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35

Abstract We developed a framework for identifying trait-associated genes in36

rats and facilitating the transfer of polygenic evidence across species by37

expanding the transcriptome-wide association (TWAS) approach to rats. Our38

analysis successfully trained transcript predictors for over 8000 genes in each of39

the five brain regions of rats, revealing several shared properties of gene40

regulation with humans. Moreover, mirroring trends observed in humans, our41

findings showed that sparse predictors using variants in cis are more effective42

than polygenic predictors and that gene expression prediction in rats is highly43

correlated across brain regions. Importantly, our analysis also identified a44

significant overlap between genes associated with rat and human body length45

and BMI, indicating rat models may be useful for studying the genetic basis of46

complex traits in humans. RatXcan represents a valuable tool for uncovering47

shared biological mechanisms of complex traits across species, with potential48

applications in a wide range of research fields.49

50
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Introduction51

Over the last decade, genome-wide association studies (GWAS) have identified52

numerous genetic loci that contribute to biomedically important traits [Visscher53

et al., 2017]. GWAS have demonstrated that most traits have a highly polygenic54

architecture, meaning that numerous genetic variants with individually small ef-55

fects confer risk [Loos, 2020]. However, translating these results into meaning-56

ful biological discoveries remains extremely challenging [Lewis and Vassos, 2020,57

Martin et al., 2019, Alliance et al., 2021].58

Model organisms provide a system in which the effect of genotype, genetic59

manipulations, and environmental exposures canbe experimentally tested. Whereas60

the tools for usingmodel organisms to study individual genes arewell established,61

there are no satisfactory methods for studying the polygenic signals obtained62

from GWAS in model organisms.63

To start addressing this problem, we extend the TWAS framework [Gamazon64

et al., 2015] to rats so that the unit of analysis are genes rather than rats. We65

call this approach RatXcan. Following our human pipeline, we investigate the ge-66

netic architecture of gene expression traits in rats and compare them to humans.67

Then, we train genetic predictors of gene expression traits in rats and perform68

association between the latter and rat body size traits.69

Results70

Experimental setup71

To build a framework for translating genetic results between species, we followed72

the experimental setup illustrated in Fig. 1. In the training stage (Fig. 1a), we inves-73

tigated the genetic architecture of gene expression and built prediction models74

of gene expression in rats. We used genotype and transcriptome data from five75

brain regions sampled from 88 heterogeneous stock (HS) rats, generated by the76

NIDA Center for GWAS for Outbred rats (Fig. 1a). We selected HS rats because77

they are a well characterized, outbred mammalian population for which dense78

genotype, phenotype, and gene expression data are available in thousands of79

subjects [Solberg Woods and Palmer, 2019, Chitre et al., 2020, Keele et al., 2018,80

Crouse et al., 2022]. In the association stage (Fig. 1b), we used genotype data81

to predict the transcriptome in a non-overlapping target set of 3,407 rats. We82

tested for associations between the genetically predicted gene expression and83

body length by adapting the PrediXcan software, which was originally developed84

for use in humans [Gamazon et al., 2015], to rats (’RatXcan’).85

Genetic Architecture of Gene Expression across Brain Tissues86

To inform the optimal prediction model training, we examined the genetic archi-87

tecture of gene expression in HS rats by quantifying heritability and polygenicity88
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Figure 1. Schematic representation of cross-species polygenic translation framework.
The workflow was divided into 4 stages: a) gene expression prediction training, b) gene-trait association, c) PTRS
fitting in humans, d) PTRS prediction. a) In the gene expression prediction training stage, we used genotype
(117,155 SNPs) and gene expression data (15,216 genes) from samples derived from 5 brain regions in 88 rats. The
prediction weights (rat PredictDB weights) are stored in predictdb.org. Rats used in this stage constitute the
training set. b) In the gene-trait association stage, we used genotype and phenotype data from the target set of
3,407 rats (no overlap with training set rats). Predicted gene expression (8,567 genes for which prediction was
possible) was calculated for all the 3,407 target set rats, and gene-trait associations were tested using RatXcan
(N=1,463-3,110). We queried human gene-level associations from PhenomeXcan to estimate enrichment levels with
our rat findings. c) Human PTRS weights were fitted using elastic net regression of height on predicted whole blood
gene expression levels (7,002 genes) in the UK Biobank (N=356,476). d) The human PTRS weights will be used for
complex trait prediction in rats. Prediction performance of PTRS will be used to calculate as the correlation (and
partial correlation) between the predicted scores in rats and the observed traits. Analyses in rats are shown in blue
and analyses in humans are shown in pink.
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for five areas of brain tissue. Because the results for each tissue are similar, in89

the main text we summarize results for all tissues, highlighting the results for90

nucleus accumbens core; we present the remaining tissues in more detail in the91

supplement.92

Brain Region # # Genes Average Average
Rats Predicted R2 cis ℎ2

Nucleus Accumbens Core (NAcc) 78 8,567 8.51% 9.82%
Infralimbic Cortex (IL) 83 8,856 8.87% 9.77%
Lateral Habenula (LHb) 83 8,244 7.78% 8.86%
Prelimibic Cortex (PL) 81 8,315 9.33% 10.12%
Orbitofrontal Cortex (OFC) 82 8,821 9.13% 9.82%

Table 1. Summary of heritability and prediction performance in rats. The table
shows the number of rats used in the prediction, number of genes predicted per model,
the average predicion performance R2, and average cis-heritability cis ℎ2, for all gene
transcripts.

We calculated the heritability of expression for each gene by estimating the93

proportion of variance explained (PVE) using a Bayesian Sparse Linear Mixed94

Model (BSLMM) [Zhou et al., 2013]. We restricted the feature set to variantswithin95

1 Mb of the transcription start site of each gene since this is expected to capture96

most cis-eQTLs. Among the 15,216 genes considered, 3,438 genes were herita-97

ble (defined as having a 95% credible set lower boundary greater than 1%) in the98

nucleus accumbens core. The mean heritability ranged from 8.86% to 10.12% for99

all brain tissues tested (Table 1). Fig. 2a shows the heritability estimates for gene100

expression in the nucleus accumbens core, while Fig. S1 shows heritability esti-101

mates for other tissues. We identified a similar heritability distribution in humans102

(Fig. 2b, Fig. S2) based on whole blood samples from GTEx.103

Next, to evaluate the polygenicity of gene expression levels, we examined104

whether predictors with more polygenic or sparse architecture correlate better105

with observed expression. We fitted elastic net regression models using a range106

of mixing parameters from 0 to 1 (Fig. 2c). The leftmost parameter value of 0107

corresponds to ridge regression, which is fully polygenic and uses all cis-variants.108

Larger values of the mixing parameters yield more sparse predictors, with the109

number of variants decreasing as themixing parameter increases. The rightmost110

value of 1 corresponds to lasso regression, which yields the most sparse predic-111

tor within the elastic net family.112

Weused the 10-fold cross-validatedPearson correlation (R) betweenpredicted113

and observed values as ameasure of performance (Spearman correlation yielded114

similar results). We observed a substantial drop in performance towards the115
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Figure 2. Heritability and sparsity of gene expression in both rats and humans. a) cis-heritability of gene
expression levels in the nucleus accumbens core of rats calculated using BSLMM (black). We show only genes (N =
10,268) that have an equivalent ortholog in the GTEx population. On the x-axis, genes are ordered by their
heritability estimates. 95% credible sets are shown in gray for each gene. Blue dots indicate the prediction
performance (cross validated R2 between predicted and observed expression). b) cis heritability of gene expression
levels in whole blood tissue in humans from GTEx. We show only the same 10,268 orthologous genes. On the
x-axis, genes are ordered by their heritability estimates. 95% credible sets are shown in gray for each gene. Pink
dots indicate the prediction performance (cross validated R2 between predicted and observed expression). c) Cross
validated prediction performance in rats (Pearson correlation R) as a function of the elastic net parameter ranging
from 0 to 1. d) Cross validated prediction performance in humans (Pearson correlation R) as a function of the
elastic net parameter ranging from 0 to 1.
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more polygenic end of the mixing parameter spectrum (Fig. 2c). We observed116

similar results using human gene expression data from whole blood samples in117

GTEx individuals (Fig. 2d). Overall, these results indicate that the genetic architec-118

ture of gene expression in HS rats (detectable with the currently available sample119

size) is sparse, similar to that of humans [Wheeler et al., 2016].120

Generation of Prediction Models of Gene Expression in Rats121

We trained elastic net predictors for all genes in all five brain regions. Based122

on the relative performance across different elastic net mixing parameters, we123

chose a parameter value of 0.5, which yielded slightly less sparse predictors than124

lasso but provided robustness to missing or low quality variants; this is the same125

value that we have chosen in the past for humans datasets [Gamazon et al., 2015].126

The procedure yielded 8,244-8,856 genes across five brain tissues from the avail-127

able 15,216 genes (Table 1). The 10-fold cross-validated prediction performance128

(R2) ranged from 0 to 80% with a mean of 8.51% in the nucleus accumbens core.129

As shown in Table 1, mean prediction R2 was consistently lower than mean her-130

itability for all tissues, as is expected since genetic prediction performance is re-131

stricted by its heritability. Prediction performance values followed the heritability132

curve, confirming that genes with highly heritable expression tend to be better133

predicted than genes with low heritability in both HS rats and humans (Fig. 2a-b).134

Interestingly, we identified better prediction performance in HS rats than in hu-135

mans (Fig. S3), despite heritability of gene expression being similar across species136

(Fig. 2a-b).137

In Fig. 3a-b, we show the prediction performance of the best predicted genes138

in HS rats (Mgmt, R2 = 0.72) and humans (RPS26, R2 = 0.74). Across all genes,139

we found that the prediction performance in HS rats was correlated with that of140

humans (R = 0.061, P = 8.03 ∗ 10−6; Fig. 3c). Furthermore, performance per gene141

in different tissues was similar in both HS rats (Fig. 3d) and humans (Fig. 3e),142

namely, genes that were well-predicted in one tissue were also well-predicted143

in another tissue. Correlation of prediction performance across tissues ranged144

from 58 to 84% in HS rats and 42 to 69% in humans.145

Having established the similarity of the genetic architecture of gene expres-146

sion between rats and humans, we transitioned to the association stage.147

PrediXcan/TWAS Implementation in Rats (RatXcan)148

To extend the PrediXcan/TWAS framework to rats, we developed RatXcan. We149

used the predicted weights from the training stage to estimate the genetically reg-150

ulated expression in the target set of 3,407 densely genotyped HS rats. We then151

tested the association between predicted expression and body length in the tar-152

get set.153

We identified 90 Bonferroni significant genes (P (0.05∕5388) = 9.28×10−6) in 57154
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Figure 3. Shared genetic architecture of gene expression in rats and humans a) Comparison of predicted vs.
observed expression for a well predicted gene in rats (Mgmt, R2 = 0.72, R = 0.65, P < 2.20 × 10−16).
b) In humans, predicted and observed expression for RPS26 were significantly correlated (R2 = 0.74, R = 0.86,
P < 2.20 × 10−16). c) Prediction performance was significantly correlated across species (R = 0.06, P = 8.03 × 10−06)
d-e) and across all five brain tissues tested in rats and humans. In rats, within tissue prediction performance
ranged from (R = [0.58 − 0.84], P < 2.20 × 10−16). In humans, the range was [R = 0.42 − 0.69, P < 2.20 × 10−16] .
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distinct loci separated by ±1 Mb for rat body length (Fig. 4a; Supplementary Ta-155

ble 1). Among the 90 significant genes, 30.46% had human orthologs previously156

associated with height in GWAS. For example, Tgfa, which is related to growth157

pathways, including epidermal growth factor, was associated with body length in158

rats (P = 1.18 × 10−9) and nominally associated with height in humans [Comuzzie159

et al., 2012] (P = 8.00 × 10−6). To evaluate whether trait-associated genes identi-160

fied in HS rats were more significantly associated with the corresponding traits161

in humans, we performed enrichment analysis. Specifically, we selected genes162

that were nominally associated with HS rat body length (P < 0.05) and compared163

the p-value from the analogous human trait (height) against the background dis-164

tribution of height-associated genes identified in GWAS. Given the large sample165

size of human height GWAS, we expected the p-values for of height-associated166

genes (shown in pink, Fig. 4b)to depart substantially from the identity line (in167

gray). The subset of genes that were associated with rat body length (in blue,168

Fig. 4b) showed a major departure from the background distribution, indicating169

that body-length genes in rats were more significantly associated with human170

height than expected. To quantify the enrichment, we compared the p-value dis-171

tribution of all the genes with the distribution of the subset of genes that were172

nominally significantly associated with rat body length (P = 6.55 × 10−10).173

Discussion174

Overwhelming evidencedemonstrates thatmost complex diseases are extremely175

polygenic; however, there is an unmet need for methods that translate polygenic176

results to other species.177

A critical first step to achieve the transfer of polygenic scores is the develop-178

ment of RatXcan, which is the rat version of PrediXcan [Gamazon et al., 2015], a179

well-established statistical tool that is used in human genetics. We showed that180

the genetic architecture of gene expression in rats is broadly similar to humans:181

they are heritable, sparse, and the degree of heritability is preserved across tis-182

sues; some of these observations are consistent with another recent publication183

that mapped eQTLs in HS rats [Munro et al., 2022]. Interestingly, despite the184

smaller sample sizes used to train our prediction models, rats showed better185

prediction than humans. This might reflect the fact that HS rats have a prepon-186

derance of common alleles [Chitre et al., 2020] whereas humans have numerous187

rare alleles that influence gene expression but are difficult to capture in predic-188

tionmodels. The superior predictionmay also reflect the longer haplotype blocks189

that are present in HS rats relative to humans [Chitre et al., 2020], which reduces190

the multiple testing burden when mapping cis-eQTLs and likely facilitates predic-191

tor training.192

Using RatXcan, we tested gene-level associations of body length, which had193
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been previously measured in rats. We chose height because of the availability of194

large humanGWAS , relatively large genotypedHS rat cohort inwhich body length195

was known, and relatively unambiguous similarity between humans height and196

rat body length. We found substantial enrichment of trait-associated genes among197

orthologous human trait-associated genes.198

There are several limitations in the current study. The sample size of the refer-199

ence transcriptome data in rats was limited. We would expect better predictabil-200

ity estimates in our elastic-net trained models with larger sample sizes. Further-201

more, we used gene expression data from human blood and rat nucleus accum-202

bens core because they were convenient datasets, but these tissues are not likely203

to be major mediators of height or body length. Second, we suspect that in204

both humans and rats, some gene-level associations may be confounded by link-205

age disequilibrium contamination and co-regulation. This problem is likely to be206

more serious in model organisms where even longer range LD exists. Finally, in-207

tegration of other omic data types (e.g., protein, methylation, metabolomics) and208

the use of cell-specific data may improve prediction accuracy and cross-species209

portability. It is worth noting that while we have shown success with humans and210

HS rats, it is still not clear whether more distantly related species, such as non-211

mammalian vertebrates or even insects, might also lend themselves to ortholog212

analysis and ultimately a cross-species transciptome-based polygenic risk score.213

Despite these limitations, we have developed a methodology for effectively214

and efficiently identifying orthologs between rats and humans, which should sup-215

port new and transformatice experimental designs involving model organisms216

and enable the future development of a transcriptome-basedpolygenic risk score217

that is portable across species. Moreover, the RatXcan methodology provides a218

method to empirically validate traits that are intended to model or recapitulate219

aspects of human diseases in model systems. While the validity of these animal220

models has been a source of passionate debate, empirical evidence has been lim-221

ited. Our polygenic approach provides a empirical approach to this debate that222

has been urgently needed.223

Methods224

Resource availability225

Lead contact226

Requests for further information, resources, and reagents should be directed to227

andwill be fulfilled by oneof the lead contacts, HaeKyung Im (haky@uchicago.edu)228

or Abraham Palmer (aapalmer@ucsd.edu)229

Material availability230

This study did not generate new unique reagents.231
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Experimental model and subject details232

The rats used for this study are part of a large multi-site project focused on ge-233

netic analysis of complex traits (www.ratgenes.org). N/NIH heterogeneous stock234

(HS) outbred rats are the most highly recombinant rat intercross available and235

are a powerful tool for genetic studies ([SolbergWoods and Palmer, 2019]; [Chitre236

et al., 2020]). HS rats were created in 1984 by interbreeding eight inbred rat237

strains (ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N) and238

been maintained as an outbred population for almost 100 generations.239

Method details240

Genotype and expression data in the training rat set241

For training the gene expression predictors, we used RNAseq and genotype data242

pre-processed forMunro et al. [2022]. We used 88 HSmale and female adult rats,243

for which whole genome and RNA-sequencing information was available across244

five brain tissues [nucleus accumbens core (NAcc), infralimbic cortex (Il), prelim-245

bic cortex (PL), orbitofrontal cortex (OFC), and lateral habenula (Lhb); Table 1].246

Mean age was 85.7 ± 2.2 for males and 87.0 ± 3.8 for females. All rats were group247

housed under standard laboratory conditions and had not been through any pre-248

vious experimental protocols. Genotypes were determined using genotyping-by-249

sequencing, as described previously in [Parker et al., 2016], [Chitre et al., 2020]250

and [Gileta et al., 2020]. Bulk RNA-sequencing was performed using Illumina251

HiSeq 4000 with polyA libraries, 100 bp single-end reads, andmean library size of252

27M. Read alignment and gene expression quantification were performed using253

RSEM and counts were upper-quartile normalized, followed by additional quality-254

control filtering steps as described inMunro et al. [2022]. Gene-expression levels255

refer to transcript abundance for reads aligned to the gene’s exons using the En-256

sembl Rat Transcriptome.257

For each gene, we inverse normalized the TPM values to account for outliers258

and fit a normal distribution. We then performed PEER factor analysis [Stegle259

et al., 2010]. We regressed out sex, batch number, batch center and 7 PEER fac-260

tors from the gene expression and saved the residuals for all downstream analy-261

ses.262

Genotype and phenotype data in the target rat set263

We used genotype and phenotype data from 3,407 HS rats (i.e., target set) re-264

ported in Chitre et al. [2020]. We used phenotypic information on body length265

(including tail), and fasting glucose. For each trait, sex, age, batch number and266

site were regressed out if they were significant and if they explained more than267

2% of the variance, as described in [Chitre et al., 2020].268
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Querying human gene-trait association results269

To retrieve analogous humangene–trait association results, wequeried PhenomeX-270

can, a web-based tool that serves gene-level association results for 4,091 traits271

based on predicted expression in 49 GTEx tissues [Pividori et al., 2020]. Ortholo-272

gous genes (N= 22,777)weremappedwith Ensembl annotation, using the biomart273

R package and were one to one matched.274

Estimating gene expression heritability275

We calculated the cis-heritability of gene expression from the training set using a276

Bayesian sparse linear mixedmodel, BSLMM [Zhou et al., 2013], as implemented277

in GEMMA. We used variants within the ±1Mb window up- and down-stream of278

the transcription start and end of each gene annotated by Gencode v26 [Frankish279

et al., 2021]. We used the proportion of variance explained (PVE) generated by280

GEMMA as the measure of cis-heritability of gene expression. We then display281

only the PVE estimates of 10,268 genes that were also present in the human gene282

expression data.283

Heritability of human gene expression, whichwas also calculatedwith BSLMM,284

was downloaded from the database generated by Wheeler et al. [2016]. Genes285

were also limited to the same 10,268 as above.286

Examining polygenicity versus sparsity of gene expression287

To examine the polygenicity versus sparsity of gene expression in rats, we iden-288

tified the optimal elastic net mixing parameter �, as described in Wheeler et al.289

[2016]. Briefly, we compared the prediction performance of a range of elastic net290

mixing parameters spanning from 0 to 1 (11 values from 0 to 1, with steps of 0.1).291

If the optimal mixing parameter was closer to 0, corresponding to ridge regres-292

sion, we deemed gene expression trait to be polygenic. In contrast, if the optimal293

mixing parameter was closer to 1, corresponding to lasso, then the gene expres-294

sion trait was considered to be more sparse. We also restricted the number of295

genes in the pipeline to the 10,268 orthologous genes.296

Training gene expression prediction in rats297

To train prediction models for gene expression in rats, we used the training set298

of 88 rats described above and followed the elastic net pipeline from predictdb.org.299

Briefly, for each gene, we fitted an elastic net regression using the glmnet package300

in R. We only included variants in the cis region (i.e., 1Mb up and downstream of301

the transcription start and end). The regression coefficient from the best penalty302

parameter (chosen via glmnet’s internal 10-fold cross validation [Zou and Hastie,303

2005]) served as the weight for each gene. The calculated weights (ws) are avail-304

able in predictdb.org. For the comparison of number of predictable genes across305

species, we ran the same cross-validated elastic net pipeline in four GTEx tissues306

with sample sizes similar to that of the rats: Substantia Nigra, Kidney Cortex,307
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Uterus and Ovary. To ensure fair comparison, we used the same number of308

genes that were orthologous across all four human tissues and rat tissues.309

Estimating overlap and enrichment of genes between rats and humans310

For human transcriptome prediction used in the comparison with rats, we simply311

downloaded elastic net predictors trained in GTEx whole blood samples from312

the PredictDB portal, as previously done in humans [Barbeira et al., 2021]. This313

model was different from the ones used in the UK Biobank for calculating the314

PTRS weights (See Calculating PTRS in a rat target set).315

We quantified the accuracy of the prediction models using a 10-fold cross val-316

idated correlation (R) and correlation squared (R2) between predicted and ob-317

served gene expression [Zou and Hastie, 2005]. For the rat prediction models,318

we only included geneswhose prediction performancewas greater than 0.01 and319

had a non-negative correlation coefficient, as these genes were considered well320

predicted.321

We tested the prediction performance of our elastic net model trained in nu-322

cleus accumbens core in an independent rat reference transcriptome set. We323

predicted expression in the reference set of 188 individuals and compared to324

observed genetic expression in the nucleus accumbens core.325

Quantification and Statistical Analysis326

Implementing RatXcan327

We developed RatXcan, based on PrediXcan [Gamazon et al., 2015] [Barbeira328

et al., 2018] in humans. RatXcan uses the elastic net predictionmodels generated329

in the training set. In the prediction stage, we generated a predicted expression330

matrix for all genes in the rat target set, by fitting an additive genetic model:331

Yg =
∑

kwk,gXk + �332

Yg is the predicted expression of gene g, wk,g is the effect size of marker k for333

gene g,Xk is the number of reference alleles ofmarker k, and � is the contribution334

of other factors that determine the predicted gene expression, assumed to be335

independent of the genetic component.336

We then tested the association between the predicted expression matrix and337

body length. We fitted a linear regression of the phenotype on the predicted338

expression of each gene, which generated gene-level association results for all339

gene trait pairs.340

Estimating overlap and enrichment of genes between rats and humans341

We queried PhenomeXcan to identify genes associated with human height. Phe-342

nomeXcan provides gene-level associations aggregated across all available GTEx343

tissues, as calculated by MultiXcan (an extension of PrediXcan) [Barbeira et al.,344

2019]. To this aim, we adaptedMultiXcan to similarly aggregate our results across345
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the 5 tested brain tissues in rats. We used a Q-Q plot to inspect the level of enrich-346

ment across rat and human findings. To quantify enrichment, we used a Mann-347

Whitney test as implemented in R to discern whether the distribution of the p-348

values for genes in humans was the same for the genes that were and were not349

nominally significant in rats.350

Calculating PTRS weights in the UK Biobank351

We calculated human-derived height PTRS weights using elastic net with amixing
parameter of 0.5, as described in Liang et al. [2022]. We predicted expression
levels in 356,476 UK Biobank unrelated participants of European descent using
whole blood prediction models trained in GTEx. We used the prediction models
trainedwith UTMOST based on grouped lasso, which borrows information across
tissues to improve prediction performance [Barbeira et al., 2020, Hu et al., 2019].
The predicted expression was generated using high quality SNPs from Hapmap2
[McCarthy et al., 2016]. We performed elastic net regression with height as the
predicted variable and the predicted expressionmatrix from 356,476 UK Biobank
unrelated individuals of European descent. More specifically, for each regular-
ization parameter �, we selected weight parameters g that minimized the mean
squareddifference between thepredicted variable Y andpredictionmodelX+0where T̂g ∈ ℝN×1 is the standardized predicted expression level of gene g across
N individuals and Ĉl ∈ ℝN×1 is the the observed value of the lth standardized
covariate:

EN = argmin

loss∶l
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
N

∥ Y −X − 0 ∥22 +��∥  ∥1 + �a(1 − �)(∥  ∥)
2
2

X ∶= [T̂1, ..., T̂m, C1, ..., CL]

where 0 is the intercept, m the number of genes, L is the number of covariates,352

||B||22 is the l2 norm and the ||B||1 is the l1 norm of the effect size vector. � de-353

notes the elastic net mixing parameter and � is the regularization parameter. 37354

different �’s were used, generating 37 different sets of predictors. Covariates in-355

cluded age at recruitment (Data-Field 21022), sex (Data-Field 31), and the first 20356

genetic PCs. Formore details, see Liang et al. [2022]. The values of the regulariza-357

tion parameters were chosen in a region likely to cover a wide range of sparsity358

in the resulting models, from very sparse, containing a couple of genes, to dense,359

containing all genes Liang et al. [2022].360

Code and Data Availability361

The codeused for thiswork is available at https://github.com/hakyimlab/Rat_Genomics_362

Paper_Pipeline. Genotype and expression data are available through [Munro et al.,363

2022]. Prediction models for gene expression in all five brain tissues in rats are364

available at predictdb.org365
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Supplementary information468

Figure S1. Gene expression was heritable [8.86-10.12%] and comparable across
several brain tissues tested (Infralimbic Cortex, IL; Lateral Habenula, LHb;
Prelimibic Cortex, PL; Orbitofrontal Cortex, OFC) in rats. We refer to heritability (ℎ2,
cis-heritability within 1Mb) as the proportion of variance explained (PVE). Across all
brain tissues tested, heritability estimates were significantly correlated (R = [0.58 − 0.83],
P < 2.20 × 10−16).
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Figure S2. Heritability of gene expression was correlated between rats and
humans. We found a significant correlation (R = 0.07, P = 4.34 × 10−12) between
heritability estimates in rats and humans. Confidence intervals are represented as gray
bars. The gray line represents the null distribution.
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Figure S3. Prediction was greater in rat tissues than that in human GTEx tissues.
The number of predicted genes across all five rat tissues was greater than those in
GTEx human tissues with similar sample size. To ensure fair comparison, we included
the same subset of genes that were orthologous across all tested tissues.
Nucleus Accumbens Core (NAcc) Infralimbic Cortex (IL) Lateral Habenula (LHb)
Prelimibic Cortex (PL) Orbitofrontal Cortex (OFC)
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Figure S4. Tissue analysis revealed substantial enrichment in multiple relevant
tissues, including heart, pancreas, muscle, liver, and central nervous system.
Significantly enriched sets (P < 0.05) are highlighted in red.
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