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Abstract  1 

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex 2 

associates with earlier manifestation of common and rare cardiac conditions including atrial 3 

fibrillation and arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical data suggest 4 

an atrial involvement in ARVC. The disease is caused by desmosomal gene defects such as 5 

reduced plakoglobin expression. Analysis of clinical records from 146 ARVC patients 6 

identified male preponderance and increased prevalence of atrial arrhythmias in patients with 7 

definite ARVC. Definite patients displayed ECG changes suggesting atrial remodelling. To 8 

study mechanisms of atrial remodelling due to desmosomal vulnerability and AAS, young 9 

adult male mice, heterozygously deficient for plakoglobin (Plako+/-) and wildtype (WT) 10 

littermates, were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. DHT 11 

increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. DHT 12 

caused atrial conduction slowing, decreased peak sodium current density, reduced action 13 

potential amplitude and lowered the peak depolarisation rate in Plako+/- but not WT atria. 14 

Super-resolution microscopy revealed a reduction in Nav1.5 clustering in Plako+/- atrial 15 

cardiomyocytes following DHT exposure. These data reveal that AAS combined with 16 

plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. 17 

AAS abuse may increase the risk of atrial myopathy in males with desmosomal gene 18 

variants. 19 

 

Key words: arrhythmias, ion channels, sex hormones  20 
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Introduction  21 

Several inherited arrhythmia syndromes develop more severe phenotypes in men carrying 22 

pathogenic variants, e.g. Brugada syndrome or Arrhythmogenic Right Ventricular 23 

Cardiomyopathy (ARVC) (1). Male sex also associates with greater incidence of atrial 24 

arrhythmias, both in the general population and in rare conditions (2-7). Effects mediated by 25 

anabolic androgenic steroids (AAS) such as testosterone and the most potent androgen, 26 

5α-dihydrotestosterone (DHT), could contribute. Abuse of AAS is an emerging global health 27 

concern, not restricted to elite athletes but common in the general population, with reports 28 

indicating a 3.3% lifetime prevalence worldwide (8). AAS are abused predominately by men 29 

to increase muscle mass, improve athletic performance and alter appearance (8). However, 30 

AAS can cause cardiac pathology, including hypertrophy and electrophysiological changes 31 

(9-14). Atrial arrhythmias have recently been associated with elevated total plasma 32 

testosterone levels in men (15) and observed in patients known to take AAS devoid of a 33 

clinical indication (16-18). Despite these observations, the mechanisms underpinning cardiac 34 

electrical remodelling in response to higher levels of AAS are largely unknown.  35 

ARVC has recently been reported to show more adverse outcomes in men (19) related to sex 36 

hormone levels (20). Emerging evidence suggests increased incidence of atrial arrhythmias 37 

in cardiomyopathies (21). ARVC is often caused by variants in desmosomal genes including 38 

plakoglobin (22-25). Plakoglobin is located in desmosomal junctional complexes where it 39 

stabilizes cell-cell contacts (26), thereby maintaining mechanical and electrical integrity of the 40 

myocardium.  41 

We hypothesized that a substantial proportion of ARVC patients is suffering from clinically 42 

relevant atrial arrhythmias and that vulnerability of the desmosome, caused by e.g. 43 

plakoglobin reduction, may increase the risk of male sex hormone-induced atrial electrical 44 

remodelling.  45 

To test this hypothesis, we screened patient records from definite and non-definite ARVC 46 

patients seen at a tertiary center inherited cardiac conditions clinic for atrial arrhythmias. We 47 
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furthermore employed a murine ARVC model to study the effects of chronically elevated AAS 48 

levels in male mice with heterozygous plakoglobin (gamma-catenin) deficiency (Plako+/-) (27) 49 

and their wildtype (WT) littermates. 50 
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Results 51 

Atrial arrhythmias and ECG changes in definite ARVC patients 52 

The clinical cohort studied comprised of 146 patients with suspected cardiomyopathy; 97 53 

were identified as “Non-definite” (possible) ARVC cases and 49 as “Definite” ARVC, i.e. 54 

presenting with a complete phenotype according to 2010 Task Force Criteria (1). Mean age 55 

of the patients at time of ECG analyses was not different between the groups (42 ± 18 years 56 

for non-definite vs 43 ± 18 years for definite). 24% of definite ARVC patients experienced 57 

atrial fibrillation and/or flutter compared to 3% of the non-definite ARVC patients (Table 1). 58 

There was a significant association between sex and ARVC diagnosis type (Table 1, 43% 59 

male amongst non-definite vs. 73% male amongst definite patients). Semi-automated 60 

analysis of digital ECG lead II recordings focussing on atrial parameters (Figure 1A) showed 61 

PR interval prolongation in advanced, definite disease stage (Figure 1B). P wave duration 62 

and P wave area were significantly increased in definite compared to non-definite patients. 63 

Non-definite ARVC patients exhibited no difference in the analyzed P wave parameters 64 

compared to unaffected control subjects. Results of a meta-analysis of clinical observational 65 

studies are presented in the discussion. 66 

5α-dihydrotestosterone (DHT) causes general and cardiac growth response in mice 67 

To study increased androgen exposure and desmosomal instability jointly in atria, Plako+/- 68 

mice, an established animal model of ARVC (28) and wildtype (WT) littermates were 69 

subjected to chronic DHT treatment over 6 weeks (please refer to Figure 2A for an overview 70 

scheme). Treatment led to a 3-4-fold increase in serum DHT concentration in both genotypes 71 

compared to controls (Ctr) (Figure 2B). Moreover, it increased body weight, seminal vesicle 72 

mass/tibia length ratio and atrial weight/tibia length ratio as well as causing left ventricular 73 

hypertrophy in Plako+/- animals (Figure 2C, Supplementary Figure 1). 74 
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DHT induces ARVC-like atrial ECG changes in plakoglobin-deficient mice 75 

To check whether atrial ECG changes observed in definite ARVC patients are similarly 76 

present in the murine model, ECGs were recorded from mice following DHT treatment. Both 77 

PR interval as well as P wave duration were prolonged in Plako+/- animals exposed to DHT 78 

compared to WT littermates exposed to DHT (Figure 3).  79 

DHT causes atrial unfolded area dilation and atrial conduction slowing in heterozygous 80 

plakoglobin-deficient hearts  81 

Left atrial unfolded area to tibia length ratio was increased in Plako+/- DHT compared to 82 

Plako+/- Ctr (Figure 4A&B), but not in WT left atria after DHT exposure. Chronic DHT 83 

exposure slowed conduction in Plako+/- but not WT atria (Figure 4C&D). The reduction in 84 

conduction velocity in Plako+/- DHT left atria was more pronounced at higher pacing 85 

frequencies. The Plako+/- left atria exposed to DHT exhibited an overall prolongation of 95% 86 

left atrial activation times and increased beat-to-beat activation variability compared to WT Ctr 87 

and Plako+/- Ctr (Figure 5). Connexin expression was not impaired (Supplementary Figure 2). 88 

DHT induces atrial expression of gene profiles implicated in ARVC 89 

Exploratory RNA sequencing analysis confirmed approximately 50% reduction in atrial 90 

plakoglobin (Jup) expression in Plako+/- compared to WT animals (Figure 6A). In control 91 

hearts, gene expression patterns did not markedly differ between genotypes (data not 92 

shown). Chronic DHT exposure resulted in significant transcriptional changes in atria of both, 93 

WT and Plako+/- mice (Figure 6B&C). DHT activated expression of genes associated with 94 

muscle growth (e.g. Igf1, Mtpn, Myocd), but additionally also immune (e.g. C7, Tlr3, Tlr4) and 95 

pro-fibrotic response genes (e.g. Col1a1, Col3a1, Srf, Lox) (Figure 6C). Before-mentioned 96 

transcriptional changes were similarly induced in left and right atria (Supplementary Figure 3). 97 

While atrial cardiac myocyte diameter and endomysial collagen deposition was not 98 

significantly different between genotypes after DHT treatment, as quantified in semi-99 
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automated histology analysis (Supplementary Figure 5), cell capacitance was increased by 100 

DHT treatment in Plako+/- DHT (Figure 8C). 101 

DHT reduces action potential amplitude and rate of depolarisation in heterozygous 102 

plakoglobin-deficient left atria 103 

The intracellular microelectrode technique was used to record transmembrane action 104 

potentials (TAPs) from paced, superfused left atria (Figure 7). Paced left atria isolated from 105 

Plako+/- DHT mice showed longer activation times compared to all other groups (Figure 7C, 106 

Supplementary Table 1). Action potential amplitude (APA) was reduced in Plako+/- DHT left 107 

atria, as well as the peak rate of depolarisation (dV dt-1 max) (e.g. 120 ms pacing cycle length 108 

WT Ctr: 118±5 V/s; WT DHT: 120±7 V/s; Plako+/- Ctr: 116±4 V/s; Plako+/- DHT: 89±5 V/s) 109 

(Figure 7D&E, Supplementary Table 1), both indicative of sodium current impairments. The 110 

Plako+/- DHT left atrial cells had a more positive resting membrane potential than WT Ctr 111 

(Supplementary Table 1). Chronic DHT exposure did not modify action potential duration 112 

(APD) in either genotype (Supplementary Table 1). Beat-averaged left atrial optical APD90, 113 

as well as beat-to-beat APD90 variability were similar between all four groups 114 

(Supplementary Table 2). 115 

DHT decreases peak sodium current density in heterozygous plakoglobin-deficient left 116 

atrial cardiac myocytes 117 

To examine mechanisms underlying alterations in action potential morphology and 118 

conduction in the Plako+/- DHT left atria, whole-cell patch clamp experiments were performed 119 

monitoring peak sodium current (INa) amplitude and kinetics. Peak whole-cell INa density was 120 

decreased by approximately 20% in Plako+/- left atrial cells following DHT exposure (Figure 121 

8A&B). Activation kinetics were consistent between all groups (V50 activation, WT Ctr: -43±1 122 

mV; WT DHT: -46±1 mV; Plako+/- Ctr: -46±1 mV; Plako+/- DHT: -46±2 mV). DHT exposure 123 

tended to cause a left shift in steady-state inactivation kinetics in both WT and Plako+/-, being 124 

statistically significant in Plako+/- (Supplementary Figure 5A). The 50% recovery time (P50) 125 
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from inactivation was significantly longer in the Plako+/- DHT, suggestive of a delayed rate of 126 

sodium channel recovery (Supplementary Figure 5B&C). 127 

Left atrial cell capacitance was elevated by DHT exposure in Plako+/- (Figure 8C). Of note, 128 

there was a considerable spread of individual cell capacitance in DHT-exposed groups, 129 

indicative of variable degrees of hypertrophy. INa density was negatively correlated against 130 

cell capacitance in Plako+/- left atria cardiac myocytes following DHT treatment (Figure 8D). 131 

This negative correlation was not detected in the WT DHT group. These data suggest that a 132 

hypertrophic response in the Plako+/- DHT left atrial cardiac myocytes was not matched by a 133 

rise in INa, leading to an overall depletion of INa density. In contrast, hypertrophy in the WT 134 

DHT left atria was matched by an increase in INa, so that INa density was preserved.  135 

Whole left atrial tissue RNA expression of sodium voltage gated channel 5 (Scn5a) was 136 

neither significantly affected by genotype, or DHT exposure (Figure 8E). 137 

Nav1.5 cluster depletion in Plako+/- left atrial cardiac myocytes following DHT exposure 138 

To define a molecular cause of INa density depletion in Plako+/- DHT left atrial cardiac 139 

myocytes, we examined Nav1.5 organisation at super-resolution level using direct Stochastic 140 

Optical Reconstruction Microscopy (dSTORM, workflow see Supplementary Figure 6). Due to 141 

the high variability in T-tubule density between different atrial cells, we focused on Nav1.5 142 

channels located within ca. 200 nm of the contact cell surface membrane by using 143 

TIRF/HILO. Exemplary super-resolution images of Nav1.5 detections, as well as characteristic 144 

cluster maps are shown in Figure 9A. 145 

Characteristics of identified Nav1.5 clusters, i.e. cluster density and cluster area, were similar 146 

in all 4 groups (Supplementary Figure 7A&B). The 95% confidence intervals generated from 147 

our murine WT Ctr left atria experiments suggest a range of 3-4x10-3 Nav1.5 channels per 148 

nm2 cluster (Supplementary Figure 7C, both mean and median at 3x10-3 channels per nm2 149 

cluster), resulting in an estimated nearest-neighbour distance of 20 nm.  150 

At the Plako+/- DHT left atrial cardiac myocyte membranes, fewer Nav1.5 detections were 151 

observed compared to WT DHT (Figure 9A&B). Of the total detections, the proportion present 152 
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in distinct Nav1.5 clusters was significantly lower in the Plako+/- DHT compared to WT DHT 153 

cardiac myocytes (Figure 9C). 154 
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Discussion 155 

Main findings  156 

 Atrial arrhythmias and P wave changes are common in patients with ARVC. 157 

 Exposure to the potent androgen 5α-dihydrotestosterone leads to pro-hypertrophic, 158 

pro-fibrotic and inflammatory transcriptional signatures in murine atria without overt 159 

phenotypic changes.  160 

 Combining chronic 5α-dihydrotestosterone exposure with heterozygous plakoglobin 161 

deficiency leads to a profound atrial cardiomyopathy replicating ECG changes in 162 

patients with ARVC. 163 

 Mechanistically, increased 5α-dihydrotestosterone concentrations interact with 164 

plakoglobin to decrease the number of membrane-localized Nav1.5 clusters, reducing 165 

atrial sodium current density and causing atrial conduction slowing.  166 

 167 

We report that definite ARVC patients exhibit increased P wave area and prolonged PR 168 

interval as well as P wave duration on ECG. A phenocopy of these ECG changes is observed 169 

in plakoglobin-deficient mice exposed to supraphysiological 5α-dihydrotestosterone (DHT) 170 

concentrations. Heterozygous plakoglobin deficiency predisposes cardiac atrial tissue to 171 

hypertrophy and a reduction in sodium current density after six weeks of exposure to elevated 172 

concentrations of DHT, resulting in a decrease in the peak upstroke velocity of the atrial 173 

action potential (dV dt-1 max), left atrial conduction slowing and increased electrical beat-to-174 

beat variability. Super-resolution microscopy, dSTORM, identified sarcolemmal depletion of 175 

Nav1.5 channels and clusters at left atrial cardiac myocytes isolated from Plako+/- DHT-treated 176 

mice. This was accompanied by the functional electrophysiological modifications of reduced 177 

atrial Nav1.5 current density and impaired atrial conduction. 178 
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The results underpin a role of plakoglobin in regulating Nav1.5 channel cellular localization in 179 

the left atrium and in preserving left atrial electrical integrity in response to stressors such as 180 

pro-hypertrophic DHT exposure. 181 

 

Patients in the definite ARVC disease stage display a high prevalence of atrial 182 

arrhythmias, P wave changes on ECG and preponderance of male sex 183 

A quarter (24%) of the patients with definite ARVC had atrial arrhythmias in our cohort. Meta-184 

analysis of published studies (between 1991 and 2021) revealed a weighted mean atrial 185 

arrhythmia prevalence of 15% amongst a total of 1915 ARVC patients (Table 3). Over 99% of 186 

the reported patients were diagnosed with definite ARVC according to accepted criteria. Male 187 

preponderance of atrial phenotypes was reported in other cohorts as well (Table 3).  188 

P wave duration and P wave area showed pathological changes in patients with definite 189 

ARVC, suggesting pathophysiological remodelling of the atria. P wave prolongation and 190 

increased P wave area have been associated with atrial fibrillation (AF) or increased AF 191 

recurrence (29-32). Furthermore, definite ARVC patients displayed longer PR intervals 192 

compared to non-definite patients and controls, suggesting attenuated conduction of the 193 

atrioventricular node. Conduction slowing is a common feature of heart rhythm disorders 194 

including AF, and acts by permitting the development and maintenance of both micro and 195 

macro re-entry (33). In line with our results, Baturova and colleagues recently found evidence 196 

for ARVC disease progression to be paralleled by changes in P wave area (34). Our data 197 

substantiate clinical evidence for progressive atrial conduction disturbances with progression 198 

of ARVC. Our murine data demonstrate that these changes can arise from an interaction 199 

between genetic desmosomal defects and AAS. 200 

DHT exposure interacts with plakoglobin deficiency leading to atrial electrical 201 

dysfunction 202 

Although supraphysiological AAS intake is commonly used by competitive athletes to 203 

enhance performance (doping), reports are unsystematic due to underreporting of AAS 204 
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intake. Murine models represent a unique tool to observe early atrial changes arising in 205 

interaction between genetic defects in the desmosome and AAS exposure. We show that 206 

chronic DHT exposure combined with heterozygous deletion of plakoglobin prolongs PR 207 

interval and P wave duration and slows atrial conduction. Affected atria did not show fibrotic 208 

or fatty changes, and connexin expression was not altered. A third important determinant of 209 

conduction velocity is the magnitude of depolarising current, primarily carried by Na+ through 210 

Nav1.5 channels (35). Our electrophysiological measurements found reduced atrial action 211 

potential amplitude and upstroke velocity (APA and dV dt-1 max), demonstrating a decreased 212 

sodium current that is sufficient to lower both the magnitude and rate of depolarisation, key 213 

contributors to cardiac conduction velocity. A delay of sodium current recovery times, as 214 

observed in Plako+/- DHT-treated cardiomyocytes, was enhanced at higher pacing 215 

frequencies. Super-resolution microscopy identified reduced availability and altered clustering 216 

of sodium channels as a likely mechanism for these functional defects. The reduced 217 

availability of Nav1.5 channels in cells already operating without a sufficient conduction 218 

reserve (36, 37), is likely to cause more pronounced conduction slowing and beat-to-beat 219 

variability as observed at the higher pacing frequencies in our experiments.  220 

 

Supraphysiological DHT concentrations increased atrial expression of genes related to 221 

immune response and fibrotic remodelling. Both processes contribute to the pathophysiology 222 

of ARVC as well as AF (38-46) and are likely intertwined. Lysyl oxidase (Lox), which we here 223 

report to be upregulated in atria in response to DHT, mediates cross-linking of collagen I and 224 

collagen III fibrils. Both collagen isoforms, amongst others, were also upregulated in DHT-225 

exposed atria in our study, indicating remodelling of the extracellular matrix (ECM). Lox 226 

overexpression in mice was also found to accelerate the inflammatory response during 227 

angiotensin II (AngII)-induced cardiac hypertrophy, including increased cytokine levels (47).  228 

Among the immune-response genes increased in atrial expression upon DHT treatment were 229 

the Toll-like receptor 3 (Tlr3) and the Toll-like receptor 4 (Tlr4) in our study. Silencing or 230 

deficiency of these receptors has been demonstrated to improve cardiac function post 231 
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myocardial infarction in rodent models by attenuating inflammatory cytokine production and 232 

fibrotic scar formation (48, 49). Toll-like receptors can be activated by endogenous ligands, 233 

including components of the extracellular matrix (50), and have been associated with matrix 234 

turn-over.  235 

 

Excessive ECM deposition is another pathological driver of conduction defects (51, 52) and 236 

increased perivascular fibrosis has been observed in the ventricular myocardium of male rats 237 

in response to 20 days of testosterone administration (53). Rho associated coiled-coil 238 

containing protein kinase 2 (Rock2)-dependent pathways, implicated in cardiac fibroblast 239 

activation, can regulate expression of ECM component levels, including CTGF (Ccn2) and α-240 

smooth muscle actin (Acta2) (54). Indeed, the expression of Rock2, Ccn2, as well as Acta2 241 

transcript, was upregulated in atria after chronic DHT exposure. Ccn2 expression, in 242 

response to the pro-hypertrophic stimulus AngII, has previously been shown to be mediated 243 

via the transcription factor serum response factor (Srf) in cardiac fibroblasts (55), which we 244 

also found to be upregulated in atria subjected to high concentrations of DHT. 245 

Transcriptional changes did not translate to structural changes other than atrial area dilation, 246 

e.g. excessive ECM deposition in atria in our murine study, illustrating the 247 

pathophysiologically relevant interaction of DHT-activated profibrotic signalling with 248 

desmosomal gene defects for the development of atrial conduction slowing. 249 

In the scope of this study, we were able to demonstrate that the combination of a pro-250 

inflammatory/fibrotic environment, caused by DHT, plus the selective reduction in INa in 251 

Plako+/- cardiomyocytes is sufficient to induce conduction slowing and increased beat-to-beat 252 

heterogeneity in these vulnerable atria.  253 

 

While this is the first study showing the molecular effect on atria, it has been previously 254 

demonstrated that androgens, including DHT, induce a hypertrophic response in ventricular 255 

cardiomyocytes (12). One of the genes consistently elevated in atrial expression after DHT 256 

exposure was insulin growth factor 1 (Igf1), a known driver of (cardiac) muscle growth (56, 257 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 7, 2022. ; https://doi.org/10.1101/2022.06.03.494748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494748


 
 

15 
 

57). Igf1 mRNA expression was also found to contribute to atrial fibrotic remodelling and AF 258 

inducibility in a rodent model (58). IGF1, containing an androgen response element within its 259 

promoter region (59), is a well-established target of androgen-receptor mediated gene 260 

activation. To our knowledge, we are the first to show that supraphysiological plasma DHT 261 

concentration can induce upregulation of Igf1 transcript levels in atria. Further evidence of the 262 

pro-hypertrophic atrial gene response to DHT exposure can be based on the downregulation 263 

of the lncRNA Myosin heavy chain associated RNA transcript (Mhrt). Repression of Mhrt 264 

expression has previously been established as a prerequisite for stress-induced, pathological 265 

cardiac hypertrophy and restoring Mhrt expression levels protected murine hearts from 266 

pressure overload-induced hypertrophy (60). Mhrt has been shown to inhibit expression of 267 

the transcription factor myocardin (Myocd) (61) and increased Myocd expression in peripheral 268 

blood cells of patients has been associated with increased ventricular mass (62). In 269 

accordance with this, down-regulation of Mhrt expression upon DHT exposure was paralleled 270 

by upregulation of Myocd expression compared to control groups. Since we were not able to 271 

demonstrate a significant increase in atrial cell diameter in histology at the investigated time 272 

point, but were able to demonstrate increased cell capacitance in atrial cardiomyocytes on 273 

single cell level as well as atrial area dilation, we propose that the atrial hypertrophic growth 274 

response to DHT seen is of an eccentric nature. 275 

Reduced plakoglobin decreases left atrial Nav1.5 cluster availability at the membrane in 276 

response to pro-hypertrophic DHT exposure 277 

Super-resolution imaging and electrophysiological techniques suggest that Nav1.5 spatial 278 

sarcolemmal localization is not random, but rather characterized by formation of distinct 279 

clusters (63, 64). To our knowledge, this the first study to evaluate the molecular arrangement 280 

of sarcolemma-localized Nav1.5 channels in atria through the use of dSTORM to allow for 281 

visualisation at nanometer resolution (localisation accuracy estimated to be within 20-30 nm). 282 

This confirmed that the mismatch between cell size and INa density following DHT exposure in 283 

Plako+/- left atria was due to reduced membrane Nav1.5 channel number and/or defective 284 
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cluster availability. Interestingly, the values we estimate for next-neighbour distance, 285 

calculated from cluster density in WT cells, are slightly lower than those reported employing 286 

similar super-resolution methods in ventricular cardiac myocytes (64), suggesting slightly 287 

higher cluster densities in atrial cardiomyocytes.  288 

 

The number of plasma membrane-localized Nav1.5 detections was reduced in left atrial 289 

cardiomyocytes obtained from Plako+/- DHT and showed a similar trend in Plako+/- control. A 290 

link between plakoglobin and Nav1.5 channel incorporation/trafficking into the cell membrane 291 

at the intercalated disc has been reported in ventricles (65, 66). Interactions of desmosomal 292 

and intercalated disc proteins with sodium channel complex have been demonstrated in 293 

ventricles previously (67) and loss or mutations of the desmosomal components plakophilin-2 294 

and desmoglein-2 were associated with reduced sodium current in different cell and murine 295 

models (67-69). A mismatch in cell size and Nav1.5 cluster availability could have implications 296 

for other cardiomyopathies and pathological hypertrophy (70, 71). Understanding the role of 297 

ion channel cluster properties is in its infancy, but our observations are consistent with other 298 

recent studies reporting a reduced INa in response to changes in single-molecule Nav1.5 299 

organisation (72, 73).  300 

Implications for patients and athletes 301 

Our results show that atrial arrhythmias are an important clinical feature of ARVC and confirm 302 

male patients are more likely to show a full ARVC phenotype. We demonstrate a previously 303 

unknown interaction between defective desmosomal gene expression and exposure to 304 

androgenic anabolic steroids (AAS) in atria. This may partially explain the occurrence of atrial 305 

conduction slowing and arrhythmias (74-76) in athletes abusing AAS to enhance their 306 

performance. Based on our results, searching for desmosomal gene defects in steroid 307 

abusers with atrial arrhythmias seems warranted. Such analyses may add to a better 308 

understanding of the cardiac damage observed in some of these patients.  309 
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Our data, gained from well-controlled murine experiments, demonstrate that reduced 310 

expression of plakoglobin, as commonly observed in cardiac tissue of patients with 311 

pathogenic mutations in a variety of desmosomal genes (77), renders atria susceptible to 312 

AAS-induced pathology. Prevention of atrial arrhythmias in arrhythmogenic cardiomyopathies 313 

is of interest also because they can give rise to inappropriate defibrillator shocks in affected 314 

patients (4, 78) and compromise cardiac function.  315 

We here add exposure to DHT to the list of stimuli aggravating pro-arrhythmic phenotypes in 316 

carriers of desmosomal mutations and demonstrate that this affects atrial electrical function. 317 

Our data also provide an explanation for the stronger phenotypic expression in male gene 318 

carriers with desmosomal mutations and the observed worsened clinical outcome in ARVC 319 

patients with high physiological testosterone levels (20, 22-25).320 
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Methods 321 

See supplement for full methods. 322 

Patient record screening for atrial arrhythmias and semi-automated analysis of digital 323 

electrocardiograms (ECGs) from ARVC patients 324 

Adult ARVC patients (>18 years of age) seen at a specialty clinic at a tertiary centre between 325 

2010 and 2021 were classified into two disease severity groups: non-definite and definite 326 

cases based on 2010 ARVC Task Force Criteria (TFC) (1).  327 

Clinical records were retrospectively reviewed to obtain information from several modalities 328 

including imaging, electrophysiology, histopathology, genetic testing and family history, to 329 

cumulatively fulfil a diagnostic classification. Patients exhibiting signs of confirmed disease 330 

based on specific combinations of minor or major criteria were classified as the “definite” 331 

group. Individuals exhibiting signs on diagnostic investigation congruous with the 2010 TFC 332 

as “borderline” or “possible” ARVC were cumulatively considered as the “non-definite” group, 333 

as they do not confer a confirmed diagnosis of ARVC. Non-definite cases were included in 334 

the analysis to represent individuals in the earlier phases of disease, with a less severe 335 

profile of phenotypic expression. Atrial fibrillation and flutter status was extracted from 336 

previous electrocardiograms (ECG) and clinical letters. 337 

Digital ECG recordings (10 seconds, sampling frequency 500 Hz) from the most recent 338 

follow-up in Inherited Cardiac Conditions Clinic were collated and analyzed using Matlab and 339 

BioSigKit (https://doi.org/10.21105/joss.00671). To discern the extent of atrial involvement in 340 

definite ARVC patients in comparison with non-definite patients as well as controls, family 341 

members of index patients without meeting TFC and/or exclusion of ARVC pathogenic 342 

variants attained from targeted gene panel testing, were additionally included (“Control”). 343 

Digital ECG analysis was performed by three independent observers in recordings displaying 344 

sinus rhythm applying a custom-designed, semi-automated algorithm. ECGs were digitally 345 

filtered between 0.5 and 50 Hz and using a Chebyshev type II filter. The R wave was 346 
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automatically identified, and all complexes within the recording were averaged to improve 347 

signal quality. The isoelectric line was defined from P wave start to end.  348 

Animal husbandry 349 

Wildtype (WT) and plakoglobin deficient (Plako+/-) littermate male mice (28), 129/Sv 350 

background, were housed in individually ventilated cages, (2-7 mice/ cage), monitored daily 351 

under standard conditions: 12 h light/dark cycle, 22±2 °C and 55±10% humidity. Food and 352 

water were available ad libitum.  353 

Chronic DHT exposure in the murine model and experimental timeline 354 

Young adult male mice (8-11 weeks) were assigned to either DHT or placebo/control 355 

treatment groups in mixed cages and were fitted with subcutaneous osmotic mini-pumps 356 

(Alzet 2006), containing either DHT (62.5 mg/mL in ethanol), or solvent alone (Control, Ctr), 357 

for 6 weeks (Figure 2). Age and DHT exposure time were matched for all groups. At least 40 358 

minutes before pump implantation, mice were subcutaneously injected with 0.05 mL 359 

of Buprenorphine. Pump implant was performed under anaesthesia with isoflurane inhalation 360 

(max. 4%) in O2 with a flow rate of 1-2 L/min. Animal handling staff and investigators were 361 

blinded to genotype and treatment. Echocardiography and ECG recording was performed at 362 

6 weeks exposure. Murine hearts were then extracted by thoracotomy under deep terminal 363 

anaesthesia (4-5% isoflurane in O2, flow rate 1-2 L/min,), and used for in organ and in vitro 364 

experimental analysis.  365 

Anabolic androgenic steroid measurements 366 

Murine serum DHT concentrations were determined by ultra-performance liquid 367 

chromatography-tandem mass spectrometry (LC-MS/MS) (Waters, Milford, MA, USA) as 368 

described before (79).  369 
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Murine awake ECG measurements 370 

Murine ECGs were recorded from awake mice using a tunnel system (ecgTunnel, EMKA 371 

Technologies, France) as reported previously (80). Analyses were performed on compound 372 

potentials averaged from 20 beats taken at three time-points throughout a 5-min recording 373 

with comparable heart rates between groups using the EMKA ECG analysis software. 374 

Obtained values were then averaged per animal. For P-wave duration the monophasic part of 375 

the P-wave was only taken from ECGs displaying a stable isoelectric line. 376 

Optical mapping of murine left atria 377 

Activation and action potential duration (APD) maps were generated from isolated left atria 378 

loaded with the voltage-sensitive dye Di-4-ANEPPS (17.5 µM; Cambridge Bioscience, CA, 379 

USA), paced over a range of 120-80 ms cycle length (CL) as described (81-83). To analyze 380 

conduction changes in more detail, beat-to-beat variability in whole tissue activation times 381 

was evaluated during rapid physiological pacing. To do this, 10 individual activation maps 382 

were compared from the final 10 beats of a train of 50 pulses at 80 ms CL (84). 383 

Murine echocardiography 384 

Echocardiography was performed with a dedicated small animal system (Vevo 2100; 385 

Visualsonics Fujifilm, Toronto, Ont, Canada) under light anaesthesia (0.5-2% isoflurane in O2) 386 

at a target heart rate of 390-440 bpm (27, 85-87). The investigators were blinded to intervention 387 

and genotype. Images were analyzed by a second blinded observer.  388 

Transmembrane action potential recordings 389 

Transmembrane action potentials were recorded from isolated, superfused murine left atria 390 

as described previously (81-83, 88).  391 

Cellular electrophysiology 392 

Individual murine left atrial cardiac myocytes were isolated by perfusion with a Tyrode’s 393 

enzyme solution containing 20 μg/mL Liberase™ (Roche, Indianapolis, IN) or a 394 
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collagenase+protease mix, 20 mM taurine and 30 μM CaCl2, via Langendorff over a period of 395 

10-15 min (81, 83). INa were evoked in voltage-clamp mode using standard protocols and low 396 

Na+ solution (89). All currents were normalized to cell capacitance.  397 

Murine atrial fiber size and collagen composition 398 

10 m left atrial transverse sections were stained with FITC-conjugated wheat germ 399 

agglutinin (lectin) and cell diameter as well as endomysial fibrosis were quantified using an 400 

automated analysis tool (90).  401 

Super-resolution microscopy and Nav1.5 cluster analysis 402 

Freshly isolated murine left atrial cardiac myocytes were plated on 10mm diameter laminin-403 

coated coverslips (Mattek, 35 mm dish, 1.5# coverglass), fixed, permeabilized and blocked. 404 

Cells were stained with primary rabbit anti-Nav1.5 antibody (ASC-005, 1:50, Alomone 405 

Laboratories, Jerusalem, Israel) and after additional washing and blocking they were 406 

incubated in secondary antibody (F(ab')2- Goat anti-Rabbit IgG, Alexa Fluor 647, A212-56, 407 

1:1000, ThermoFisher Scientific, Waltham, MA, USA). Direct stochastic optical reconstruction 408 

microscopy (dSTORM) (91) experiments were performed on a NIKON Eclipse Ti inverted N-409 

STORM microscope equipped with a NIKON APO 100 x 1.49 NA total internal reflection 410 

fluorescence (TIRF) oil immersion objective. Immunolabelled samples were imaged in 0.5 411 

mg/mL glucose oxidase, 40 µg/mL catalase, 10% wt/vol glucose and 100 mM MEA in PBS, 412 

pH 7.4 to induce Alexa 647 blinking. During dSTORM acquisition, the sample was 413 

continuously illuminated at 640 nm for 20,000 frames. Final rendered images of the localized 414 

molecules were generated using ThunderSTORM (92) and false coloured in FIJI. Final 415 

detections were subjected to a segmentation protocol, using a persistence-based clustering 416 

approach (93). 417 
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RNA sequencing of murine left atria 418 

Poly(A) mRNA-enriched libraries were sequenced 75 cycles in a single read mode on the 419 

NextSeq-500 System (v2.5 Chemistry, Illumina). Acquired data was trimmed and FASTQ files 420 

were aligned using HISAT2 (version 2.1.0; ref Pertea) and the reference genome Ensembl 421 

Mus Musculus GRCm38. Differential expression analysis were performed in R (http://www.R-422 

project.org/, R 3.4.1) using the DESeq2 package (94). Differential expression with a false 423 

discovery rate <0.05 was deemed significant. Results were visualized using R. 424 

Statistics 425 

All experiments and analyses were performed blinded to genotype and treatment. Data from 426 

murine studies was first subjected to outlier analysis, ROUT method, based around a false 427 

discovery rate, where α = 0.01 and outliers were removed (Prism v8, GraphPad Software, La 428 

Jolla, CA, USA). Associations between categorical variables were analyzed by Fisher´s exact 429 

test. Significance between groups for normally distributed data was taken as p<0.05, ordinary 430 

one-way or two-way (repeated) measures ANOVA, with Bonferroni’s post hoc test, as 431 

appropriate. Non-normally distributed data was subjected to Kruskal-Wallis with significance 432 

level of p<0.05 and Dunn’s post hoc test (Prism v8, GraphPad Software, La Jolla, CA, USA).  433 

Study approval 434 

Ethical approval for analysis of clinical data from Inherited Cardiac Conditions clinic at the 435 

University Hospital Queen Elisabeth, Birmingham, was granted by the local department of 436 

research ethics at UHB Hospital (Audit number CARMS-16044).  437 

All animal procedures were approved by the UK Home Office (PPL number 30/2967 and 438 

PFDAAF77F) and by the institutional review board of University of Birmingham, UK. All 439 

animal procedures conformed to the guidelines from Directive 2010/63/EU of the European 440 

Parliament on the protection of animals used for scientific purposes.441 
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Figures and figure legends 

 

 

Figure 1 - Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) patients’ and control 

individuals’ P wave characteristics derived from digital ECG analysis 

(A) Lead II ECG recordings from an unaffected (control) as well as a non-definite and definite ARVC 

patient. Individual cardiac cycles over a duration of 10 sec (grey traces) are overlaid by detected R waves 

and averaged (black trace). PR interval (blue), P wave duration (orange) and P wave area (green) are 

marked. (B) PR interval and P wave characteristics obtained from semi-automated analysis of the 

averaged ECG. All parameters are derived from lead II recordings. Mean heart rate ± SEM: Control: 

73 ± 3 bpm ; Non-definite ARVC: 75 ± 2 bpm; Definite ARVC: 60 ± 3 bpm. P-values from post hoc tests 

are reported on the graphs (Kruskal-Wallis (p<0.05) with Dunn’s post hoc test for PR interval; one-way 

ANOVA (p<0.05) with Bonferroni post hoc test for P wave duration and area). n (number of patients) = 

Control: 13, Non-definite ARVC: 42, Definite ARVC: 25 
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Figure 2 - Study design for murine experiments 

(A) Experimental timeline and methods used in the underlying murine study. All results described were 

obtained in male WT or Plako+/- mice at 4 months of age, at the end point of the protocol, i.e. after 

exposure to either 5α-dihydrotestosterone (DHT) or placebo control (Ctr) for 6 weeks. (B) Serum DHT 

concentration (n=11-18 mice/group) and (C) body weight (n=48-54 mice/group) are increased following 

DHT treatment. 
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Figure 3 - Murine awake ECGs after 6 week chronic control or DHT treatment 

(A) Exemplary lead II ECG recordings in mice. Shown are compound potentials averaged from 

20 subsequent cardiac cycles. PR interval (blue) and monophasic part of P wave (orange) are marked. 

(B) PR interval (n=30-34 mice/group) and P wave duration (n=20-30 mice/group) are prolonged in 

Plako+/- DHT compared to WT DHT (2-way ANOVA p<0.05 with post-hoc t-test; p-values are indicated 

on graphs). 
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Figure 4 - Atrial unfolded area and conduction  

(A) Experimental setup for optical mapping of isolated left atria (LA), scale bar 1 mm. DHT exposure 

has a significant effect on (B) LA unfolded area (p<0.05, 2-way ANOVA) measured from optical 

mapping raw images and area is significantly increased in Plako+/- left atria subjected to DHT (post hoc 

unpaired t-test, p-values indicated on graph, n=8-10 LA per group). (C) Exemplary isochronal 

activation maps of LA at 100 ms pacing cycle length (averaged, scale bar 1 mm). Both, heterozygous 

deletion of plakoglobin and DHT exposure have a significant effect on (D) LA conduction velocity 

(p<0.05, 2-way repeated measures ANOVA), but it is only significantly decreased in LA of Plako+/- DHT 

animals (Bonferroni-adjusted post hoc test, +padj<0.05 vs Plako+/- Ctr; *padj <0.05 vs WT Ctr, across all 

cycle lengths, n=8-9 LA per group). Data plotted as mean ± SEM.  
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Figure 5 - Atrial activation time and beat-to-beat variation 

(A) Example individual activation maps taken from the final 5 beats of a train of 50 pulses at 80 ms 

pacing cycle length (CL). DHT exposure has a significant effect on (B) beat averaged 95% left atrial 

activation times. Both genotype and DHT treatment have a significant effect on (C) mean beat-to-beat 

variation in 95% activation times calculated from the final 10 beats of a train of 50 pulses at 80 ms CL 

(2-way ANOVA with post-hoc analysis as appropriate, p-values indicated). Individual data points 

denote single left atria (LA). N = WT Control: 6 LA, WT DHT: 7 LA, Plako+/- Control: 8 LA, Plako+/- DHT: 

9 LA. Scale bar in (A) indicates 1 mm. 
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Figure 6 - Atrial gene expression profiles. Confirmation of Jup deficiency and growth response. 

(A) Normalized read counts of plakoglobin gene Jup from RNA sequencing analysis from all groups, 

confirming ~50% reduction of expression in heterozygous knock-out animals (Plako+/-) in both left (LA) 

and right atria (RA) (FDR from DESeq2 WT vs Plako+/- <0.05 for both treatment groups). (B) Volcano 

plot illustrating the effect of DHT treatment, comparing gene expression of WT DHT atria to WT Ctr. 

Significantly differentially expressed genes at a fold change ≥│0.5│ (adjusted p value from DESeq2 < 

0.05) are highlighted in red, top 10 hits are labelled. (C) Selected genes significantly regulated 

(adjusted p value from DESeq2 < 0.05) by DHT exposure in at least one of the genotypes. DHT 

treatment leads to atrial growth, pro-fibrotic and immune response gene expression.  

n= WT Ctr: 3 LA + 3 RA; WT DHT: 6 LA + 6 RA; Plako+/- Ctr: 4 LA + 4 RA; Plako+/- DHT: 6 LA + 6 RA.  

Ccnd2, cyclin D2; Gdf10, growth differentiation factor; Igf1, insulin-like growth factor 1; Igf2r, insulin-like 

growth factor 2 receptor; Irs1, insulin receptor substrate 1; Mhrt, myosin heavy chain associated RNA 

transcript; Mtpn, myotrophin; Psap, prosaposin; Acta2, smooth muscle (α)-2 actin; Adamts9, ADAM 

metallopeptidase with thrombospondin type 1 motif 9; Ccn2, connective tissue growth factor; 

Col1a1/3a1/4a1/4a2/5a1, collagen type 1 alpha 1/3 alpha 1/4 alpha 1/4 alpha 2/5 alpha 1; Fbn1, 

fibrillin 1; Fgf1, fibroblast growth factor 1; Has2, hyaluronan synthase 2; Lox, lysyl oxidase; Myocd, 

myocardin; Ngfr, nerve growth factor receptor; Rock2, rho associated coiled-coil containing protein 
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kinase 2; C7, complement C7; Cd, cluster of differentiation 6; Cd9, tetraspanin CD9; Ccr5, C-C motif 

chemokine receptor 5; Csf1r, colony stimulating factor 1 receptor; Dusp4, dual specificity phosphatase 

4; Il34, interleukin 34; Tlr3, toll like receptor 3; Tlr4, toll like receptor 4 
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Figure 7 - Atrial activation time and action potential characteristics  

(A) Experimental setup for intracellular microelectrode measurements in paced left atria (LA) to record 

transmembrane action potentials. Representative examples obtained at 100 ms pacing cycle length 

are shown in (B). Both, heterozygous plakoglobin deletion and DHT exposure have a significant effect 

on mean (C) LA activation time, (D) action potential amplitude (APA) and (E) maximum upstroke 

velocity (dV dt-1 max) (2-way repeated measures ANOVA, p<0.05). WT Ctr (n=21 cells, N=7 LA), WT 

DHT (n=13 cells, N=5 LA), Plako+/- Ctr (n=20 cells, N=7 LA) and Plako+/- DHT LA (n=23 cells, N=8 LA). 

Plako+/- DHT LA have longer activation times, decreased APA and reduced dV dt-1 max (Bonferroni-

adjusted post hoc analysis: #padj<0.05 vs all other groups, across all cycle lengths). Data averaged 

per atrium before performing statistical analysis and plotted as mean ± SEM.  
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Figure 8 - Atrial cardiomyocyte sodium current, cell capacitance and sodium channel 

expression  

(A) Representative left atrial (LA) whole cell peak Na+ current (INa) traces measured at test 

potentials -100 to +40 mV. (B) Mean current-voltage relationships for WT Ctr, WT DHT, Plako+/- Ctr 

and Plako+/- DHT. Plako+/- DHT LA cells have reduced INa density (2-way repeated measures ANOVA 

with Bonferroni post hoc analysis: #padj<0.05 vs all other groups at the respective test potential). Data 

plotted as mean ± SEM. Both genotype and DHT treatment show a significant effect on (C) individual 

cell capacitance (2-way ANOVA, p<0.05) as measured in WT Ctr (n=14 cells, N=5 LA), WT DHT (n=16 
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cells, N=5 LA), Plako+/- Ctr (n=11 cells, N=4 LA) and Plako+/- DHT (n=21 cells, N=5 LA). Data points 

shown individually and plotted as mean ± SEM. Bonferroni-corrected post hoc analysis shows a 

significant increase in cell capacity by DHT compared to Ctr in both genotypes. Cell capacitance is 

highest in LA cardiomyocytes from Plako+/- DHT. (D) Scatter plots of individual LA cell capacitance 

against peak INa density for WT Ctr (n=14 cells, N=5 LA), WT DHT (n=16 cells, N=5 LA), Plako+/- Ctr 

(n=11 cells, N=4 LA) and Plako+/- DHT (n=21 cells, N=5 LA). There is a significant negative correlation 

of peak INa density against cell capacitance for Plako+/- but not WT LA cells after DHT treatment; linear 

regression analysis. (E) Normalized read counts of sodium channel transcript Scn5a in LA obtained 

from RNA sequencing analysis (n=3-6 LA per group). Data points shown individually and box whiskers 

denote IQR, max-min and median. 
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Figure 9 - Sodium channel clustering analysis in atrial cardiomyocyte dSTORM images 

(A) Brightfield images of fixed left atrial (LA) cardiomyocytes prior to dSTORM recording (top lane), 

reconstructed super-resolution images of membrane Nav1.5 and zoom-ins of the indicated area 

(middle lanes) as well as corresponding cluster maps generated from binary images (bottom lane). 

Detections allocated to a cluster appear in (arbitrary) colour, non-clustered detections remain black. 

Scale bar 20 µm and 1.5 µm for zoom-in images, respectively. Genotype has a significant effect on (B) 

number of Nav1.5 detections at the LA cardiomyocyte membrane and (C) fraction of Nav1.5 detections 
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allocated to a cluster (2-way ANOVA, p<0.05). Both number and fraction of clustered membrane 

Nav1.5 is significantly reduced in cardiomyocytes from Plako+/- DHT. Results from post-hoc t-tests are 

reported on the graphs. For (B) and (C): WT Ctr (n=38 cells, N=7 LA), WT DHT (n=35/36 cells, N=11 

LA), Plako+/- Ctr (n=20 cells, N=5 LA) and Plako+/- DHT (n=28 cells, N=6 LA). Data points were 

normalized to the mean of the respective WT Ctr group on the same imaging session and are shown 

individually and plotted as mean ± SEM. 
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Tables 

Table 1 - ARVC patient characteristics  

Patient characteristics 
 

Non-definite 

n=97 

Definite 

n=49 
p value 

Age at last follow-up, mean ± 

std (years) 
 42 ± 18 43 ± 16 0.743 

Male, n (%)   42 (43) 36 (73) 0.0008 

Atrial fibrillation/flutter, n (%)  3 (3) 12 (24) 0.0001 
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Table 2 - Phenotypic characteristics of the murine model 

 WT  
control  

WT  
DHT 

Plako+/-  
control 

Plako+/-  
DHT 

     

Age at terminal 
experiment (weeks) 
(n=59-67) 

16.5 ± 0.2 16.7 ± 0.2 16.0 ± 0.2 16.6 ± 0.2 

Body weight (g) 
(n=59-65) 

27.9 ± 0.4 29.4 ± 0.4** 27.9 ± 0.4 29.2 ± 0.4+ 

Serum DHT (nM) 
(n=11-18) 

0.25 ± 0.06 0.85 ± 0.21* 0.31 ± 0.11 1.22 ± 0.29+ 

Left atrial weight:tibia 
length 
(mg mm-1) 
(n=29-32) 

0.23 ± 0.01 0.24 ± 0.01 0.22 ± 0.01 0.28 ± 0.02+ 

Right atrial 
weight:tibia length 
(mg mm-1) 
(n=28-32) 

0.25 ± 0.01 0.29 ± 0.01* 0.26 ± 0.02 0.30 ± 0.03 

Seminal vesicle 
weight:tibia length 
(mg mm-1) 
(n=39-45) 

6.0 ± 0.4 6.0 ± 0.3 5.5 ± 0.2 6.5 ± 0.3+ 

     

Murine echocardiography (light anaesthesia, mean heart rate 390-440 bpm) 

Heart rate (bpm) 
(n=18-28) 

411 ± 3 415 ± 3 413 ± 3 414 ± 3 

Left atrial 
diameter:tibia length 
(mm mm-1) 
(n=15-23) 

0.130 ± 0.005 0.140 ± 0.007 0.138 ± 0.006 0.144 ± 0.007 

Left ventricular 
mass:tibia length  
(mg mm-1) 
(n=18-28) 

5.4 ± 0.3 5.5 ± 0.3 4.9 ± 0.2 6.0 ± 0.3+ 

  
Data presented as mean ± SEM, n=number of animals per group, *p<0.05 vs WT control, **p<0.01 vs 

WT control (post-hoc t-test, 2-way ANOVA p<0.05 for DHT treatment), +p<0.05 vs Plako+/- control 

(post-hoc t-test, 2-way ANOVA p<0.05 for DHT treatment) 
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Table 3 - Prevalence of Atrial fibrillation/flutter (Atrial Arrhythmia, AA) in ARVC patients 

 

Study 
[First author] 

Year Number 
of 

patients 

Mean age 
[years, ± SD 

/ (range)] 

AA 
prevalence 

[%] 

Patients 
with AA; 

male 
[%] 

Patients 
without 

AA; 
male 
[%] 

       

Tonet (3) 1991 72 38 (16-73) 24 n.r. n.r. 

Jaoude (95) 1996 74 
37.2 ± 13.5 

(11-68) 
4 n.r. n.r. 

Brembilla-Perot 
(96) 

1998 47 44 ± 18 (17-72) 17 63 n.r. 

Peters (97) 2004 80 45.9 (22-91) 30 n.r. n.r. 

Chu (5) 2010 36 47 (17-80) 42 80 76 

Camm (4) 2013 248 41.6 ± 14 14 69 50 

Saguner (98) 2014 90 49.7 ± 14.6 20 61 64 

Wu (99) 2016 294 37.7 ± 14.8 13 62 77 

Bourfiss (100) 2016 66 46.4 ± 15.8 21 79 50 

Mazzanti (101) 2016 301 38 ± 18 4 n.r. n.r. 

Gilljam (102) 2018 183 
Median 46  

(14-65) 
9 n.r. n.r. 

Wu (103) 2018 100 37.1 ± 12.1 9 n.r. n.r. 

Müssigbrodt 
(104) 

2018 70 53.2 ± 14.0 37 62 73 

Cardona-
Guarache (105) 

2019 117 52 ± 14 22 69 57 

Kikuchi (106) 2020 90 44 ± 15 36 78 76 

Baturova (34) 2021 100 41 (30-55) 28 n.r. n.r. 

  ∑ 1915 
        Weighted mean:  

         15% 
 

Present study:      

ARVC diagnosis      

Non-definite  97 42 ± 18 3 67 43 

Definite  49 43 ± 16 24 67 73 

 
SD = standard deviation, n.r. = not reported 
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