyses in rats are shown in blue and analyses in humans are shown in pink.
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Results93

Experimental setup94

To build a framework for translating genetic results between species, we followed95

the experimental setup illustrated in Fig. 1. In the training stage (Fig. 1a), we inves-96

tigated the genetic architecture of gene expression and built prediction models97

of gene expression in rats. We used genotype and transcriptome data from five98

brain regions sampled from 88 rats, generated by the NIDA Center for GWAS99

for Outbred rats (Fig. 1a). In the association stage (Fig. 1b), we used their geno-100

type data to predict the transcriptome in a non-overlapping target set of 3,407101

rats and tested for association between the genetically predicted gene expres-102

sion and body length by adapting the PrediXcan software, which was originally103

developed for use in humans [Gamazon et al., 2015], to rats (’RatXcan’). We also104

examined fasting glucose, which served as a negative control. In the discovery105

stage (Fig. 1c), we determined the human-derived PTRS weights for height us-106

ing data from 356,476 individuals of European-descent from UK Biobank. In the107

final stage (Fig 1d), we used these human-derived weights in conjunction with108

genetically predicted gene expression for rats in the target set. We assessed the109

prediction performance by comparing the predictions from the PTRS to the true110

body length (which is equivalent to human height) for each rat.111

Genetic Architecture of Gene Expression across Brain Tissues112

To inform the optimal prediction model training, we examined the genetic archi-113

tecture of gene expression in HS rats by quantifying heritability and polygenicity.114

Unless otherwise specified, we show the results for nucleus accumbens core in115

the main section and the remaining tissues in the supplement.116

Brain Region # # Genes Average Average
Rats Predicted R2 cis ℎ2

Nucleus Accumbens Core (NAcc) 78 8,567 8.51% 9.82%
Infralimbic Cortex (IL) 83 8,856 8.87% 9.77%
Lateral Habenula (LHb) 83 8,244 7.78% 8.86%
Prelimibic Cortex (PL) 81 8,315 9.33% 10.12%
Orbitofrontal Cortex (OFC) 82 8,821 9.13% 9.82%

Table 1. Summary of heritability and prediction performance in rats. The table
shows the number of rats used in the prediction, number of genes predicted per model,
the average predicion performance R2, and average cis-heritability cis ℎ2, for all gene
transcripts.

We calculated the heritability of expression for each gene by estimating the117

proportion of variance explained (PVE) using a Bayesian Sparse Linear Mixed118
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Model (BSLMM) [Zhou et al., 2013]. We restricted the feature set to variantswithin119

1 Mb of the transcription start site of each gene since this is expected to capture120

most cis-eQTLs. Among the 15,216 genes considered, 3,438 genes were herita-121

ble (defined as having a 95% credible set lower boundary greater than 1%) in122

the nucleus accumbens core. The mean heritability ranged from 8.86% to 10.12%123

for all brain tissues tested (Table 1). Fig. 2a shows the heritability estimates for124

gene expression in the nucleus accumbens core, while heritability estimates in125

other tissues are shown in Fig. S1. In humans, we identified a similar heritability126

distribution (Fig. 2b, Fig. S2) based on whole blood samples from GTEx.127

Next, to evaluate the polygenicity of gene expression levels, we examined128

whether predictors with more polygenic (i.e., many variants of small effects) or129

more sparse (i.e., just a few larger effect variants) architecture correlated better130

with observed expression. We fitted elastic net regression models using a range131

of mixing parameters from 0 to 1 (Fig. 2c). The leftmost value of 0 corresponds132

to ridge regression, which is fully polygenic and uses all cis-variants. Larger val-133

ues of the mixing parameters yield more sparse predictors, with the number of134

variants decreasing as the mixing parameter increases. The rightmost value of 1135

corresponds to lasso, which yields themost sparse predictorwithin the elastic net136

family. Similar to reports in human data [Wheeler et al., 2016], sparse predictors137

outperformed polygenic predictors (Fig. 2c).138

Weused the 10-fold cross-validatedPearson correlation (R) betweenpredicted139

and observed values as ameasure of performance (Spearman correlation yielded140

similar results). We observed a substantial drop in performance towards the141

more polygenic end of the mixing parameter spectrum (Fig. 2c). For reference,142

we show similar results using human gene expression data from whole blood143

samples in GTEx individuals (Fig. 2d). Overall, these results indicate that the ge-144

netic architecture of gene expression in HS rats (detectable with the currently145

available sample size) is sparse, similar to that of humans [Wheeler et al., 2016].146

Generation of Prediction Models of Gene Expression in Rats147

Based on the relative performance across different elastic netmixing parameters,148

we chose a value of 0.5, which yielded slightly less sparse predictors than lasso149

but provided robustness to missing or low quality variants; this is the same value150

that we have chosen in the past for humans datasets [Gamazon et al., 2015].151

We trained elastic net predictors for all genes in all 5 brain regions. The proce-152

dure yielded 8,244-8,856 genes across five brain tissues from the available 15,216153

genes (Table 1). The 10-fold cross-validated prediction performance (R2) ranged154

from 0 to 80% with a mean of 8.51% in the nucleus accumbens core. As shown in155

Fig. 2a and b, mean prediction R2 was consistently lower than mean heritability,156

as is expected since genetic prediction performance is restricted by its heritabil-157

ity. Other brain tissues yielded similar prediction performance (Table 1). Reas-158
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Figure 2. Heritability and sparsity of gene expression in both rats and humans. a) cis-heritability of gene
expression levels in the nucleus accumbens core of rats calculated using BSLMM (black). We show only genes (N =
10,268) that have an equivalent ortholog in the GTEx population. On the x-axis, genes are ordered by their
heritability estimates. 95% credible sets are shown in gray for each gene. Blue dots indicate the prediction
performance (cross validated R2 between predicted and observed expression). b) cis heritability of gene expression
levels in whole blood tissue in humans from GTEx. We show only the same 10,268 orthologous genes. On the
x-axis, genes are ordered by their heritability estimates. 95% credible sets are shown in gray for each gene. Pink
dots indicate the prediction performance (cross validated R2 between predicted and observed expression). c) Cross
validated prediction performance in rats (Pearson correlation R) as a function of the elastic net parameter ranging
from 0 to 1. d) Cross validated prediction performance in humans (Pearson correlation R) as a function of the
elastic net parameter ranging from 0 to 1.
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suringly, prediction performance values followed the heritability curve, confirm-159

ing that genes with highly heritable expression tend to be better predicted than160

genes with low heritability in both HS rats and humans (Fig. 2a-b). Interestingly,161

we identified better prediction performance in HS rats than in humans (Fig. S3),162

despite heritability of gene expression being similar across species (Fig. 2a-b).163

In Fig. 3a-b, we show the prediction performance of the best predicted genes164

in HS rats (Mgmt, R2 = 0.72) and humans (RPS26, R2 = 0.74). Across all genes,165

we found that the prediction performance in HS rats was correlated with that of166

humans (R = 0.061, P = 8.03 ∗ 10−6; Fig. 3c). Furthermore, performance per gene167

in different tissues was similar in both HS rats (Fig. 3d) and humans (Fig. 3e),168

namely, genes that were well-predicted in one tissue were also well-predicted169

in another tissue. Correlation of prediction performance across tissues ranged170

from 58 to 84% in HS rats and 42 to 69% in humans.171

Having established the similarity of the genetic architecture of gene expres-172

sion between rats and humans, we transitioned to the association stage.173

PrediXcan/TWAS Implementation in Rats (RatXcan)174

To extend the PrediXcan/TWAS framework to rats, we developed RatXcan. We175

used the predicted weights from the training stage to estimate the genetically reg-176

ulated expression in the target set of 3,407 densely genotyped HS rats. We then177

tested the association between predicted expression and body length.178

We identified 90 Bonferroni significant genes (P (0.05∕5388) = 9.28×10−6) in 57179

distinct loci separated by±1Mb for rat body length (Fig. 4a; Supplementary Table180

1). Among the 90 significant genes, 30.46% were identified in prior human GWAS181

for height. For example, Tgfa was associated with body length in rats (P = 1.18 ×182

10−9) and nominally associated in humans [Comuzzie et al., 2012] (P = 8.00×10−6),183

and is related to growth pathways, including epidermal growth factor.184

To evaluate whether trait-associated genes identified in HS rats were more185

significantly associated with the corresponding traits in humans, we performed186

enrichment analysis. Specifically, we selected genes that were nominally asso-187

ciated with HS rat body length (P < 0.05) and compared the p-value from the188

analogous human trait (height) against the background distribution. Given the189

large sample size of human height GWAS, we expected the background distribu-190

tion (shown in pink, Fig. 4b) of height gene-based associated p-values to depart191

substantially from the identity line (in gray). The subset of genes that were as-192

sociated with rat body length (in blue, Fig. 4b) showed a major departure from193

the background distribution, indicating that body length genes in rats were more194

significantly associated with human height than expected. To quantify the enrich-195

ment, we compared the p-value distribution of all the genes with the distribution196

of the subset of genes that were nominally significantly associated with rat body197

length (P = 6.55 × 10−10). This systematic enrichment across human and rat find-198

8 of 30

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

Figure 3. Shared genetic architecture of gene expression in rats and humans a) Comparison of predicted vs.
observed expression for a well predicted gene in rats (Mgmt, R2 = 0.72, R = 0.65, P < 2.20 × 10−16).
b) In humans, predicted and observed expression for RPS26 were significantly correlated (R2 = 0.74, R = 0.86,
P < 2.20 × 10−16). c) Prediction performance was significantly correlated across species (R = 0.06, P = 8.03 × 10−06)
d-e) and across all five brain tissues tested in rats and humans. In rats, within tissue prediction performance
ranged from (R = [0.58 − 0.84], P < 2.20 × 10−16). In humans, the range was [R = 0.42 − 0.69, P < 2.20 × 10−16] .
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Figure 4. Polygenic Transcriptomic Risk Scores (PTRS) can translate genetic information across species. a)
Manhattan plot of the association between predicted gene expression and rat body length, which is analogous to
human height. We label the genes whose human orthologs are at least nominally associated in human data
(P < 0.01); Grey dotted line corresponds to the Bonferroni correction threshold of 0.05/5,388 of tests. Red dotted
line corresponds to an arbitrary threshold of 1 × 10−4. Triangular points refer to genes that were significantly
associated with body length at the Bonferroni threshold, where the direction of the triangle corresponds with the
sign of the associated gene. b) Q-q plot of the p-values of the association between predicted gene expression levels
in humans (phenomexcan.org). Pink dots correspond to all genes tested in humans. Blue dots correspond to the
subset of genes that were nominally significantly associated with body length in rats (P < 0.05). c) Correlation
between human-derived height PTRS and observed body length in rats for one of the 37 regularization parameters
used in building the PTRS. Correlation coefficients for all 37 models are available in Fig. S5.

ings further encouraged us to test whether PTRS based on human studies could199

predict the analogous trait in rats.200

Transfer PTRS from Humans to Rats201

To test the portability of PTRS across species, we started by calculating the human202

PTRS weights, as described in Liang et al. [2022]. Using 356,476 UK Biobank un-203

related individuals of European descent, we fitted an elastic net regression with204

height as the outcome variable and the imputed gene expression as the predictor205

(height =∑g g ⋅Tg+� with �, an error term, and Tg , the imputed gene expression in206

humans). We chose to use GTEx whole blood predictors, as they were previously207

reported to perform well in humans [Liang et al., 2022]. We applied this proce-208

dure for a range of elastic net regularization parameters to increase the flexibility209

of the prediction models, resulting in 37 sets of weights. The regularization pa-210

rameter is a hyper-parameter that can be estimated in a validation set, which211

could be a subset of the target set. Here we show the prediction performance212

across the full range of hyper-parameters (37 models).213

For each rat in the target set, we calculated 37 PTRS (one for each regulariza-214

tion parameter) as the weighted sum of the predicted gene expression in rats215

with the human-derived weights, which had been previously computed during216

the association stage (PTRSrat = ∑

g ⋅ Tg,rat). We used a range of 1 to 2,017 genes,217
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including only the orthologous genes in rats (28.72%), to discern how prediction218

varied as the number of genes changed. The large number of genes used for219

prediction is consistent with prior human literature indicating that the genetic220

architecture of height is highly polygenic [Wood et al., 2014].221

Consistent with prior human literature [Yengo et al., 2018, Zhao et al., 2015],222

gene set enrichment analyses showed that the genes used to calculate human223

PTRSweightswere substantially enriched for pathways and tissues that contribute224

to skeletal growth and metabolic processes, including myogenesis (P = 1.18 ×225

10−5), adipogenesis (P = 7.74 × 10−17) and fatty acid metabolism (P = 3.97 × 10−15)226

(ST. 16). Tissue analysis revealed that PTRS genes are enriched as deferentially227

expressed genes inmultiple relevant tissues, including pancreas, heart, liver, and228

central nervous system (Fig. S4).229

Strikingly, human-derived height PTRS significantly predicted body length in230

rats; that is, the correlation between PTRS and observed rat body length was sig-231

nificant for all the elastic net regularization parameters that included at least 27232

genes (maximum R = 0.08, P = 8.57 × 10−6; Fig. 4c and S5). Next, we investi-233

gated a possible bias in our analysis due to the fact that genetically similar rats234

will tend to have more similar PTRS but also more similar body length inducing a235

significant correlation even in the absence of a predictive effect. To rule out this236

possibility, we calculated the correlation between some PTRS unrelated to height.237

We generated such PTRS by 1) permuting the PTRS weights and 2) flipping their238

signs randomly, 1000 times each. Then, we computed empirical p-values as the239

proportion of times the absolute value of the (permuted or shuffled) correlation240

was larger than the observed correlation. The empirical p-values were less sig-241

nificant than our previous estimates, confirming the bias induced by the genetic242

similarity between rats. Still, reassuringly the association remained significant243

(permutation-based empirical P = 0.013 and random signed based P = 0.008)244

(Fig. S6).245

As anegative control, we compared the correlationbetween thehuman-derived246

height PTRS and observed fasting glucose in the target rat set. As shown in Fig.247

S7, the correlation was not significant (P = 0.71), confirming that the similarity-248

induced bias is not as large as to yield a significant correlation in general.249

To put our prediction performance in context, we used the portability of PTRS250

across human populations reported in Liang et al. [2022]. For comparability, we251

calculated the partialR2 (R̃2, the proportion of variance explainedby the predictor252

after accounting for other covariates). The R̃2 for body length in rats was 0.64%,253

which was only slightly less than half of the 1.46% observed in a non-European254

target set in the UK Biobank. The loss of performance when transferring across255

species was less pronounced than the loss observed across human populations,256

which was as high as 6.5-fold (See supplementary table 6 in Liang et al. [2022]).257
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Discussion258

Overwhelming evidencedemonstrates thatmost complex diseases are extremely259

polygenic; however, there is an unmet need for methods that translate polygenic260

results to other species. Here, we present a novel analytical framework that fa-261

cilitates cross-species translation of polygenic results, providing a unique and ur-262

gently neededbridge between the humanandmodel organismdisciplines. Trans-263

lation of polygenic information has been challenging because, despite the utility264

of PRS for trait prediction in humans, SNPs are species specific. Our approach265

circumvents this limitation by translating polygenic information to the level of266

genes and then relying on the mapping of orthologous genes between humans267

and another species, in this case rats.268

A critical first step in this project was the development of RatXcan, which is269

the rat version of PrediXcan [Gamazon et al., 2015], a well-established statisti-270

cal tool that is used in human genetics. We showed that the genetic architec-271

ture of gene expression in rats is broadly similar to humans: they are heritable,272

sparse, and the degree of heritability is preserved across tissues; some of these273

observations are consistent with another recent publication that mapped eQTLs274

in HS rats [Munro et al., 2022]. Interestingly, despite the smaller sample sizes275

used to train our prediction models, rats showed better prediction than humans.276

This might reflect the fact that HS rats have a preponderance of common alleles277

[Chitre et al., 2020] whereas humans have numerous rare alleles that influence278

gene expression but are difficult to capture in prediction models. The superior279

prediction may also reflect the longer haplotype blocks that are present in HS280

rats relative to humans [Chitre et al., 2020], which reduces the multiple testing281

burden when mapping cis-eQTLs and likely facilitates predictor training.282

Using RatXcan, we tested gene-level associations of body length, which had283

been previously measured in rats. We chose height because of the availability of284

large human GWAS that allowed us to develop robust human PTRS for this trait,285

relatively large genotyped HS rat cohort in which body length was known, and286

relatively unambiguous similarity between humans height and rat body length.287

We found substantial enrichment of trait-associated genes among orthologous288

human trait-associated genes, which encouraged us to use the human PTRS to289

try to predict the similar trait in the HS rats.290

Remarkably, we found that PTRS developed in humans significantly predicted291

rat body length (rat equivalent of height). These results demonstrate that PTRS292

is a viable strategy for translating polygenic results between humans and rats.293

Even though the proportion of body length variance explained by our PTRS was294

only 0.64% compared to the 9.40% in the European target set, that proportion295

dropped substantially as low as 1.46% when testing in non European target sets296

(See supplementary Table 6 in [Liang et al., 2022]).297
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Closer examination of these results revealed that prediction of height improved298

until about 100 genes were included in the model. It is likely that larger and thus299

more powerful rat transcriptomic datasets would improve prediction by increas-300

ing the number of genes that could be used for prediction as well as the accuracy301

of prediction. In addition, of the 7,044 genes that were included in the human-302

derived PTRS, only 2,017 had rat orthologs (much smaller number than the 10,268303

in Figure 2 because not all genes are currently predictable both in humans and304

rats); increasing our knowledge of orthologous genes or identifying other strate-305

gies to address this limitation will further improve performance.306

The ability to transfer polygenic signals to other species creates novel oppor-307

tunities to explore the mechanisms underlying those traits. For example, genes308

included in the human-derived PTRS showed evidence of enrichment in relevant309

pathways and tissues for skeletal and metabolic processes, demonstrating that310

PTRS can uncover shared underlying biological mechanisms, which can be more311

intensively studied in model systems. It is also possible that PTRS could be used312

to identify which aspects (e.g. tissues, cell types, etc) of a human trait are recapit-313

ulated by analogous phenotypes in model organisms, which could highlight both314

the strengths and limitations of phenotypes currently used to model human dis-315

eases.316

Another advantage of our approach is that it focuses on the role of several317

genes involved in a phenotype. Thus, PTRS could also serve as a toolkit for identi-318

fying components of molecular networks for drug repositioning, namely studies319

aimed at identifying small molecules and other interventions that can alter the320

global gene expression inmodel organisms in a way that lowers risk, as predicted321

by PTRS analyses.322

There is a widely recognized need formethods to integrate data from genetics323

studies in humans and non-humans [Palmer et al., 2021b]. To address this need,324

several prior efforts combine human genetic results with sets of genes identified325

as differentially expressed in various model organisms [Reynolds et al., 2021].326

Two such studies examined the overlap between human GWAS results for traits327

related to human substance use disorder and changes in gene expression in the328

brain, typically following acute or chronic administration of drugs. In two of these329

approaches, gene sets were collected from rodent differential gene expression330

studies that examined the effects of alcohol and/or nicotine and then used a parti-331

tioned heritability approach, which showed enrichment of these genes in human332

GWAS results [Palmer et al., 2021a], although therewas somequestion about the333

specificity of the effects [Huggett et al., 2021]. Another study used a broadly sim-334

ilar approach but also included protein-protein network information [Mignogna335

et al., 2019]. In yet another study that examined polygenicity in rodents, a cross336

was made to introduce genetic variability among mice that all carried the 5XFAD337

transgene, which recapitulates some features of Alzheimer’s disease (AD). By clas-338

13 of 30

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

sifying mice based on their genotype at 19 markers that were near genes impli-339

cated by human GWAS for AD, they showed evidence of epistatic modulation of340

the phenotypic effects of the 5XFAD allele by these 19 markers [Neuner et al.,341

2019]. While this approach shares the most commonalities with PTRS, Neuner et342

al [Neuner et al., 2019] did not extrapolate GWAS data to transcript abundance,343

did not preserve the weights and directionality available from TWAS and account344

for whether or not the mouse genes showed heritable gene expression differ-345

ences.346

Our studies are conceptually similar to studies that seek to examine cellular347

and molecular phenotypes in cultured human cells for which PRS have been cal-348

culated [Dobrindt et al., 2020]. Notably, PTRS captures both the magnitude and349

the directionality of each gene’s effect on a phenotype. A potential application of350

PTRS could be to categorize rodents as being more or less susceptible to human351

traits and diseases aimed at quantifying whether non-genetic parameters (e.g.,352

drugs, environmental stressors) alter gene expression in a way that modifies the353

PTRS, just as pharmacological manipulation can be applied to cells in culture that354

have been sorted for PRS or PTRS scores [So et al., 2017].355

There are several limitations in the current study. The sample size of the refer-356

ence transcriptome data in rats was limited. We would expect better predictabil-357

ity estimates in our elastic-net trained models with larger sample sizes. Further-358

more, we used gene expression data from human blood and rat nucleus accum-359

bens core because they were convenient datasets, but these tissues are not likely360

to be major mediators of height or body length. Second, presumably due to the361

lack of adequate sample size, we did not have a sufficiently robust PTRS from rats362

to attempt rat to human PTRS translation. Third, we suspect that in both humans363

and rats, some gene-level associations may be confounded by linkage disequilib-364

rium contamination and co-regulation. This problem is likely to be more serious365

inmodel organismswhere even longer range LD exists. Refining PTRS by integrat-366

ing fine-mapping and co-localization approaches could improve portability across367

species. Fourth, only 2,017 genes could be used for calculating the PTRS. Some368

were unavailable because their expression was not well predicted, and others369

were unavailable because they lacked one-to-one orthologs. Finally, integration370

of other omic data types (e.g., protein, methylation, metabolomics) and the use of371

cell-specific data may improve prediction accuracy and cross-species portability.372

It is worth noting that while we have shown success with humans and HS rats, it373

is still not clear whether more distantly related species, such as non-mammalian374

vertebrates or even insects, might also lend themselves to the PTRS approach.375

Despite these limitations, we have shown that PTRS, which has previously376

beenused to address the difficulty of transferring PRS betweenhuman ancestries377

[Liang et al., 2022], can successfully transfer polygenic results between species.378

One important feature of this approach is its ability to preserve both magnitude379
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and directional information about the relationship between gene expression and380

phenotype. This method should support new and transformative experimental381

designs. Most importantly, it provides a method to empirically validate traits that382

are intended to model or recapitulate aspects of human diseases in model sys-383

tems. While the validity of these animal models has been a source of passionate384

debate, empirical evidence has been limited. Our polygenic approach provides a385

empirical approach to this debate that has been urgently needed.386

Methods387

Genotype and expression data in the training rat set388

The rats used for this study are part of a large multi-site project focused on ge-389

netic analysis of complex traits (www.ratgenes.org). N/NIH heterogeneous stock390

(HS) outbred rats are the most highly recombinant rat intercross available, and391

are a powerful tool for genetic studies ([SolbergWoods and Palmer, 2019]; [Chitre392

et al., 2020]). HS rats were created in 1984 by interbreeding eight inbred rat393

strains (ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N) and394

been maintained as an outbred population for almost 100 generations.395

For training the gene expression predictors, we used RNAseq and genotype396

data pre-processed for Munro et al. [2022]. We used 88 HS male and female397

adult rats, for which whole genome and RNA-sequencing information was avail-398

able across five brain tissues [nucleus accumbens core (NAcc), infralimbic cortex399

(Il), prelimbic cortex (PL), orbitofrontal cortex (OFC), and lateral habenula (Lhb);400

Table 1]. Mean age was 85.7 ± 2.2 for males and 87.0 ± 3.8 for females. All401

rats were group housed under standard laboratory conditions and had not been402

through any previous experimental protocols. Genotypes were determined us-403

ing genotyping-by-sequencing, as described previously in [Parker et al., 2016],404

[Chitre et al., 2020] and [Gileta et al., 2020]. Bulk RNA-sequencingwas performed405

using IlluminaHiSeq 4000with polyA libraries, 100 bp single-end reads, andmean406

library size of 27M. Read alignment and gene expression quantification was per-407

formed using RSEM and counts were upper-quartile normalized, followed by ad-408

ditional quality controlled filtering steps as described inMunro et al. [2022]. Gene409

expression levels refer to transcript abundance for reads aligned to the gene’s ex-410

ons using the Ensembl Rat Transcriptome.411

For each gene, we inverse normalized the TPM values to account for outliers412

and fit a normal distribution. We then performed PEER factor analysis [Stegle413

et al., 2010]. We regressed out sex, batch number, batch center and 7 PEER fac-414

tors from the gene expression and saved the residuals for all downstream analy-415

ses.416
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Genotype and phenotype data in the target rat set417

We used genotype and phenotype data from 3,407 HS rats (i.e., target set) re-418

ported in Chitre et al. [2020]. We used phenotypic information on body length419

(including tail), and fasting glucose. For each trait, sex, age, batch number and420

site, were regressed out if they were significant and if they explained more than421

2 % of the variance, as described in [Chitre et al., 2020].422

Querying human gene-trait association results423

To retrieve analogous humangene-trait association results, wequeried PhenomeX-424

can, a web-based tool that serves gene-level association results for 4,091 traits425

based on predicted expression in 49 GTEx tissues [Pividori et al., 2020]. Ortholo-426

gous genes (N= 22,777)weremappedwith Ensembl annotation, using the biomart427

R package and were one to one matched.428

Estimating gene expression heritability429

We calculated the cis-heritability of gene expression from the training set using a430

Bayesian sparse linear mixedmodel, BSLMM [Zhou et al., 2013], as implemented431

in GEMMA. We used variants within the ±1Mb window up- and down-stream of432

the transcription start and end of each gene annotated by Gencode v26 [Frankish433

et al., 2021]. We used the proportion of variance explained (PVE) generated by434

GEMMA as the measure of cis-heritability of gene expression. We then display435

only the PVE estimates of 10,268 genes that were also present in the human gene436

expression data.437

Heritability of human gene expression, whichwas also calculatedwith BSLMM,438

was downloaded from the database generated by Wheeler et al. [2016]. Genes439

were also limited to the same 10,268 as above.440

Examining polygenicity versus sparsity of gene expression441

To examine the polygenicity versus sparsity of gene expression in rats, we iden-442

tified the optimal elastic net mixing parameter �, as described in Wheeler et al.443

[2016]. Briefly, we compared the prediction performance of a range of elastic net444

mixing parameters spanning from 0 to 1 (11 values from 0 to 1, with steps of 0.1).445

If the optimal mixing parameter was closer to 0, corresponding to ridge regres-446

sion, we deemed gene expression trait to be polygenic. In contrast, if the optimal447

mixing parameter was closer to 1, corresponding to lasso, then the gene expres-448

sion trait was considered to be more sparse. We also restricted the number of449

genes in the pipeline to the 10,268 orthologous genes.450

Training gene expression prediction in rats451

To train prediction models for gene expression in rats, we used the training set452

of 88 rats described above and followed the elastic net pipeline from predictdb.org.453
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Briefly, for each gene, we fitted an elastic net regression using the glmnet package454

in R. We only included variants in the cis region (i.e., 1Mb up and downstream of455

the transcription start and end). The regression coefficient from the best penalty456

parameter (chosen via glmnet’s internal 10-fold cross validation [Zou and Hastie,457

2005]) served as the weight for each gene. The calculated weights (ws) are avail-458

able in predictdb.org. For the comparison of number of predictable genes across459

species, we ran the same cross-validated elastic net pipeline in four GTEx tissues460

with sample sizes similar to that of the rats: Substantia Nigra, Kidney Cortex,461

Uterus and Ovary. To ensure fair comparison, we used the same number of462

genes that were orthologous across all four human tissues and rat tissues.463

Estimating overlap and enrichment of genes between rats and hu-464

mans465

For human transcriptome prediction used in the comparison with rats, we simply466

downloaded elastic net predictors trained in GTEx whole blood samples from467

the PredictDB portal, as previously done in humans [Barbeira et al., 2021]. This468

model was different from the ones used in the UK Biobank for calculating the469

PTRS weights (See Calculating PTRS in a rat target set).470

We quantified the accuracy of the prediction models using a 10-fold cross val-471

idated correlation (R) and correlation squared (R2) between predicted and ob-472

served gene expression [Zou and Hastie, 2005]. For the rat prediction models,473

we only included geneswhose prediction performancewas greater than 0.01 and474

had a non-negative correlation coefficient, as these genes were considered well475

predicted.476

We tested the prediction performance of our elastic net model trained in nu-477

cleus accumbens core in an independent rat reference transcriptome set. We478

predicted expression in the reference set of 188 individuals and compared to479

observed genetic expression in the nucleus accumbens core.480

Implementing RatXcan481

We developed RatXcan, based on PrediXcan [Gamazon et al., 2015] [Barbeira482

et al., 2018] in humans. RatXcan uses the elastic net predictionmodels generated483

in the training set. In the prediction stage, we generated a predicted expression484

matrix for all genes in the rat target set, by fitting an additive genetic model:485

Yg =
∑

kwk,gXk + �486

Yg is the predicted expression of gene g, wk,g is the effect size of marker k for487

gene g,Xk is the number of reference alleles of marker k and � is the contribution488

of other factors that determine the predicted gene expression, assumed to be489

independent of the genetic component.490

We then tested the association between the predicted expression matrix and491

body length. We fitted a linear regression of the phenotype on the predicted492
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expression of each gene, which generated gene-level association results for all493

gene trait pairs.494

Estimating overlap and enrichment of genes between rats and hu-495

mans496

We queried PhenomeXcan to identify genes associated with human height. Phe-497

nomeXcan provides gene level associations aggregated across all available GTEx498

tissues, as calculated by MultiXcan (and extension of PrediXcan) [Barbeira et al.,499

2019]. To this aim, we adaptedMultiXcan to similarly aggregate our results across500

the 5 tested brain tissues in rats. We used a Q-Q plot to inspect the level of enrich-501

ment across rat and human findings. To quantify enrichment, we used a Mann-502

Whitney test as implemented in R to discern whether the distribution of the p-503

values for genes in humans was the same for the genes that were and were not504

nominally significant in rats.505

Calculating PTRS weights in the UK Biobank506

We calculated human-derived height PTRS weights using elastic net with amixing
parameter of 0.5, as described in Liang et al. [2022]. We predicted expression
levels in 356,476 UK Biobank unrelated participants of European descent using
whole blood prediction models trained in GTEx. We used the prediction models
trainedwith UTMOST based on grouped lasso, which borrows information across
tissues to improve prediction performance [Barbeira et al., 2020, Hu et al., 2019].
The predicted expression was generated using high quality SNPs from Hapmap2
[McCarthy et al., 2016]. We performed elastic net regression with height as the
predicted variable and the predicted expressionmatrix from 356,476 UK Biobank
unrelated individuals of European descent. More specifically, for each regular-
ization parameter �, we selected weight parameters g that minimized the mean
squareddifference between thepredicted variable Y andpredictionmodelX+0where T̂g ∈ ℝN×1 is the standardized predicted expression level of gene g across
N individuals and Ĉl ∈ ℝN×1 is the the observed value of the lth standardized
covariate:

EN = argmin

loss∶l
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
N

∥ Y −X − 0 ∥22 +��∥  ∥1 + �a(1 − �)(∥  ∥)
2
2

X ∶= [T̂1, ..., T̂m, C1, ..., CL]

where 0 is the intercept, m the number of genes, L is the number of covariates,507

||B||22 is the l2 norm and the ||B||1 is the l1 norm of the effect size vector. � de-508

notes the elastic net mixing parameter and � is the regularization parameter. 37509

different �’s were used, generating 37 different sets of predictors. Covariates in-510

cluded age at recruitment (Data-Field 21022), sex (Data-Field 31), and the first 20511

18 of 30

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

genetic PCs. Formore details, see Liang et al. [2022]. The values of the regulariza-512

tion parameters were chosen in a region likely to cover a wide range of sparsity513

in the resulting models, from very sparse, containing a couple of genes, to dense,514

containing all genes Liang et al. [2022].515

Calculating PTRS in a rat target set516

To calculate human-derived height PTRS for body length in the target rats, we517

used the predicted gene expression matrix calculated for the association stage.518

For each rat, wemultiplied thepredicted expressionwith the corresponding human-519

derived weight for that gene. The aggregated effects of these weighted genes are520

summarized in a single score, PTRS:521

PTRS(rat) = ∑

g ⋅ T̂g(rat)522

We generated 37 PTRS models for height for a range of regularization param-523

eters (Fig. S5). To identify biologically relevant tissues, pathways and gene sets524

associated with the genes included in the PTRS, we applied multiple complemen-525

tary analyses using FUMA v1.3.8 [Watanabe et al., 2017]. These included tissue526

enrichment using deferentially expressed genes across 54 specific tissue types527

from GTEx V8. We included multiple gene sets (KEGG, Reactome, GO and Hall-528

mark) from the Molecular Signature Database (MsigDB) v7.0.529

Quantifying PTRS prediction performance530

We calculated the Pearson correlation (R) coefficient between height PTRS the531

and analogous observed phenotype in rats. To facilitate comparison with pre-532

vious papers, we report partial R̃2. In rats, body length had alrady been been533

adjusted for covariates, R̃2 is equivalent to R2. We verified that using Spearman534

correlation did not change the substance of the results (data not shown).535

Permutation-based p-values of the correlation between PTRS and ob-536

served traits537

To rule out the possibility that the correlation between PTRS and the observed538

traits were driven by the similarity between predicted expression among more539

similar rats, we performed two types of simulations. In one, we permuted the540

weights corresponding to genes in the PTRS and computed the correlation be-541

tween the PTRS based on permuted weights and the observed trait. We repeated542

this simulation 1000 times. For each simulation, we used the same permutation543

for all the 37 prediction models so that PTRS based on similar hyperparameters544

would be correlated. In the next simulation, we randomly flipped the sign of the545

weights. The empirical p-value was calculated as the proportion of times the ob-546

served correlation was larger than the simulated correlation. We used absolute547

values to obtain two-sided empirical p-values.548
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Code and Data Availability549

The codeused for thiswork is available at https://github.com/hakyimlab/Rat_Genomics_550

Paper_Pipeline. Genotype and expression data are available through [Munro et al.,551

2022]. Prediction models for gene expression in all five brain tissues in rats are552

available at predictdb.org553

Acknowledgments554

This research has been conducted using the UK Biobank Resource under Appli-555

cation Number 19526. We thank Natalia Gonzales and Christian Jones for help556

editing the paper. This work was partially supported by DP1DA054394 (SSR),557

P30DK020595 and R01CA242929 (HKI, NS, MP), P30DA044223 and R24 AA013162558

(LS)559

Author contributions560

A.A.P. and H.K.I. conceived the cross species PTRS and supervised the work. N.S.561

and Y.L. performed a large portion of the analyses. N.S. and S.S-R. analyzed and562

interpreted the results and wrote the initial draft of the manuscript. MP and FN563

performed analysis of some of the PTRS results. S.M., D.M., A.C., D.C., L.S-W, and564

O.P. pre-processed and analyzed the RNAseq, genotype, and phenotype data.565

R.C., J.G., A.M.G., A.G., K.H., A.H., C.P.K., C.L.S-P., J.T., T.W., H.C., S.F., K.I., P.M., L.S.566

were involved in various aspects of the collection of the rat physiological traits.567

All authors read, edited and approved the final version of the manuscript.568

Competing interests569

The authors declare no conflict of interest.570

Ethics declaration571

Not applicable.572

References573

Alliance ICD, Adeyemo A, Balaconis MK, Darnes DR, Ripatti S, Widen E, Zhou A. Responsi-574

ble use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nature575

Medicine. 2021; 27(11):1876–1884.576

Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Kim-Hellmuth S, Wang G, Jiang577

Z, Zhou D, Hormozdiari F, et al. Exploiting the GTEx resources to decipher the mecha-578

nisms at GWAS loci. Genome biology. 2021; 22(1):1–24.579

Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, Torstenson ES,580

Shah KP, Garcia T, Edwards TL, et al. Exploring the phenotypic consequences of tissue581

20 of 30

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

https://github.com/hakyimlab/Rat_Genomics_Paper_Pipeline
https://github.com/hakyimlab/Rat_Genomics_Paper_Pipeline
https://github.com/hakyimlab/Rat_Genomics_Paper_Pipeline
predictdb.org
https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

specific gene expression variation inferred from GWAS summary statistics. Nature582

communications. 2018; 9(1):1–20.583

Barbeira AN, MeliaOJ, Liang Y, Bonazzola R,WangG,Wheeler HE, Aguet F, Ardlie KG,Wen584

X, Im HK. Fine-mapping and QTL tissue-sharing information improves the reliability of585

causal gene identification. Genet Epidemiol. 2020 Sep; n/a(n/a).586

Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted587

transcriptome from multiple tissues improves association detection. PLoS genetics.588

2019; 15(1):e1007889.589

Chitre AS, PolesskayaO, Holl K, Gao J, Cheng R, Bimschleger H, GarciaMartinez A, George590

T, Gileta AF, Han W, et al. Genome-Wide Association Study in 3,173 Outbred Rats Iden-591

tifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose. Obesity. 2020;592

28(10):1964–1973.593

Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA, Butte NF. Novel594

genetic loci identified for the pathophysiology of childhood obesity in the Hispanic595

population. PloS one. 2012; 7(12):e51954.596

Crouse WL, Das SK, Le T, Keele G, Holl K, Seshie O, Craddock AL, Sharma NK, Comeau597

ME, Langefeld CD, Hawkins GA, Mott R, Valdar W, Solberg Woods LC. Transcriptome-598

wide analyses of adipose tissue in outbred rats reveal genetic regulatory mechanisms599

relevant for human obesity. Physiological Genomics. 2022 Jun; 54(6):206–219. doi:600

10.1152/physiolgenomics.00172.2021.601

Dobrindt K, Zhang H, Das D, Abdollahi S, Prorok T, Ghosh S, Weintraub S, Genovese602

G, Powell SK, Lund A, et al. Publicly available hiPSC lines with extreme polygenic risk603

scores for modeling schizophrenia. Complex psychiatry. 2020; 6(3-4):68–82.604

Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, Sisu C, Wright JC,605

Armstrong J, Barnes I, et al. GENCODE2021. Nucleic acids research. 2021; 49(D1):D916–606

D923.607

Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE,608

Denny JC, Nicolae DL, Cox NJ, et al. A gene-based association method for mapping609

traits using reference transcriptome data. Nature genetics. 2015; 47(9):1091–1098.610

Gileta AF, Gao J, Chitre AS, Bimschleger HV, St Pierre CL, Gopalakrishnan S, Palmer AA.611

Adapting genotyping-by-sequencing and variant calling for heterogeneous stock rats.612

G3: Genes, Genomes, Genetics. 2020; 10(7):2195–2205.613

Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM, Yu Z, Li B, Gu J, Muchnik S, et al. A statistical614

framework for cross-tissue transcriptome-wide association analysis. Nature genetics.615

2019; 51(3):568–576.616

Huggett SB, Johnson EC, Hatoum AS, Lai D, Srijeyanthan J, Bubier JA, Chesler EJ, Agrawal617

A, Palmer AA, Edenberg HJ, et al. Genes identified in rodent studies of alcohol intake618

are enriched for heritability of human substance use. Alcoholism: Clinical and Experi-619

mental Research. 2021; .620

21 of 30

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

10.1152/physiolgenomics.00172.2021
10.1152/physiolgenomics.00172.2021
10.1152/physiolgenomics.00172.2021
https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

Keele GR, Prokop JW, He H, Holl K, Littrell J, Deal A, Francic S, Cui L, Gatti DM, Broman KW,621

Tschannen M, Tsaih SW, Zagloul M, Kim Y, Baur B, Fox J, Robinson M, Levy S, Flister MJ,622

Mott R, et al. Genetic Fine-Mapping and Identification of Candidate Genes and Variants623

for Adiposity Traits in Outbred Rats. Obesity (Silver Spring, Md). 2018 Jan; 26(1):213–624

222. doi: 10.1002/oby.22075.625

Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments.626

Genome medicine. 2020; 12(1):1–11.627

Liang Y, Pividori M, Manichaikul A, Palmer AA, Cox NJ, Wheeler HE, Im HK. Polygenic628

transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across629

ancestries. Genome Biol. 2022 Jan; 23(1):23.630

Loos RJ. 15 years of genome-wide association studies and no signs of slowing down.631

Nature Communications. 2020; 11(1):1–3.632

Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current poly-633

genic risk scores may exacerbate health disparities. Nature genetics. 2019; 51(4):584.634

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sand-635

strom R, Qu H, Brody J, et al. Systematic localization of common disease-associated636

variation in regulatory DNA. Science. 2012; 337(6099):1190–1195.637

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchs-638

berger C, Danecek P, Sharp K, et al. A reference panel of 64,976 haplotypes for geno-639

type imputation. Nature genetics. 2016; 48(10):1279.640

Mignogna KM, Bacanu SA, Riley BP, Wolen AR, Miles MF. Cross-species alcohol641

dependence-associated gene networks: co-analysis of mouse brain gene expression642

and human genome-wide association data. PloS one. 2019; 14(4):e0202063.643

Munro D, , Palmer A, Mohammadi P. The regulatory landscape of multiple brain regions644

in outbred heterogeneous stock rats. . 2022; .645

Neuner SM, Heuer SE, Huentelman MJ, O’Connell KM, Kaczorowski CC. Harnessing ge-646

netic complexity to enhance translatability of Alzheimer’s disease mouse models: a647

path toward precision medicine. Neuron. 2019; 101(3):399–411.648

Palmer RH, Benca-Bachman CE, Huggett SB, Bubier JA, McGeary JE, Ramgiri N, Srijeyan-649

than J, Yang J, Visscher PM, Yang J, et al. Multi-omic and multi-species meta-analyses650

of nicotine consumption. Translational psychiatry. 2021; 11(1):1–10.651

Palmer RH, Johnson EC, Won H, Polimanti R, Kapoor M, Chitre A, Bogue MA, Benca-652

Bachman CE, Parker CC, Verma A, et al. Integration of evidence across human653

and model organism studies: A meeting report. Genes, Brain and Behavior. 2021;654

20(6):e12738.655

Parker CC, Gopalakrishnan S, Carbonetto P, GonzalesNM, Leung E, Park YJ, Aryee E, Davis656

J, Blizard DA, Ackert-Bicknell CL, et al. Genome-wide association study of behavioral,657

physiological and gene expression traits in outbred CFW mice. Nature genetics. 2016;658

48(8):919–926.659

22 of 30

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

10.1002/oby.22075
https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

Pividori M, Rajagopal PS, Barbeira A, Liang Y, Melia O, Bastarache L, Park Y, Consortium660

G, Wen X, Im HK. PhenomeXcan: Mapping the genome to the phenome through the661

transcriptome. Science Advances. 2020; 6(37):eaba2083.662

Reynolds T, Johnson EC, Huggett SB, Bubier JA, Palmer RH, Agrawal A, Baker EJ, Chesler EJ.663

Interpretation of psychiatric genome-wide association studies with multispecies het-664

erogeneous functional genomic data integration. Neuropsychopharmacology. 2021;665

46(1):86–97.666

So HC, Chau CKL, Chiu WT, Ho KS, Lo CP, Yim SHY, Sham PC. Analysis of genome-wide667

association data highlights candidates for drug repositioning in psychiatry. Nature668

neuroscience. 2017; 20(10):1342–1349.669

SolbergWoods LC, Palmer AA. Using heterogeneous stocks for fine-mapping genetically670

complex traits. Rat genomics. 2019; p. 233–247.671

Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for complex non-672

genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS673

computational biology. 2010; 6(5):e1000770.674

Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 years of675

GWAS discovery: biology, function, and translation. The American Journal of Human676

Genetics. 2017; 101(1):5–22.677

Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. Functional mapping and anno-678

tation of genetic associations with FUMA. Nature communications. 2017; 8(1):1–11.679

Wheeler HE, Shah KP, Brenner J, Garcia T, Aquino-Michaels K, Consortium G, Cox NJ,680

NicolaeDL, ImHK. Survey of the heritability and sparse architecture of gene expression681

traits across human tissues. PLoS genetics. 2016; 12(11):e1006423.682

Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Kutalik683

Z, Amin N, et al. Defining the role of common variation in the genomic and biological684

architecture of adult human height. Nature genetics. 2014; 46(11):1173–1186.685

Wray NR, GoddardME, Visscher PM. Prediction of individual genetic risk to disease from686

genome-wide association studies. Genome research. 2007; 17(10):1520–1528.687

Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM,688

Hirschhorn J, Yang J, Visscher PM, et al. Meta-analysis of genome-wide association689

studies for height and body mass index in 700000 individuals of European ancestry.690

Human molecular genetics. 2018; 27(20):3641–3649.691

ZhaoX, Gu J, LiM, Xi J, SunW, SongG, LiuG. Pathway analysis of bodymass index genome-692

wide association study highlights risk pathways in cardiovascular disease. Scientific693

reports. 2015; 5(1):1–7.694

Zhou X, Carbonetto P, Stephens M. Polygenic modeling with bayesian sparse linear695

mixed models. PLoS Genet. 2013 Feb; 9(2):e1003264–e1003264.696

Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the697

royal statistical society: series B (statistical methodology). 2005; 67(2):301–320.698

23 of 30

WITHDRAWN

see manuscript DOI for details

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.03.494719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494719
http://creativecommons.org/licenses/by/4.0/


Manuscript draft

Supplementary information699

Figure S1. Gene expression was heritable [8.86-10.12%] and comparable across
several brain tissues tested (Infralimbic Cortex, IL; Lateral Habenula, LHb;
Prelimibic Cortex, PL; Orbitofrontal Cortex, OFC) in rats. We refer to heritability (ℎ2,
cis-heritability within 1Mb) as the proportion of variance explained (PVE). Across all
brain tissues tested, heritability estimates were significantly correlated (R = [0.58 − 0.83],
P < 2.20 × 10−16).
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Figure S2. Heritability of gene expression was correlated between rats and
humans. We found a significant correlation (R = 0.07, P = 4.34 × 10−12) between
heritability estimates in rats and humans. Confidence intervals are represented as gray
bars. The gray line represents the null distribution.
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Figure S3. Prediction was greater in rat tissues than that in human GTEx tissues.
The number of predicted genes across all five rat tissues was greater than those in
GTEx human tissues with similar sample size. To ensure fair comparison, we included
the same subset of genes that were orthologous across all tested tissues.
Nucleus Accumbens Core (NAcc) Infralimbic Cortex (IL) Lateral Habenula (LHb)
Prelimibic Cortex (PL) Orbitofrontal Cortex (OFC)
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Figure S4. Tissue analysis revealed substantial enrichment in multiple relevant
tissues, including heart, pancreas, muscle, liver, and central nervous system.
Significantly enriched sets (P < 0.05) are highlighted in red.
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Figure S5. Correlation between observed body length vs height PTRS.
Correlation between human-derived height PTRS and observed body length in rats for
the 37 regularization parameters used in building the PTRS. Strikingly, human-derived
height PTRS significantly predicted body length in rats; that is, the correlation between
PTRS and observed rat body length was significant for all the elastic net regularization
parameters that included at least 27 genes (maximum R = 0.08, P = 8.57 × 10−6).
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Figure S6. Simulated PTRS with permuted and sign flipped weights Blue vertical line
indicates the observed correlation with the true PTRS.
(a) Distribution of correlation between weight-permuted height PTRS and observed
body length in rats. All 37 model weights were permuted and the best performing
model for each simulation was selected. Within each of the 1000 simulations, the
permutation of weights across genes were consistent for all 37 models, mimicking the
set of actual PTRS weights.
(b) Distribution of correlation between sign-flipped height PTRS and observed body
length in rats. All 37 model weights were permuted and the best performing model for
each simulation was selected. Within each of the 1,000 simulations, the permutation of
weights across genes were consistent for all 37 models, mimicking the set of actual
PTRS weights.
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Figure S7. Human derived PTRS weights did not predict observed fasting glucose
levels in rats. Human-dervied height PTRS in rats was not correlated with observed
fasting glucose levels in the target rat set (R = 0.008, P = 7.09 × 10−1), which served as a
negative control.
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