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Neuroimaging technology has experienced explosive growth and1

has transformed the study of neural mechanisms across health2

and disease. However, given the diversity of sophisticated3

tools for handling neuroimaging data, the field faces challenges4

around method integration (1–3). Specifically, researchers of-5

ten have to rely on siloed approaches which limit reproducibil-6

ity, with idiosyncratic data organization and limited software7

interoperability. To address these challenges, we developed8

Quantitative Neuroimaging Environment & Toolbox (QuNex),9

a platform for consistent end-to-end processing and analytics.10

QuNex is engineered for reproducible deployment of custom11

workflows, from onboarding raw data to generating analytic12

features, in a single “turnkey” command. The platform en-13

ables inter-operable integration of multi-modal, community-14

developed neuroimaging software through an extension frame-15

work with a software development kit for seamless integration16

of community tools. Critically, it supports high-throughput,17

parallel processing in high-performance compute environments,18

either locally or in the cloud. Notably, QuNex has successfully19

processed over 10,000 scans across neuroimaging consortia (4),20

including multiple clinical datasets. Moreover, QuNex enables21

integration of non-human primate, rodent, and human work-22

flows via a cohesive translational platform. Collectively, this ef-23

fort stands to significantly impact neuroimaging method inte-24

gration across acquisition approaches, pipelines, datasets, com-25

putational environments, and species. Building on this platform26

will enable more rapid, scalable, and reproducible impact of27

neuroimaging technology across health and disease.28

neuroimaging, data processing, functional MRI, diffusion MRI, multi-modal29

analyses, containerization, cloud integration, high-performance computing,30

cross-species analyses31

Correspondence: jielisa.ji@yale.edu32

Introduction33

Neuroimaging has transformed the study of the central34

nervous system across species, developmental stages, and35

health/disease states. The impact of neuroimaging research36

has led to the development of a diverse and growing ar-37

ray of tools and pipelines that address distinct aspects of38

data management, preprocessing, and analysis (e.g. AFNI39

(5), FreeSurfer (6), FSL (7), SPM (8), HCP (9), fMRIPrep40

(10), QSIPrep (11), PALM (12)). However, the growing41

array of neuroimaging tools has created challenges for in-42

tegration of such methods across modalities, species, and43

analysis choices. Furthermore, different neuroimaging tech-44

niques (e.g., functional magnetic resonance imaging/fMRI,45

diffusion magnetic resonance imaging/dMRI, arterial spin la-46

belling/ASL, task-evoked versus resting-state etc.) have of-47

ten spurred the creation of methodology-specific silos with48

limited interoperability across tools. This has contributed to49

a fragmented neuroimaging community in lieu of integrative50

workflows that facilitate standardized and reproducible work-51

flows in the field (13).52

A number of coordinated efforts have attempted acquisi-53

tion and processing standardization. For example, the Hu-54

man Connectome Project’s Minimal Preprocessing Pipelines55

(HCP MPP) (9) allow quality control (QC) and distortion cor-56

rection for several neuroimaging modalities through a unified57

framework, while considering multiple formats for preserv-58

ing the geometry of different brain structures (surfaces for59

the cortical sheet and volumes for deep structures). Another60

state-of-the-art preprocessing framework, fMRIPrep (10), fo-61

cuses on fMRI, seeking to ensure high-quality automated pre-62

processing and integrated QC. FSL’s XTRACT (14) allows63

consistent white matter bundle tracking in human and non-64

human primate dMRI. Such efforts have been instrumental65

in guiding the field towards unified and consistent handling66

of data and increasing accessibility for users to state-of-the-67

art tools. However, these solutions are mostly application-68

or modality-specific, and therefore are not designed to en-69

able an integrative workflow framework that is modality- and70

method-agnostic.71

To address this need, we have developed the Quantitative72

Neuroimaging Environment and Toolbox (QuNex). QuNex73

is designed as an integrative platform for reproducible neu-74

roimaging analytics. Specifically, QuNex enables researchers75

to seamlessly execute data onboarding and preparation, pre-76

processing, QC, feature generation, and statistical analyses77

in a integrative and reproducible manner. The “turnkey”78

end-to-end execution capability allows entire study work-79
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flows, from data onboarding to statistical analyses, to be80

customized and executed through a single command. Fur-81

thermore, QuNex is optimized for high performance com-82

puting (HPC) or cloud-based environments to enable high-83

throughput parallel processing of large-scale neuroimaging84

datasets (such as Adolescent Brain Cognitive Development85

(15) or the UK Biobank (16)). In fact, QuNex has been86

adopted as the platform of choice for executing workflows87

across all Lifespan and Connectomes of Human Disease88

datasets by the Connectome Coordinating Facility (CCF) (4).89

Critically, we have developed QuNex to integrate and facili-90

ate use of existing software packages, while enhancing their91

functionality through a rich array of internal features. For92

instance, QuNex supports a number of popular and well-93

validated neuroimaging tools, with a framework for exten-94

sibility and integration of additional tools (see Discussion).95

Moreover, QuNex offers functionality for onboarding en-96

tire datasets, with compatibility for the BIDS (Brain Imag-97

ing Data Structure, (17)) or HCP-style conventions, as well98

as support for NIFTI (volumetric), GIFTI (surface meshes),99

CIFTI (grayordinates), and DICOM file formats. Lastly,100

QuNex enables analysis of non-human primate (18) and ro-101

dent (mouse) (19) datasets in a complementary manner to hu-102

man neuroimaging workflows. To our knowledge, no frame-103

work provides an integrative solution to handle the diver-104

sity of neuroimaging workflows across species, modalities,105

pipelines, analytic workflows, datasets, and scanner manu-106

facturers, while explicitly enabling methodological extensi-107

bility and innovation.108

QuNex offers an integrative solution that minimizes techni-109

cal bottlenecks and access friction for executing standard-110

ized neuroimaging workflows at scale with reproducible stan-111

dards. Here we present the QuNex environment through112

specific example use cases: 1) Turnkey execution of neu-113

roimaging workflows and versatile selection of data for high-114

throughput batch processing with native scheduler support;115

2) Consistent and standardized processing of datasets of var-116

ious sizes, modalities, study types, and quality; 3) Multi-117

modal feature generation at different levels of resolution; 4)118

Comprehensive and flexible general linear modelling at the119

single-session level and integrated interoperability with third-120

party tools for group-level analytics; 5) Support for multi-121

species neuroimaging data, to link, unify and translate be-122

tween human and non-human studies. We use data sampled123

from the over 10,000 scan sessions that QuNex has been used124

to process across neuroimaging consortia, including clinical125

datasets. Notably, we present the native support for open sci-126

ence through the QuNex Software Development Kit (SDK).127

In summary, QuNex enables critical opportunities for repro-128

ducibility and method innovation, with a focus on integrating129

across the diverse array of tools in the neuroimaging commu-130

nity.131

Results132

QuNex is a unified software platform that enables researchers133

to perform all of the steps required in state-of-the-art neu-134

roimaging studies, starting with onboarding data from vari-135

ous formats and organizations (e.g., DICOM, Bruker, HCP-136

style, BIDS); continuing with state-of-the-art preprocessing137

pipelines (e.g., the HCP MPP) and quality control steps;138

and ending with final analyses (e.g., whole brain or ROI139

activation or connectivity analyses, tractography). Through140

QuNex, researchers can use a single platform to perform141

onboarding, preprocessing, QC and analyses across multi-142

ple modalities and species. The developed platform is open143

source and community driven. To promote community par-144

ticipation, we have adopted modern and flexible develop-145

ment standards and implemented several supporting tools,146

including a Software Development Kit (SDK) that includes147

helper tools for setting up a development environment and148

testing newly developed code, and an extensions framework149

through which researchers can integrate their own pipelines150

into the QuNex platform. These tools enable users to speed151

up both their development and integration of newly devel-152

oped features into the core codebase. QuNex comes with153

an extensive documentation both in the format of inline help154

through the command line interface (CLI) and a dedicated155

Wiki page. Furthermore, users can visit our forum (https:156

//forum.qunex.yale.edu/) for anything QuNex re-157

lated, from discussions to feature requests, bug reports, is-158

sues, and usage assistance.159

QuNex is an Integrative Multi-modal, Multi-species160

Neuroimaging Platform. QuNex provides a platform for161

seamless integration of a wide array of neuroimaging oper-162

ations, ranging from low-level onboarding of raw data to fi-163

nal cutting-edge surface-based analyses and visualizations.164

Figure 1 provides a general overview of the QuNex plat-165

form and a summary of QuNex commands and function-166

alities is shown in Figure S1. QuNex supports process-167

ing of diverse data from multiple species (human, macaque168

and mouse), modalities (T1w, T2w, BOLD, DWI), and com-169

mon neuorimaging data formats (e.g. DICOM, PAR/REC,170

NIfTI and Bruker). It offers support for onboarding of BIDS-171

compliant or HCP-style datasets and native support for stud-172

ies that combine neuroimaging with behavioral assessments.173

Furthermore, it allows for the integration of behavioral data,174

such as task performance or symptom assessments, and im-175

plements final analyses of data arising from studies that com-176

bine neuroimaging with behavioral data, with a clear gram-177

mar for organizing the data hierarchy across behavior and178

neural modalities for a single study (Figure S2). Because of179

containerization the platform is fully platform-agnostic and180

comes in the form of both Docker and Singularity containers181

which allows for easy deployment regardless of the underly-182

ing hardware or operating system.183

QuNex is capable of generating multi-modal features both at184

the single subject level and at the group level. It enables ex-185

traction of structural features from T1w and T2w data (e.g.186

myelin, cortical thickness, sulcal depth and curvature), struc-187

tural connectivity features from diffusion weighted imag-188

ing (DWI) data (whole-brain “dense” connectomes, regional189

connectivity, white matter tract segmentation) and functional190

features from BOLD imaging (e.g. activation maps and191

peaks, functional connectivity matrices or connectomes).192
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Fig. 1. QuNex Provides an Integrated, Versatile and Flexible Neuroimaging Platform. A) QuNex supports processing of input data from multiple species, including
human, macaque and mouse. B) Additionally, data can be onboarded from a variety of popular formats, including neuroimaging data in DICOM, PAR/REC, NIfTI formats, a
full BIDS dataset, or behavioral data from task performance or symptom assessments. C) The QuNex platform is available as a container for ease of distribution, portability
and execution. The QuNex container can be accessed via the command line and contains all the necessary packages, libraries and dependencies needed for running
processing and analytic functions. D) QuNex is designed to be easily scalable to accommodate a variety of datasets and job sizes. From a user access point (i.e. the user’s
local machine), QuNex can be deployed locally, on cloud servers, or via job schedulers in supercomputer environments. E) QuNex outputs multi-modal features at the single
subject and group levels. Supported features that can be extracted from individual subjects include structural features from T1w, T2w and DWI (such as myelin, cortical
thickness, sulcal depth and curvature) and functional features from BOLD imaging (such as functional connectivity matrices). Features can be extracted at the dense, parcel,
or network levels. F) Importantly, QuNex also provides a comprehensive set of tools for community contribution, engagement and support. A Software Development Kit (SDK)
and GitFlow-powered DevOps framework is provided for community-developed extensions. A forum (https://forum.qunex.yale.edu) is available for users to engage
with the QuNex developer team to ask questions, report bugs and/or provide feedback.

Features can be extracted at the dense, parcel, or network193

levels.194

Turnkey Engine Automates Processing via a Single195

Command. Efficient processing of neuroimaging datasets196

require streamlined workflows that can execute multiple197

steps, from data onboarding to performing analytics, with198

minimal manual intervention. One of the most powerful199

QuNex features is its “turnkey” engine, accessible through200

the run_turnkey command. The turnkey functionality al-201

lows users to chain and execute several QuNex commands202

using a single command line call, enabling the generation of203

consistent outputs in an efficient, streamlined manner. The204

turnkey steps are entirely configurable and modular, such that205

users can customize workflows to suit their specific needs.206

An example of an end-to-end workflow is shown in Figure207

2A. The QuNex turnkey engine supports data onboarding of208

the most commonly used neuroimaging formats, state-of-the-209

art preprocessing pipelines (e.g. HCP MPP (9), see Figure210

S3) and denoising techniques, as well as steps for data qual-211

ity control. QuNex expands upon preprocessing functionali-212

ties provided by other packages by providing a robust visual213

QC function (Figure S4) which simplifies thorough valida-214

tion of the quality of neural data and preprocessing interme-215

diate and final outputs, across multiple modalities (including216

T1w, T2w, myelin, DWI, and BOLD). Users can additionally217

choose to generate neural features for use in analyses, includ-218

ing parcellation of timeseries and functional connectivity.219

Filtering Grammar Enables Flexible Selection of220

Study-Specific Data Processing. Flexible selection of221

sessions/scans for specific steps is an essential feature for222

dataset management, especially datasets with multiple sites,223

scanners, participants groups, or scan types. For example,224

the user may need to execute a command only on data from a225

specific scanner; or only on resting-state (versus task-based)226

functional scans for all sessions in the study. QuNex enables227

such selection with a powerful filtering grammar in the study-228

level “batch files”, which are text files that are generated as229

part of the onboarding process.230

Batch files contain metadata about the imaging data and231

various acquisition parameters (e.g. site, device vendor,232

group, subject ID, session ID, acquired modalities) and serve233

as a record of all session-specific information in a partic-234

ular study. When users create the batch file through the235

create_batch command, QuNex sifts through all ses-236

sions in the study and adds the information it needs for fur-237

ther processing and analyses to the batch file. This makes the238

batch file a key hub that stores all the relevant study meta-239

data. One of the key advantages of this approach is that240

users can easily execute commands on all or only a spe-241

cific subset of sessions from a study by filtering the study-242

level batch file. Figure 2B visualizes the logic behind fil-243

tering data subsets from batch files and examples of a use244

of the filter parameter in a QuNex command. Informa-245

tion about each scan (e.g. scanner/device, institution/scan246

site, group, subject ID, session ID, modality, scan tag) in247

the batch file is provided using a key:value format (e.g.248

group:patient). While some keys are required for249

QuNex processing steps (e.g. session, subject) and250

are populated automatically during the onboarding process,251

users can add as many additional key:value tags as they252

need. The filter parameter in a QuNex command will253

search through the batch file and select only the scans with254

the specified key:value tag. This filtering can be executed255
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Fig. 2. QuNex Turnkey Functionality and Batch Engine for High-throughput Processing. A) QuNex provides a “turnkey” engine which enables fully automated
deployment of entire pipelines on neuroimaging data via a single command (qunex run_turnkey). An example of a typical workflow with key steps supported by the
turnkey engine is highlighted, along with the example command specification. QuNex supports state-of-the-art preprocessing tools from the neuroimaging community (e.g.
the HCP MPP (9)). For a detailed visual schematic of QuNex steps and commands, see Supplementary Information and Figure S1. B) The QuNex batch specification is
designed to enable flexible and comprehensive “filtering” and selection of specific data subsets to process. The filtering criteria can be specified at multiple levels, such as
devices (e.g. Siemens, GE, or Philips MRI scanners), institutions (e.g. scanning sites), groups (e.g. patient vs controls), subjects, sessions (e.g. time points in a longitudinal
study), modalities (e.g. T1w, T2w, BOLD, diffusion), or scan tags (e.g. name of scan). C) QuNex natively supports job scheduling via LSF, SLURM, or PBS schedulers and
can be easily deployed in HPC systems to handle high-throughput, parallel processing of large neuroimaging datasets. The scheduling options enable precise specification
of paralellization both across sessions and within session (e.g., parallel processing of BOLD images) for optimal performance and utilization of cluster resources.
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Fig. 3. Consistent Processing at Scale and Standardized Outputs Through Batch Specification. A) The batch specification mechanism in QuNex is designed to
support data processing from single-site and multi-site datasets to produce standardized outputs. Acquisition parameters can be flexibly specified for each sequence. Here,
example datasets I (single-site study) and II (mutli-site study) illustrate possible use cases, with the sequences in each dataset shown in green text. Although Dataset I
does not include T2w scans, and Dataset II contains data from different scanners, all these data can be consistently preprocessed in all modalities to produce standardized
output neural features. B) Parameters can be tailored for each study in the header of the batch processing file. An example is shown for processing data from the HCP
MPP (9). Here, parameters in green are shown tailored to Site B in Dataset Y. Detailed instructions and examples for setting up the batch parameter header is available
at https://bitbucket.org/oriadev/qunex/wiki/Overview/QuickStart.md. C) QuNex has been highly successful in preprocessing data from numerous
publicly available as well as private datasets, totalling over 10,000 independent scan sessions from over 50 different scanners. In some cases, advanced user options (such as
custom brain masks) can be used to rescue sessions which failed with “out-of-the-box” default preprocessing options. The number of successful/total sessions is reported in
each bar. The number of sessions rescued with advanced options is shown in parentheses, when applicable. The total proportion of successfully preprocessed sessions from
each study (including any sessions rerun with advanced options) as well as the grand total across all studies is shown above the bar plots. D) QuNex has been successfully
used to preprocess data with a wide range of parameters and from diverse datasets. (Left) QuNex has been tested on MRI data acquired with the three major scanner
manufacturers (Philips, GE and Siemens). Here NS specifies the number of individual scan sessions that were acquired with each type of scanner. (Middle) QuNex is
capable of processing images acquired both with and without simultaneous multi-slice (SMS) acquisition (also known as multi-band acquisition, i.e.: Simultaneous Multi-Slice
in Siemens scanners; Hyperband in GE scanners; and Multi-Band SENSE in Philips scanners (20)). (Right) QuNex has been tested on data from clinical, pharmacology,
longitudinal and basic population-based datasets. Here, ND specifies the number of datasets; NS specifies the total number of individual scan sessions in those datasets.

at multiple levels, from selecting all scans from a particular256

type of scanner to scans from only a single session. For ex-257

ample, setting filter="device:Siemens" will select258

all data for scans conducted by a Siemens scanner; setting259

filter="session:0001_1" will select only data from260

session ID 0001_1.261

QuNex Provides Native Scheduler Support for Job262

Management. Many institutions use HPC systems or cloud-263

based servers for processing, necessitating job management264

applications such as scheduler software and custom schedul-265

ing scripts (see examples in Supplementary Information266

and Figure S5). This is especially important for efficient267

processing of large datasets which may include thousands of268

sessions. While QuNex is platform-agnostic, all QuNex com-269

mands, including run_turnkey, are compatible with com-270

monly used scheduling systems (SLURM, PBS and LSF) for271

job management in HPC systems (Figure S6). Thus, QuNex272

is easily scalable and equipped to handle high-throughput,273

parallel processing of large neuroimaging datasets. To274

schedule a command on a cluster, users simply provide a275

scheduler parameter to any QuNex command call and the276

command will be executed as a job on an HPC system, elim-277

inating the need for specialized scripts with scheduling di-278

rectives. Additionally, QuNex provides parameters for users279

to easily customize the parallelization of their jobs from the280

command line call. The parjobs parameter specifies the281

total number of jobs to run in parallel; parsessions spec-282

ifies the number of sessions to run in parallel within any283

single job; and parelements specifies the number of el-284

ements (e.g. BOLD runs) within each session to run in285

parallel. Users can provide the scheduling specification for286

their jobs to ensure that they are run in an exact way; oth-287

erwise, QuNex will automatically assign scheduling values288

for job parallelization, as described in Figure S7. Figure289

2C shows examples of how the native scheduler support and290

QuNex’s parallelization parameters can be leveraged to cus-291

tomize the way processing is distributed across jobs. For292

example, specifying parjobs=1, parsessions=2, and293

parelements=1 will ensure that only one job is run at a294

Ji, Demšar et al. | QuNex bioRχiv | 5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.494750doi: bioRxiv preprint 

https://bitbucket.org/oriadev/qunex/wiki/Overview/QuickStart.md
https://doi.org/10.1101/2022.06.03.494750


DRAFT

time on the compute nodes, with two sessions running in par-295

allel. Any individual elements within each session (e.g. mul-296

tiple BOLD runs) will run serially, one at a time. This paral-297

lelization and scheduling functionality, in combination with298

the turnkey engine and batch specification, is extremely pow-299

erful at handling large-scale datasets while providing great300

flexibility and user friendliness in optimizing processing to301

maximally utilize HPC resources. Through a single QuNex302

command line call, a user can onboard, process and analyse303

thousands of scans on an HPC system in a parallel manner,304

drastically reducing the amount of time and effort required305

for neuroimaging datasets of scale.306

Parameter Specification Environment Enables Repro-307

ducible Workflows of Multi-modal Datasets. The diver-308

sity of neuroimaging parameters can lead to challenges in309

replicating preprocessing choices and thus affect the repro-310

ducibility of results. QuNex supports consistent specifica-311

tion and documentation of parameter values by storing this312

information in the parameter header of batch files (see Fig-313

ure 3B for an example). Many parameters in neuroimaging314

pipelines are the same across different steps or commands,315

or across different command executions (e.g. if data for the316

same study/scanner are processed sequentially). By provid-317

ing these parameters and their values in the batch files, users318

are assured that shared parameters will use the same value319

across pipeline steps. Furthermore, such specification en-320

ables complete transparency and reproducibility, as process-321

ing workflows can be fully replicated by using the same batch322

files, and the batch files themselves can be easily shared be-323

tween researchers. For convenience, an alternative way of324

providing parameters is through the CLI call; if a parame-325

ter is defined both in the batch file and in the CLI call, the326

version in the CLI call takes precedence.327

Preprocessing functions are typically executed on multiple328

sessions at the same time so that they can run in parallel. As329

mentioned above, QuNex utilizes batch files to define pro-330

cessing parameters, in order to facilitate batch processing of331

sessions. This batch file specification allows QuNex to pro-332

duce standardized outputs from data across different studies333

while allowing for differences in acquisition parameters (e.g.334

in a multi-site study, where scanner manufacturers may dif-335

fer across sites). Figure 3A illustrates two example use-case336

datasets. Dataset I is a single-site study in which field maps,337

T1w, BOLD, and diffusion scans (green text) were acquired,338

but no T2w scan was collected. Dataset II is a multi-site study339

in which the scanning protocol included T2w acquisition for340

all scan sites. The flexibility of the QuNex batch parameter341

specification enables all data from these different studies and342

scanners to be preprocessed consistently and produce consis-343

tent outputs in all modalities. Figure 3B illustrates an exam-344

ple of a real-world batch parameter specification. Here, the345

green text highlights parameter values which are customized346

according to the input data (e.g. sample spacing, readout347

direction), while grey text show parameters that are usually348

standard for all datasets. This information is included in the349

header of a batch file, and is followed by the session-level350

information (as shown in Figure 2B) for all sessions.351

QuNex’s track record speaks to the effectiveness of this ap-352

proach. QuNex has been used to preprocess and analyze353

data from a large number of public and private neuroimaging354

datasets (Figure 3C) (4). To date, we have internally used355

QuNex to process more than 10,000 independent scan ses-356

sions from over 50 different scanners. Figure 3D shows that357

the data differ in terms of the scanner manufacturer (Philips,358

GE or Siemens), acquisition technique (simultaneous multi-359

slice/multi-band), and the study purpose (clinical, basic, lon-360

gitudinal and pharmacology studies). These datasets also361

span participants from different stages of development, from362

children to older adults. Across these diverse datasets, the363

percentage of successfully processed sessions is extremely364

high: 100% in the majority of studies and ˜98.5% in total365

across all studies. Of note, QuNex supports the preprocess-366

ing efforts of major neuroimaging consortia and is used by367

the Connectome Coordination Facility (CCF) to preprocess368

all Lifespan and Connectomes Related to Human Disease369

(CRHD) datasets (4).370

QuNex Supports Extraction of Multi-modal Features371

at Multiple Spatial Scales. Feature engineering is a criti-372

cal choice in neuroimaging studies and features can be com-373

puted across multiple spatial scales. Importantly, given the374

challenges with mapping reproducible brain-behavioral re-375

lationships (3), selecting the right features at the appropri-376

ate scale is vital for optimizing signal-to-noise in neural data377

and producing reproducible results. QuNex enables feature378

generation and extraction at different levels of resolution (in-379

cluding “dense” full-resolution, parcels, or whole-brain net-380

works) for both volume and CIFTI (combined surface and381

volume) representations of data, consistently across multiple382

modalities, for converging multi-modal neuroimaging analyt-383

ics. While some parcellations are currently distributed with384

QuNex (such as the Glasser MMP (23), CAB-NP (22) and385

atlases distributed within FSL/FreeSurfer) users are free to386

provide and use their own parcellation. Figure 4 shows con-387

vergent multi-modal results in a sample of N=339 unrelated388

young adults. Myelin (T1w/T2w) maps reflect higher myeli-389

nation in sensorimotor areas such as primary visual and sen-390

sorimotor networks, and lower myelination in higher-order391

association networks (Figure 4A) (24). DMRI measures392

are able to capture the white matter connectivity structure393

through tract termination (14) and maximal intensity pro-394

jection (MIP) of the left arcuate fasciculus (Figure 4B); as395

well as structural connectivity (23). For example, seed-based396

structural connectivity of Broca’s area (26, 27) highlights397

connections to canonical language areas such as Wernicke’s398

area (28), superior temporal gyrus and sulcus (29, 30), and399

frontal language regions (27, 31) (Figure 4C). This is con-400

sistent with the results of seed-based functional connectivity401

of Broca’s area from resting-state fMRI data in the same in-402

dividuals (Figure 4D); and furthermore, it is aligned with the403

activation patterns from a language task (Figure 4E) (25).404

Across modalities, QuNex supports the extraction of metrics405

as raw values (e.g. Pearson’s r or Fisher’s Z for functional406

connectivity; probabilistic tractography streamline counts for407

structural connectivity; t-values for task activation contrasts)408
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Fig. 4. Extracting Multi-modal Processing Features at Multiple Levels of Resolution. Output features from multiple modalities are shown, as an example of a cross-
modal analysis that may be done for a study. Here, features were computed from a cohort of N=339 unrelated subjects from the Human Connectome Project (21). In addition
to cross-modality support, QuNex offers feature extraction at “dense” (i.e. full-resolution), parcel-level and network-level resolutions. All features are shown below at all
three resolutions. We used the Cole-Anticevic Brainwide Network Parcellation (CAB-NP) (22, 23), computed using resting-state functional connectivity from the same cohort
and validated and characterized extensively in (22). A) Myelin maps, estimated using the ratio of T1w/T2w images (24). B) Left arcuate fasciculus computed via diffusion
tractography (14). Surface views show the cortical tract termination (white-grey matter boundary endpoints) and volume views show the maximal intensity projection. C)
Structural connectivity of Broca’s area (parcel corresponding to Brodmann’s Area [BA] 44, green star) (23). D) Resting-state functional connectivity of Broca’s area (green
star). For parcel- and network-level maps, resting-state data were first parcellated before computing connectivity. E) Task activation maps for for the “Story versus Math”
contrast in a language processing task (25). For parcel- and network-level maps, task fMRI data were first parcellated before model fitting. F) Left: Whole-brain Language
network from the CAB-NP (22). (Right) The mean t-statistic within Language network regions from the “Story versus Math” contrast (shown in panel E) improves when data
are first parcellated at the parcel-level relative to dense-level data and shows the greatest improvement when data are first parcellated at the network-level. Error bars show
the standard error. G) (Left) T-statistics computed on the average parcel beta estimates are higher compared to the average T-statistics computed over dense estimates of
the same parcel. Teal dots represent 718 parcels from the CAB-NP × 3 Language task contrasts (“Story versus Baseline’‘; “Math versus Baseline’‘; “Story versus Math”).
(Right) Similarly, T-statistics computed on beta estimates for the network are higher than the average of T-statistics computed across parcels within each network.

or standardized Z-scores.409

Notably, features across all modalities can be extracted in a410

consistent, standardized format after preprocessing and post-411

processing within QuNex. This enables frictionless compari-412

son of features across modalities, e.g. for multi-modal, multi-413

variate analyses.414

QuNex Enables Single-Session Modelling of415

Time-series Modalities. Modelling of time-series data,416

such as BOLD, at the single-session level can be used for417

a variety of functions, including nuisance regression and418

extracting task activation for individual subjects. QuNex419

supports denoising and modelling of time-series data at420

the single-session level via a general linear model (GLM)421
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Fig. 5. General Linear Model (GLM) for Single-Session Modelling of Time-series Modalities and Integrated Interoperability with PALM for Group-Level Analytics.
A) The QuNex GLM framework enables denoising and/or event modeling of resting-state and task BOLD images at the individual-session level in a single step. A use case
is shown for resting-state BOLD data. At the single-subject level, individual nuisance regressors (such as white matter and ventricular signal and motion parameters) can be
specified such that they are regressed out of the BOLD timeseries with the qunex preprocess_conc function. The regressors can be per-frame (as shown), per-trial, or
even per-block. The GLM outputs a residual timeseries of “denoised” resting-state data as well as one coefficient map per nuisance regressor. The resting-state data for each
subject can then be used to calculate subject-specific feature maps, such as seed-based functional connectivity maps with qunex fc_compute_seedmaps. B) The GLM
engine can also be used for complex modeling and analysis of task events, following a similar framework. Event modeling is specified in qunex preprocess_conc by
providing the associated event file; the method of modeling can be either assumed (using a hemodynamic response function [HRF]) or unassumed. Here, an example from
the HCP’s Language task is shown. The two events, “Story” and “Math”, are convolved with the Boynton HRF to build the subject-level GLM. As with the resting-state use case
shown in A, the GLM outputs the single-subject residual timeseries (in this case ‘pseudo-resting state’) as well as the coefficient maps for each regressor, here the Story and
Math tasks. C) Connectivity maps from all subjects can then be entered into a group-level GLM analysis. In this example, the linear relationship between connectivity from
the primary somatosensory area (S1) seed and age across subjects is tested in a simple GLM design with one group and one explanatory variable (EV) covariate, demeaned
age. QuNex supports flexible group-level GLM analyses with non-parametric tests via Permutation Analysis of Linear Models (PALM, (12)), through the qunex run_palm
function. The specification of the GLM and individual contrasts is completely configurable and allows for flexible and specific hypothesis testing. Group-level outputs include
full uncorrected statistical maps for each specified contrast as well as p-value maps that can be used for thresholding. Significance for group-level statistical maps can be
assessed with the native PALM support for TFCE ((12), shown) or cluster statistics with familywise error protection (FWEP). D) The subject-level task coefficient maps can
then be input into the qunex run_palm command along with the group-level design matrix and contrasts. The group-level output maps show the differences in activation
between the Story and Math conditions. E) QuNex also supports multi-variate and joint inference tests for testing hypotheses using data from multiple modalities, such as
BOLD signal and DWI. Example connectivity matrices are shown for these two modalities, with the S1 seed highlighted. Similar to the use cases shown above, maps from all
subjects can be entered into a group-level analysis with a group-level design matrix and contrasts using the qunex run_palm command. In this example, the relationship
between age and S1-seeded functional connectivity and structural connectivity is assessed using a Hotelling’s T 2 test and Fisher’s X2. The resulting output maps show the
unthresholded and thresholded (p < 0.05 FWEP, 10,000 permutations) relationship between age and both neural modalities.
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framework, executed through the preprocess_conc422

command. Here we demonstrate this framework with423

functional BOLD time-series. Figure 5A showcases a use424

case where resting-state BOLD data are first denoised and425

then used to compute seed-based functional connectivity426

maps of the primary somatosensory area (S1). During427

the denoising step, the user can choose which sources of428

nuisance signal to remove (including motion parameters and429

their derivatives and BOLD signals extracted from ventri-430

cles, white matter, whole brain or any other custom defined431

regions, and their first derivatives). These nuisance signals432

are included as covariates in the GLM, which produces,433

for each BOLD run, residual time-series data as well as434

coefficient maps for all specified regressors. The denoised435

time-series can then be used for further analytics, e.g. by436

computing seed-based functional connectivity (using the437

fc_compute_seedmaps command).438

For task data, QuNex facilitates the building of design matri-439

ces at the single session-level (Figure 5B). The design ma-440

trices can combine task regressors created by convolving a441

haemodynamic response function (HRF, e.g. Boynton, dou-442

ble Gaussian) with event timeseries – in the example case443

the Story and Math blocks of a language task (25) are mod-444

elled for each session – separate regressors for each frame of445

the trial, supporting unassumed modeling of task response,446

as well as nuisance timeseries. The events in assumed and447

unassumed modelling can be individually weighted, enabling448

estimates of trial-by-trial correlation with e.g. response reac-449

tion time, accuracy or precision. The GLM engine estimates450

the model and outputs both a residual time-series (“pseudo-451

resting state”) as well as coefficient maps for each regressor,452

reflecting task activation for each of the modelled events. Af-453

ter a model has been estimated, it is possible to compute both454

predicted and residual timeseries with an arbitrary combina-455

tion of regressors from the estimated model (e.g. residual that456

retains transient task response after removal of sustained task457

response and nuisance regressors).458

QuNex Supports Built-In Interoperability with Exter-459

nally-Developed Tools. QuNex is designed to provide in-460

teroperability between community tools to remove barriers461

between different stages of neuroimaging research. One462

such feature is its compatibility with XNAT (eXtensible Neu-463

roimaging Archive Toolkit) (32, 33), a widely used platform464

for research data transfer, archiving, and sharing (Figure S8).465

This enables reseachers to seamlessly organize, process, and466

manage their imaging studies in a coherent integrated envi-467

ronment. Another interoperabilty feature is the execution of468

group-level statistical testing of neuroimaging maps, which469

is performed through Permutation Analysis of Linear Mod-470

els (PALM) (12), an externally-developed tool which exe-471

cutes nonparametric permutation-based significance testing472

for neuroimaging data. QuNex provides a smooth interface473

for multi-level modelling via PALM, which supports volume-474

based NIFTI, surface-based GIFTI, and surface-volume hy-475

brid CIFTI images, and allows for fully customizable statisti-476

cal tests with a host of familywise error protection and spatial477

statistics options. Within QuNex, PALM is called through478

the qunex run_palm command, which provides a cohe-479

sive interface for specifying inputs, outputs, and options. The480

user is able to customize design matrices and contrasts ac-481

cording to their need and provide these along with QuNex-482

generated neural maps to assess for significance using per-483

mutation testing and familywise error protection. Figure 5C484

illustrates an example where S1-seed functional connectivity485

maps for N=339 sessions are tested at the group-level to show486

a significant negative relationship with age in areas such as487

the somatomotor cortices (p<0.05, nonparametrically tested488

and family-wise error protected with threshold-free cluster489

enhancement (TFCE) (34)). As with functional connectivity490

maps, task activation maps can be tested for significant ef-491

fects in the group-level GLM with PALM Figure 5D. Here,492

a within-subject t-test of the Story > Math contrast reveals493

significant areas of the language network, also shown in Fig-494

ure 4E-F. QuNex additionally supports joint inference from495

combined multi-modal data via multivariate statistical tests496

(e.g. MANOVAs, MANCOVAs) and non-parametric combi-497

nation tests (35), also executed through PALM and thus com-498

patible with permutation testing. For example, seed-based499

functional connectivity and structural connectivity of area S1500

from the same individuals can be entered into the same test501

as separate modalities. The second-level GLM shown in Fig-502

ure 5E is the same one as in Figure 5B to test for age ef-503

fects. Such joint inference tests can be used to test whether504

there are jointly significant differences on a set of modali-505

ties. Thus, QuNex enables streamlined workflows for multi-506

modal neuroimaging feature generation and integrated multi-507

variate statistical analyses. QuNex workflows simplify neu-508

roimaging data management and analysis across a wide range509

of clinical, translational, and basic neuroimaging studies, in-510

cluding translational studies examining the relationship be-511

tween neuroimaging features and gene expression or symp-512

tom presentation, or pharmacological neuroimaging studies513

of mechanism. Figure S9 highlights a few examples of re-514

cently published studies which leveraged QuNex for prepro-515

cessing, feature generation, and analytics.516

QuNex also encourages future integration of open source517

community tools via the extensions framework, through518

which researchers can integrate their own tools and pipelines519

into the QuNex platform (Supplementary Information). To520

continually engage community participation in neuroimag-521

ing tool development, QuNex provides a SDK that includes522

helper functions for users to set up a development and testing523

environment (Figure S10).524

Cross-Species Support for Translational Neuroimag-525

ing. Studies of non-human species have substantially con-526

tributed to the understanding of the central nervous system,527

and provide a crucial opportunity for translational science.528

In particular, the macaque brain is phylogenetically simi-529

lar to the human brain, and comparative neuroimaging stud-530

ies in macaques have served to inform and validate human531

neuroimaging results. It is thus imperative to develop and532

distribute tools for consistent processing and analytics of533

non-human neuroimaging data for aiding translational cross-534

species neuroimaging studies (36, 37). To this end, QuNex535

Ji, Demšar et al. | QuNex bioRχiv | 9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.494750doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494750


DRAFT
Fig. 6. QuNex Enables Neuroimaging Workflows Across Different Species. A) Structural features for exemplar macaque and human data, including surface reconstruc-
tions and segmentation from FreeSurfer. Lower panel shows output myelin (T1w/T2w) maps. B) Functional features for exemplar macaque and human showing BOLD signal
mapped to both volume and surface. Lower panels show and resting-state functional connectivity seeded from the lateral geniculate nucleus of the thalamus (green arrow).
C) Diffusion features for exemplar macaque and human data, showing whole-brain fractional anistropy, and volume and surface terminations of the left optic radiation tract.
Lower panels show the structural connectivity maps seeded from the lateral geniculate nucleus of the thalamus (green arrow). Grey scale reference bars in each panel are
scaled to 25mm.

supports analogous workflows for human and non-human536

primate neuroimaging data. Figure 6 shows parallel steps537

for running HCP-style preprocessing and generating multi-538

modal neural features in human and macaque data. Struc-539

tural data outputs include FreeSurfer segmentation and la-540

belling of cortical and subcortical areas, T1w/T2w myelin541

maps (Figure 6A), and structural metrics such as cortical542

thickness, curvature, and subcortical volumes. Functional543

data outputs include BOLD signal and metrics such as func-544

tional connectivity (Figure 6B). Diffusion metrics include545

measures of microstructure (e.g. fractional anisotropy maps),546

white matter tracts and their cortical termination maps, and547

whole-brain structural connectivity, as shown in Figure 6C).548

Currently, QuNex supports macaque diffusion pipelines in549

the released container, with HCP macaque functional neu-550

roimaging pipelines in development for a future release. The551

functional macaque images shown here are obtained from an552

early development version of the pipelines.553

Discussion554

The popularity of neuroimaging research has led to the devel-555

opment and availability of many tools and pipelines, many of556

which are specific to one modality. This in turn has led to557

challenges in method integration, particularly across differ-558

ent neuroimaging sub-fields. Additionally, the wide avail-559

abity of different pipeline and preprocessing/analytic choices560

may contribute to difficulties with producing replicable re-561

sults (13). Thus, QuNex is designed to be an integrative562

platform with interoperability for externally-developed tools563

across multiple neuroimaging modalities. It leverages exist-564

ing state-of-the-art neuroimaging tools and software pack-565

ages, with a roadmap for continued integratation of new tools566

and features. Additionally, QuNex provides features such as567

turnkey functionality, native scheduler support, flexible data568

filtering and selection, multi-modal integration, and trans-569

species support, to fully support and reduce friction in neu-570

roimaging workflows.571

It should be noted that there are currently several tools in572

the neuroimaging community with multi-modality support,573
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including (but not limited to) FSL, SPM, Freesurfer, AFNI,574

Brain Voyager, and PALM. These softwares all offer pre-575

processing and/or analytic capalities for at least 3 different576

neural modalities, such as T1w, T2w, myelin, BOLD, arte-577

rial spin labelling (ASL), DWI, EEG, MEG, and functional578

near-infrared spectroscopy (fNIRS). Rather than reinvent the579

wheel, QuNex builds upon the decades of research, optimiza-580

tion, and validation of these tools by using them as basic581

building blocks for fundamental steps of neuroimaging work-582

flows, and augments their functionality and interoperabil-583

ity. Other high-level environments, such as HCP MPP (9),584

UK Biobank pipelines (38), fMRIPrep (10), QSIPrep (11),585

micapipe (39), nipype (17), BrainVoyager (40), FuNP (41),586

NeuroDebian (42), and LONI (43), also leverage other neu-587

roimaging tools as building blocks. Many of these options are588

uni-modal preprocessing pipelines (e.g. fMRIPrep, QSIPrep)589

or preprocessing pipelines developed for specific consortia590

(HCP, UKBiobank pipelines). We emphasize that QuNex591

is a unifying framework for integrating multi-modal, multi-592

species neuroimaging tools and workflows, rather than a593

choice of preprocessing or analytic pipeline; as such, QuNex594

can incorporate these options, as evidenced by the current595

integration of the HCP MPP and the planned integration596

of fMRIPrep. Furthermore, QuNex offers additional user-597

friendly features which expand upon the existing function-598

ality of these tools, including flexible data filtering, turnkey599

functionality, support for cloud and HPC deployment, native600

scheduling and parallelization options, and collaborative de-601

velopment tools. A list of the implementations for different602

functionalities in QuNex, as well as comparable implemen-603

tations in other neuroimaging pipelines and environments, is604

shown in Figure S11.605

In addition, several commercial platforms are available for606

neuroimaging data management and analytics (e.g. Flywheel607

(44), QMENTA, Nordic Tools, Ceretype), especially for clin-608

ical applications. While these platforms offer a wide range of609

neuroinformatics functionalities, they are difficult to evalu-610

ate due to their high cost of services and proprietary content.611

On the contrary, QuNex is free to use for non-commercial612

research, with transparent and collaborative code and devel-613

opment.614

Software and Data Availability. The QuNex container,615

SDK, and online documentation are available at qunex.616

yale.edu. The community forum is hosted at forum.617

qunex.yale.edu.618

Limitations and Future Directions. Neuroimaging is an619

actively advancing field and QuNex is committed to contin-620

ual development and advancement of neuroimaging methods.621

Below we list features and existing external software which622

are currently under development/integration, as well as those623

which are staged for future release. As neuroimaging tech-624

niques advance and novel tools and methods are developed625

and adopted, we plan to integrate them into the QuNex plat-626

form either through internal development or via the exten-627

sions framework.628

Currently under development: Longitudinal preprocessing;629

mouse neuroimaging preprocessing and analytics; EEG pre-630

processing and analytics.631

Staged for development: PET preprocessing and analytics;632

BIDS exporter; fMRIPrep.633
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Methods1000

Description of the Preprocessing Validation Datasets.1001

We tested preprocessing using QuNex on a total of 161002

datasets, including both publicly-available and aggregated in-1003

ternal datasets. For each dataset, we prepared batch files with1004

parameters specific to the study (or site, if the study is multi-1005

site and acquisition parameters differed between sites). We1006

then used QuNex commands to run all sessions through the1007

HCP Minimal Preprocessing Pipelines (MPP) for structural1008

(T1w images; T2w if available), functional data, and diffu-1009

sion data (if available). A brief description of each dataset in1010

Figure 3 is in the Supplementary Information. Additional1011

details on diffusion datasets and preprocessing can also be1012

found below.1013

Ji, Demšar et al. | QuNex bioRχiv | 13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.494750doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494750


DRAFT

Preprocessing of Validation Datasets. All datasets1014

were preprocessed using QuNex with the HCP MPP (9)1015

(qunex hcp_pre_freesurfer; hcp_freesurfer;1016

hcp_post_freesurfer; hcp_fmri_volume;1017

hcp_fmri_surface). A summary of the HCP Pipelines1018

is as follows: the T1w structural images were first aligned1019

by warping them to the standard Montreal Neurological1020

Institute-152 (MNI-152) brain template in a single step,1021

through a combination of linear and non-linear transforma-1022

tions via the FMRIB Software Library (FSL) linear image1023

registration tool (FLIRT) and non-linear image registration1024

tool (FNIRT) (45). If a T2w was present, it was co-registered1025

to the T1w image. If field maps were collected, these were1026

used to perform distortion correction. Next, FreeSurfer’s1027

recon-all pipeline was used to segment brain-wide gray and1028

white matter to produce individual cortical and subcortical1029

anatomical segmentations (46). Cortical surface models were1030

generated for pial and white matter boundaries as well as1031

segmentation masks for each subcortical grey matter voxel.1032

The T2w image was used to refine the surface tracing. Using1033

the pial and white matter surface boundaries, a ‘cortical1034

ribbon’ was defined along with corresponding subcortical1035

voxels, which were combined to generate the neural file in1036

the Connectivity Informatics Technology Initiative (CIFTI)1037

volume/surface ‘grayordinate’ space for each individual1038

subject (9). BOLD data were motion-corrected by aligning1039

to the middle frame of every run via FLIRT in the initial1040

NIFTI volume space. Next a brain-mask was applied to1041

exclude signal from non-brain tissue. Next, cortical BOLD1042

data were converted to the CIFTI gray matter matrix by1043

sampling from the anatomically-defined gray matter cortical1044

ribbon and subsequently aligned to the HCP atlas using1045

surface-based nonlinear deformation (9). Subcortical voxels1046

were aligned to the MNI-152 atlas using whole-brain non-1047

linear registration and then the Freesurfer-defined subcortical1048

segmentation was applied to isolate the CIFTI subcortex.1049

For datasets without field maps and/or a T2w image,1050

we used a version of the MPP adapted for compatibility1051

with “legacy” data, featured as a standard option in the1052

HCP Pipelines provided by the QuNex team (https:1053

//github.com/Washington-University/1054

HCPpipelines/pull/156). The adaptations for1055

single-band BOLD acquisition have been described in prior1056

publications (47, 48). Briefly, adjustments include allowing1057

the HCP MPP to be conducted without high-resolution reg-1058

istration using T2w images and without optional distortion1059

correction using field maps. For validation of preprocessing1060

via QuNex, we counted the number of sessions in each study1061

which successfully completed the HCP MPP versus the1062

number of sessions which errored during the pipeline.1063

Description of the Datasets Used for Analytics. HCP1064

Young Adults (HCP-YA) Dataset. To demonstrate neuroimag-1065

ing analytics and feature generation in human data, we used1066

N=339 unrelated subjects from the HCP-YA cohort (21). The1067

functional data from these subjects underwent additional pro-1068

cessing and removal of artifactual signal after the HCP MPP.1069

These steps included ICA-FIX (9, 49) and movement scrub-1070

bing (50) as done in our prior work (48, 51). We combined1071

the four 15-min resting-state BOLD runs in order of acquisi-1072

tion, after first demeaning each run individually and remov-1073

ing the first 100 frames to remove potential magnetization ef-1074

fects (22). Seed-based functional connectivity was computed1075

using qunex fc_compute_seedmaps and calculated as1076

the Fisher’s Z-transformed Pearson’s r-value between the1077

seed region BOLD time-series and time-series in the rest of1078

brain. Task activation maps were computed from a language1079

processing task (25), derived from (52). Briefly, the task con-1080

sisted of two runs, each with 4 blocks of 3 conditions: (i)1081

Sentence presentation with detection of semantic, syntactic1082

and pragmatic violations; (ii) Story presentation with com-1083

prehension questions (‘Story’ condition); (iii) Math problems1084

involving sets of arithmetic problems and response periods1085

(‘Math’ condition). Trials were presented auditorily and par-1086

ticipants chose one of two answers by pushing a button. Task-1087

evoked signal for the Language task was computed by fitting1088

a GLM to preprocessed BOLD time series data with qunex1089

preprocess_conc. Two predictors were included in the1090

model for the ‘Story’ and ‘Math’ blocks, respectively. Each1091

block was approximately 30s in length and the sustained ac-1092

tivity across each block was modeled using the Boynton HRF1093

(53). Results shown here are from the Story versus Math1094

contrast (22, 23). Across all tests, statistical significance was1095

assessed with PALM (12) via qunex run_palm. Briefly,1096

threshold-free cluster enhancement was applied (34) and the1097

data were randomly permuted 5,000 times to obtain a null1098

distribution. All contrasts were corrected for family-wise er-1099

ror. Diffusion data from this dataset were first preprocessed1100

with the HCP MPP (9) via qunex hcp_diffusion,1101

including susceptibility and eddy-current induced distor-1102

tion and motion correction (54, 55) and the estimation of1103

dMRI to MNI-152 (via the T1wandersson2016integrated1104

space) registration fields. Next, fiber orientations were1105

modelled for up to three orientations per voxel using the1106

FSL’s bedpostX crossing fibers diffusion model. (56,1107

57), via qunex dwi_bedpostx_gpu. After regis-1108

tering to the standard space, whole brain probabilistic1109

tractography was run with FSL’s probtrackx via qunex1110

dwi_probtracx_dense_gpu, producing a dense con-1111

nectivity matrix for the full CIFTI space. Further, we esti-1112

mated 42 white matter fibre bundles, and their cortical ter-1113

mination maps, for each subject via XTRACT (14). Follow-1114

ing individual tracking, resultant tracts were group-averaged1115

by binarizing normalized streamline path distributions at a1116

threshold and averaging binary masks across the cohort to1117

give the percentage of subjects for which a given tract is1118

present at a given voxel. For all tracts except the middle cere-1119

bellar peduncle (MCP), which is not represented in CIFTI1120

surface file formats, the cortical termination map was es-1121

timated using connectivity blueprints, as described in (58).1122

These maps reflect the the termination points of the corre-1123

sponding tract on the white-grey matter boundary surface.1124

Non-human Primate Macaque Datasets. Neural data from1125

two macaques (one in vivo, one ex vivo) are shown. Struc-1126

tural (T1w, T2w, myelin) and functional BOLD data were ob-1127
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tained from a session in the publicly-available PRIMatE Data1128

Exchange (PRIME-DE) repository (59), specifically from the1129

University of California-Davis dataset. In this protocol, sub-1130

jects were anesthesized with ketamine, dexmedetomidine, or1131

buprenorphine prior to intubation and placement in stereo-1132

taxic frame with 1-2% isoflurane maintenance anesthesia1133

during the scanning protocol. They underwent 13.5 min of1134

resting-state BOLD acquisition (gradient echo voxel size:1135

1.4×1.4×1.4mm; TE: 24ms; TR: 1600ms; FOV = 140mm)1136

as well as T1w (voxel size: 0.3×0.3×0.3mm; TE: 3.65ms;1137

TR: 2500ms; TI: 1100ms; flip angle: 7°), T2w (voxel size:1138

0.3×0.3×0.3mm; TE: 307ms; TR: 3000ms), spin-echo field1139

maps, and diffusion on a Siemens Skyra 3T scanner with a1140

4-channel clamshell coil. Preprocessing steps are consistent1141

with the HCP MPP and described in detail in (18, 60).1142

The high-resolution macaque diffusion data shown1143

were obtained ex vivo and have been previously de-1144

scribed (14, 58, 61) and are available via PRIME-DE1145

(http://fcon_1000.projects.nitrc.org/1146

indi/PRIME/oxford2.html). The brains were soaked1147

in phosphate-buffered saline before scanning and placed in1148

fomblin or fluorinert during the scan. Data were acquired at1149

the University of Oxford on a 7T magnet with an Agilent1150

DirectDrive console (Agilent Technologies, Santa Clara,1151

CA, USA) using a 2D diffusion-weighted spin-echo protocol1152

with single line readout (DW-SEMS, TE/TR: 25ms/10s;1153

matrix size: 128×128; resolution: 0.6×0.6mm; number1154

of slices: 128; slice thickness: 0.6mm). Diffusion data1155

were acquired over the course of 53 hours. For each1156

subject, 16 non-diffusion-weighted (b=0s/mm2) and 1281157

diffusion-weighted (b=4000s/mm2) volumes were acquired1158

with diffusion directions distributed over the whole sphere.1159

FA maps were reigstered to the standard F99 space (62)1160

using FNIRT. As with the human data, the macaque diffusion1161

data were modelled using the crossing fibre model from1162

bedpostX and used to inform tractography. Again, 42 white1163

matter fibre bundles, and their cortical termination maps,1164

were estimated using XTRACT.1165

Functional Parcellation and Seed Definitions. We used1166

the Cole-Anticevic Brain-wide Network Partition (CAB-NP)1167

(22), based on the HCP MMP (23), for definitions of func-1168

tional networks (e.g. the Language network) and parcels1169

in the cortex and subcortex. Broca’s Area was defined as1170

Brodmann’s Area 44, corresponding to the parcel labelled1171

“L_44_ROI” in the HCP MMP and “Language-14_L-Ctx” in1172

the CAB-NP (23). The left Primary Somatorysensory Area1173

(S1) region was defined as Brodmann’s Area 1 and corre-1174

sponds to the parcel labelled “L_1_ROI” in the HCP MMP1175

and “Somatomotor-29_L-Ctx” in the CAB-NP (23).1176

Design and Features for Open Science. QuNex is devel-1177

oped in accordance to modern standards in software engi-1178

neering. Adhering to these standards results in a consistently1179

structured, well documented and strictly versioned platform.1180

All QuNex code is open and well commented which both1181

eases and encourages community development. Furthermore,1182

our Git repositories use the GitFlow branching model which,1183

besides keeping our repositories neat and tidy, also helps1184

with the process of merging community developed features1185

into our solution. QuNex has an extensive documentation,1186

both in the form of inline help, accessible from CLI and a1187

Wiki page. Inline documentation offers a short description1188

of all QuNex commands and their parameters while the Wiki1189

documentation offers a number of tutorials and more exten-1190

sive usage guides. Furthermore, users can establish a direct1191

communication with QuNex developers through the official1192

QuNex forum (https://forum.qunex.yale.edu/),1193

where they can get additional support and discuss or sug-1194

gest possible new features or anything else QuNex related.1195

To assure maximum possible levels of tractability and repro-1196

ducibility, QuNex is versioned by using the semantic ver-1197

sioning process (https://semver.org/). The QuNex1198

platform is completely free and open source – QuNex source1199

code is licensed under the GPL (GNU General Public Li-1200

cense). Furthermore, QuNex is not only open by nature, but1201

also by design. In other words, we did not simply open up the1202

QuNex code base, we developed it to be as open and acces-1203

sible as possible. To open up QuNex to the neuroinformat-1204

ics community, we designed a specialized extensions frame-1205

work. This framework supports development in multiple pro-1206

gramming languages (e.g. Python, MATLAB, R, Bash) and1207

was built with the sole intention to ease the integration of1208

custom community based processing and analysis commands1209

into the QuNex platform. Extensions developed through this1210

extensions framework can access all the tools and utilities1211

(e.g. the batch turnkey engine, logging, scheduling ...) resid-1212

ing in the core QuNex code. Once developed, QuNex Exten-1213

sions are seamlessly attached to the QuNex platform and ran1214

in the same fashion as all existing QuNex commands. Our1215

end goal is to fold the best extensions into our core codebase1216

and thus have a community supported, organically growing1217

neuroimaging platform. As mentioned, to ease this process1218

we have also prepared an SDK, which includes the guidelines1219

and tools that should both speed up the extension develop-1220

ment process and make extensions code more consistent with1221

the core QuNex code. This will then allow for faster adoption1222

of QuNex Extensions into the core codebase. See Figure S101223

for visualization of the QuNex Extensions framework.1224

Since QuNex and other similar platforms depend on a num-1225

ber of software tools which are developed independently, as-1226

suring complete reproducibility can be a challenging task1227

since researchers are required to track and archive all the1228

dependencies. To alleviate this issue we publish a con-1229

tainer along each unique QuNex version. As a result, us-1230

ing the container for processing and analysis allows users to1231

achieve complete reproducibility by tracking a single number1232

– the version of the QuNex platform used in processing and1233

analysis. QuNex containers are not only important because1234

they offer complete transparency and reproducibility, through1235

them users can execute their studies on a number of different1236

platforms and systems (e.g. HPC system, cloud services, PC,1237

etc.). Just like the QuNex source code, QuNex containers are1238

also completely free and open to the research community.1239
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Containerization and Deployment. Through containeriza-1240

tion, QuNex is fully platform-agnostic and comes in the form1241

of both Docker and Singularity containers. This offer sev-1242

eral advantages to end users. First, the QuNex container1243

includes all of the required dependencies, packages and li-1244

braries which greatly reduces the time a user needs to setup1245

everything and start processing. Second, the QuNex con-1246

tainer is meticulously versioned and archived, which guar-1247

antees complete reproducibility of methods. Last but not1248

least, containers can be run on practically every modern op-1249

erating system (e.g. Windows, macOS, Linux) and can be1250

deployed on any hardware configuration (e.g. desktop com-1251

puter, laptop, cloud, high performance computing system).1252

Users can easily execute the QuNex container via the in-1253

cluded qunex_container script, which removes com-1254

mon technical barriers to connecting a container with the op-1255

erating system. Furthermore, when running studies on an1256

HPC system users need to manually configure the parame-1257

ters of the underlying scheduling system, which can be again1258

a tedious task for those that are not familiar with schedul-1259

ing system. To alleviate this issue, the qunex_container1260

script offers native support for several popular job schedulers1261

(SLURM, PBS, LSF).1262

QuNex Commands. A detailed list and a short description1263

of all commands, along with a visualization of how com-1264

mands can be chained together, can be found in the Supple-1265

mentary Information. Here, we specify a short description1266

for each of the functional groups of QuNex commands.1267

Study creation, data onboarding and mapping. This group of1268

commands serves for setting up a QuNex study and its folder1269

structure, importing your data into the study and preparing all1270

the support files required for processing.1271

HCP Pipelines. These commands incorporate everything re-1272

quired for executing the whole HCP MPP along with some1273

additional HCP Pipelines commands. Commands sup-1274

port the whole HCP MPP along with some additional pro-1275

cessing and denoising commands. Below is a very brief1276

overview of each pipeline, for details please consult the1277

manuscript prepared by Glasser et al. (9) and the offi-1278

cial HCP Pipelines repository (https://github.com/1279

Washington-University/HCPpipelines). See1280

Figure S3 for a visualization of HCP Pipelines implemen-1281

tation in QuNex.1282

Quality control. QuNex contains commands through which1283

users can execute visual QC for a number of commonly used1284

MRI modalities – raw NIfTI, T1w, T2w, myelin, BOLD,1285

DWI, eddyQC, etc.1286

Diffusion analyses. QuNex also includes functionality for1287

processing images acquired through DWI. These commands1288

prepare the data for a number of common DWI analyses in-1289

cluding diffusion tensor imaging (DTI) and probabilistic trac-1290

tography.1291

BOLD analyses. Before running task-evoked and resting-1292

state functional connectivity analyses, BOLD data needs to1293

be additionally preprocessed. First, all the relevant data needs1294

to be prepared – BOLD brain masks need to be created,1295

BOLD image statistics need to be computed and processed1296

and nuisance signals need to be extracted. These data are1297

then used to process the images, which might include spatial1298

smoothing, temporal high and/or low pass filtering, assumed1299

HRF and unassumed HRF task modeling and regression of1300

undesired nuisance and task signal.1301

Permutation Analysis of Linear Models (PALM). The main1302

purpose of this group of commands is to allow easier use of1303

results and outputs generated by QuNex in various PALM1304

(12) analyses (e.g. second-level statistical analysis and vari-1305

ous types of statistical tests).1306

Mice pipelines. QuNex contains a set of commands for on-1307

boarding and preprocessing rodent MRI data (typically in the1308

Bruker format). Results of the mice preprocessing pipelines1309

can be then analysed using the same set of commands as with1310

human data.1311
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