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Abstract 
 
A prevailing interpretation of Waddington’s landscape is that distinct cell types with distinct physiologies 
are produced and stabilized by dynamical attractors in gene expression space. This notion is often ap-
plied in the analysis of single-cell omics data, where cells are clustered into groups that represent cell 
types, prior to downstream analyses like differential gene expression. Until the advent of single-cell 
measurement technologies, however, it has been impossible to characterize the heterogeneity of cells 
in the neighborhoods of these attractor states. In this work, we apply graph theory to characterize the 
distribution of cells in epigenetic space, using data from various tissues and organisms as well as vari-
ous single-cell omics technologies. Rather than finding distinct clusters of cells that map cell types to 
specific regions of epigenetic space, we found that cells of very distinct types and lineages occupy the 
same region of space. Further, we found that the density distribution of cells is approximately power-
law, with most cells existing in low-density regions, very far from other cells. This highly heterogeneous 
density distribution is unexpected, as it is not consistent with the distributions we would expect to see in 
the neighborhood of an attractor. We found these two observations are universal in single-cell data on 
epigenetic state of multicellular organisms, regardless of the tissue, organism, measurement technique 
employed, or the approach used to select the subset of genes on which the analysis was performed. 
The fact that currently-available single-cell data is inconsistent with the predictions of Waddington’s 
landscape poses a challenge both for the robust analysis of these data and for our overall understand-
ing of epigenesis in development. 
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Introduction 

Genome-wide, single cell technologies resolve levels of biological organization that are obscured in 
other measurement modalities1. For example, single-cell RNA-sequencing (scRNA-seq) provides tran-
scriptome-wide information about mRNA levels in tens of thousands to millions of individual cells2. 
This technique is often applied to characterize changes in cell-type specific gene expression during 
development or in response to external tissue perturbations. However, since scRNA-seq tools are in-
herently destructive, a priori knowledge of the cell type is typically lost. Without access to the corre-
sponding morphology or cell surface markers, the majority of studies aim to identify physiologically 
relevant cell types based on similarities in gene expression patterns alone3. It is thus a common prac-
tice to apply clustering algorithms that group together cells that are in some sense “close” to one an-
other in gene expression space4. This is extremely intuitive: cells with similar mRNA levels should have 
similar protein levels, similar levels of the functions carried out by those proteins, and thus should be 
similar phenotypically. 

The idea that groups of physiologically similar cells should cluster together in gene expression 
space also directly follows from the classic picture of “Waddington’s epigenetic landscape.” This land-
scape has shaped the dominant paradigm for understanding the molecular basis of development for 
the past 80 years5. While Waddington’s original proposal for this epigenetic landscape was abstract, 
this landscape has generally been interpreted as corresponding to gene expression space6. In this pic-
ture, cells move through a landscape of epigenetic constraints, descending through valleys that guide 
the production of terminally differentiated cell fates (Fig. 1A). Here, gene regulatory networks underly 
each cell fate, and their regulatory interactions generate dynamical attractors in gene expression 
space that ensure the production of functional cell types. These attractors structurally explain how the 
expression states of cell types can be stable (Fig 1B), and propose a molecular basis for “canalization” 
in development. Canalization ensures the developmental process is robust, such that cell lineages and 
terminally differentiated cell types do not switch fates despite internal gene expression noise or small 
environmental perturbations. Thus, Waddington’s landscape hypothesizes a molecular basis of cellular 
differentiation that rests upon the idea of cell types as attractor states, and predicts that phenotypi-
cally similar cells should have similar molecular compositions.7 

While clustering is nearly universally applied to identify cell types in scRNA-seq studies, these 
studies have also revealed high levels of heterogeneity in the gene expression states of cells; indeed, 
“heterogeneity” is an extremely common term in the titles of papers reporting scRNA-seq results8–10.To 
date, however, there has been no attempt to directly characterize the structure of cell types in the un-
derlying epigenetic space, nor to quantify the heterogeneity of cells in the neighborhood of cell-type 
attractors. In part, this is due to the fact that most analysis and clustering of scRNA-seq data is carried 
out after the application of a number of linear and non-linear transformations of the data, including 
normalization, log-transformation, PCA, and oftentimes non-linear dimensionality reduction tools like t-
SNE and UMAP. These transformations dramatically alter the variance structure of the data11. They 
also generate large levels of distortion in local neighborhoods, so that cells that are neighbors in the 
original data set are not neighbors after these transformations are applied12. While these transfor-
mations aim to resolve issues of dimensionality and measurement noise in the analysis of scRNA-seq 
data, there is a distinct lack of empirical and theoretical evidence to support the use of these transfor-
mations in creating the appropriate basis for identifying physiologically similar groups of cells.  
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In this work, we began by characterizing the relationships between cells in the original, high-di-
mensional, genome-wide epigenetic data provided by a variety of single-cell technologies. To do this, 
we developed a straightforward approach that we term “𝜖 networks,” where we consider the types of 
cells that are within a certain distance cutoff (𝜖) of each cell in the dataset (Fig. 1C). Our findings re-
vealed something surprising: none of the data that we analyzed is consistent with the structure pre-
dicted by Waddington’s landscape. For instance, we first characterized a classic data set for human 
peripheral blood mononuclear cells (PBMCs) where a cell type identity was assigned orthogonally to 
each cell type using FACS before sequencing was carried out13. Rather than finding distinct clusters of 
cells that map cell types to specific regions of gene expression space, we find that cells of very distinct 
types and lineages occupy the same region of the space. This is true even when using popular ap-
proaches, like the Highly Variable Genes method, or even a supervised approach, to identify genes 
that should be useful in separating biologically distinct groups of cells14. 

In most scRNA-seq data sets we of course do not know the cell type of each cell ahead of time. 
Distinct groups of cells should nonetheless yield specific patterns in the sizes of the clusters within our 
𝜖 networks. Interestingly, none of the scRNA-seq datasets we analyzed showed any evidence of dis-
tinct cell-type groups, including data from complex and mostly post-mitotic tissues like the brain and 
even whole organisms like C. elegans and hydra15,16. scRNA-seq data is known to be noisy, however, 
largely due to the low capture probability of individual transcripts within the cell17. It could be that this 
noise simply washes away the signal of differences between cell type groups. We found the same lack 
of distinct cell-type groups, however, in data obtained using completely different experimental modali-
ties, including MEFISH, a microscopy-based technique that measures transcript abundance using a 
combinatorial set of fluorescently-labeled probes and is thought to have much lower levels of noise18. 
We also saw a complete lack of evidence for distinct cell type groups in other forms of single-cell epi-
genetic data, including measurements of protein levels and chromatin accessibility (scATAC-seq)19. 

Our 𝜖 network approach also allowed us to characterize how the cells themselves are distributed in 
gene expression space. Waddington’s landscape suggests that most cells should be clustered near 
the “center” of their cell-type attractors, with fewer and fewer cells the further away one looks (i.e. few 
cells should be on or near the “tops” of the hills in between valleys on the landscape, Figs. 1A and B). 
This should lead to a scenario where most cells are in regions of relatively high density, while few cells 
are in regions of low density. Instead, we found that the densities are distributed as an approximate 
power law, where the vast majority of cells are found in very low-density regions while a few cells are 
found in very high-density regions20. As with our observations above, we found this “fractal density” 
distribution in all of the data we analyzed, including a large number of 10x scRNA-seq datasets, data 
on gene expression collected using MERFISH, data on protein levels, and chromatin accessibility 
measured by scATAC-seq.  

Our findings thus demonstrate that none of the single-cell data on epigenetic state that we ana-
lyzed is consistent with the predictions of Waddington’s landscape. As mentioned above, however, 
analyses of these data are not conducted on the raw space, but rather in data that has been subjected 
to significant sets of non-linear transformations and dimensionality reduction21,22. While the dominant 
interpretation of Waddington’s landscape in the literature assumes that the cell-type attractors should 
exist in the raw epigenetic spaces7, it could be that these transformations recover the expected attrac-
tor-like structure. We thus applied our analysis to scRNA-seq datasets after each step of the common 
analysis pipeline. With the exception of the FACS-sorted PBMC data, application of this approach to 
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ten other large datasets did not generate clear cell-type groups, suggesting that current “best prac-
tices” for data transformation within the field do not robustly generate data consistent with the Wad-
dington’s landscape picture11,23. 

Our findings have broad implications for both the analysis of single-cell genomics data and our 
overall understanding of the molecular basis of development. scRNA-seq analysis pipelines entail 
many (ultimately arbitrary) parameter choices, some of which have a large impact on the results of the 
analysis (see Fig. S5 in the Supplementary Information for a simple example for human PBMCs)13. In 
some cases, analysis of the data does not yield the expected cell-type structure, even after considera-
ble effort11,23. Our work suggests that one source of this problem is the underlying structure of the data 
itself: the transformations employed in these pipelines were never explicitly designed to recover mean-
ingful cell type groups from data where the cell types are distributed in highly overlapping regions of 
gene expression space with fractal densities. Future work may be able to discover novel transfor-
mation pipelines that are more robust and effective at operationally separating cells into meaningful 
cell types. Beyond that, however, our work shows that available single-cell data on epigenetic state 
are completely inconsistent with the predictions of Waddington’s landscape. Revising this well-estab-
lished paradigm in light of our findings will represent a major empirical and theoretical challenge for 
the emerging era of single-cell biology. 
 
Results 
 
A lack of distinct cell groups in single-cell data. As mentioned above, our initial goal in this work was to 
characterize the variation of cells around the cell-type attractors in gene expression space. The first 
step in characterizing that variation is to identify these attractors themselves (Fig. 1A). In scRNA-seq 
studies this is universally done by clustering cells in the dataset after the application of a series of non-
linear transformations and dimensionality reduction steps23. These transformations dramatically alter 
the structure of the data; cells that are originally “close” to each other in the raw data are almost uni-
versally moved to be far apart after these transformations12,24. Transforming the data could thus alter 
the attractor structure of the landscape. Moreover, several common transformations (particularly 
“Counts Per Million” or CPM normalization and log-transformation) significantly alter the shapes of the 
UMI count distributions24. If we wish to honestly characterize transcriptional variation, then transfor-
mations that alter the variance of the underlying distributions should clearly be avoided.  
  We thus developed a straightforward approach, which we call an “𝜖  network,” that allows us 
to characterize the relationships between cells in the original, high-dimensional data set. To construct 
an 𝜖 network, we first choose a cell and consider a ball of radius 𝜖 around that cell (Fig. 1C, panel 1). 
In two dimensions, this gives rise to a circle, but in higher dimensions this represents a hypersphere 
centered on the cell in question. We then draw a similar hypersphere around every cell in the dataset 
(Fig. 1C, panel 2). If two cells are closer to each other than this radius 𝜖 (i.e., they lie within each 
other’s hyperspheres and are thus closer to each other than the 𝜖 cutoff), then we connect those cells 
in the network (Fig. 1C, panel 3). A more detailed schematic of the construction of 𝜖 networks is avail-
able in the supplement (Fig. S2.1). For any given value of 𝜖, we can thus convert our original high-di-
mensional dataset into a standard undirected graph. This allows us to use the powerful tools of graph 
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theory to analyze networks at different values of 𝜖, giving us insight into how the cells are distributed in 
gene expression space.  

At any given value of 𝜖, the network will naturally partition into different groups of cells that are all 
connected to each other, giving rise to a set of clusters or “components” (Fig. 1C, panel 3). If the cells 
are arranged in gene expression space according to the Waddington paradigm, we should see groups 
of similar cells in distinct regions of the space (see Fig. 2A for a schematic of three distinct cell types). 
As 𝜖 increases, cells of the same type should group together first; cells of different types should join 
together into the same cluster or component only after the radius 𝜖 exceeds the distance between the 
groups (Fig. 2A). One way to track this behavior is to look at the size of the largest cluster in the graph 
(called the “giant component” in graph theory) as a function of increasing 𝜖. We should see that the 
giant component first includes only one of the cell types in the system (Fig. 2B). At larger 𝜖 radii, we 
should see the other two groups of cells join all at once. This should give rise to a characteristic step-
like behavior in the giant component, where cell types corresponding to distinct attractors are added 
to the giant component in large groups (Fig. 2B).   

To test this idea, we first considered a classic scRNA-seq data set from human Peripheral Blood 
Monocytes (PBMCs)13. In this particular case, the cells were pre-sorted using FACS to separate them 
into distinct cell-type groups using extremely well-established cell surface markers. Since this was 
done before sequencing, we know the “true” cell-type label for each cell in the dataset25, which allows 
us to not only monitor the size of the giant component, but also its composition. We first considered a 
mixture of three terminally-differentiated cell types: B cells, Natural Killer (NK) cells, and monocytes. 
As can be seen from Fig. 2C, the size of the giant component (gray line) shows no step-like behavior 
whatsoever. Instead, the transition in the giant component is smooth, and involves all the different 

Figure 1. Waddington’s Epigenetic Landscape draws predictions from dynamical systems theory. A. A schematic of Wadding-
ton’s landscape, showing how the progression of cells through development is canalized by the underlying gene regulatory 
networks. The position of a cell on this landscape is interpreted as corresponding to its position in gene expression space, 
where cells that are constrained to a specific region are expected to be of similar cell types. B. Schematic of the dynamical 
systems that construct the hills and valleys of Waddington’s Landscape. The valleys in Waddington’s Landscape represent 
stable attractors, where these attractors function to buffer a cell from perturbations. The hills in Waddington’s landscape corre-
spond to unstable states, where any perturbation results in increasing divergence from the original state. C. Schematic show-
ing how our 𝜖 networks are constructed. First, we consider a hypersphere of radius 𝜖 around any given cell in the dataset (in 
this 2-D schematic, this corresponds to a circle around each cell, panel 1). We consider a similar hypersphere for every cell in 
the dataset (panel 2). For each cell, an edge is drawn between the cell and any neighbor that is within the 𝜖 radius. This gener-
ates a network that connects cells based on a pairwise distance criteria (panel 3). Note that, at any given 𝜖, the network natu-
rally forms a set of clusters of cells that are all connected to each other, called “components” in graph theory. The largest of 
these is the giant component. 
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cells of the different types joining the giant component more-or-less at the same time (Fig. 2C). We 
see the same behavior when adding various subsets of T cells from the PBMC data set into the data, 
suggesting that all the PBMCs purified in this experiment occupy essentially the same region of gene 
expression space (Fig. S2.2B). 

It is important to note that, 
for this first analysis, we con-
sidered all the genes in the ge-
nome. This includes ribosomal 
and metabolic genes that we 
expect should not vary signifi-
cantly between cells of differ-
ent types, and as such it is 
possible that the cells in this 
case are overlapping simply 
because of ubiquitously ex-
pressed genes. To test this 
hypothesis, we considered 
several “feature selection” ap-
proaches that are designed to 
identify genes that vary in bio-
logically informative ways 
across the data set. The most 
popular approach involves 
finding “Highly Variable 
Genes” (HVGs) whose vari-
ance is higher than one would 
expect given the average ex-
pression level17. Interestingly, 
HVGs did not separate these 
lymphocytes into different 
groups (Fig. 2D). We also con-
sidered an alternative, more 
statistically grounded feature 
selection method that we re-
cently developed (Differentially 
Distributed Genes or DDGs), 
and found that they similarly 
could not separate the groups 
of cells (Fig. 2D)26.  

Interestingly, even when 
we employed supervised fea-
ture selection approaches, 
which take advantage of the 

Figure 2. Giant component analysis of 𝜖 networks for data from various single 
cell modalities. A. Schematic showing the expectation of distinct cell groups from 
Waddington’s Landscape. Each different colored group of cells corresponds to 
one of the valleys in the landscape, and occupies a distinct region of gene ex-
pression space (Fig. 1A). B. Schematic showing how the size of the giant compo-
nent changes as a function of 𝜖. On the left, we have the expected behavior we 
would see if cells were distributed according to the predictions of Waddington’s 
landscape. The line is colored by which cell type causes the increase in the size 
of the giant component as more cells are included when the radius increases. 
Waddington’s landscape predicts a stepwise pattern as homogenous, relatively 
dense groups of cells are added to the giant component. In contrast, we see a 
continuous curve for single-cell data; cells of different types occupy more-or-less 
the same region of gene expression space, and join the giant component to-
gether in a heterogeneous group. C. Data from the Lymphocytes on the 10X plat-
form using all the genes as features. The cells were FACS purified before se-
quencing thus have orthogonal labels with cell types. D.  Data from the Lympho-
cytes on the 10X platform using Highly Variable Genes (HVGs), Differentially Dis-
tributed Genes (DDGs), and genes determined to be different on average be-
tween the cell types using the Wilcoxon rank-sum test (WCGs). All three feature 
selection methods do not show the predicted step-like behavior. E-J, Size of the 
giant component vs epsilon for additional single cell datasets. Unless listed in the 
title, all datasets were collected using the 10X platform. All datasets do not show 
the step-like behavior expected from Waddington’s Landscape 
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fact that we know the cell types a priori, we could not separate the cells into distinct attractor-like 
groups. For instance, we used the Wilcoxon rank-sum test to find genes that are differentially ex-
pressed in one of the cell types compared to the other two (WCGs)27. Even these genes could not pro-
vide the expected step-like behavior (Fig. 2D). Indeed, a more detailed supervised analysis could not 
find a single gene that could be used to separate all three groups of cells with reasonable cutoffs 
(Figs. S2.3, S2.4), and sets of genes selected using a supervised approach did not result in well-sepa-
rated groups (Fig. S2.3G). So, no matter how we analyzed this data, we found that the populations of 
cells are basically overlapping in gene expression space, with, for instance, many B cells more similar 
to monocytes and NK cells than they are to other B cells. 

We then extended our analysis to a number of other published scRNA-seq data sets. We first ana-
lyzed data from the mouse bladder, as an example of a tissue with moderate complexity, and found 
no evidence of step-like behavior (Fig. 2E)28. Similarly, we saw a smooth transition in a much more 
complex tissue, the mouse brain (Fig. 2F). This is a particularly interesting case; this dataset consists 
largely of neurons, which are fully differentiated, post-mitotic cells with diverse physiological roles in 
the brain. Despite this diversity, and the lack of stem cells that might “tie together” different differenti-
ated cell populations, we still found no evidence of cells occupying distinct regions of gene expression 
space. We then considered scRNA-seq data from the developing C. elegans embryo15 and saw ex-
actly the same behavior (Fig. 2G). This is particularly intriguing because of the deterministic nature of 
C. elegans development, where the distinct cellular fates of various lineages are extremely well-char-
acterized29. In this data set, cell-type annotations have been made by applying the standard analysis 
pipeline, which includes feature selection, normalization, and dimensionality reduction, and then refer-
encing high-quality microscopy data to guide the clustering results. Yet, as with the lymphocyte case, 
we see that these various cell types are added to the giant component all together, rather than in dis-
tinct groups as expected (Fig. S4.4B). This behavior persists even when we just look at transcription 
factor genes in C. elegans, which are thought to drive fate transitions within these lineages and thus 
should show some evidence of the expected attractor structure (Fig. 1A and S4.2E). We saw the same 
behavior for every metazoan data set we considered, including data from whole-organism data from 
Hydra vulgaris (Fig. S2.2D). We even saw this lack of separation in scRNA-seq data for the model plant 
Arabidopsis thaliana, suggesting that this is a feature of all complex multicellular organisms (Fig. 2H)30. 

All of the datasets referenced above were obtained using the popular 10X genomics platform, 
which is known to be highly “noisy” and “sparse” due to the low capture probability of each individual 
mRNA in the cells being sequenced31. It is possible that low capture probabilities destroys the separa-
tion between cell types in gene expression space. To test this, we considered scRNA-seq techniques 
that have much higher capture probabilities. For instance, the BD Rhapsody platform captures 50-
75% of mRNAs in each cell, compared to ~5% for 10X, although it can only provide data for ~1,000 
genes in the genome32. We applied our analysis to BD Rhapsody data for PMBCs, and again found no 
evidence of distinct cellular groups (Fig. S2.2I,J)32.  

While scRNA-seq methods are extremely popular, alternative approaches have been developed 
that allow for the quantification of mRNA levels in single cells that do not rely on the “capture-and-se-
quence” paradigm of scRNA-seq. Perhaps foremost among these is the MERFISH technique, which 
builds on single-molecule FISH approaches and uses a combinatorial set of labeled probes to identify 
individual mRNA molecules from a subset of genes in the genome in a microscopy image18 .This ap-
proach does not suffer from the issue of low capture probability like scRNA-seq, and is generally 
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thought to produce less “noisy” data. We analyzed a recent data set published by the Vizgen corpora-
tion, consisting of a mouse brain slice with ~50,000 cells with measurements for around ~600 genes in 
each cell (Fig. 2I)33. We saw exactly the same lack of distinct cell types for this data as we do for the 
scRNA-seq mouse brain data (Fig. 2J). We also analyzed another published MERFISH dataset of 
around 15,000 mouse brain cells following a simulated Traumatic Brain Injury (TBI). This data contains 
measurements for 160 distinct genes per cell, of which 80 genes were specifically selected as marker 
genes for cell types34. We found no evidence of distinct cell type groups in either the entire TBI dataset 
or a dataset in which we just considered these 80 marker genes (Figs. S4.3B and S4.3C). Together, 
these findings strongly suggest that our observations are not a consequence of either low capture 
probabilities or noise. Since these datasets have much lower dimensionality than typical scRNA-seq 
datasets (~100s of genes rather than ~20,000 as is typical for scRNA-seq), these findings also demon-
strate that the lack of distinct cell-type groups is not simply an artefact of the high dimensionality of 
the data. 

It could also be that the observation of a lack of separation between cell groups is an artefact of 
the choice of the Euclidean distance (i.e. the l2 norm) to describe the relationship between cells. Alt-
hough this distance is essentially universally employed in scRNA-seq analysis, it could be that another 
notion of distance would be more useful in describing differences between cell-type groups23. To test 
this, we used the “Manhattan distance” (the l1 norm) to construct our 𝜖 networks, and found the same 
exact results for both the raw data and feature-selected subsets of the Lymphocyte data and MER-
FISH brain data (Fig. S2.5). This suggests that the finding described here is not limited to just the Eu-
clidean distance, but persists with other definitions of distance as well. 

In addition to feature selection, scRNA-seq data is often subjected to normalization and z-score 
transformation. Normalization is often achieved by converting the raw counts to “counts per million,” 
which eliminates the variation in the total number of UMI counts (also referred to as “read depth”) 
among cells in the sample23. Since some of this variation in read depth could be technical in nature, 
this step is thought to control for non-biological differences between cells. Interestingly, however, 
CPM transformations did not result in resolution of the three cell type groups in Lymphocytes (Fig. 
S2.6A), nor did it generate separate groups of cells in the MERFISH brain data (Fig. S2.7). It is also of-
ten argued that different genes in the dataset will have intrinsically different scales of variation: some 
genes might be expressed at a high level (say, 100s of copies in many cells) and other genes might be 
expressed at a low level (at most 1 copy found in very few cells). This would lead to different genes 
having a vastly different impact on the measured distance, with those that vary more contributing 
more to the distance than those that vary less. One simple way to deal with this problem is to perform 
a z-score transformation of the data, which ensures that all of the genes vary on the same scale 
across the dataset23.As with the CPM case, however, z-score transformation failed to generate sepa-
rate groups of cells in both the Lymphocyte and MERFISH brain data (Figs. S2.6A and S2.7). 

Finally, we also looked at other data on the epigenetic state of cells, including scATAC-seq data, 
which provides genome-wide information on chromatin accessibility35. scATAC-seq data from PBMCs 
yields essentially identical results to that obtained from scRNA-seq (Fig. 2J), as does PBMC data from 
the BD Rhapsody platform for protein levels (Fig. S2.2J). Indeed, we could not find any published sin-
gle-cell dataset on epigenetic state that was consistent with well-separated attractors for individual 
cell types, as predicted by Waddington’s landscape (Fig. 1A and 2B). 
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The density distribution of cells is inconsistent with attractors in epigenetic space. In addition to being 
separated from one another, a key feature of the Waddington’s picture is that cell types should corre-
spond to attractors in the epigenetic landscape 7,36–38. A key property of an attractor is the fact that, if a 
cell is perturbed away from the attractor by noise or an environmental perturbation, the natural dynam-
ics of the gene regulatory network will induce the cell to move back towards the attractor39,40. This is 
usually represented using a “potential well” picture, which explains how cells near an attractor will 
tend to return to that attractor if they are perturbed while cells in unstable regions (say, at the top of a 
hill between two attractors) will tend to move away (Fig. 1B). In the presence of noise, the structure of 
these potential wells suggests that the probability of finding a cell in a certain region of the landscape 
should vary with the height of the landscape, leading to a large number of cells near the attractors at 
the bottom of the valleys and few cells on the hills in between them (Fig. 1A). Indeed, this principle has 
been used to attempt to infer the shape of the landscape from scRNA-seq data7. Waddington’s land-
scape thus leads us to expect that most cells will be in regions of similar density, with similar numbers 
of neighbors in the 𝜖 networks we constructed. 

Inspection of our 𝜖 networks indicated, however, that this was likely not the case. For one, the 
transitions in the giant component that we observe are gradual; in other words, the giant component 
initially begins forming at small distances, but as the size of this cluster grows, it takes larger and 
larger distances to bring more cells into the giant component (Fig. 2C-J). This suggests that some 
cells are much farther away from each other than others. Also, we visualized our 𝜖 networks and found 
clear differences in density, with some cells having many neighbors and many cells having compara-
tively few (Fig. 3A). This suggested that the distribution of local densities might give further insight into 
the structure of the data.  

To investigate this phenomenon in greater detail, we calculated the “density distribution” for these 
single-cell datasets. For any given value of 𝜖, we can count how many neighbors each cell has (Fig. 
1C), and then plot a histogram of this data. In graph theory, this histogram is known as the “degree 
distribution” of the network, and is often instructive about the topology of the network itself41,42. In our 
case, this also corresponds naturally to the distribution of local densities, since each 𝜖-ball has the 
same volume (i.e. if one cell has 100 neighbors, then clearly the local density around that cell is much 
higher than a cell that has only 1 neighbor). If most cells are near the center of an attractor (the bottom 
of the well in Fig. 1B), they should have more-or-less the same number of neighbors, which should 
give rise to a roughly binomial (i.e. approximately Gaussian or Gaussian-like) distribution of neighbor-
hood sizes (Fig. 3B).  

We first considered the 10X PBMC scRNA-seq data described above and found an approximately 
power-law distribution of local densities (Fig. 3C). Although the density distribution shown in Fig. 3C is 
only for one particular value of 𝜖, we find the same scaling behavior across a wide range of 𝜖 values, 
suggesting that this is not simply an artifact of choosing precisely the right radius for the neighbor-
hoods in question (Fig. S2.2A). In this case, we find a small number of cells that are in extremely dense 
regions of gene expression space, with thousands of neighbors; most cells, however, are found in very 
low density regions, with either no neighbors or just one or two (Fig. 3C). The 𝜖 networks we observe 
are thus similar to classical “scale-free” networks, though we should note that our analysis here is in-
sufficient to determine if these distributions are truly scale-free or simply similar to a power law43. Re-
gardless, this highly heterogeneous density distribution is completely inconsistent with the distribu-
tions we would naturally expect to see in the neighborhood of a stable attractor (Fig. 3B). 
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 As mentioned above, the 10X platform is known to be noisy, so it could be that the scale-free 
density distribution we observe is a reflection of the platform and not the underlying biology. To test 
this, we considered an artificial dataset in which a set of 92 cDNA standards were introduced to the 
10X platform at defined concentrations that span orders of magnitude13. In this “ERCC control” data, 
we do not observe any evidence of scale-free behavior, suggesting that power-law densities are not 
simply an artifact of the scRNA-seq technique (Fig. 3D). Indeed, we observed scale-free density distri-
butions for all the 10X data sets discussed above, including mouse bladder (Fig. 3E), mouse brain (Fig. 
3F), C. elegans (Fig. 3G), 
A. thaliana, H. vulgaris, 
etc. (Figs. S3.1 C,D). We 
also observe scale-free 
density distributions in 
the BD Rhapsody PBMC 
data (Fig. 3H), further 
suggesting that this ob-
servation is not an arte-
fact of the low capture 
probability entailed by 
the 10X platform. 

To test whether this 
observation was specific 
to the scRNA-seq para-
digm, we also analyzed 
several available MER-
FISH datasets. Interest-
ingly, the Vizgen data on 
the mouse brain showed 
striking power-law be-
havior across four orders 
of magnitude in local 
densities (Fig. 3I). We 
saw similar behavior for 
the TBI data (considering 
either the entire dataset 
or just marker genes, 
Figs. S3.1 E,F) and MER-
FISH data from cultured 
MCF10A cells (Fig. 
S3.1G)44. As with our 
analysis of the giant 
component, these find-
ings strongly suggest 
that these power-law 

Figure 3. Approximately scale-free density distributions in a variety of single-cell datasets. 
A. Force Directed layout of the epsilon network (𝜖 = 70) for data from C. elegans embryos 
collected on 10X platform. For clarity, all “orphan” cells with no neighbors were removed. 
Visualization of the network reveals heterogeneous density in the giant component with 
smaller clusters of cells elsewhere in the space. Note that the cells are colored according 
to the annotated cell type in this data set, and there is clearly no separation of these cell 
types in the underlying space. B. The left panel shows a schematic of the expected de-
gree distribution from attractors as described in the Waddington’s Landscape paradigm. 
The right panel is a schematic to what the degree distribution would look like if the data 
were sampled from a power law distribution. C. Degree Distribution for the epsilon net-
work of FACS-purified Lymphocytes collected on the 10X Platform. D. Degree Distribution 
of the ERCC control data, which does not show scale-free density. E-I. Degree Distribu-
tions of various single cell gene expression measurements at specified epsilons, all of 
which show scale-free like behavior. Unless listed, the platform used for collection is 10X. 
J. Degree distribution for an epsilon network built using protein expression data collected 
on the PBMC Rhapsody Platform. This dataset also shows approximately power-law be-
havior across almost three orders of magnitude in density. The value of 𝜖  is shown for 
each degree distribution as an inset. In all panels showing approximately scale-free be-
havior, the gray line represents a reference power-law with an exponent of -1. 
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densities are not a simple consequence of either the high levels of noise nor the inherently high dimen-
sionality of scRNA-seq data. The fact that this observation holds across quite different subsets of 
genes (chosen in each data set for completely different reasons) also suggests that power-law densi-
ties are a general feature of the distribution of cells in gene expression space regardless of the subset 
of genes considered15,28,30,32,34,44,45. Interestingly, we also see this scaling behavior in other epigenetic 
datasets, including the BD Rhapsody protein data (Fig. 3J) and scATAC-seq transcription factor data 
(Fig. S31.H), and if we use the l1 norm instead of the standard l2 (Fig. S3.3). As with the lack of separa-
tion between cell types, approximately power-law density distributions are thus a universal feature of 
the single-cell data we analyzed. 

 
Popular non-linear transformations cannot reliably separate groups of cells. In the scRNA-seq field, 
analyses like cell-type clustering are essentially never performed on the raw data, but rather only on 
data that has been subjected to a set of non-linear transformation and dimensionality reduction 
steps23. A typical pipeline for scRNA-seq data would start with the raw UMI counts, normalize the data 
so that the total number of counts in each cell is equivalent (e.g. “Counts per Million” or CPM normali-
zation), perform a log transformation (log (CPM +1)), identify a set of HVGs, perform PCA (choosing a 
number of components based on visual inspection of a scree plot or according to other criteria), and 
then use non-linear techniques like t-SNE or UMAP to visualize the data in two or three dimensions 23. 
Clustering is usually carried out using the popular Louvain or Leiden algorithms after either the PCA or 
t-SNE/UMAP step23. Given that many groups report successful clustering of their data using this 
broadly similar set of approaches, we considered whether these transformations could reliably sepa-
rate cells into distinct groups and, if so, which parts of this pipeline seem critical for that separation. 

As above, we first considered the case of the FACS-separated PBMC data. Interestingly, we found 
that most combinations of transformations in this pipeline did not result in distinct cell groups (includ-
ing CPM normalization on its own, PCA on its own, log transformation, or selection of HVGs, Figs. 
S4.1). Combining all of these transformations with PCA did, however, generate the step-like behavior 
we originally expected to see (Fig. 4A). This is encouraging, suggesting that, while there are not dis-
tinct attractors in the raw count data, these popular transformations could recover them. Application 
of this pipeline to other datasets, however, produced either no separation between cell groups or very 
little step-like behavior. For instance, in the case of the mouse bladder, the transformed data gives es-
sentially the same pattern as the raw data, regardless of the feature selection technique employed 
(Fig. 4B). The mouse bladder is certainly not constituted of a single cell type, so the fact that the 
standard pipeline cannot separate cell groups suggests that this pipeline is not a universally reliable 
approach. This may underly the fact that some studies can successfully recover clear cell-type 
groups, while others fail to do so4.  

Most of the other data sets we considered fell in between the behavior seen for PBMC lympho-
cytes and the mouse bladder (Figs. S4.2A-E, S4.3A-F). For instance, for the mouse kidney, we do see 
some distinct jumps, but not the characteristic step-like behavior we expect for well-separated cell 
type groups (Fig. 4C). Interestingly, this intermediate behavior is also seen in the Vizgen MERFISH 
brain data we analyzed (Figs. S4.3C). We also see a similar behavior for the C. elegans embryo (Fig. 
4D). In most data sets, we lack orthogonal cell-type annotations, so we cannot tell if these individual 
“jumps” correspond to single cell types, or groups of cell types, joining the giant component all at 
once (as is the case for the lymphocytes, Fig. 4A). To test this possibility, we focused on the C. 
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elegans data,  where we have operationally standard annotations for the cell type of each cell in the 
data set15. At each value of 𝜖, the graph will contain multiple components or clusters (Fig. 1B). The 
moderate step-like behavior we observe here could be due to the fact that cell type groups are coa-
lescing into separate clusters, joining one another, and then adding to the giant component all at 

once. To test this, we 
considered the compo-
sition of all of the clus-
ters in the graph as a 
function of 𝜖, not just 
the giant component. 
The heat map in Fig. 4E 
considers clusters that 
are 90% homogeneous 
for a certain cell type (in 
other words, they are 
mostly composed of 
just one cell type). At a 
given 𝜖 we count the 
number of clusters that 
have at least the per-
centage of cells of that 
type in the cluster. So, 
for the row at 50%, the 
heat map indicates the 
number of components 
that are 90% pure for 
that cell type, and con-
tain at least 50% of the 
cells of that type in the 
data set. 

In the transformed 
C. elegans data, we see 
very few components 
that are both highly ho-
mogeneous and con-
tain most of the cells of 
a given type (Fig. 4F). 
For instance, we never 
see more than 3 clus-
ters that contain more 
than 50% of the cells of 
any given annotated 
cell type, regardless of 

Figure 4. Analysis of common non-linear transformations used in scRNA-seq analysis 
indicates that they cannot separate individual cell types in general. A. Size of giant 
component vs 𝜖 for FACS sorted Lympocytes after Counts Per Million (CPM) 
normalization, log CPM + 1transformation, selection of Highly Variable Genes (HVGs) and 
dimensionality reduction using PCA. The number of Principle Compnents in this and all 
other graphs in this figure was chosen using visual inspection to find the “elbow” in the 
scree plot of explained variance vs. component number, as is commonly done in scRNA-
seq. In this case, we actually do see the step-like behavior we expect (Fig. 2B). B-D. Size 
of the giant component vs. 𝜖 for the indicated datasets. In all cases, the data was 
subjected to CPM normalization, log CPM + 1 transformation, feature selection and PCA. 
For Feature selection, we used either all the genes, just the HVGs, or the subset of 
Differentially Distributed Genes (DDGs). The dramatic stepwise behavior seen in the 
Lymphocyte data is not seen in any of these datasets, particularly the mouse bladder. The 
other two cases do display some discrete jumps in the size of the giant component. E. To 
determine if the discrete jumps in the size of the giant component correspond to the 
addition of large, homogeneous clusters of cells, we generated a heat map to track the 
number of components in the graph that satisfy a set of criteria. To be counted in these 
heat maps, a component has to be 90% homogeneous for a given cell type (i.e. 90% of the 
cells in the component have to belong to just a single cell type). The x-axis of the heat map 
is the radius 𝜖. For each 𝜖, we considered all of the components in the graph. For those 
that were 90% homogeneous, we then calculated what percentage of the cells of that type 
were included in that component. If a cluster contains more than the indicated percentage 
on the y-axis, it is counted as satisfying the criteria. The heatmap shows the number of 
components that satisfy the criteria. For the Lymphocyte data, we see a range of 𝜖’s where 
we have 3 components that are more than 90% homogeneous and have collected nearly 
100% of the cells of that type. This indicates that the three cell types are distributed in 
different regions of the space, as expected. F. A heat map as in panel E, but for data from 
C. elegans embryos. Cell type annotations were taken from the authors of the study, and 
unannotated cells were removed from the data prior to analysis. We see almost no cases 
where clusters that are 90% homogeneous contain a large fraction of the cells of that type. 
This indicates that the standard transformations do not generate well-separated groups of 
cells corresponding to distinct cell identities in the C. elegans data.  
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the 𝜖 value we consider. This is in contrast to the PBMC data, where we do indeed see three distinct 
clusters that mostly consist of a single cell type and that collect most of the cells of that type in the 
dataset (Fig. 4E). Given that there are 36 annotated cell types in the C. elegans data (note that we re-
moved any “unannotated” cell from the data set prior to running this analysis), this suggests that, even 
though we see discrete “jumps” in the sizes of the giant component for many data sets, this does not 
correspond to clusters of single cell types first joining together with one another, and then with the gi-
ant component. Instead, we see small isolated “islands” of cells of similar type, but those islands are 
generally closer to cells of a different cell type than to other islands of cells of the same type.  Thus, 
while the transformations applied here do seem to generate small groups of “similar cells,” they cer-
tainly do not result in the expected attractor structure predicted by Waddington’s landscape.  
 
Discussion 
 
For over 80 years, Waddington’s landscape has been the dominant picture used to explain canaliza-
tion in ontogeny5,7,36,38,46,47. Since the 1960s, the near-universal interpretation of this landscape has 
been that individual cell types should correspond to attractors in gene expression space. Indeed, the 
landscape picture itself was influential in developing the language used in modern dynamical systems 
theory (for instance, the notion of an attractor’s “basin of attraction” was directly inspired by Wadding-
ton’s ideas)5,7,36,38,45,47. Mathematical models of development and differentiation universally cast the 
process as a set of bifurcations, whereby the number of attractors in gene expression space change 
during development5–7,36,38,48. These concepts have also been deployed extensively in the study of can-
cer, stem cells and stem cell reprogramming, and other areas 5,36,38,48. Despite its widespread ac-
ceptance, however, it has only been recently that single-cell measurements have allowed us to directly 
test this picture.  

The predictions of Waddington’s landscape are clear: cell types should correspond to discrete at-
tractors in gene expression space (Fig. 1A) 5–7,36. Our analysis demonstrates that available single-cell 
measurements are completely inconsistent with these predictions. For one, rather than occupying dis-
tinct regions of gene expression space, cells of very distinct types and lineages occupy the same re-
gion of that space (Fig. 2). This is true not only on a genome-wide scale, but also for subsets of genes 
taken from “feature selection” approaches that are meant to distinguish sells from one another. Even if 
we know the cell types in the data a priori, we cannot find a set of genes that can reliably distinguish 
three different types of cells from one another (Fig. S2.3). We found this not just for scRNA-seq data 
taken from the 10X platform, which is known to generate noisy data, but also for more targeted tech-
nologies that provide higher-quality data for an ostensibly biologically informative subset of genes (e.g. 
the MERFISH data from mouse brains in Fig. 2J and Figs. S4.3B,C). This lack of separation is also 
present in chromatin accessibility data and data on protein levels (Figs. 2J, S2.2H,J). Moreover, the 
other clear prediction of Waddington’s landscape, that the cells should be found in attractor states no 
matter how well separated they might be, also does not conform to our findings. Instead of seeing 
cells clustered around a “typical” gene expression state corresponding to the center of an attractor, 
we find that cells are extremely heterogenous, leading to an approximately power-law or “fractal” den-
sity distribution (Fig. 3).  

Since its inception, the analysis of single-cell genomics data, and particularly scRNA-seq, has re-
lied on a series of nonlinear transformations and dimensionality reduction steps that are applied before 
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any attempt is made to cluster cells into cell types4,23. To a careful observer, this fact alone suggests 
that the data itself is inconsistent with Waddington’s landscape; for instance, mathematical models of 
differentiation and development do not posit dynamics in log(CPM + 1)–HVG–PCA space, but rather 
directly in the space of mRNA and protein levels, since these are the natural variables of the system7. 
Nonetheless, these transformations have clearly been operationally useful, since no one can deny the 
sheer volume of papers that have derived meaningful biological insights from this data. Here, we 
found that application of the “standard pipeline” of scRNA-seq analysis sometimes does separate 
cells into discrete, homogenous groups (Fig. 4A). In other cases, however, this approach simply does 
not “work;” in fact, in most cases, these transformations result in groups of physiologically distinct 
cells that occupy more-or-less the same region of the space (Fig. 4). In scRNA-seq data analysis, and 
indeed in single-cell genomics more broadly, one finds that nearly every paper employs a different set 
of transformations, approaches and parameters. Our own analysis indicates that the results of the 
pipeline depend heavily on the values of those parameters (Fig S5). This suggests that the results of 
these pipelines are not robust and can be unreliable; in some studies, even with considerable effort, 
one cannot separate the data into reasonable, distinct groups of cells11,49. Our findings imply that the 
ultimate source of this heterogeneity and difficulty in analysis is the fact that the raw data itself does 
not display the structure that 60 years of appeal to the Waddington picture suggested it should. 

Our findings have wide-ranging implications both for the practical study of single-cell genomics 
data and the conceptual frameworks underlying our understanding of multicellular biology. Interest-
ingly, the landscape originally conceptualized by Waddington made reference to an abstract epige-
netic space quite different from the modern interpretation, in part because the proposal itself was 
made long before the advent of modern molecular biology5,46. One hypothesis that emerges from our 
work is that Waddington’s explanation for canalization is fundamentally correct, but it is just that the 
epigenetic space is not a space of mRNA levels, protein levels, or chromatin accessibility. In this sce-
nario, cell types correspond to attractors in this (heretofore undescribed) epigenetic landscape, and 
there is some non-linear projection from those attractors into the spaces that current single-cell tech-
nologies allow us to access experimentally. This idea is supported by the fact that analysis pipelines 
can generate clusters of cells that seem to correspond to our expectations for discrete cell types, sug-
gesting it is possible to “invert” this non-linear map to find the image of these attractors in the availa-
ble data (Fig. 4A)4,11. If this hypothesis holds true, it may be possible to find a more principled ap-
proach to inverting the projection that performs more reliably than the set of transformations that form 
the current standard of practice in the field4,23. Understanding the structure of the raw data is a clear 
first step in any attempt to develop a more principled approach to single-cell analysis. 

One other alternative is that there is a separation of cells in gene expression space as Wadding-
ton’s landscape suggests, but in a subspace with only a few genes that characterize the differences 
between cells; this would likely include the canonical “marker genes” for different cell types. In our 
analysis, even using supervised labels for the Lymphocyte data, we could not find such a subspace. 
That being said, this finding is based on potentially noisy 10X data, and so it could be that, with a 
more reliable measurement technique, we could find this subspace if we knew the true cell type for 
each cell in the data set a priori. More extensive datasets in which true cell type labels are known and 
epigenetic state is probed by alternative approaches will clearly be key to exploring this hypothesis 
further. If this turns out to be the case, the current approach in the field, which uses tools like HVG 
analysis to find 1000s of genes that can be used to differentiate cell types, would have to be replaced 
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by a supervised or unsupervised approach to finding this small subset of “cell type determining” 
genes. 

It is possible, however, that canalization in development takes a very different form from that origi-
nally envisioned by Waddington. For instance, single-cell measurements of physiological responses of 
cells ranging from breast tissue to the immune system reveal incredible diversity in those responses8–

10,49. In other words, the biological responses of individual cells that correspond to our classical notion 
of a “cell type” is itself quite heterogeneous, suggesting that categorizing cells into discrete groups in 
the first place may mask critical aspects of their physiology. Emerging functional data at the single-cell 
level thus suggest that the “final step” in development may not be a discrete set of cell types, as Wad-
dington’s landscape posits (Fig. 1A), but rather a more continuous spectrum of states and phenotypes 
that is not well-approximated by the attractor picture. Regardless of whether or not there are cell-type 
attractors to be found in some as of yet uncharacterized epigenetic space, it is clear that careful analy-
sis of available data, and a willingness to test even well-established paradigms against that data, is 
critical to the future of single-cell biology. 

 
Methods 
 
Datasets The vast majority of data we analyzed was taken directly from freely-available repositories on 
the internet. Table S1 in the Supplmentary Information summarizes each of these datasets, including 
the name we have given to each data set, number of cells, number of features measured, and a link to 
the corresponding resource where we obtained the data. CSV files for all of the datasets we used, 
specific to each transformation and analysis, are also provided for each dataset as additional supple-
mentary material. 

The MERFISH data that we analyzed is the only data that is not publicly accessible in an appropri-
ate format online. The MERFISH data for the mouse Traumatic Brain Injury dataset was obtained using 
the protocols and analysis described in 34. The count X cell matrix for this dataset was kindly provided 
by Zach Hemminger and Roy Wollman, and is available as supplementary information. Similarly, the 
Vizgen corporation has made image data from their MERFISH experiments on mouse brain slices 
freely available on the web33. Data for one of these slices was obtained through image analysis as de-
scribed in, and again kindly provided by Zach Hemminger and Roy Wollman. As with the TBI data, this 
data is also provided as additional supplementary information. 

 
𝜖 network construction, analysis and visualization For every dataset, the raw data consists of a matrix 
where the rows correspond to each individual cell and the columns to the features measured in the 
single-cell experiment (note that the data is sometimes represented with the columns as cells and the 
rows as features). For scRNA-seq data, these features are all the genes in the genome, and the entries 
in the matrix are the number of UMI counts for that gene in that cell. All of the other data considered 
here (MERFISH, BD Rhapsody mRNA and protein, etc.) ultimately consists of a similar matrix, just with 
either fewer genes measured (in the case of MERFISH, for example) or a different type of measure-
ment for each entry (for instance, protein levels rather than UMI counts in the BD Rhapsody protein 
data). 

For any given dataset, we can easily calculate the distance between any two cells using their cor-
responding feature vectors. Here, we used the simple Euclidean distance (i.e. the l2 norm) to define the 
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distance, since this is definition of distance used in the vast majority of scRNA-seq and single-cell ge-
nomics studies . This is also the natural notion of distance used in the analysis of dynamical systems 
(see, e.g., the Hartman-Grobman theorem on stability analysis through linearization about an equilib-
rium point, and a host of other definitions and theorems)39,40. If we calculate the distance between 
every pair of cells, this gives us a symmetric distance matrix with a number of elements equal to the 
number of cells in the dataset squared. 

Once we calculate this distance matrix, we can use that matrix to generate an epsilon network. To 
do so, we first define the cutoff ϵ to be some value. Then, for each cell 𝑖 in the dataset, we go through 
the row in the distance matrix and consider every other cell 𝑗. If the distance between these cells is 
less than the cutoff (𝑑!,# < ϵ), then we add cell 𝑗 to the list of cells that are connected (or adjacent) to 
cell 𝑖. Doing this for every cell in the dataset generates a standard adjacency list representation of the 
𝜖 network. 

We analyzed the resulting 𝜖 network using a standard set of algorithms on graphs. For instance, 
we used a Depth-First-Search (DFS) to determine all of the components in each of our 𝜖 networks. The 
largest such component is the giant component, and the number of cells in that largest component is 
the size of the giant component. Similarly, the “degree” of any cell 𝑖 for a given value of 𝜖 is just the 
size of the adjacency list for that node in the graph  42. Degree distributions were calculated as a histo-
gram across these individual degrees. Note that the histograms in Fig. 3 and in the Supplementary In-
formation use a standard logarithmic binning approach for approximately scale-free distributions.  

Distance matrices were calculated either using the scanpy package in Python 50or using custom-
built C++ software (particularly for larger datasets). Analysis of the giant component size and composi-
tion as a function of 𝜖 was performed using custom-built C++ software. Degree distributions and 
force-directed layouts were calculated using the NetworkX package in Python, and all plots were gen-
erated using the matplotlib package in Python51,52. All software used in this work is available from the 
authors upon request. 
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