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Abstract 26 

 27 

Dysregulation of gut mucosal host–microbe interactions is a central feature of 28 

inflammatory bowel disease (IBD). To study tissue-specific interactions, we performed 29 

transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 696 intestinal 30 

biopsies derived from 353 patients with IBD and controls. Analysis of transcript-bacteria 31 

interactions identified six distinct groups of inflammation-related pathways that were 32 

associated with intestinal microbiota, findings we could partially validate in an 33 

independent cohort. An increased abundance of Bifidobacterium was associated with 34 

higher expression of genes involved in fatty acid metabolism, while Bacteroides was 35 

associated with increased metallothionein signaling. In fibrostenotic Crohn’s disease, a 36 

transcriptional network dominated by immunoregulatory genes associated with 37 

Lachnoclostridium bacteria in non-stenotic tissue. In patients using TNF-α-antagonists, 38 

a transcriptional network dominated by fatty acid metabolism genes associated with 39 

Ruminococcaceae. Mucosal microbiota composition was associated with enrichment of 40 

specific intestinal cell types. Overall, we identify multiple host–microbe interactions that 41 

may guide microbiota-directed precision medicine. 42 

 43 

Keywords: inflammatory bowel disease, gene expression, mucosal microbiota, 44 

microbiome, host–microbe interactions.  45 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2022. ; https://doi.org/10.1101/2022.06.04.494807doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494807
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

 

Main 46 

Inflammatory bowel diseases (IBD), which encompass Crohn’s disease (CD) and 47 

ulcerative colitis (UC), are chronic inflammatory diseases of the gastrointestinal tract [1]. 48 

The pathogenesis of IBD is thought to be caused by a complex interplay between 49 

inherited and environmental factors, gut microbiota and the host immune system [2,3]. 50 

Alterations in gut microbiota composition and functionality are commonly observed in 51 

patients with IBD, including decreased microbial diversity, decreased abundances of 52 

butyrate-producing bacteria and increased proportions of pathobionts [4-8]. 53 

Interactions between host genetics and the gut microbiome have been studied in both 54 

healthy subjects and patients with IBD. For example, we previously focused on host 55 

genome–gut microbiota interactions in the context of IBD [9]. However, in order to 56 

disentangle disease mechanisms that might underlie the etiology and progression of 57 

IBD, there should be a greater focus on mucosal gene expression studies [10]. 58 

Modulation of host mucosal gene expression by gut microbiota or effects of gene 59 

expression on microbial fitness may expose mechanisms that contribute to IBD 60 

pathogenesis, knowledge that could be utilized to explore novel therapeutic targets 61 

[11,12]. Most studies, however, employ fecal sampling for microbiota characterization, 62 

which precludes analysis of local interactions and their immediate impact on host 63 

intestinal expression signatures. Such studies examining mucosal gene expression–64 

microbiome associations in the context of IBD previously identified microbial groups 65 

associated with host transcripts from immune-mediated and inflammatory pathways [12-66 

15]. In a longitudinal host–microbe interaction study, the chemokine genes CXCL6 and 67 

CCL20 were negatively associated with the relative abundances of Eubacterium rectale 68 

and Streptococcus, suggesting that these bacteria are more susceptible to the actions 69 

of these chemokines [13]. Another study found an inverse association between host 70 

expression of DUOX2, which produces reactive oxygen species (ROS), and the relative 71 

abundance of Ruminococcaceae, an association that may suggest ROS-mediated 72 

antibacterial effects [16]. However, few studies to date have been able to carry out 73 

comprehensive integrated analysis of IBD-associated interaction factors among 74 

mucosa-attached microbiota and host intestinal-gene expression. 75 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2022. ; https://doi.org/10.1101/2022.06.04.494807doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494807
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

 

Here we analyzed 696 fresh-frozen intestinal biopsies derived from 337 patients with 76 

IBD and 16 non-IBD controls for which we generated both mucosal transcriptomic and 77 

microbial characterization using bulk RNA-sequencing and 16S rRNA gene sequencing, 78 

respectively. We further combined both datasets to comprehensively investigate mutual 79 

mucosal host-microbe interactions and integrated these with the extensive clinical 80 

characteristics collected. Following this approach, we aimed to investigate mucosal 81 

host–microbe interactions while disentangling disease-, location- and inflammation-82 

specific associations (a graphical representation of the study workflow is presented in 83 

Figure 1). Most importantly, we could study the associations between mucosal host–84 

microbe interactions and clinical phenotypes of patients with IBD. Finally, we also 85 

sought to replicate our main results in data from a smaller independent, publicly 86 

available cohort [13].  87 
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Results 88 

Cohort description 89 

Demographic and clinical characteristics of the study population are presented in Table 90 

1. In total, we included 640 intestinal biopsies from 337 patients with IBD and 56 91 

intestinal biopsies from 16 non-IBD controls. Biopsies were derived from the colon 92 

(64.4%) and ileum (35.6%), and patients with CD and UC were equally represented 93 

among inflamed (CD: 53.8%, UC: 46.2%) and non-inflamed (CD: 55.4%, UC: 44.6%) 94 

biopsies. Mean age and the proportion of smokers were higher among controls (P<0.01 95 

and P=0.01, respectively). Among biopsies derived from patients with IBD, the 96 

proportion of steroid users was higher among patients from whom inflamed biopsies 97 

were collected (P<0.01). Remaining patient characteristics were evenly distributed 98 

among groups without significant differences. 99 

Table 1. Demographic and clinical characteristics of the study population compared 100 

between the inflamed and non-inflamed dataset. 101 

Variable Total IBD Non-IBD 

Controls 

P-

value 
Inflamed 

biopsies 

Non-

inflamed 

biopsies 

 n = 696 n = 212 n = 428 n = 56  

Biopsy inflammation, n (%)      

Inflamed 212 (30.5) 212 (100) - -  

Non-inflamed 428 (61.5) - 428 (100) -  

Biopsy location, n (%)     <0.01 

Ileum 248 (35.6) 66 (31.1) 173 (40.4) 9 (16.1)  

Colon 448 (64.4) 146 (68.9) 255 (59.6) 47 (83.9)  

Diagnosis or control, n (%)     0.74 
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CD 351 (50.4) 114 (53.8) 237 (55.4) -  

UC 289 (41.5) 98 (46.2) 191 (44.6) -  

Controls 56 (8.0) - - 56 (100)  

Age at biopsy (years) 
43.1 ± 

15.3 
43.0 ± 15.8 42.3 ± 15.5 

45.5 ± 

10.8 
<0.01 

Sex, n (%)      

Male 322 (46.3) 92 (43.4) 188 (43.9) 42 (75.0)  

Female 374 (53.7) 120 (56.6) 240 (56.1) 14 (25.0)  

BMI (kg/m2) 25.7 ± 4.5 25.7 ± 4.6 25.7 ± 4.7 24.7 ± 2.5  

Current smoking, n (%)     0.01 

Yes 145 (20.8) 37 (17.5) 88 (20.6) 20 (35.7)  

No 551 (79.2) 175 (82.5) 340 (79.4) 36 (64.3)  

Montreal classification      

Montreal Age (A), n (%) 638 (99.7) 212 (100) 426 (99.5) - 0.95 

A1 (≤16 years) 73 (11.4) 23 (10.8) 50 (11.7) -  

A2 (17–40 years) 397 (62.0) 132 (62.3) 265 (62.2) -  

A3 (>40 years) 168 (26.3) 57 (26.9) 111 (26.1) -  

Montreal Location (L), n (%) 333 (94.9) 108 (94.7) 225 (94.9) - 0.83 

L1 (ileal disease) 66 (19.8) 18 (16.7) 48 (21.3) -  

L2 (colonic disease) 51 (15.3) 17 (15.7) 34 (15.1) -  

L3 (ileocolonic disease) 172 (51.7) 58 (53.7) 114 (50.7) -  

L1 + L4 12 (3.6) 3 (2.8) 9 (4.0) -  

L2 + L4 6 (1.8) 3 (2.8) 3 (1.3) -  

L3 + L4 26 (7.8) 9 (8.3) 17 (7.6) -  
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Montreal Behavior (B), n 

(%) 
333 (94.9) 108 (94.7) 225 (94.9) - 0.31 

B1 (non-stricturing, non-

penetrating) 
146 (43.8) 53 (49.1) 93 (41.3) -  

B2 (stricturing) 59 (17.7) 20 (18.5) 39 (17.3) -  

B3 (penetrating) 30 (9.0) 9 (8.3) 21 (9.3) -  

B1 + P (perianal disease) 35 (10.5) 10 (9.3) 25 (11.1) -  

B2 + P (perianal disease) 48 (14.4) 15 (13.9) 33 (14.7) -  

B3 + P (perianal disease) 15 (4.5) 1 (0.9) 14 (6.2) -  

Montreal Extension (E), n 

(%) 
246 (85.1) 83 (84.7) 163 (85.3) - 0.95 

E1 (proctitis) 19 (7.7) 7 (8.4) 12 (7.4) -  

E2 (left-sided colitis) 75 (30.5) 25 (30.1) 50 (30.7) -  

E3 (pancolitis) 152 (61.8) 51 (61.4) 101 (62.0) -  

Montreal Severity (S), n (%) 207 (71.6) 68 (69.4) 139 (72.8)  0.70 

S0 (remission) 11 (5.3) 3 (4.4) 8 (5.8)   

S1 (mild) 28 (13.5) 9 (13.2) 19 (13.7)   

S2 (moderate) 109 (52.7) 33 (48.5) 76 (54.7)   

S3 (severe) 59 (28.5) 23 (33.8) 36 (25.9)   

Medication use      

Aminosalicylates, n (%) 271 (42.3) 91 (42.9) 180 (42.1) - 0.87 

Thiopurines, n (%) 210 (32.8) 66 (31.1) 144 (33.6) - 0.53 

Steroids, n (%) 262 (40.9) 105 (49.5) 157 (36.7) - <0.01 

Methotrexate, n (%) 44 (6.9) 18 (8.5) 26 (6.1) - 0.32 
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TNF-α-antagonists, n (%)† 113 (17.7) 35 (16.5) 78 (18.4) - 0.58 

Clinical disease activity     
 

 

HBI 324 (92.3) 104 (91.2) 220 (92.8) - 0.18 

Remission (<5) 205 (63.3) 60 (57.7) 145 (65.9) -  

Active disease (≥5) 119 (36.7) 44 (42.3) 75 (34.1) -  

SCCAI 257 (88.9) 84 (85.7) 173 (90.6) - 0.14 

Remission (≤2) 152 (59.1) 44 (52.4) 108 (62.4) -  

Active disease (>2) 105 (40.9) 40 (47.6) 65 (37.6) -  

Surgical history      

Ileocecal resection, n (%) 132 (20.6) 40 (18.9) 92 (21.5) - 0.47 

Colon resection (or 

partial), n (%) 
146 (22.8) 55 (25.9) 91 (21.3) - 0.19 

Small intestinal (partial) 

resection, n (%) 
82 (12.8) 29 (13.7) 53 (12.4) - 0.71 

Data are presented as proportions n with corresponding percentages (%), mean ± standard deviation 102 

(SD) or as median [interquartile range, IQR] in case of continuous variables. P-values ≤ 0.05 were 103 

considered statistically significant. †Use of TNF-α-antagonists included use of infliximab, adalimumab, 104 

golimumab and certolizumab pegol. Abbreviations: BMI, body-mass index; CD, Crohn’s disease; HBI, 105 

Harvey-Bradshaw Index; IBD, inflammatory bowel disease; TNF-α, tumor necrosis factor alpha; SCCAI, 106 

Simple Clinical Colitis Activity Index; UC, ulcerative colitis.  107 
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 108 

Figure 1. Methodological workflow of the study. The study cohort consisted of 337 patients with IBD 109 

(CD: n=181, UC: n=156) and 16 non-IBD controls, from whom 696 intestinal biopsies were collected (IBD:110 

n=640, controls: n=56) and processed to perform bulk mucosal mRNA-sequencing and 16S gene rRNA 111 

sequencing. Detailed phenotypic data were extracted from clinical records for all study participants. In 112 

total, 251 ileal biopsies (CD: n=186, UC: n=56, controls: n=9) and 445 colonic biopsies (CD: n=165, UC: 113 

n=233, controls: n=47) were included: 212 biopsies derived from inflamed regions and 484 from non-114 

inflamed regions. Mucosal gene expression and bacterial abundances were systematically analyzed in 115 

relation to different (clinical) phenotypes: presence of tissue inflammation, Montreal disease classification, 116 

9 

 

D: 

n, 
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medication use (e.g. TNF-α-antagonists) and dysbiotic status. Pathway-based clustering and network 117 

analysis (Sparse-CCA and centrLCC analysis) and individual pairwise gene–taxa associations were 118 

investigated to identify host–microbiota interactions in different contexts. We then analyzed the degree to 119 

which mucosal microbiota could explain the variation in intestinal cell type–enrichment (estimated by 120 

deconvolution of bulk RNA-seq data). To confirm our main findings, we used publicly available mucosal 121 

16S and RNA-seq datasets for external validation [13]. 122 

 123 

Mucosal gene expression reflects tissue specificity, inflammatory status and 124 

disease subtypes 125 

Principal component analysis (PCA) showed that gene transcriptional patterns could be 126 

stratified by biopsy location (ileum vs. colon), inflammatory status (non-inflamed vs. 127 

inflamed) and IBD subtype (CD vs. UC) in the first two components (Fig. 2A), consistent 128 

with previous observations [13]. Tissue location and inflammatory status were 129 

significantly associated with the first two PCs (biopsy location, ileum vs. colon: 130 

PWilcoxon=2.87x10-12; biopsy inflammatory status, P=7.15x10-27), whereas disease/control 131 

status (CD vs. UC vs. controls) was associated with the second PC (P=2.14x10-16). 132 

Inflammation-associated gene expression showed overlap between inflamed biopsies 133 

from ileal CD, colonic CD and UC (Fig. 2B). Differential expression analyses between 134 

non-IBD controls, non-inflamed and inflamed biopsies in all these three groups revealed 135 

3157, 3486, and 6710 differentially expressed genes (DEGs), respectively (FDR<0.05) 136 

(Supplementary Table S1). These DEGs fall mainly within interleukin signaling, 137 

neutrophil degranulation and extracellular matrix (ECM) organization pathways 138 

(FDRFisher<0.05, Extended Data Fig. S1). Overlapping results from all three differential 139 

expression analyses identified 1437 shared DEGs, including DUOX2, MUC1, JAK2, 140 

OSM and IL17A (Fig. 2C). We also observed an enrichment of these DEGs in IBD-141 

associated genomic loci (PFisher=9.6x10-9) [2].142 
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Figure 2. Mucosal host gene expression patterns in intestinal tissue from patients with IBD and controls. a, Principal component 144 

analysis, labeled by tissue location (ileum/colon), inflammatory status (non-inflamed/inflamed) and disease diagnosis (control/CD/UC), 145 

shows that variation in host gene expression can be significantly explained by tissue location and inflammatory status. b, Venn diagram of 146 

inflammation-associated genes from three comparisons: 1) ileal tissue from controls vs. non-inflamed tissue from patients with CD vs. 147 

inflamed tissue from patients with CD, 2) colonic tissue from controls vs. non-inflamed tissue from patients with CD vs. inflamed tissue 148 

from patients with CD and 3) colonic tissue from controls vs. non-inflamed tissue from patients with UC vs. inflamed tissue from patients 149 

with UC (all FDR <0.05). c, Relevant examples of four inflammation-associated genes, DUOX2, JAK2, MUC1 and IL17A, illustrating the 150 

presence of tissue inflammation (FDR <0.05). d, Relevant examples of inflammation-associated genes differentially expressed between 151 

patients with CD and UC (keeping tissue location and inflammatory status constant) showing higher expression of HDAC9 (histone 152 

deacetylase 9) and HEY1 (hairy/enhancer-of-split related with YRPW motif protein 1) in patients with CD and higher expression of VNN1 153 

(pantetheinase) and APOB (apolipoprotein B) in patients with UC. e, Analysis of pathways associated with either the presence of CD 154 

(orange) or UC (purple) demonstrates that genes upregulated in CD are mainly associated with Notch-1 signaling, whereas pathways 155 

upregulated in UC are mainly related to vitamin and cofactor metabolism, SLC-mediated transmembrane transport and intracellular protein 156 

modification. Pathways were annotated using the Reactome pathway database. CDi, inflamed tissue from patients with Crohn’s disease. 157 

CD-non, non-inflamed tissue from patients with Crohn’s disease. FDR, false discovery rate. PC, principal component. UCi, inflamed tissue 158 

from patients with ulcerative colitis. UC-non, non-inflamed tissue from patients with ulcerative colitis. 159 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted June 4, 2022. 
; 

https://doi.org/10.1101/2022.06.04.494807
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2022.06.04.494807
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

 

 

We then investigated the genes differentially expressed between inflamed colonic tissue 160 

from patients with CD and UC. In total, 1466 genes were differentially abundant, of 161 

which 733 (50%) were overrepresented in CD and 733 (50%) in UC (FDR<0.05) 162 

(Supplementary Table S2). Pathway enrichment analysis showed the Notch-1 163 

signaling pathway (e.g. HDAC9 and HEY1, Fig. 2D) to be highly upregulated in CD 164 

compared to UC, whereas vitamin, cofactor and lipoprotein metabolism pathways (e.g. 165 

VNN1 and APOB, Fig. 2D) were more pronounced in UC (Fig. 2E), which corroborates 166 

previous findings [17-20]. Cell type–deconvolution revealed that plasma cells, 167 

endothelial cells and Th2-lymphocytes were significantly increased in UC compared 168 

with CD (FDR<0.05, Supplementary Table S3), suggesting that distinct immunological 169 

mechanisms are involved in CD and UC. 170 

 171 

Mucosal microbiota composition is highly personalized 172 

The most common bacterial phylum observed across all tissue samples was 173 

Bacteroidetes (CD: 58%, UC: 58%, controls: 66%), followed by Firmicutes (CD: 27%, 174 

UC: 33%, controls: 23%) and Proteobacteria (CD: 14%, UC: 8%, controls: 9%). 175 

Interestingly, the overall mucosa-attached microbial composition was similar between 176 

colonic and ileal biopsies and independent of inflammation (Extended Data Fig. S2). 177 

Only seven bacterial taxa were differentially abundant between patients and controls 178 

(Supplementary Tables S4-5), consistent with previous findings [13,21,22]. 179 

Shannon diversity was significantly lower in samples from patients with CD compared to 180 

UC and non-IBD controls (P=2.75x10-16 and P=0.03, respectively, Fig. 3A). This 181 

difference was still present when comparing only colonic biopsies from patients with CD 182 

to those from UC, indicating that this difference was not solely attributable to ileal CD 183 

(Extended Data Fig. S3). Differences in microbial communities between tissue samples 184 

were evaluated by quantifying the Aitchison’s distance (Fig. 3B-C). We obtained 185 

comparable findings when we externally validated our results using data derived from 186 

the HMP2 cohort (Extended Data Fig. S4) [13]. 187 
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Figure 3. Overall characterization of mucosa-attached microbiota in patients with IBD and controls. a, Microbial alpha-diversity (Shannon 189 

index) was lowest in patients with CD (n=351) compared to patients with UC (n=289) and non-IBD controls (n=56). b, PCA plot based on 190 

Aitchison’s distances demonstrates the microbial dissimilarity of the mucosa-attached microbiota (colors as in a). c, Microbial dissimilarity 191 

(Aitchison’s distances) comparison between non-IBD control, CD and UC. Microbial dissimilarity is highest in biopsies from patients with CD, 192 

followed by patients with UC and non-IBD controls. d, Microbial dissimilarity is higher in samples from different individuals when compared to 193 

paired samples from the same individual, which includes paired inflamed–non-inflamed tissue from ileum and colon (left panel, inter-colon: 194 

n=11,430, inter-ileum: n=7,377, intra: n=203), paired colonic tissue samples from inflamed and non-inflamed areas (middle panel, inter-inflamed: 195 

n=7,372, inter-non-inflamed: n=8,369, intra: n=166) and paired ileal tissue samples from inflamed and non-inflamed areas (right panel, inter-196 

inflamed: n=1,590, inter-non-inflamed: n=1,592, intra: n=73). e, Hierarchical analysis performed using an end-to-end statistical algorithm (HAllA) 197 

indicates the main phenotypic factors that correlate with intestinal mucosal microbiota composition. Heatmap color palette indicates normalized 198 

mutual information. Numbers or dots in cells identify significant pairs of features (phenotypic factors vs. bacterial taxa) in patients with IBD and 199 

controls. CD, Crohn’s disease. PCA, principal coordinate analysis. UC, ulcerative colitis. 200 
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Intra-individual microbial dissimilarity was lowest in all our comparative analyses of 201 

paired tissue samples (Fig. 3D). Hierarchical clustering analysis performed on paired 202 

samples demonstrated a clear tendency of these samples to cluster together, a finding 203 

that we could also replicate in the HMP2 cohort data (Extended Data Fig. S5A) [13]. 204 

Overall, our data demonstrate that the composition of the mucosal microbiota is highly 205 

personalized and that inter-individual variability dominates over the effects of tissue 206 

location or inflammatory status. 207 

We then aimed to identify phenotypic factors that shape the composition of the mucosal 208 

microbiota using Hierarchical All-against-All association (HAllA) analysis. This allowed 209 

us to study the relative associations between microbial taxa and phenotypic factors and 210 

disease characteristics (Fig. 3E, Supplementary Table S6). Analysis at bacterial genus 211 

level revealed that the main factors correlating with mucosal microbiota composition are 212 

stricturing disease in CD (fibrostenotic CD, Montreal B2), usage of TNF-α-antagonists, 213 

age at time of sampling, age of onset and the comparisons of patients with CD vs. 214 

controls, UC vs. controls and CD vs. UC. In contrast, inflammatory status and tissue 215 

location did not show a significant effect, and this was also the case within the HMP2 216 

cohort data (Extended Data Fig. S5B). These findings are in line with several previous 217 

observations from which age at diagnosis, age at sampling and TNF-α-antagonist use 218 

emerged as critical determinants of mucosal microbiota composition [22]. 219 

 220 

Distinct host–microbe interaction modules are identified in relation to IBD 221 

To capture the main microbial taxa associated with inflammation-associated gene 222 

expression, we combined the data and performed sparse canonical correlation analysis 223 

(sparse-CCA) on 1437 inflammation-associated genes and 131 microbial taxa. This 224 

approach enabled us to identify gene pathways and groups of microbiota and their 225 

potential correlations. In total, we found six distinct pairings of groups of genes with 226 

bacterial taxa to be significantly correlated with each other (FDR<0.05, Supplementary 227 

Tables S7-S18). To prioritize the individual genes and bacteria involved in the sparse-228 

CCA analysis, we performed individual pairwise gene–bacteria associations, which 229 

revealed 312 significant gene–bacteria pairs, with most pairs (94.17%) overlapping with 230 
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the sparse-CCA results. We then replicated these associations in the HMP2 cohort 231 

(Spearman correlation ρ=0.16, P=0.005, Supplementary Table S19, Extended Data 232 

Fig. S6, Methods). Further details on the most intriguing individual pairwise gene–233 

bacteria associations are discussed in Box 1. 234 

235 

Figure 4. Mucosal host–microbe interaction modules in the context of IBD. Sparse canonical 236 

correlation analysis (sparse-CCA) was performed to identify distinct correlation modules of mucosal gene 237 

expression vs. mucosal microbiota through the identification of sparse linear combinations of two 238 

separate distance matrices that are highly correlated. Using 1437 inflammation-related genes and 131 239 

microbial taxa as input, we identified six distinct pairs of significantly correlated gene–microbe 240 

components (FDR<0.05). a, A diverse group of mainly lactic acid producing bacteria (LAB) represented 241 

by order Lactobacillales, genus Streptococcus, class Bacilli, family Streptococcaceae and, to a lesser 242 

2 
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extent, genus Veillonella, family Christensenallaceae and the Lachnospiraceae NK4A136 group is 243 

associated with host pathways predominantly related to solute transport and liver metabolism. b, The 244 

abundance of mucosal Bifidobacterium bacteria is inversely associated with host fatty acid metabolism 245 

pathways (e.g. ACOT4, ACOX2 and ACSF2) and positively associated with expression of specific genes, 246 

including FOSL1, AHR and ABCC1/MRP1. c, Mucosal Bacteroides bacteria inversely correlate with 247 

expression of genes representing host interleukin signaling pathways (e.g. STAT3, JAK2, CXCL9 and 248 

IL15RA) but positively correlate with expression of genes representing metal ion response and 249 

metallothionein pathways (e.g. the metal ion response transcription factors MT1G, MT1E and MT1M). d, 250 

Mucosal Erysipelotrichaceae abundance inversely associates with expression of genes involved in 251 

collagen biosynthesis and collagen trimerization (e.g. COL1A2, COL4A1 and COL5A2). Details of the two 252 

other significantly correlated pairs of components are presented in Box 2. 253 

Mucosal lactic acid-producing bacteria positively correlate with nutrient uptake and 254 

solute transport 255 

In the first significant pair of correlated components (component pair 1, P=5.72x10-14, 256 

FDR<0.05), the bacterial component is represented by bacteria from order 257 

Lactobacillales, family Streptococcaceae, class Bacilli and genus Streptococcus and, to 258 

a lesser extent, genus Veillonella, family Christensenallaceae and the Lachnospiraceae 259 

NK4A136 group (Supplementary Tables S7-S8). This bacterial component is mainly 260 

represented by lactic acid producing bacteria (LABs, including Lactobacillales, Bacilli, 261 

Streptococcaceae, Streptococcus) that actively participate in physiological food 262 

digestion, particularly carbohydrate fermentation, with lactic acid being their main 263 

metabolic product. Many of these bacterial groups are associated with genes involved in 264 

pathways related to solute transport and liver metabolism, including SLC-mediated 265 

transmembrane transport of bile salts, organic acids, metal ions and amine compounds; 266 

amino acid transport; biological oxidation; cytochrome P450 enzymes and the ephrin 267 

signaling pathway (involved in the migration of intestinal epithelial cells along the crypt-268 

villus axis). 269 

LABs are widely present in commercially available probiotics, and their beneficial effects 270 

on intestinal epithelial health are well-recognized [23]. SLC transporters mediate the 271 

bidirectional passage of nutrients such as sugars, amino acids, vitamins, electrolytes 272 

and drugs across the intestinal epithelium [24]. Although SLC transporters are often 273 

found to be dysregulated in patients with IBD (particularly CD), their expression may be 274 
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stimulated and subsequently restored by commensal probiotic bacteria [25-27]. Taken 275 

together, however, we foresee that this host–microbe interaction component might not 276 

be IBD-specific as the genes and bacteria involved have important physiological 277 

functions in nutrient digestion and absorption. 278 

Mucosa-residing Bifidobacterium species show significant interplay with host fatty acid 279 

metabolism and bile acid transport pathways 280 

The second pair of significantly associated components (component pair 3, P=1.89x10-281 
8, FDR<0.05) is predominantly represented by bifidobacteria (Supplementary Tables 282 

S9-S10). The top associated pathways are represented by genes involved in fatty acid 283 

metabolism, including fatty acid biosynthesis (e.g. ACOT4 and ACSF2), arachidonic 284 

acid metabolism (e.g. CYP2J2 and EPHX2) and genes involved in peroxisomal protein 285 

import and fatty acid synthesis (e.g. PEX5 and ACOT4), and these genes are all 286 

inversely associated with the bacterial component. In contrast, the genes AHR 287 

(encoding for the aryl hydrocarbon receptor) and ABCC1 (encoding multidrug resistance 288 

protein 1) are positively correlated with the bacterial component. The inverse 289 

associations between bifidobacteria and the expression of genes involved in 290 

adipogenesis are consistent with findings from animal and small-scale human studies 291 

that investigated the effects of treatment with Bifidobacterium species on fatty acid 292 

metabolism [28-32]. Our findings may reflect the anti-inflammatory and anti-lipogenic 293 

role of bifidobacteria, which has previously been demonstrated in experimental settings, 294 

and may support the therapeutic potential of microbiome-directed interventions in 295 

attenuating or preventing colitis [31,32]. 296 

Mucosal Bacteroides associate with host interleukin signaling and metal ion response 297 

pathways 298 

The third pair of significantly correlated components (component pair 7, P=1.28x10-4, 299 

FDR<0.05) is represented by Bacteroidetes. Twenty-four different pathways were 300 

significantly associated with this microbial component (Supplementary Tables S11-301 

S12). A number of interferon signaling pathways (e.g. IFN-α, IFN-β and IFN-γ as well as 302 

the IL-2, IL-4, IL-6, IL-10, IL-12 and IL-13 signaling pathways) are all inversely 303 

associated with the microbial component. In addition, metal ion response and 304 
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metallothionein pathways (e.g. metal ion transcription factors MT1A, MT1E, MT1F, 305 

MT1G and others) are positively associated with the microbial component. Taken 306 

together, these observations could suggest a predominance of potentially beneficial 307 

Bacteroides species associated with this component. Previous studies have shown that 308 

Bacteroides can exert either beneficial, mutualistic, or pathogenic effects on the host, 309 

depending on local interactions, intestinal location and nutrient availability [21,33]. The 310 

co-occurrence of Bacteroides with lower expression of interleukin signaling pathways is 311 

supported by experimental work that found potential anti-inflammatory and protective 312 

roles for these bacteria in the context of intestinal inflammation [34,39,40]. Still, the 313 

relative contributions of each of these species, as well as their behavior in the context of 314 

intestinal inflammation, remains elusive, although our data might reflect an 315 

overrepresentation of anti-inflammatory members [34-39,43]. The positive associations 316 

between Bacteroides and expression of metal ion response genes and metallothioneins 317 

(MTs) are intriguing in the context of IBD because aberrant MT homeostasis and 318 

intracellular zinc metabolism have been implicated in disease pathophysiology [44-48]. 319 

Mucosal Erysipelotrichaceae bacteria interact with collagen biosynthesis pathways 320 

In the fourth pair of significantly correlated components (component pair 8, P=1.22x10-4, 321 

FDR<0.05), the microbial component, represented by the family Erysipelotrichaceae, is 322 

inversely associated with the expression of genes belonging to a wide range of ECM 323 

and collagen genes that are involved in collagen biosynthesis, integrin cell surface 324 

interactions, collagen chain trimerization, collagen fibril cross-linking, collagen fibril 325 

assembly, ECM proteoglycans, collagen degradation and related pathways 326 

(Supplementary Tables S13-S14). Similar to Bacteroides, the precise role of 327 

Erysipelotrichaeae in the context of IBD has not yet been fully elucidated. Some studies 328 

found lower abundances of Erysipelotrichaceae in patients with new-onset CD [49] and 329 

postoperative active CD [50], whereas others reported higher levels of 330 

Erysipelotrichaceae in the context of ileitis [51] and TNF-regulated CD-like transmural 331 

inflammation [52]. These inconsistencies have been suggested to be due to 332 

Erysipelotrichaceae behaving differently in response to intestinal inflammation, but they 333 

may also reflect incomplete characterization of the precise species that belong to the 334 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2022. ; https://doi.org/10.1101/2022.06.04.494807doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494807
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

 

family of Erysipelotrichaceae [53]. Interactions between Erysipelotrichaceae and 335 

ECM/collagen remodeling pathways have not yet been reported in the context of IBD, 336 

but they would be particularly relevant because fibrosis occurs in a large fraction of 337 

patients with CD and Erysipelotrichaceae bacteria have been associated with fibrotic 338 

conditions beyond IBD [54-60]. 339 

 340 

Patients with fibrostenotic CD exhibit a Lachnoclostridium-associated gene 341 

network involved in immune regulation 342 

In pairwise comparative analyses, patients with fibrostenotic CD (Montreal B2, n=107) 343 

and patients using TNF-α-antagonists (n=113) exhibited several differentially abundant 344 

microbial taxa. We therefore analyzed microbiota-associated host mucosal gene 345 

interactions in these phenotypes (Figure 5). Pairwise comparisons between patients 346 

with non-stricturing, non-penetrating disease vs. fibrostenotic CD revealed 2639 347 

differentially abundant genes that were enriched in cellular energy metabolism and 348 

immune system pathways (FDR<0.05, Supplementary Table S20). When comparing 349 

microbial taxa, abundances of mucosal Faecalibacterium, Erysipelotrichaceae_UCG-350 

003 and Coprococcus_3 were lower in fibrostenotic CD, whereas abundances of 351 

Lachnoclostridium and Flavonifractor were elevated in these patients (FDR<0.05). We 352 

hypothesized that these altered bacterial abundances and gene expression patterns 353 

may also translate into altered microbiota–gene networks relating to fibrostenotic CD. In 354 

patients with non-stricturing, non-penetrating CD, we observed 1508 individual gene–355 

bacteria associations (corresponding to 84 different pathway–bacteria associations), 356 

whereas we found 541 individual associations (corresponding to 40 different pathway–357 

bacteria associations) in patients with fibrostenotic CD. Comparing each bacteria-358 

associated gene cluster between patients with non-stricturing, non-penetrating and 359 

fibrostenotic CD (FDR <0.05, Methods, Supplementary Table S21) identified four 360 

distinct networks represented by mucosal Lachnoclostridium, Coprococcus, 361 

Erysipelotrichaceae and Flavonifractor. The most significantly altered connections were 362 

associated with Lachnoclostridium, which was associated with 955 genes in patients 363 

with non-stricturing, non-penetrating CD, and these connections were mainly involved in 364 
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cell activation pathways such as vesicle-mediated cellular transport and membrane 365 

trafficking (Fig. 5A). In total, 148 genes were associated with Lachnoclostridium in 366 

patients with fibrostenotic CD (FDR<0.05), and these genes were involved in cellular 367 

immunoregulatory interactions and adaptive immune system pathways (e.g. CD8A, 368 

CLEC2B and CXCR5), tyrosine kinase signaling (e.g. FGF16), opioid signaling and G 369 

alpha (s) signaling events (mediated via cAMP-dependent protein kinases, e.g. POMC, 370 

GNG7 and GNG11) and vesicle-mediated transport (e.g. APOE, COLEC12 and KIF3B) 371 

(Fig. 5A-B). 372 

Earlier studies had shown that Lachnoclostridium bacteria are generally increased in 373 

patients with (complicated) CD, e.g. postoperative CD [61], ASCA-positive CD [62] and 374 

active granulomatous colitis [63]. Recently, Lachnoclostridium was also associated with 375 

non-invasive diagnosis of colorectal adenoma and colorectal cancer [64,65]. These 376 

associations may potentially explain associations with genes involved in cellular 377 

proliferation and activation pathways. Increased abundances of Lachnoclostridium have 378 

been observed in relation to pulmonary fibrosis and its progression [66] but not in 379 

relation to intestinal fibrosis. In contrast, reduced abundances of Faecalibacterium and 380 

Eubacterium species (belonging to the Erysipelotrichaceae family) have previously been 381 

associated with luminal narrowing in patients with pediatric ileal CD [67]. Our results 382 

suggest that it is not only increased Lachnoclostridium abundances that may play a role 383 

in fibrostenotic CD, host immune-regulatory expression patterns may also vary along 384 

with these bacterial shifts. Notably, as the tissues investigated in our study were not 385 

derived from fibrotic regions, our findings show that these gene expression signatures 386 

are already present in non-stenotic intestinal tissue. 387 

 388 

Use of TNF-α-antagonists is associated with Ruminococcaceae-associated gene 389 

interactions related to fatty acid metabolism 390 

Subsequently, we investigated the impact of TNF-α-antagonist use on mucosal host–391 

microbe interactions. Pairwise comparisons revealed that TNF-α-antagonist use was 392 

significantly associated with three different bacterial taxa, Faecalibacterium, 393 

Ruminococcaceae_UCG-002, and Ruminococcaceae_UCG-005 (all showing reduced 394 
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abundances in users), and 513 different genes (FDR<0.05, Supplementary Table 395 

S22). For instance, one of the top genes associated with TNF-α-antagonist use was 396 

CXCL13, which encodes B cell attracting chemokine 1. By comparing each taxa-397 

associated gene cluster between patients using and not using TNF-α-antagonists, we 398 

identified a single cluster represented by mucosal Ruminococcaceae_UCG-002 that 399 

was significantly altered in users vs. non-users (FDR<0.05, Supplementary Table 400 

S23). Ruminococcaceae_UCG-002 bacteria were associated with 135 genes in non-401 

users, and these genes were mainly enriched in cell cycle–associated pathways (e.g. 402 

PRIM1 and PRIM2), including mitosis-, prometaphase- and DNA-replication-associated 403 

genes (Fig. 5C-D). However, the Ruminococcaceae_UCG-002-associated genes in 404 

TNF-α-antagonist users (FDR<0.05) were predominantly involved in lipid/fatty acid 405 

metabolism (e.g. ACAA1, ACSL5 and PDK4), glycerophospholipid biosynthesis and 406 

phospholipid metabolism. Ruminococcaceae comprise multiple distinct bacterial genera. 407 

Some of these are part of the healthy gut microbiome [68], but others are potentially 408 

pathogenic and commonly enriched in IBD [13,69]. The Ruminococcaceae UCG_002 409 

group is classified under the Oscillospiraceae family, which consists of obligate 410 

anaerobic bacteria including Faecalibacterium prausnitzii. Depending on their micro-411 

environment, Ruminococcaceae UCG_002 bacteria can produce short-chain fatty acids 412 

due to their fiber-metabolizing capacity [70-72]. The inverse associations between 413 

Ruminococcaceae_UCG_002 and genes involved in (peroxisomal) fatty acid oxidation 414 

in patients using TNF-α-antagonists might reflect a beneficial therapeutic modulation, 415 

i.e. a reduction of fatty acid oxidation and lipotoxicity, and possibly even attenuation of 416 

microbiota-induced intestinal inflammation [73-85]. 417 
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 418 

Figure 5. Fibrostenotic CD and TNF-α-antagonist usage significantly alter mucosal host–microbe interactions in the context of IBD. 419 

CentrLCC-network analyses were performed to characterize altered mucosal host–microbe interactions between different patient phenotypes. 420 
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Overall, fibrostenotic CD (Montreal B2 vs. non-stricturing, non-penetrating CD, i.e. Montreal B1) and use of TNF-α-antagonists (vs. non-users) 421 

demonstrated significant modulation of observed mucosal host–microbe associations. a, Network graphs showing microbiota–gene association 422 

networks in patients with non-stricturing, non-penetrating CD (Montreal B1) (left) and patients with fibrostenotic CD (Montreal B2) (right). When 423 

comparing these patient groups, 5 bacterial taxa and 2639 host genes were significantly different (FDR<0.05). Four of the five bacterial taxa were 424 

significantly altered in fibrostenotic CD vs. non-stricturing, non-penetrating CD, and Lachnoclostridium was the top bacteria involved (covering 425 

63% of total associations in non-stricturing, non-penetrating CD and decreasing to 27% in fibrostenotic CD). In general, patients with fibrostenotic 426 

CD were characterized by a loss of Lachnoclostridium–gene interactions. Red dots indicate gut microbiota. Blue dots indicate hub genes. Gray 427 

fields indicate the main pathways represented by the associated genes. Yellow lines indicate positive associations between gene expression and 428 

bacterial abundances. Light blue lines indicate negative associations. b, Key examples of Lachnoclostridium–gene interactions that were 429 

significantly altered in patients with fibrostenotic CD compared to patients with non-stricturing, non-penetrating CD, including genes involved in 430 

immunoregulatory interactions between lymphoid and non-lymphoid cells and tyrosine kinase signaling (CD8A and CXCR5). c, Network graphs 431 

showing microbiota–gene interaction networks in patients not using TNF-α-antagonists (left) vs. patients using TNF-α-antagonists (right). When 432 

comparing both groups, 3 bacterial groups and 513 genes were differentially abundant (FDR<0.05). Among these, a single bacterial group, 433 

represented by Ruminococcaceae_UCG_002, was altered in interactions with host genes in patients using TNF-α-antagonists. d, Key examples of 434 

Ruminococcaceae–UCG_002–gene interactions significantly altered in TNF-α-antagonists users vs. non-users. These genes were involved in 435 

general biological processes such as the cell cycle but also included genes involved in fatty acid metabolism (PDK4 and ACAA1). 436 
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Mucosal host–microbe interactions depend on individual dysbiotic status 437 

As patients with IBD have microbial dysbiosis compared to healthy individuals, we 438 

hypothesized that the strength and/or direction of the individual gene–bacteria 439 

interactions may depend on the microbial community (eubiosis vs dysbiosis). We 440 

therefore performed PCA on the microbiota data and calculated dysbiosis scores for all 441 

patients and controls, as represented by the median Aitchison’s distances to non-IBD 442 

controls (Fig. 6A). Patients with IBD demonstrated higher dysbiosis scores compared to 443 

controls (CD vs. non-IBD: P=5.1x10-8, UC vs. non-IBD: P=0.0015), but there was no 444 

clear difference between patients with CD and UC (Fig. 6B). When comparing patients 445 

with IBD above and below the 90th percentile of dysbiosis scores [13], 204 individual 446 

gene–bacteria interactions showed significant dependence on microbial dysbiosis (Fig. 447 

6C, Supplementary Table S24) (FDR<0.05). We also performed permutation tests, 448 

which confirmed that the significant interactions were not observed by chance 449 

(Methods, FDR<0.05). In one example of these interactions, expression of the PLAUR 450 

gene encoding for the urokinase plasminogen activator surface receptor was positively 451 

associated with Lachnospiraceae abundance, but this shifted to an inverse association 452 

when only considering individuals with a high degree of mucosal dysbiosis (90–100%) 453 

(P=1.69x10-6). The Ly6/PLAUR domain containing protein 8 (Lypd8) also functions as 454 

an antimicrobial peptide and has previously been shown to be capable of protecting the 455 

host from invading pathogenic flagellated bacteria [86]. Another example is the positive 456 

association between S100A8, which encodes S100 calcium-binding protein A8 (also 457 

known as calgranulin A), and Lachnospiraceae, which showed a negative association in 458 

individuals with high dysbiosis (P=1.78x10-5). S100A8 has a wide variety of functions in 459 

regulating inflammatory processes and forms a heterodimer with S100A9, also known 460 

as calprotectin, which is used a as biomarker for inflammatory activity in IBD. Its known 461 

antimicrobial activity towards bacteria via chelation of zinc ions, which are essential for 462 

microbial growth, may therefore be disrupted in a dysbiotic environment [44]. Similar to 463 

the two previous examples, the observed association between the expression of IL1RN 464 

(encoding for the interleukin-1 receptor antagonist protein) and Lachnospiraceae shifted 465 

from positive to negative (P=4.10x10-5), indicating that the natural protection against the 466 

proinflammatory effects of IL-1β, which associates with Lachnospiraceae abundance, 467 
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may be lost in circumstances of high microbial dysbiosis. Similarly, expression of the 468 

CXCL17 gene encoding for a mucosal chemokine protein known to exert broad 469 

antimicrobial activity [87] positively correlated with Lachnospiraceae abundance, which 470 

was clearly different among individuals with higher dysbiosis scores. 471 

 472 

Figure 6. Mucosal host–microbe interactions depend on individual dysbiotic status. a, PCA of 473 

mucosal 16S rRNA sequencing data shows that degree of mucosal dysbiosis explains a large part of 474 

microbial variation. b, Dysbiosis scores were generally higher among patients with CD and UC compared 475 

to controls. c, Key examples of individual gene–bacteria interactions that demonstrate a directional shift 476 

upon higher dysbiosis (90–100%) as compared to patients with lower dysbiosis scores (0–90%). Mucosal 477 

Lachnospiraceae bacteria positively associate with the expression of the PLAUR, CXCL17, IL1RN and 478 

S100A8 genes, whose gene products all have beneficial antimicrobial activity towards pathogenic 479 

bacteria. CD, Crohn’s disease. PCA, principal component analysis. UC, ulcerative colitis. 480 

 481 

Mucosal microbiota associate with variation in intestinal cell type–enrichment 482 

Subsequently, we aimed to evaluate which intestinal cell types are involved in mucosal 483 

host–microbe interactions (Figure 7, Extended Data Fig. S7). Deconvolution of host 484 

gene expression data revealed that the mucosal microbiota was significantly associated 485 

with several cell types, but most evidently with intestinal epithelial cells, M1 486 

macrophages, NK cells and mucosal eosinophils. Tissue inflammatory status and 487 
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location also strongly contributed to the variation in most intestinal cell types. Mucosal 488 

microbiota that were significantly associated with intestinal epithelial cell enrichment 489 

typically belonged to the Firmicutes phylum, including Agathobacter, Dialister, 490 

Lachnospira, Lachnoclostridium and Ruminococcaceae (Supplementary Table S25). 491 

 492 

Figure 7. Mucosal microbiota associate with distinct intestinal mucosal cell types. a, Boxplots show493 

the amount of variation in intestinal cell type–enrichment that could be explained by mucosal microbiota. 494 

Heatmap shows the contribution of other fitted models in explaining intestinal cell type–enrichment, 495 

3 

w 
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including ‘basic factors’ (age, sex and BMI), medication use, tissue inflammatory status and tissue 496 

location. Mucosal microbiota contributed most to the variation in enrichment of intestinal epithelial cells, 497 

M1-macrophages, NK cells and eosinophils. b, Boxplots showing the contribution of the main bacterial 498 

taxa that explain the variation in mucosal enrichment of intestinal epithelial cells, M1-macrophages and 499 

NK cells—the cell types that interacted most strongly with the mucosal microbiota.  500 
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Discussion 501 

In this study, we show distinct mucosal host–microbe interactions in intestinal tissue 502 

from patients with IBD. Mucosal gene expression patterns in IBD are mainly determined 503 

by tissue location and inflammatory status and systematically demonstrate upregulation 504 

of distinct inflammation-associated genes, even in endoscopically non-inflamed tissue. 505 

Subsequently, we observed that the mucosal microbiota composition in patients is 506 

marked by high inter-individual variability. The main focus of our analyses, however, 507 

was integrative analysis of both data entities, which allowed us to comprehensively 508 

uncover many host–microbe associations, both on component level and as individual 509 

associations in IBD. Furthermore, we identify specific transcriptional networks that are 510 

significantly altered in patients with fibrostenotic CD and patients using TNF-α-511 

antagonists and observe that these associations depend on the degree of mucosal 512 

dysbiosis. Finally, we show that mucosal microbiota are significantly associated with 513 

intestinal cell type composition, in particular with epithelial cells, macrophages and NK 514 

cells. 515 

Tissue location and inflammatory status have the greatest impact on the variation in 516 

mucosal gene expression patterns. Enriched genes are mainly represented by those 517 

involved in pathophysiological pathways relevant to IBD, e.g. interleukin and interferon 518 

signaling and ECM remodeling. Patients with CD and UC show striking differences, e.g. 519 

Notch-1 signaling pathways are upregulated in CD, while genes involved in nutrient 520 

absorption and lipid metabolism are downregulated. Activation of Notch-1 signaling has 521 

been associated with improved mucosal barrier function, driven by lamina propria-522 

residing CD4+-T-lymphocytes that induce intestinal epithelial cell differentiation [17]. 523 

Notch-1 signaling more efficiently spreads within CD intestinal epithelia, as compared to 524 

UC or control epithelia. Notch-1 is not only implicated in IBD, it also confers protection 525 

against the development of colorectal carcinoma via p53 signaling, thereby promoting 526 

cell cycle arrests and cellular apoptosis [18,88,89]. Since UC patients with long-lasting 527 

colonic inflammation have a higher risk of developing IBD-associated colorectal 528 

carcinoma, we hypothesize that downregulation of Notch-1 in these patients may 529 

potentially be involved in carcinogenesis. 530 
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Analysis of mucosal microbiota in patients with IBD reveals reduced alpha-diversity, 531 

microbial dissimilarity and marked intra-individual variability that is particularly strong in 532 

CD but still present to a lesser extent in UC. Given the large heterogeneity in IBD and 533 

the fact that compositional differences are largely attributable to individual phenotypic 534 

factors, cautious interpretation is warranted when associating mucosal microbial profiles 535 

to disease phenotypes or outcomes, rendering them inappropriate for diagnostic 536 

purposes. These observations corroborate those of previously published mucosal 16S 537 

studies in IBD [13,21,22]. Moreover, our findings align with a recent prospective meta-538 

analysis study that concluded there is sparse evidence for additional population 539 

structure in mucosal microbiomes in IBD, e.g. microbiota-driven discrete disease 540 

subtypes within IBD [90]. 541 

Sparse-CCA analysis was performed to capture the key pathway–bacteria interactions. 542 

These include numerous inverse associations between bifidobacteria and expression of 543 

genes involved in fatty acid metabolism, which align well with previously published data 544 

from animal studies demonstrating anti-inflammatory and anti-lipogenic effects of 545 

Bifidobacterium treatment on chemically-induced intestinal inflammation [29,31,32]. For 546 

example, treatment with Bifidobacterium adolescentis IM38 attenuated high fat diet–547 

induced colitis in mice by inhibiting lipopolysaccharide production, NF-κB activation and 548 

TNF-expression in colonic epithelial cells [31]. Likewise, treatment with Bifidobacterium 549 

infantis, with or without a combination of inulin-type fructans, ameliorated DSS-induced 550 

colitis in rats, as evidenced by decreased expression of IL-1β, malondialdehyde (MDA, 551 

a lipid peroxidation marker), decreased bacterial translocation and increased production 552 

of short-chain fatty acids [32]. In line with our findings, this supports the ongoing quest 553 

for efficacious probiotic (bifidobacteria-containing) interventions in patients with IBD 554 

[91,92]. In addition, we observe a Ruminococcaceae-UCG-002-associated network of 555 

genes involved in (peroxisomal) fatty acid oxidation and lipotoxicity, which are inversely 556 

associated with these bacteria in patients using TNF-α-antagonists. Interestingly, 557 

multiple studies have observed that Ruminococcaceae increase after anti-TNF therapy 558 

in patients with CD and UC [73,75-77]. One of these studies specifically identified an 559 

association between the Ruminococcaceae_UCG-002 group and responsiveness to 560 

TNF-α-antagonists, albeit not in relation to host gene expression patterns [75]. 561 
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Strikingly, many of the network-associated genes we observe are controlled by the 562 

PPAR-γ transcription factor, a butyrate sensor that may result in reduced lipotoxicity and 563 

reduced intestinal inflammation through prevention of overgrowth of potentially 564 

pathogenic bacteria [79-85]. These findings underscore the potential relevance of 565 

PPAR-γ as a therapeutic target in IBD [85]. 566 

We also observed an intriguing inverse relationship between Erysipelotrichaceae and 567 

intestinal ECM remodeling pathways, which may support the notion that intestinal 568 

fibrosis in IBD is highly linked to microbial composition [60,93,94]. Interestingly, a 569 

decreased relative abundance of Erysipelotrichaceae has previously been observed in 570 

patients with collagenous colitis [55] and cystic fibrosis–related lung fibrosis [56-58], as 571 

well as in mice with liver fibrosis and hepatocyte-specific NOD2 deletions [59]. In CD, 572 

several bacterial species belonging to Erysipelotrichaceae, including Clostridium 573 

innocuum and Erysipeloclostridium ramosum, have been associated with the expansion 574 

of mesenteric adipose tissue (“creeping fat”), a unique feature of CD [60]. Creeping fat 575 

in CD has previously been characterized by higher abundances of Erysipelotrichaceae 576 

compared to adjacent mesenteric adipose tissue and underlying mucosal tissue and is 577 

accompanied by higher expression of ECM- and collagen-related genes. C. innocuum 578 

translocated to mesenteric fat, promoted fibrosis and stimulated tissue-remodeling in 579 

patients with CD, resulting in an adipose tissue barrier that may prevent systemic 580 

translocation of intestinal bacteria [60]. This phenomenon could potentially explain the 581 

inverse associations we observe between expression of ECM remodeling and mucosal 582 

Erysipelotrichaceae. In our differential network analyses, we observe a substantial 583 

decrease of Lachnoclostridium-associated genes in patients with fibrostenotic CD that 584 

are mainly associated with cellular immunoregulatory interactions and adaptive immune 585 

system pathways. These findings suggest that Lachnoclostridium-associated 586 

immunoregulatory expression patterns may play a role in fibrostenotic CD. Although 587 

little is known about the exact role of Lachnoclostridium in IBD, these bacteria were 588 

recently strongly associated with the development of colorectal cancer and with 589 

pulmonary fibrosis [64-66]. 590 
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Another key host–microbe interaction module pertains to Bacteroides, which inversely 591 

correlates with interleukin signaling and positively associates with metal stress response 592 

transcription factors encoding for MTs. To maintain cellular redox balance, MTs detoxify 593 

heavy metal ions and scavenge ROS, thereby attenuating oxidative stress. Previous 594 

studies have shown that MTs may prevent experimental colitis or act as danger signals 595 

by mediating immune cell infiltration in the intestine [45,46]. Although experimental 596 

evidence seems to be inconclusive, there is ample evidence indicating a role for 597 

aberrant MT homeostasis in IBD [47]. This mechanism depends on the intracellular 598 

accumulation of zinc, which induces autophagy under chronic NOD2-stimulation. In IBD, 599 

the mucosal microbiota may contribute to the regulation of MT expression, intracellular 600 

zinc homeostasis and autophagy, thereby regulating intracellular bacterial clearance by 601 

intestinal macrophages. Findings from this study may support a putative role for 602 

Bacteroides in modulating MT activation, thereby contributing to intracellular redox 603 

homeostasis, zinc levels, macrophage autophagy, or even host defense against 604 

pathogens. Importantly, MTs and zinc regulation constitute potential therapeutic targets 605 

in IBD [44-47, 95-97]. 606 

Individual gene–bacteria association analysis revealed distinct mucosal host–microbe 607 

interactions that largely overlap with those from the sparse-CCA analysis, but these 608 

provide more granular insight into the observed associations. Key examples of 609 

individual host gene–bacteria interactions are listed in Box 1. Amongst others, we 610 

demonstrate several host–microbe interactions that are putatively involved in 611 

immunological tolerance and prevention of autoimmunity (e.g. bifidobacteria and 612 

FOSL1/KLF2 expression), colorectal carcinogenesis (e.g. Anaerostipes and SMAD4, 613 

Akkermansia and YDJC) and inflammatory signaling (e.g. Oscillibacter and OSM 614 

expression). Notably, many of these associations are dependent on fibrostenotic 615 

disease, TNF-α-antagonist use and the degree of mucosal dysbiosis. In addition, 616 

deconvolution of the mucosal RNA-seq data reveal cell type–specific patterns of 617 

microbial interactions that warrant further study, for example through single-cell RNA-618 

seq studies. 619 
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Mucosal host–microbiota interactions have been investigated previously in both cohort 620 

(e.g. the HMP2 and Irish IBD) and experimental studies [12-16]. Alongside several 621 

observations consistent with previous findings, we identify many novel host–microbe 622 

interactions. Differences in sample size, patient phenotypes and sample handling may 623 

be at least partially responsible for these observations. In our study, large groups of 624 

gene–bacteria associations are revealed that cover a wide range of molecular 625 

mechanisms potentially relevant in the context of IBD, including immune response 626 

pathways, cellular processes and a variety of metabolic pathways. Moreover, our study 627 

features the largest sample size so far [12-15], and this enabled us to perform an 628 

integrative analysis with respect to the large disease heterogeneity and identify novel 629 

host–microbiota crosstalk related to different clinical characteristics. However, several 630 

limitations also warrant recognition. As our study is of cross-sectional origin, we cannot 631 

assess the longitudinal dynamics of host–microbe interactions to discover signatures for 632 

therapy responsiveness or disease prognosis. Consequently, our associative results 633 

cannot establish potential causality between microbial abundances and host gene 634 

expression. Functional experiments are thus required to validate the biological 635 

relevance of the individual host–microbe interactions, as well as their behavior in 636 

microbial ecosystems. Finally, bowel preparation prior to the endoscopic procedure or 637 

cross-contamination between biopsy sites during endoscopy can affect the mucosal 638 

microbiota composition [21,50,98]. 639 

Our results demonstrate a complex and heterogeneous interplay between mucosal 640 

microbiota and mucosal gene expression patterns that is concomitant with the strong 641 

impact of specific patient traits in a large cohort of patients with IBD. Our findings may 642 

guide development of mechanistic studies (e.g. host–microbe co-culture systems) that 643 

could provide functional confirmation of relevant pathophysiological gene–bacteria 644 

interactions and serve as a resource for rational selection of therapeutic targets in IBD. 645 

This study presents a large-scale, comprehensive landscape of intestinal host–microbe 646 

interactions in IBD that could aid in guiding drug development and provide a rationale 647 

for microbiota-targeted therapy as a strategy to control disease course. Future studies 648 

are warranted to focus on the integration of host–microbe interaction modules in 649 

prospective clinical trials investigating their utility for predicting disease course and 650 
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responsiveness to treatment and for stratifying patients to facilitate therapeutic decision-651 

making.  652 
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Methods 653 

 654 

Study population 655 

Patients with an established diagnosis of IBD were included at the outpatient clinic of 656 

the University Medical Center Groningen (UMCG) based on their participation in the 657 

1000IBD project, for which detailed phenotypic information and multi-omics profiles had 658 

been generated [99]. Patients included in this study were at least 18 years old and were 659 

enrolled from 2003–2019. Diagnosis of IBD was based upon clinical, laboratory, 660 

endoscopic and histopathological criteria, with the latter criteria also used to determine 661 

the inflammatory status of collected biopsies. Detailed phenotypic data were collected 662 

for all patients, including age, sex, BMI (body weight divided by squared height), 663 

smoking status, Montreal disease classification, medication usage, history of surgery, 664 

clinical disease activity and histological disease activity, and all were assessed at time 665 

of sampling. Montreal disease classification was recorded from the closest visit to the 666 

outpatient clinic at time of sampling. Clinical disease activity was established using the 667 

Harvey-Bradshaw Index (HBI) for patients with CD and the Simple Clinical Colitis 668 

Activity Index (SCCAI) for patients with UC. We further included 17 healthy non-IBD 669 

controls (n=59 biopsies) who underwent endoscopy because of clinical suspicion of 670 

intestinal disease or within the context of colon cancer screening. All participants 671 

provided written informed consent prior to sample collection. This study was approved 672 

by the Institutional Review Board (IRB) of the UMCG, Groningen, the Netherlands (in 673 

Dutch: ‘Medisch Ethische Toetsingscommissie’, METc; IRB nos. 2008/338 and 674 

2016/424) and was conducted according to the principles of the Declaration of Helsinki 675 

(2013). 676 

 677 

Mucosal RNA-sequencing 678 

711 intestinal biopsies from 420 patients with IBD were collected. These were 679 

immediately snap-frozen in liquid nitrogen by an endoscopy nurse or research 680 

technician present during the endoscopic procedure. Biopsy inflammatory status was 681 
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assessed based on histological examination by certified pathologists. Biopsies were 682 

stored at -80℃ until further processing. 683 

RNA isolation was performed using the AllPrep DNA/RNA mini kit (Qiagen, reference 684 

number: 80204) according to manufacturer’s instructions. Homogenization of intestinal 685 

biopsies was performed in RLT lysis buffer including β-mercaptoethanol using the 686 

Qiagen Tissue Lyser with stainless steel beads (diameter 5 mm, reference number: 687 

69989). For the first sample batch, sample preparation was executed using the 688 

BioScientific NEXTflexTM Rapid Directional RNA-Seq Kit (Perkin-Elmer). Paired-end 689 

sequencing of RNA was performed using the Illumina NextSeq500 sequencer (Illumina). 690 

For the second sample batch, sample preparation was performed for construction of the 691 

Eukaryotic Transcriptome Library (Novogene). Paired-end sequencing of RNA was 692 

performed using the Illumina HiSeq PE250 platform. Sequencing was performed in two 693 

different batches, which necessitated pseudo-randomization (covering type of IBD 694 

diagnosis, biopsy location and disease activity) across plates to mitigate potential batch 695 

effects. The batch effects have been taken into account in all the analysis. On average, 696 

approximately 25 million reads were generated per sample. 697 

Raw read quality was checked using FastQC with default parameters (ref v.0.11.7). 698 

Adaptors identified by FastQC were clipped using Cutadapt (ref v1.1) with default 699 

settings. Sickle (ref v1.200) was used to trim low-quality ends from the reads (length 700 

<25 nucleotides, quality <20). Reads were aligned to the human genome 701 

(human_glk_v37) using HISAT (ref v0.1.6) (with maximum allowance of two 702 

mismatches), and read sorting was performed using SAMtools (ref v0.1.19). SAMtools 703 

flagstat and Picard tools (ref v2.9.0) were used to obtain mapping statistics. Six samples 704 

with low percentage read alignment (< 90%) were removed. Gene expression was 705 

estimated using HTSeq (ref v0.9.1), based on Ensemble version 75 annotation, 706 

resulting in a RNA expression dataset featuring 15,934 genes. Expression data on gene 707 

level were normalized using a trimmed mean of M values, and clr transformation was 708 

applied, resulting in 826 mucosal RNA-seq samples. 709 

 710 

Mucosal 16S rRNA gene sequencing 711 
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Total DNA extraction of intestinal biopsies using 0.25 g of sample was performed as 712 

described previously, with minor modifications [100]. Microbial composition of intestinal 713 

biopsies was determined by Illumina MiSeq paired-end sequencing of the V3-V4 714 

hypervariable region of the 16S rRNA gene (MiSeq Benchtop Sequencer, Illumina Inc., 715 

San Diego, USA). Amplification of bacterial DNA was performed by PCR using modified 716 

341F and 806R primers with a six-nucleotide barcode on the 806R primer for 717 

multiplexing [101,102]. Sequences of both primers can be found in Supplementary 718 

Table S1. Both primers contain an Illumina MiSeq adapter sequence, which is 719 

necessary for flow cell–binding in the MiSeq machine. A detailed overview of the PCR, 720 

DNA clean-up and MiSeq library preparation using a 2x300 cartridge can be found in 721 

the Supplementary Methods. Read trimming and filtering was done using 722 

Trimmomatic (0.33) to obtain an average read quality of 25 and a minimum length of 50. 723 

Quality was further checked using R package DADA2 (v1.03) with the following 724 

parameters: truncLen=c(240,160), maxN=0, maxEE=c(2,2), truncQ=2 and 725 

rm.phix=TRUE. After error correction and chimera removal, the amplicon sequence 726 

variants were assigned to the silva database (v.132). Samples with >2,000 mapped 727 

reads were used for further analysis, resulting in 755 mucosal 16S samples. After 728 

accounting for overlap between mucosal RNA-seq and mucosal 16S data, 696 intestinal 729 

biopsies from 337 different patients and 16 non-IBD controls were available for host–730 

microbiota interaction analyses. 731 

 732 

Statistical analysis 733 

Descriptive statistics 734 

Descriptive data are presented as means ± standard deviation (SD), medians 735 

[interquartile range, IQR] or proportions n with corresponding percentages (%). 736 

Between-group comparisons were performed using Mann-Whitney U-tests, Pearson’s 737 

chi-squared tests or Fisher’s exact tests (if n observations were <10). Nominal P-values 738 

≤ 0.05 were considered statistically significant. 739 

Mucosal gene expression analysis 740 
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Sample gene expression dissimilarity was calculated using Aitchison’s distances. 741 

General linear models were used to assess the associations between mucosal gene 742 

expression and clinical phenotypes while controlling for potential confounders, which 743 

were determined from our previous study (medication included the use of 744 

aminosalicylates, thiopurines and steroids) [103]. In particular, to assess the effect of 745 

mucosal inflammation on gene expression, we re-coded the inflammation status in an 746 

ordinal fashion as 0, 1 or 2 to represent biopsies from non-IBD controls, biopsies from 747 

non-inflamed tissue of patients with IBD and biopsies from inflamed areas of patients 748 

with IBD, respectively. Intestinal inflammatory status was thus treated as a continuous 749 

variable to account for presence of residual inflammation in biopsies marked as being 750 

taken from non-inflamed areas in the intestines. A correction for multiple hypotheses 751 

testing was applied using an FDR threshold of 5%. 752 

1) Inflammation-associated genes were identified in three comparisons: (1) 753 

CD colonic inflamed tissue vs. CD colonic non-inflamed tissue vs. non-IBD 754 

colonic tissue, (2) CD ileocecal inflamed tissue vs. CD ileocecal non-inflamed 755 

tissue vs. non-IBD ileocecal tissue and (3) UC colonic inflamed tissue vs. UC 756 

colonic non-inflamed tissue vs. non-IBD colonic tissue: 757 

Gene ~ intercept + inflammation + age + sex + BMI + medication + batch 758 

2) Clinical phenotype–associated genes were identified using the following 759 

model: 760 

Gene ~ intercept + Montreal/anti-TNF therapy + age + sex + BMI + inflammation 761 

+ tissue location + medication + batch 762 

 763 

Microbial characterization 764 

Microbial richness and evenness was determined by calculating the Shannon index 765 

representing alpha-diversity of the gut microbiota. Microbial dissimilarity of samples was 766 

determined by calculating Aitchison’s distances after clr transformation using the R 767 

package Compositions (v2.02). Analysis of paired samples from the same individuals 768 

was performed while comparing microbial features between inflammation status, 769 
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disease location and disease subtype using paired Wilcoxon tests. Factors potentially 770 

influencing mucosal microbiota were determined using Hierarchical All-against-All 771 

significance testing (HAllA) [104]. Associations between microbial features and biopsy 772 

inflammatory status, IBD diagnosis, disease location (biopsy origin) and clinical 773 

phenotypes were performed using general linear models (see below). Per sample, the 774 

mucosal dysbiosis score was defined as the median Aitchison distance from that 775 

sample to a reference sample set of non-IBD controls. Dysbiotic status was defined as 776 

being at the 90th percentile of this score [13]. 777 

1) Associations between microbial taxa and biopsy inflammation/location: 778 

Taxa ~ intercept + inflammation + location + age + sex + BMI + medication + 779 

batch + surgical resection 780 

2) Associations between microbial taxa and clinical phenotypes: 781 

Taxa ~ intercept + Montreal/anti-TNF therapy + inflammation + location + age + 782 

sex + BMI + medication + batch + surgical resection 783 

 784 

Gene–microbiota interaction analysis 785 

We first focused on host inflammation-related genes (n=1,437) to investigate their 786 

potential associations with mucosal microbiota. Group-level correlations between gene 787 

expression and mucosal microbiota were performed using sparse-CCA using the 788 

residuals of genes and microbiota after correcting for age, gender, BMI, inflammation, 789 

tissue location and surgical resection separately. Sparse-CCA identifies the PCs from 790 

two related datasets that maximize the correlation between the two components. A set 791 

of enriched host pathways for all significant components was combined while adjusting 792 

for multiple comparisons using the FDR approach. Individual pairwise gene–microbiota 793 

associations were assessed by fitting a general linear model while adjusting for age, 794 

sex, BMI, inflammation status, tissue location, sequencing batch and medication use 795 

(including the use of aminosalicylates, thiopurines and steroids, see below). A gene–796 

microbiota network analysis was visualized using the R package ggview. 797 
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1) Individual gene–bacteria associations were determined using the following 798 

model: 799 

Gene ~ intercept + taxa + inflammation + location + age + sex + BMI + 800 

medication + batch 801 

Second, we focused on host–microbiota interactions associated with fibrostenotic CD 802 

and usage of TNF-α-antagonists. Genes and taxa that were differentially abundant 803 

between clinical phenotypes were selected and then served as input for CentrLCC-804 

network analysis using the NetCoMi R package. Hub nodes were defined as those with 805 

an eigenvector centrality value above the empirical 95% quantile of all eigenvector 806 

centralities in the network. This analysis was done in different groups separately (e.g. 807 

users and non-users of TNF-α-antagonists). To assess whether the taxa-associated 808 

gene networks were altered between groups, the associated genes for each taxa node 809 

were ranked within the total geneset background based on Z-scores. The Wilcoxon test 810 

was used to compare the two gene rank lists for each taxa. 811 

Third, we assessed whether gene–microbiota associations depend on intestinal 812 

dysbiosis by modeling these associations using an additional interaction term in linear 813 

models. The dysbiosis score was treated as a continuous value. To determine whether 814 

these interactions were observed by chance, we also performed permutation tests that 815 

randomly shuffled the dysbiosis score 100 times across all samples, and then repeated 816 

the interaction models. On average, only three FDR-adjusted significant results were 817 

obtained for each round of permutation testing, suggesting that the rate of total false 818 

positives was approximately ~ 0.014 (3/204). 819 

2) Gene ~ intercept + taxa + dysbiosis + taxa * dysbiosis + inflammation + 820 

location + age + sex + BMI + medication + batch 821 

Fourth, enrichment of specific intestinal cell types was inferred from the RNA-seq data 822 

using the Xcell package in R. The effects of tissue location, inflammatory status and 823 

type of IBD diagnosis on expression levels of mucosal cell types were assessed using 824 

linear models, adjusting for age, sex, BMI, batch and medication usage. Subsequently, 825 

we used the glmnet R package to investigate the variation of cell type–enrichment that 826 
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could be explained by the mucosal microbiota using lasso regression while employing a 827 

nested 10-fold cross-validation using six models: 828 

1) Cell enrichment ~ age + gender + BMI + batch 829 

2) Cell enrichment ~ medication (aminosalicylates, thiopurines, steroids, 830 

biologicals) 831 

3) Cell enrichment ~ inflammation 832 

4) Cell enrichment ~ tissue location 833 

5) Cell enrichment ~ bacteria abundance 834 

6) Cell enrichment ~ full factors mentioned above 835 

The percentage of explained variance (R2) was calculated to estimate the variation in 836 

cell type–enrichment explained by the mucosal microbiota. All analyses were corrected 837 

for multiple testing using a FDR significance threshold of 0.05. All gene pathway 838 

enrichment analyses were conducted using the Reactome database from MsigDB 839 

[105,106]. 840 

 841 

Replication in the HMP2 dataset 842 

RNA-seq and 16S raw data were obtained from https://ibdmdb.org and reprocessed 843 

using the same pipeline in this study. After harmonizing with the phenotype file, we 844 

included 152 intestinal biopsies from the 85 patients with CD, 46 patients with UC and 845 

45 non-IBD controls. First, gene expression and mucosal microbiota patterns were 846 

compared separately between this study and HMP2. Second, given the limited overlap 847 

in clinical phenotypes between the two cohorts, we restricted the replication analysis to 848 

inflammation-related host–microbiota interactions. Individual gene–microbiota 849 

associations were calculated using the same linear models used in this study while 850 

adjusting for age, gender, tissue location and inflammation status. Spearman correlation 851 

coefficients were used to assess the concordance between the Z-scores of gene–852 

microbiota associations from the two studies.  853 
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Supplementary Methods 1238 

Polymerase chain reaction (PCR), DNA clean-up, and MiSeq library preparation 1239 

for mucosal 16 microbiota characterization 1240 

The PCR procedure consisted of the following conditions: an initial cycle of 94°C for 3 1241 

min followed by 32 cycles of 94°C for 45 sec, 50°C for 60 sec and 72°C for 90 sec, with 1242 

a final extension of 72°C for 10 min. Agarose gel electrophoresis confirmed the 1243 

presence of the PCR product (band at ~465 bp) in successfully amplified samples. 1244 

Subsequently, DNA samples were thoroughly cleaned by mixing the remainder of the 1245 

PCR product with 25 μL Agencourt AMPure XP beads (Beckman Coulter, Brea, 1246 

California, USA) followed by an incubation of 5 min at room temperature. Beads were 1247 

separated from the mixture by placing the samples within a magnetic bead separator for 1248 

2 min. After discarding the cleared solution, beads were washed twice by resuspending 1249 

them in 200 μL fresh 80% ethanol, followed by an incubation of 30 sec in the magnetic 1250 

bead separator, and again discarding the cleared solution. The pellet was dried for 15 1251 

min and resuspended in 52.5 μL 10 mM Tris HCl buffer (pH 8.5). Fifty (50) μL of this 1252 

solution was subsequently brought into a new tube. DNA concentrations were 1253 

measured using a Qubit® 2.0 fluorometer (Thermo-Fisher Scientific, Waltham, 1254 

Massachusetts, USA). To ensure similar library representations across samples, 2 nM 1255 

dilutions of each sample were prepared accordingly. A library was created by pooling 5 1256 

μl of each diluted sample. Subsequently, 10 μL of the sample pool and 10 μL 0.2 M 1257 

NaOH were mixed and incubated for 5 min to allow denaturation of the sample DNA. 1258 

980 μL of the HT1 buffer of the MiSeq 2x300 cartridge was then added to this mixture. 1259 

Next, a denatured diluted PhiX solution was created by combining 2 μL 10 nM PhiX 1260 

library with 3 μL 10 mM Tris HCl buffer (pH 8.5) with 0.1% Tween-20. 5 μL 0.2 M NaOH 1261 

was added to this mixture and incubated for 5 min at room temperature. This 10 μL 1262 

mixture was eventually mixed with 990 μL HT1 buffer. From the diluted sample pool, 1263 

150 μL was combined with 50 μL of the diluted PhiX solution, which was further diluted 1264 

by the addition of 800 μL HT1 buffer. Finally, 600 μL of the prepared library solution was 1265 

loaded into the sample loading reservoir of the 2x300 MiSeq cartridge for 16S rRNA 1266 

amplicons sequencing (MiSeq Benchtop Sequencer, Illumina, San Diego, California, 1267 
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USA). Samples with low DNA concentrations after clean-up (quality score < 0.9) were 1268 

discarded by PANDAseq to increase quality of sequence read-outs. 1269 

Supplementary Table S1. Nucleotide sequences of primers used for library 1270 

construction for bacterial 16S rRNA gene (Illumina) sequencing. 1271 

Primer Sequence 

V3_F_mo

dified 

aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctNNNNCCT

ACGGGAGGCAGCAG 

V4_1R caagcagaagacggcatacgagatCGTGATgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_2R caagcagaagacggcatacgagatACATCGgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_3R caagcagaagacggcatacgagatGCCTAAgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_4R caagcagaagacggcatacgagatTGGTCAgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_5R caagcagaagacggcatacgagatCACTGTgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_6R caagcagaagacggcatacgagatATTGGCgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_7R caagcagaagacggcatacgagatGATCTGgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 
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V4_8R caagcagaagacggcatacgagatTCAAGTgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_9R caagcagaagacggcatacgagatCTGATCgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_10R caagcagaagacggcatacgagatAAGCTAgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_11R caagcagaagacggcatacgagatGTAGCCgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_12R caagcagaagacggcatacgagatTACAAGgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_13R caagcagaagacggcatacgagatCGTACTgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_14R caagcagaagacggcatacgagatGACTGAgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_15R caagcagaagacggcatacgagatGCTCAAgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

V4_16R caagcagaagacggcatacgagatTCGCTTgtgactggagttcagacgtgtgctcttccgatct

GGACTACHVGGGTWTCTAAT 

Bold uppercase letter highlight the index sequences. Lowercase letters indicate adapter sequences 1272 

necessary for flow-cell binding. Underlined lowercase letters indicate binding sites for Illumina sequencing 1273 

primers. Regular uppercase letters indicate the V3 and V4 region primers (341F for the forward primer, 1274 

806R for the reverse primer). The inclusion of four maximally degenerated bases (“NNNN”) maximizes 1275 

the diversity during the first four bases of the run, which is important for unique cluster identification and 1276 

base-calling accuracy. 1277 
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Supplementary Table Index 1279 

All Supplementary Tables have been uploaded separately for peer-review. 1280 

Supplementary Table S1. Differential gene expression analyses between non-inflamed 1281 

and inflamed biopsies from ileal CD (group 1), colonic CD (group 2) and UC (group 3). 1282 

Supplementary Table  S2. Differential gene expression analysis between inflamed 1283 

biopsies from patients with CD (reference) and patients with UC. 1284 

Supplementary Table S3. Differential expression analysis of deconvoluted cell types 1285 

between inflamed colonic biopsies of patients with CD (reference) and patients with UC. 1286 

Supplementary Table S4. Relative abundances of mucosal bacterial groups in different 1287 

groups (CD, UC and non-IBD controls) and biopsy locations (ileum or colon). 1288 

Supplementary Table S5. Comparison of relative abundances of bacterial groups 1289 

between non-IBD controls and ileal CD (group 1), colonic CD (group 2) and UC (group 1290 

3). 1291 

Supplementary Table S6. Hierarchical analysis performed using an end-to-end 1292 

statistical algorithm (HAllA) demonstrating the main associations between mucosal 1293 

bacterial groups and clinical phenotypes. 1294 

Supplementary Table S7. Genes and bacteria contained in component pair 1 from 1295 

sparse-CCA  analysis (FDR<0.05). 1296 

Supplementary Table S8. Pathway annotation of genes involved in component pair 1 1297 

from sparse-CCA analysis (FDR<0.05). 1298 

Supplementary Table S9. Genes and bacteria contained in component pair 3 from 1299 

sparse-CCA  analysis (FDR<0.05). 1300 

Supplementary Table S10. Pathway annotation of genes involved in component pair 3 1301 

from sparse-CCA analysis (FDR<0.05). 1302 

Supplementary Table S11. Genes and bacteria contained in component pair 7 from 1303 

sparse-CCA  analysis (FDR<0.05). 1304 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2022. ; https://doi.org/10.1101/2022.06.04.494807doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494807
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

 

Supplementary Table S12. Pathway annotation of genes involved in component pair 7 1305 

from sparse-CCA analysis (FDR<0.05). 1306 

Supplementary Table S13. Genes and bacteria contained in component pair 8 from 1307 

sparse-CCA  analysis (FDR<0.05). 1308 

Supplementary Table S14. Pathway annotation of genes involved in component pair 8 1309 

from sparse-CCA analysis (FDR<0.05). 1310 

Supplementary Table S15. Genes and bacteria contained in component pair 5 from 1311 

sparse-CCA  analysis (FDR<0.05). 1312 

Supplementary Table S16. Pathway annotation of genes involved in component pair 5 1313 

from sparse-CCA analysis (FDR<0.05). 1314 

Supplementary Table S17. Genes and bacteria contained in component pair 9 from 1315 

sparse-CCA  analysis (FDR<0.05). 1316 

Supplementary Table S18. Pathway annotation of genes involved in component pair 9 1317 

from sparse-CCA analysis (FDR<0.05). 1318 

Supplementary Table S19. Individual pairwise gene-bacteria associations. 1319 

Supplementary Table S20. Genes and bacteria associated with fibrostenotic 1320 

CD/Montreal B2 (reference: Montreal B1). 1321 

Supplementary Table S21. Microbiota-associated gene clusters in patients with non-1322 

stricturing, non-penetrating disease (Montreal B1) and fibrostenotic CD (Montreal B2) 1323 

including microbiota-associated pathway annotation and cluster comparisons. 1324 

Supplementary Table S22. Genes and bacteria associated with TNF-α-antagonists 1325 

use (reference: non-users). 1326 

Supplementary Table S23. Microbiota-associated gene clusters in patients not using 1327 

and using TNF-α-antagonists including microbiota-associated pathway annotation and 1328 

cluster comparisons. 1329 

Supplementary Table S24. Individual pairwise gene-bacteria associations and their 1330 

interaction with the degree of mucosal dysbiosis (Lloyd-Price et al., Nature 2019). 1331 
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Supplementary Table S25. Mucosal microbiota and other phenotypic factors 1332 

explaining variation in mucosal cell type enrichment in patients with IBD.1333 
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Extended Data Figures 1334 

Extended Data Fig. S1 1335 

 1336 

Extended Data Fig. S1. Analysis of pathways associated with each comparative gene expression analysis. The main pathways 1337 

associated with inflamed ileal tissue in patients with CD (blue) include neutrophil degranulation, extracellular matrix (ECM) organization 1338 

and IL-4/IL-13-signaling. Similar pathways were overexpressed in inflamed colonic tissue from patients with CD (green), but with a more 1339 

prominent contribution from interleukin signaling pathways. Interleukin signaling pathways were also dominantly expressed in inflamed 1340 

colonic tissue from patients with UC (orange), with other pathways expressed including neutrophil degranulation, ECM pathways, 1341 

interferon gamma signaling and immunoregulatory interactions between lymphoid and non-lymphoid cells. Pathways were annotated 1342 

using the Reactome pathway database. Abbreviations: CDi, inflamed tissue from patients with Crohn’s disease; CD-non, non-inflamed 1343 

tissue from patients with Crohn’s disease; UCi, inflamed tissue from patients with ulcerative colitis; UC-non, non-inflamed tissue from 1344 

patients with ulcerative colitis.  1345 
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Extended Data Fig. S2 1346 

 1347 

Extended Data Fig. S2. Mucosal 16S rRNA gene sequencing characterization demonstrates distinct compositional differences in relative1348 

abundances on (A) bacterial phylum level and (B) bacterial genus level. Abbreviations: CD, Crohn’s disease; UC, ulcerative colitis. 1349 
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Extended Data Fig. S3 1351 

 1352 

Extended Data Fig. S3. Microbial alpha-diversity (Shannon index) is significantly lower in colonic biopsies from patients with CD 1353 

compared to colonic biopsies derived from patients with UC or controls. This indicates that this difference is not solely attributable to ileal 1354 

biopsies from patients with CD. 1355 
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Extended Data Fig. S4 1357 

 1358 

Extended Data Fig. S4. Replication of overall mucosal microbiota characterization in patients with IBD and non-IBD controls. 1359 

Replication was performed in data derived from the HMP2 cohort study [13]. a, Microbial alpha-diversity (Shannon index) was lowest in 1360 

ptaients with CD (n=85) compared to patients with UC (n=46) and non-IBD controls (n=45). b, PCA plots based on Aitchison’s distances 1361 

and stratified by tissue location and inflammatory status (colors as in a). c, PCA plot showing microbial dissimilarity (Aitchison’s distances)1362 

in CD, UC and non-IBD controls. d, Microbial dissimilarity is highest in samples from patients with CD, followed by patients with UC and 1363 

non-IBD controls. CD, Crohn’s disease; PCA, principal component analysis; UC, ulcerative colitis.  1364 
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Extended Data Fig. S5 1365 

 1366 

Extended Data Fig. S5. Composition of the mucosal microbiota is highly personalized and 1367 

influenced by disease parameters and clinical factors in patients with IBD and controls. (A)1368 

Hierarchical clustering analysis demonstrating that tissue samples from the same individual 1369 

(paired samples) clearly cluster together (colors indicate unique individuals). (B) Hierarchical 1370 

analysis performed using an end-to-end statistical algorithm (HAllA) showing the main phenotypic 1371 

factors that correlate with intestinal mucosal microbiota composition. Heatmap color palette 1372 

indicates normalized mutual information. Numbers and dots in cells identify the significant pairs of 1373 

features (phenotypic factors vs. bacterial taxa) in patients with IBD and controls. Abbreviations: 1374 

BMI, body-mass index; CD, Crohn’s disease; UC, ulcerative colitis. 1375 
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Extended Data Fig. S6 1377 

 1378 

Extended Data Fig. S6. Network graph displaying significant individual gene–bacteria interactions. 1379 

Green squares indicate bacterial groups. Purple dots indicate host gene expression. Each connecting line 1380 

indicates statistically significant gene–bacteria associations after adjustment for age, sex, batch, 1381 

medication use, tissue inflammatory status and tissue location. Most individual gene–bacteria 1382 

associations (94%) overlap with the results from the sparse-CCA analysis (Figure 4). 1383 
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Extended Data Fig. S7 1384 

 1385 

Extended Data Fig. S7. Principal component analysis (PCA) plots demonstrating variation in cell 1386 

type–enrichment labeled by diagnosis, biopsy inflammatory status and intestinal location. Each 1387 

dot represents one tissue sample. Left: Patients with IBD, both CD and UC, show significantly different 1388 

intestinal cell type composition compared to controls. Middle: Tissue inflammatory status induces shifts in 1389 

cell type composition, showing differences between non-inflamed IBD tissue vs. control tissue and 1390 

inflamed IBD tissue vs. control tissue. Right: Tissue location (ileum vs. colon) also demonstrates distinct 1391 

variation in cell type composition.  1392 
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Supplementary Results 1393 

Box 1. Individual mucosal gene–bacteria associations and their potential 1394 

biological implications in IBD. 1395 

Mucosal bifidobacteria positively associate with aryl hydrocarbon receptor (AHR) and 1396 

ABC-transporter (ABCC1) expression levels 1397 

The positive association between AHR expression and bifidobacteria could be 1398 

explained by the fact that Bifidobacterium spp. can produce aromatic lactic acids such 1399 

as indole-3-lactic acid (out of aromatic amino acids like tryptophan) via aromatic lactate 1400 

dehydrogenase, which in turn activates the host aryl hydrocarbon receptor [1,2]. 1401 

Activation of the aryl hydrocarbon receptor, a crucial regulator of intestinal homeostasis 1402 

and immune responses, leads to a reduction of inflammation in intestinal epithelial cells 1403 

[3] and confers immunoprotective effects [4]. 1404 

Another intriguing observation is the positive association between bifidobacteria and 1405 

host expression of the ABCC1 gene. ABCC1 is a member of the ATP-binding cassette 1406 

transporters (ABC transporters, and also known as multidrug resistance-associated 1407 

protein 1, MRP1) that has multiple physiological functions, but it may also confer 1408 

pathophysiological sequelae, especially in the context of cancer [5]. Under physiological 1409 

circumstances, it detoxifies endogenously generated toxic substances (as well as 1410 

xenobiotics), protects against oxidative stress, transports leukotrienes and lipids and 1411 

may facilitate the cellular export and body distribution of vitamin B12 [6]. Interestingly, 1412 

several Bifidobacterium species (e.g. B. animalis, B. longum and B. infantis) can 1413 

synthesize vitamin B12, which is subsequently absorbed in the large intestine via 1414 

unknown mechanisms [7-9]. 1415 

Mucosal bifidobacteria associate with FOSL1, a subunit of the AP-1 transcription factor 1416 

Associations between mucosal Bifidobacterium bacteria and expression of FOSL1 1417 

genes were amongst the top significant individual gene–bacteria interactions. Fos-1418 

related antigen 1 (FRA1), encoded by FOSL1, is a subunit of the activator protein 1 1419 

(AP-1) transcription factor. In the intestine, the AP-1 transcription factor is commonly 1420 
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activated in response to inflammatory stimuli and has been implicated in IBD [10]. More 1421 

specifically, an interaction may exist between AP-1 activity and the glucocorticoid 1422 

receptor, which may be part of the anti-inflammatory effects of steroid treatment [11]. In 1423 

steroid-resistant patients with CD, AP-1 activation was primarily observed in the nuclei 1424 

of intestinal epithelial cells, whereas this activation was restricted to lamina propria 1425 

macrophages in steroid-sensitive patients [10]. This suggests a differing cellular 1426 

activation pattern of AP-1 activation in steroid-resistant patients where the expression of 1427 

this transcription factor may interfere with the activity of the glucocorticoid response. In 1428 

an experimental study in which pregnant mice were supplemented with butyrate, FOS 1429 

genes, including Fosl1, were observed to be downregulated in the colon and associated 1430 

with protection against experimentally-induced colitis [12]. Although there are currently 1431 

no reports of potential immune-modulating effects for Fosl1, it has 85% homology with 1432 

Fosl2, another AP-1 transcription factor. A recent study demonstrated that Fosl2 is 1433 

important in T-reg development and control of autoimmunity. Interestingly, several 1434 

GWASs have reported associations of a SNP located in the promoter region of FOSL2 1435 

with IBD [13-15], and the presence of this SNP was also shown to correlate with FOSL2 1436 

expression in blood cells of patients with IBD [16]. In the context of T-regs, FOSL2 also 1437 

appears to be important as it is a determinant of a highly suppressive subpopulation of 1438 

T-regs in humans that are particularly enriched in the lamina propria of patients with CD, 1439 

supporting wound healing in the intestinal mucosa [17]. Although speculative, 1440 

bifidobacteria, as well as their metabolites such as butyrate, may potentially confer 1441 

immune-modulating properties via interaction with FOSL1 expression. 1442 

Mucosal bifidobacteria positively associate with Krüppel-like factor 2 (KLF2) expression 1443 

Krüppel-like factor 2 (encoded by KLF2) is a negative regulator of intestinal 1444 

inflammation, and its expression is found to be reduced in patients with IBD [18]. KLF2 1445 

also negatively regulates differentiation of adipocytes and strongly inhibits PPAR-γ 1446 

expression, which prevents differentiation of preadipocytes into adipocytes and thereby 1447 

prevents adipogenesis [19]. KLF2 also plays an important role in endothelial physiology, 1448 

where it may act as a molecular switch by regulating endothelial cell function in 1449 

inflammatory disease states [20]. Interestingly, KLF2 modifies the trafficking of T-regs, 1450 
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as increased KLF2 expression in T-regs promotes the induction of peripheral 1451 

immunological tolerance, whereas, in the absence of its expression, T-regs are unable 1452 

to effectively migrate to secondary lymphoid tissues [21]. Indeed,, it was demonstrated 1453 

in mouse experiments that mice developed IBD in the presence of KLF2-deficient T-1454 

regs, which were unable to prevent colitis by disrupted co-trafficking of effector and 1455 

regulatory T cells. In light of these considerations, mucosal bifidobacteria may confer 1456 

beneficial immune-modulating properties by upregulating KLF2 expression, thereby 1457 

stimulating T-reg migration and contributing to immunological self-tolerance in the 1458 

context of IBD. 1459 

Mucosal Anaerostipes bacteria positively associate with host SMAD4 expression 1460 

Anaerostipes, which belong to the Lachnospiraceae family, are anaerobic bacteria that 1461 

are well-known butyrate-producers. Butyrate serves as the primary energy source for 1462 

colonic epithelial cells and is characterized by anti-inflammatory and anti-carcinogenic 1463 

properties. SMAD4 is an important intracellular effector of the TGF-β superfamily of 1464 

proteins. These proteins have important functions in alleviating intestinal inflammation 1465 

and maintenance of gut mucosal homeostasis. Haploinsufficiency of SMAD4 in mice 1466 

and humans has been associated with an increased susceptibility to colonic 1467 

inflammation [22]. In patients with CD, reduced epithelial protein levels of SMAD4 were 1468 

observed that was associated with disease activity, indicating defective mucosal TGF-β 1469 

signaling during active intestinal inflammation. In an experimental animal study, mice 1470 

with an epithelial deletion of Smad4 presented with macroscopic invasive 1471 

adenocarcinoma of the distal colon and rectum 3 months after DSS-induced colitis [23]. 1472 

Indeed, SMAD4 mutations in humans are linked to juvenile polyposis syndrome and 1473 

associated with poor disease outcome in several types of cancer [24-27]. Using RNA-1474 

seq analysis, a strong inflammatory expression profile was observed after SMAD4 1475 

deletion, with expression of various inflammatory cytokines and chemokines, including 1476 

CCL20. In addition, it was demonstrated that CCL20 could be repressed by SMAD4 in 1477 

colonic epithelial cells, proving that TGF-β signaling could block the induction of CCL20 1478 

expression to protect against the development of colitis-associated cancer. 1479 
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In an experimental study involving human hepatic stellate cells, butyrate was 1480 

demonstrated to be protective against diet-induced nonalcoholic steatohepatitis and 1481 

liver fibrosis via suppression of TGF-β signaling pathways in which SMAD proteins are 1482 

involved. Although butyrate mainly showed antifibrotic effects via reduction of non-1483 

canonical TGF-β signaling cascades, there was also a significant increase in the 1484 

expression of SMAD4 with the addition of butyrate on top of TGF-β treatment [28]. We 1485 

found Anaerostipes bacteria to also be strongly associated with expression of ZNF644, 1486 

a zinc finger protein that is positively regulated by intracellular zinc concentrations. 1487 

Depletion of intracellular zinc levels, or even zinc deficiency, may have destabilizing 1488 

effects on SMAD proteins and thereby impair the TGF-β signaling pathway [29]. 1489 

Mucosal Verrucomicrobia bacteria inversely associate with expression of the IBD 1490 

susceptibility gene YDJC 1491 

We observed significant inverse associations between Verrucomicrobia bacteria, of 1492 

which Akkermansia muciniphila is a well-known member, and the expression of the 1493 

YDJC gene, which encodes for the YdjC chitooligosaccharide deacetylase homolog 1494 

(YdjC) protein. This gene has been identified as a shared susceptibility gene for CD, UC 1495 

and psoriasis [13,30,31]. YDJC was originally identified as a celiac disease–associated 1496 

susceptibility locus, but some SNPs were also associated with CD as well as with 1497 

pediatric-onset CD [32]. YdjC catalyzes the deacetylation of acetylated carbohydrates, 1498 

an important reaction in the degradation of oligosaccharides [33]. YDJC expression has 1499 

been associated with tumor progression in studies of lung cancer [34,35]. The observed 1500 

inverse association between Akkermansia and YDJC expression may suggest a 1501 

potential protective role of Akkermansia, as decreased YDJC expression may mitigate 1502 

its pro-carcinogenic effects. Despite the association between YDJC and the 1503 

susceptibility to IBD on a genetic level, its precise functional role remains largely 1504 

unknown [32]. 1505 

Mucosal Alistipes bacteria positively associate with MUC4 expression 1506 

The bacterial genus Alistipes, belonging to family Rikenellaceae and phylum 1507 

Bacteroidetes, is a recently discovered bacterial species, of which many have been 1508 

isolated from the human gut microbiome. The role of Alistipes in health and disease is 1509 
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still unclear. Some evidence indicates that it may confer protective effects to the host, 1510 

but other studies report pathogenic effects, e.g. in colorectal cancer development. A key 1511 

factor believed to determine the relative abundance of Alistipes is the dysbiotic state of 1512 

the gut microbiome [36]. In IBD, there is also conflicting data about the pathogenicity of 1513 

Alistipes species. Alistipes finegoldii has been demonstrated to exert anti-inflammatory 1514 

effects in experimental models of colitis [37]. Likewise, another study found an 1515 

increased abundance of Alistipes in NOD2-knockout mice that had less severe (TNBS-1516 

induced) colitis compared to wild-type mice [38]. It has also been reported that Alistipes 1517 

abundance could increase after taking probiotic supplements, which in turn may protect 1518 

against hepatocellular cancer growth in an experimental setting [39]. However, 1519 

metagenomic studies have shown that Alistipes abundances were increased in mouse 1520 

models of spontaneous CD-like ileitis terminalis as compared to wild-type mice, 1521 

suggesting that Alistipes species may also play a pathogenic role by eliciting segmental 1522 

ileitis [40,41]. 1523 

MUC4 encodes for mucin 4, a protein found in the glycocalyx present on the intestinal 1524 

epithelium. Deletion or knockouts of Muc4 have demonstrated protective effects in 1525 

mouse models, as shown by lower levels of proinflammatory factors and resistance 1526 

against DSS-induced colitis. It is still unclear how this protective mechanism of MUC4 1527 

deletion works, but it has been hypothesized that it may trigger the concomitant 1528 

upregulation of other mucin proteins (e.g. MUC1-3) as these genes have been observed 1529 

to be highly expressed in Muc4-knockout mice with DSS-induced colitis [42,43]. Based 1530 

on this, we speculate that the positive association between Alistipes abundance and 1531 

MUC4 expression may imply a potential pathogenic role of Alistipes in the context of 1532 

IBD-associated dysbiosis. However, in our data, we did not observe a significant 1533 

interaction via dysbiotic status between Alistipes abundance and MUC4 expression. 1534 

Mucosal Oscillibacter bacteria positively associate with OSM expression 1535 

Oscillibacter-like bacteria, which include Oscillibacter and Oscillospira, are commonly 1536 

detected in human gut microbial communities, although their exact physiological role is 1537 

not fully understood. Previously, it was reported that Oscillibacter may be a potentially 1538 

important bacterium in mediating high fat diet–induced intestinal dysfunction, which was 1539 
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supported by a negative association between Oscillibacter and intestinal barrier function 1540 

parameters [44]. Similarly, the abundance of Oscillibacter has been reported as a key 1541 

bacterial group associated with colitis development in DSS-induced colitis in mice and 1542 

with prenatal stress in rodents [45,46]. However, a recent study linking gut microbiota 1543 

profiles to sulfur metabolism in patients with CD demonstrated that Oscillibacter 1544 

abundance was enriched in patients with inactive compared to active disease but 1545 

diminished in patients with IBD compared to controls [47,48]. Thus, similar to 1546 

Bacteroides and Alistipes, the exact functional role of Oscillibacter in the context of IBD 1547 

remains elusive, but it will likely depend on gut microbial dysbiosis and the intestinal 1548 

(inflammatory) environment. The OSM gene encodes for the oncostatin M protein, a 1549 

well-known inflammatory mediator in IBD that drives intestinal inflammation, mainly via 1550 

activation of JAK-STAT and PI3K-Akt pathways [49]. Besides induction of other 1551 

inflammatory events, it primarily triggers the production of various cytokines, 1552 

chemokines and adhesion molecules that contribute to intestinal inflammation [50]. In 1553 

addition, OSM is a marker for non-responsiveness to TNF-α-antagonists in patients with 1554 

IBD [51]. Considering these findings, the positive association between OSM expression 1555 

and Oscillibacter abundance we observe supports a potentially pathogenic role for this 1556 

bacterial species in IBD. 1557 

 1558 

Mucosal Blautia bacteria associate with host ST13 expression levels 1559 

Hsc70-interacting protein, encoded by the ST13 gene, mediates the assembly of the 1560 

human glucocorticoid receptor, which requires involvement of intracellular chaperone 1561 

proteins such as heat shock proteins HSP70 and HSP90 [52]. Reduced expression of 1562 

ST13 has been observed in patients with colorectal cancer, suggesting that ST13 may 1563 

constitute a candidate tumor-suppressor gene [53,54]. The positive association we 1564 

observe between mucosal Blautia abundance and ST13 gene expression may therefore 1565 

point to a protective anti-carcinogenic role for Blautia in the intestines. 1566 

 1567 

Supplementary References to Box 1 1568 
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Box 2. Miscellaneous component pairs from sparse-CCA analysis. 1751 

The microbial part of the fifth pair of components (component pair 5, P=2.87 x10-8, 1752 

FDR<0.05) was formed by Christensenellaceae, Ruminococcaceae, Lachnospiraceae 1753 

(NK4A136 group), Coriobacteria and the genera Coprococcus and Ruminoclostridium, 1754 

which are all inversely associated with pathways representing SLC-mediated 1755 

transmembrane transport (e.g. transport of bile acids and organic acids, metal ions and 1756 
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In the sixth pair of components (component pair 9, P=9.65 x10-7, FDR<0.05), the 1760 

microbial component was primarily composed of bifidobacteria (i.e. order 1761 

Bifidobacteriales, family Bifidobacteriaceae and genus Bifidobacterium), which were 1762 

inversely associated with pathways representing phospholipid synthesis (e.g. 1763 

phosphatidic acid synthesis) and NR1H2/NR1H3 or liver X receptor (LXR)-mediated 1764 
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FDR	=0.018 FDR	=0.018

FDR	=0.033 FDR	=0.043CD	vs.	Non-IBD:	P =	7.51	x10-8
UC	vs.	Non-IBD:	P =	0.0015
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