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Abstract:  

Immune checkpoint inhibitors (ICIs) have changed the cancer treatment landscape, but severe immune-related adverse 

events (irAEs) can be life-threatening or fatal and may prohibit patients from receiving further ICI treatment. While the 

clinical features of irAEs are well documented, molecular signatures, predictive biomarkers, and mechanisms of 

impending irAEs are largely unknown. In addition, the markers and mechanisms of ICI-induced antitumor immunity 

often overlap with those for irAEs. It is thus critical to uncover signatures associated specifically with irAEs but not with 

antitumor immunity. To identify circulating immune cell states associated with irAEs, we applied multimodal single cell 

analysis (CITE-seq) to simultaneously measure the transcriptome and surface proteins from peripheral blood 

mononuclear cells (PBMCs) collected before and after treatment with an anti-PD-L1 antibody (avelumab) in patients 

with thymic cancers (thymic epithelial tumors). All patients had an antitumor response, yet a subset developed muscle 

autoimmunity (myositis), a potentially life-threatening irAE. Mixed-effect modeling disentangled cell type-specific 

transcriptional states associated with ICI treatment responses from those of irAEs to identify temporally stable pre-

treatment immune set points associated with irAEs only. These pre-treatment baseline signatures of irAE developed 

post-avelumab irAEs reflect correlated transcriptional states of multiple innate and adaptive immune cell populations, 

including elevation of metabolic genes downstream of mTOR signaling in T-cell subsets. Together these findings 

suggest putative pre-treatment biomarkers for irAEs following ICI therapy in thymic cancer patients and raise the 

prospect of therapeutically dampening autoimmunity while sparing antitumor activity in cancer patients treated with 

ICIs. Together, pre-treatment biomarkers and interventional therapeutics could help mitigate treatment discontinuation 

and improve clinical outcomes. 

 

Introduction:  

 

Immune checkpoint inhibitors (ICIs) have demonstrated durable benefit and improved survival in 

a subset of patients with advanced cancers 1. However, this therapeutic benefit comes with a risk 

of immune-related adverse events (irAEs), common side effects of checkpoint inhibitor therapy 

ranging in frequency between around 50–90% depending on the type of cancer and checkpoint 

inhibitor.2-4 These autoimmune reactions can be life-threatening, and can affect almost any organ 
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system, with the most common symptoms being rash, pruritus, fatigue, and diarrhea.4 While a 

majority of irAEs can be safely managed by discontinuing ICI treatments and/or giving low-dose 10 

steroids, some patients require high-dose steroids or anti-cytokine agents5,6,which can decrease 

the antitumor effect of ICIs. Patients experiencing mild or moderate irAEs can be re-challenged 

with ICIs under close monitoring7; however, the risk of developing a subsequently fatal irAE often 

precludes continuation of treatment for patients developing severe autoimmunity. There is thus 

an urgent need for unbiased identification of molecular phenotypes associated with irAE risk to 

help inform potential biomarkers and treatment strategies to dampen autoimmune effects while 

sparing antitumor immunity.8  

Factors contributing to autoimmunity versus antitumor immunity in patients receiving ICIs remain 

unclear.9 Immune inhibitory receptors targeted by these drugs play essential roles in maintaining 

self-tolerance, as documented in patients with germline mutations affecting these receptors and 20 

in transgenic mouse models lacking immune checkpoint inhibitory receptors.10-12 Inhibition of 

negative feedback on immune activation by ICIs may thus cause autoimmune reactions in cancer 

patients by exacerbating pre-existing clinical or subclinical autoimmunity by increasing the 

probability of loss of immune tolerance.13 IrAE rates are higher in patients treated with dual ICIs, 

yet single-agent ICI treatment is sufficient to cause autoimmunity in around 20% of patients.14,15 

Individual variations in baseline (i.e., pre-treatment) immune status (or “set points”16-18) may, for 

example, provide different levels of buffering (or pre-disposition) to develop adverse events. For 

example, a single “hit” to certain regulatory pathways might be sufficient to cause pathology in 

some (e.g., those with less buffering capacity19) but not all patients. Identifying baseline pre-

treatment molecular signatures and states associated with irAE outcomes could uncover 30 

biomarkers of immune toxicity with which to select patients for treatment and inform potential 

treatment interventions. A recent study shed light on the local reaction of T cells at the onset of 

irAE-related colitis, finding cycling T cells and alterations in T regulatory cells associated with 

irAEs.20 Another report suggested baseline activated CD4 memory T-cell abundance could serve 

as a biomarker of post-treatment severe irAEs.21 Despite these advances, previous unbiased 

systems-level analyses often used profiling approaches that have limited cellular resolution. 

Furthermore, statistical assessment of differences between signatures associated with irAEs and 

antitumor responses is lacking, but is critical for understanding the delicate interplay and shared 

mechanisms between ICI-induced autoimmunity and antitumor immunity. Biomarkers that 

specifically mark irAEs but not antitumor immunity could help in the development of interventional 40 

strategies with minimal impact on the efficacy of ICI therapies. 

Study Design  

We set out to contrast treatment-associated and irAE-associated immune system states by 

profiling peripheral immune cells of patients with metastatic thymic cancer before (baseline) and 

after administration of the anti-PD-L1 antibody avelumab (at the time or irAE development, or its 

equivalent in patients not developing irAE). We chose to study irAEs in thymic cancer for the 

disease’s stable tumor cell-intrinsic property (low tumor mutation burden), good response to ICIs, 

and high incidence of irAEs.22,23 Prior studies in other cancers using cytometry24 and single-cell 

RNA sequencing25 investigated responses to ICIs,25,26 yet the transcriptional state and phenotype 

of well-resolved immune cell populations before and after treatment are understudied, particularly 50 

involving contrasting treatment- and irAE-associated effects. We addressed these gaps by using 
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CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing), a multimodal 

technique combining surface protein phenotyping and transcriptome profiling simultaneously in 

single cells, followed by mixed-effects modeling to identify cell subset-specific signatures 

associated with the development of irAE but not with clinical outcome. Our CITE-seq antibody 

panel targeted 82 surface proteins and included 4 isotype controls, as previously described.16 

Nine patients were chosen for CITE-seq analysis; all had clinically similar antitumor activities 

based on RECIST (Response Evaluation Criteria in Solid Tumors). While no patients had clinically 

observable autoimmune disease at baseline, five individuals developed myositis after an average 

of two doses of avelumab (Fig. S1a Supplementary Table 4; see Methods). Paired peripheral 60 

blood mononuclear cell (PBMC) samples from baseline (pre-treatment) and at the onset of irAEs 

post-avelumab (two cycles post-avelumab for the non-irAE group) were used for analysis. Our 

dataset included more than 190,000 cells from 18 PBMC samples, with two timepoints per patient 

(Fig. 1a) and a median of 10,804 cells per sample (Fig. S1b,c).  

High dimensional protein-based immune cell phenotyping  

Defining cell clusters and subsets with surface protein alone allowed us to identify cell type based 

on well-studied surface markers (Fig. S1d), thereby separating transcriptome measurements from 

cell type identity. This facilitated improved interpretation of transcriptome differences between 

outcome groups within cell clusters that were defined with statistically independent (protein) 

information from transcriptome data (Fig. 1a). We clustered cells using spectral clustering based 70 

on the denoised expression level of 82 surface proteins. This procedure identified 43 cell clusters 

spanning major cell lineages, including subsets of B cells, monocytes, dendritic cells (DCs), 

natural killer cells, and T cells (Fig. 1b, Fig. S1b). The substantial number of antibodies in our 

panel for marking T-lymphocyte phenotypes and cell states revealed significant heterogeneity 

within CD8+ and double negative (CD3+CD4–CD8–) T-cell subsets, with most of these 

clusters/phenotypes detected across donors (Fig. S1c).  

Statistical modeling of avelumab treatment and toxicity effects between patient groups  

Our analysis approach focused on defining cell states associated with irAEs decoupled from 

treatment response within immune cell types defined by protein. To this end, we applied statistical 

contrasts to identify changes of cell functional states due to three major effects: 1) ICI treatment 80 

effects–pre- vs. post-avelumab treatment effects shared across all subjects; 2) ICI-associated 

irAE effects–the difference in pre- vs. post-treatment effect between irAE and non-irAE groups; 

and 3) baseline effects–differences in cell state prior to avelumab treatment between groups 

(analogously shown in Fig. 1a). By subtracting treatment effects (both effects 1 and 2) from 

baseline differences, we further focused on baseline cell states associated with impending irAEs 

exhibiting temporal stability over the course of treatment; these cell states were thus uncoupled 

from ICI response effects. To accommodate our experimental design containing patients with 

repeated measurements nested in groups, we used weighted mixed-effects models at the single-

cell level and on pseudo-bulk data aggregated within each cluster to model variations across 

donors over time and between outcome groups (see Methods). We tested enrichment of a pre-90 

specified list of gene modules based on our hypothesis of pathways that could tune immune states 

related to irAEs and response (see Methods, Supplementary Table 3), in addition to carrying out 

unbiased analysis of 50 MSigDB Hallmark pathways.  
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Figure 1: Multimodal single-cell analysis deconvolves transcriptome states associated with irAEs and ICI treatment within 

protein immune phenotypes  

a. Top: hypothesized schematic illustrating different types of immune cell states and how those measured parameters reflect the 

clinical phenotypes: the antitumor response effects (white-blue) and autoimmune toxicity (green-red). Red lines represent the group 

of patients developing irAEs after treatment and blue represents those without irAEs. Cell states from left to right: State type 1: 

perturbed by treatment across all patients which can be associated with antitumor effects but also with autoimmune toxicity; State 100 

type 2: increased post-treatment in the irAE group (these could reflect a higher fold change in the irAE group or oppositely regulated 

states); State type 3: baseline differences in the irAE group exhibiting temporal stability over the course of treatment, which is 

associated with irAEs but not treatment effects. Middle: transcriptome comparisons carried out within protein clusters to identify 

different cell states corresponding to the states above. Bottom: study scheme devised to define cell state differences above: eighteen 

PBMC samples from nine patients with thymic cancers were profiled at baseline and post-avelumab treatment; five of them developed 

an irAE (myositis) post-treatment and the other four patients did not develop an irAE. PBMC samples collected before treatment 

(baseline) and post-avelumab (at the onset of irAE and matched time points in the non-irAE group) were profiled using CITE-seq with 

a panel of 82 antibodies.  b.  CITE-seq surface protein expression map of PBMCs. Circle color is the mean dsb ‘denoised’ and 

normalized protein level; the scale of dsb values can be interpreted as the number of standard deviations above background noise. 

Circle size is the percentage of cells in the cluster that express the protein above the expression-positive cutoff of 3.5.  c. State type 110 

1: treatment effects : gene set enrichment based on genes ranked by the pre- vs. post-avelumab treatment effect from donor-weighted 

pseudobulk model. d. Selected genes from the CD38++CD8+ effector T-cell cluster in leading-edge genes of the enriched pathways 

shown in c. e. State type 2: difference in treatment effects between the irAE and non-irAE group: gene set enrichment.  f. Selected 

genes from the classical monocyte cluster with a treatment effect upregulated in the irAE group – genes include those with oppositely 

regulated directions (CD38 mRNA) or genes only perturbed in the irAE group (IL15). 

 

 Defining ICI treatment effects 

We first assessed cell type-specific avelumab treatment effects (Fig. 1a- State type 1) by 

identifying, within each cell cluster above, the transcriptional differences between post- vs. pre-

treatment across patients (detailed results are provided in Supplementary Table 1). 120 

Transcriptional signatures of T-cell activation, interferon pathways, PD-1 signaling and T-cell 

exhaustion were elevated within multiple T-cell subsets (Fig. 1c, Supplementary Table 1). 

Activated CD38++  CD8+ T cells and naïve CD8+ T cells had the highest number of enriched 

pathways. In the CD38++ subset, upregulation of  T-cell activation and cell cycle signals included 

genes CDC25B, CDC27, MCM3, and CSK2 (Fig. 1d). Upregulation of GZMA, OAS1, IFITM2, 

LCK, MKI67, and PDCD1 in this subset driven by elevated activation protein CD38 was consistent 

with a proliferating effector phenotype (Fig. 1d). Interestingly, cell cycle states were enriched in 

the opposite direction (downregulated post-avelumab) in several other T-cell subsets including 

CD8+ TEMRA and CD8+ naïve T cells  (Fig. 1c). Genes driving pathway enrichments tended to be 

mutually exclusive among different cell clusters/subsets (as defined by the Jaccard similarity of 130 

the “leading edge” genes for each gene set/pathway; see Methods) (Fig. S2a and Supplementary 

Table 1). The presence of cell cycle signatures in CD38++ effector T cells post-avelumab treatment 

is reminiscent of phenotypes revealed in prior studies, e.g., those focusing on the dynamics of T-

cell changes during ICI treatment26,27 and a study of ICI-induced colitis.20 Together, our and others’ 

observations suggest that a proliferation signature of peripheral CD8+ effector T cells is coupled 

to ICI treatment responses.  

 

 

Defining ICI treatment effects unique to irAEs   

While ICI may trigger qualitatively similar responses in different patients, the quantitative extent 140 

of these responses may differ between irAE and non-irAE patients. To evaluate this possibility, 

we identified treatment response-associated irAE effects by comparing the difference in post-

treatment vs. baseline fold changes between the irAE and non-irAE groups (Fig. 1a, State type 

2); this analysis identified 35 enrichments involving 14 cell types (Supplementary Table 1). Within 
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classical monocytes in particular, interferon transcriptional signatures were highly enriched (Fig. 

1e) and leading-edge genes in these pathway enrichments tended to be mutually exclusive (Fig. 

S2b). IL15 and interferon-simulated genes (ISGs) B2M, CD38 and STAT1 were oppositely 

regulated between groups from baseline to post-treatment (upregulated in the irAE group and 

downregulated in the non irAE group). These further suggested that interferon-responsive 

monocytes were activated in the irAE group after treatment with avelumab (Fig. 1f). This IFN 150 

response in monocytes that is associated with irAEs may phenocopy the elevated interferon 

response states seen in inflammatory diseases such as lupus,28 and has also been observed in 

patients with myositis.29 In addition, cell cycle/proliferation signals were enriched post-treatment 

in the irAE compared to the non-irAE group in CD8 effector memory T cells (Fig. 1e).  

A baseline metabolic transcriptional signature is associated with post-treatment irAEs 

independent of treatment effects 

We next searched for signatures of baseline (prior to treatment) immune states in patients who 

developed irAEs post-treatment. We focused on signatures uncoupled from avelumab treatment 

effects. We first identified baseline states associated with post-treatment irAEs, then subtracted 

enrichment signals associated with avelumab treatment (see Methods). This procedure resulted 160 

in a map of temporally stable cell type-specific signatures, or “set points”, associated with the 

post-treatment development of irAEs independent of treatment effects (i.e., those defined by Fig. 

1c-f, State type 1 and 2 in Fig. 1a). Inflammatory and metabolic signatures including mTOR and 

TNFα pathway genes were enriched within multiple cell subsets (Fig. 2a). DCs have known roles 

in modulating autoimmune and antitumor responses,30 and both CD1chigh and CD1clow DCs in the 

irAE group appeared to have an elevated inflammatory signature at baseline, e.g., TGFB, TNFA, 

and inflammatory response pathway enrichments. They also displayed potential enhanced tissue 

migratory capacity given the enrichment of epithelial-to-mesenchymal transition genes,  including 

CD44, VIM, VCAN, THBS1, and SDC4 (Fig. 2a, Supplementary Table 1). These primed DC 

subsets were also elevated for several metabolic-related transcript differences, for example, 170 

involving mTORC1 signaling, hypoxia , and cholesterol homeostasis. Some of these inflammatory 

and metabolic signatures are also shared by CD8+ T cells, in particular memory cells re-

expressing CD45RA (CD8+ TEMRA), which displayed elevated TNF signaling, hypoxia, cholesterol 

homeostasis, and mTOR signatures in the irAE group (Fig. 2a). By design, these phenotypes we 

uncovered were not enriched in the irAE group after avelumab treatment, where innate immunity 

and inflammatory signatures such as those associated with IFNs were more specific to CD14+ 

classical monocytes (Figs. 1e,f).   

Correlated cell-state phenotypes underlie baseline set point signatures of irAEs 

Given the critical role of the mTOR pathway in tumorigenesis31 and autoimmunity,32 we further 

examined the genes driving mTOR pathway enrichment within CD8 TEMRA cells (Fig. 2a). These 180 

leading-edge mTOR genes (mTOR-LE) naturally clustered in all samples, independent of time 

points, into two clusters segregated by irAE status (Fig. 2b). The independence from time points 

confirmed that our procedure identified temporally stable enrichment signals that were stable 

between the pre- and post-treatment time points. Expression of mTOR-LE genes was elevated in 

thymic cancer patients compared to both the non-irAE group and healthy donors  
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Figure 2: baseline immune set points associated with post-treatment ICI toxicity  

a. Baseline gene set enrichment map based on genes ranked by weighted pseudobulk model effect size within each cluster comparing 

patients with eventual irAEs to those without irAEs. Red and blue indicate pathways positively and negatively enriched respectively in 190 

patients before avelumab treatment who developed an irAE after receiving avelumab. The pathway names (y-axis) highlighted in blue 

are from the MSigDB hallmark collection, and pathways in dark orange are curated gene sets based on a pre-study defined hypothesis 

(Supplementary Table 3). b. Average single cell expression of leading-edge genes from the Hallmark mTOR pathway baseline 

enrichment associated with the irAE group within the TEMRA cell cluster. Samples from both time points are ordered according to 

hierarchical clustering with complete linkage. c. The coefficient corresponding to baseline irAE vs. no-irAE (red) and the fold change 

across donors (tan) from a single-cell mixed-effects model of other mTOR signatures across CD8 T-cell subsets. Tan lines with a 

coefficient effect size near 0 are temporally stable; pathways with an effect size above 0 are associated with irAEs; error bars are 95% 

confidence intervals of the contrast applied to mixed-model fits.  d. Sample-level baseline pseudobulk expression correlations of 

temporally stable baseline cell states associated with development of irAEs after avelumab treatment. Each box represents the 

Pearson correlation coefficient (two-sided) of donor pseudobulk data with the FDR adjusted p-value (FDR adjustment across all 200 

temporally stable baseline enrichments, subset of states shown in correlation matrix) shown with asterisks. e. Scatterplots of average 

donor expression for selected inter- and intracellular correlations  shown in 2d.  f. Data from Luoma et. al. 2020 (GSE144469) which 

profiled patients treated with combined checkpoint inhibitors who went on to have suspected colitis that was either confirmed on biopsy 

with overt colitis (red) vs. no evidence of colitis (blue) and healthy colon biopsies (grey) with CD3+ cells FACS sorted followed by 

single-cell RNA-seq. Bottom shows association testing using an aggregated binomial generalized linear mixed model of the 

association of cells from each cluster with the colitis vs. no colitis groups.  g. Expression of selected differentially expressed genes for 

each cluster of colonic T cells from a one cluster vs. all  ROC test (Seurat).  h. The average colitis T-cell expression of the mTOR-LE 

gene signature within effector CD8 T-cell clusters 10 and 4 across donors.  

 

(n=20) assessed with the same CITE-seq panel within gated CD8 TEMRA cells (Fig. S3a-c). mTOR-210 

LE genes such as SLC2A1, GAPDH, FADS1, FADS2, LDLR, and ADIPOR2 (Fig. 2a) suggested 

this enrichment may reflect a metabolic state downstream of mTOR, since these genes are 

involved in glucose and lipid metabolism. Therefore, we further tested 6 distinct mTOR signatures 

covering different aspects of the pathway from public databases (Fig. S3e) by repeated differential 

expression models using a k-cell permutation approach (see Methods). All mTOR signals as well 

as the TNF pathway were consistently enriched in the irAE group in CD8 TEMRA, (Fig. S3e), 

suggesting the mTOR-LE signal may have reflected an immune state controlled in part by 

upstream mTOR signaling. We next wondered if this state could be shared by other cell types. 

Using a more sensitive model accounting for variation at the single cell level and modeling 

expression of the 6 mTOR pathways defined above (see Methods) revealed mTOR signatures 220 

elevated at baseline in the irAE group within double-negative (DNT: CD4–CD8–), double-positive, 

and CD8+ subsets including CD8+ TEMRA, TEM, CD27–  naïve-like cells (Fig. 2c and Supplementary 

Table 2), while CD4 subsets were not enriched for mTOR pathways (Supplementary Table 2). 

Consistent with temporal stability of the original CD8 TEMRA mTOR-LE signature, baseline 

elevation in the irAE group was uncoupled from treatment effects in these subsets (Fig. 2a, tan 

estimate and errors near 0). Notably, mTOR signatures were not upregulated in the irAE group 

within the activated CD8+ CD38++ T-cell cluster which had a post-treatment phenotype 

overlapping with antitumor responses33 (see above Fig. 1c-d). To investigate molecular identity 

of these protein-based cell types independent of the irAE group differences, we integrated healthy 

donors’ and thymic cancer patients’ CITE-seq data into a joint CD8 T-cell map (Fig. S4a-d). CD8 230 

TEMRA were distributed across multiple clusters including cluster 1, which was enriched for mTOR-

LE genes and expressed genes controlling terminal effector fate HOPX,34 GZMH,35 and the 

transcription factor ZEB236 (Fig. S4c).  

To further characterize shared information between distinct baseline irAE-associated enrichment 

signals, we correlated baseline expression of enriched pathway leading-edge genes across 

subjects both within and between cell types (Fig. 2d, Fig. S2c). Supporting our hypothesis that 

CD8 TEMRA mTOR captured a more global irAE-associated metabolic state, as reflected by 

mTOR’s elevation across different effector and naive CD8 subsets in the irAE group (Fig. 2c), 
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CD8 TEMRA mTOR-LE expression correlated with other irAE-associated metabolic and 

inflammatory signaling pathways across subjects (top row of Fig. 2d). For example, the CD1c DC 240 

inflammatory signaling and TEMRA mTOR phenotypes were correlated across donors (inset in blue 

in Fig. 2e). The level of the TEMRA mTOR signal was correlated with TEMRA TNF signaling (Fig. 2e) 

and this TNF signal was associated with the level of innate-cell mTOR and inflammatory signaling 

(Fig. 2d, e). The irAE baseline innate inflammatory and metabolic phenotype appeared distinct 

from states related to interferon tone, as mDC interferon signaling was negatively enriched in the 

irAE group and negatively correlated with metabolic and inflammatory states across subsets. 

Together, these correlated cell phenotypes suggest stable inter- and intracellular rewiring of 

inflammatory and metabolic states comprising a shared immune set point of patients primed 

toward development of autoimmunity after treatment with avelumab. 

Assessing irAE-associated T-cell signature in tissue-localized T cells associated with ICI-250 

induced colitis  

The circulating CD8+ T-cell set point signature we identified may phenotypically overlap with those 

found in tissues associated with adverse immune reactions. We investigated this further by 

assessing our CD8+ T-cell signatures in single-cell RNA sequencing data obtained from a 

published study of CD8+ T cells isolated from colonoscopy biopsies of healthy donors (n=8) and 

patients with melanoma with (n=8) and without (n=6) active ICI-induced colitis20 (Fig. 2f, Fig. S5a). 

We focused on eight CD8+ T-cell clusters defined by unsupervised clustering; three of these CD8 

clusters were specific to the CD8+ T cells isolated from colitis lesions (Fig. 2F), all of which had 

an effector phenotype based on mRNA expression (Fig. 2g). We further examined cluster 4 

(“effector 1”) and cluster 10 (“effector 2”) as these had sufficient numbers of cells after aggregation 260 

across subjects (see Methods). Within these T-cell clusters, donors with colitis had higher relative 

expression of the mTOR-LE gene signature compared to T cells from either healthy donors or 

ICI-treated melanoma patients without colitis (Fig. 2h). Interestingly, BHLHE40, a member of our 

mTOR-LE signature, is the gene with the most significant differential expression between ICI-

induced colitis vs. non-colitis in cluster 10 (effector cluster 2). This gene is a crucial regulator of 

cytokine production associated with autoimmune responses,37 which is consistent with the notion 

that the mTOR-LE gene signature reflects a “poised” metabolic/inflammatory phenotype. 

Discussion  

In this work we identify a set of highly interpretable multimodal molecular states associated with 
ICI response and adverse events. We found multiple cell functional states linked to ICI response 270 

were also likely coupled to those involved in irAEs. However, patients with post-treatment irAEs 
shared a common baseline immune set point, reflecting elevated inflammatory tone and metabolic 
differences across the innate and adaptive immune systems. Our analysis suggested that this 
baseline set point may be tuned by common upstream regulators such as mTOR, which is known 
to regulate metabolic states such as hypoxia.38 Given the role of mTOR inhibitors as both 
antitumor agents and suppressants of autoimmunity, our results provide the rationale for 
evaluating the concurrent use of mTOR inhibitors with ICI in an attempt to diminish the risk of 
developing irAEs while preserving the antitumor effects of ICI. Intriguingly, a case report of a renal 
allograft patient with melanoma treated with an ICI and an mTOR inhibitor found the antitumor 
effect could be preserved while the autoimmune toxicity could be limited.39  However, further 280 

studies are needed to confirm these observations.  
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Our study has several limitations. Multimodal single-cell profiling of more than 190,000 cells 
created a high-resolution map of cell states, but the number of patients included in our study is 
limited and, due to experimental constraint at the time of this experiment, samples were split 
across two batches. We have previously found staining batch has limited impact on technical 
effects in CITE-seq data 40 16. However, assessment of batch effects across sample groups was 
limited due to the small sample size confounding in this dataset. Future single-cell analysis of 
irAEs could include additional subjects to assess the generalizability of the molecular states we 
derived herein. The generalizability of these findings to other types of cancers and ICIs could also 
be assessed in future work, although we did find overlap in signals within tissue autoimmunity 290 

from melanoma patients treated with different ICIs. Finally, it will be interesting to link differences 
in immune cell states detected from blood with those at the tissue level from sites of involvement 
by the irAEs. While these clones would be difficult to trace in humans, lineage tracing mouse 
model systems could be informative in studying the origins of these cells. Together, our dataset, 
analysis, and curated results can serve as both a framework and a rich source of hypothesis-
generating data to inform future precision immunotherapy research on biomarkers and treatment 
strategies for irAEs.   
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Clinical/sample collection  

Patients with advanced thymic cancers were enrolled in clinical trial NCT03076554 approved by 

the NCI’s Institutional Review Board and received avelumab, an anti-PD-L1 antibody, every two 

weeks. PBMC samples were collected before starting therapy, at the end of every treatment cycle, 330 

and at the onset of irAEs. No patients had any history of autoimmune disease prior to treatment. 

Patient characteristics are listed in Supplementary Table 4.  

 

Multiplexed CITE-seq single-cell transcriptome and protein profiling  

Cells were thawed in RPMI with 10% FBS and washed and stained in 1xPBS with 0.04% BSA. 

CITE-seq was performed as previously described in Kotliarov et al. using the same antibody 

panel. Donor cells were stained with sample barcoding antibodies,41 washed, and pooled into a 

single tube; two staining batches were used to accommodate a greater number of samples than 

available barcode antibodies. Although a single batch design was planned using lipid indexing 42, 

a subset of samples had red cells noticeable in the PBMC prep; we therefore used HTO staining 340 

in 2 batches due to unknown effect of residual RBC membranes on LMO staining (Supplementary 

Table 4).Pooled cells were stained with a concentrated optimized panel of 86 antibodies (including 

4 isotype controls; anti-mouse (rather than anti-human) CD206 was incorrectly included in the 

panel and not considered in the analysis). The stained cell pool was then washed and prepared 

according to the 10X Genomics cells partitioned across eight lanes of the 10X Genomics 

chromium microfluidic instrument per staining batch. Sequencing libraries were prepared using 

the 10X Genomics 3’ assay with version 3 reagents. Antibody-derived tag (ADT) libraries from 

sample barcode antibodies and surface phenotyping antibodies were prepared according to the 

publicly available protocol on cite-seq.com. Sequencing was performed on an Illumina NovaSeq 

system.  350 

 

Normalizing and denoising CITE-seq protein levels and protein-based clustering 

After sample demultiplexing and doublet removal based on sample barcoding antibodies, CITE-

seq surface protein data were normalized and denoised using dsb43 to correct protein-specific 

background noise using ADT reads in empty droplets and correct technical cell-to-cell variations 

using isotype controls/models fitted to each cell. Default dsb algorithm parameters  were used 

(denoise.counts = TRUE, use.isotype.controls = TRUE). The normalized values were then batch 

corrected using limma. Single cells were clustered using a Euclidean distance matrix formed from 

the normalized protein values as input to spectral clustering using Seurat version 3.1.5.44 A total 

of 44 cell clusters were annotated based on protein expression.  360 

 

 

Analysis of aggregated transcriptome data within protein-based clusters  

Gene expression counts were aggregated into a pseudo-bulk library within each protein-based 

cluster by adding counts for each sample x cell type into a summed count matrix, and cell types 

without representation (e.g., donor-specific clusters) were excluded from analysis. The 

aggregated counts for the n=18 samples across each cell type were normalized using the trimmed 

means of M values method45 and genes were retained which had a pooled count per million above 

3 across sufficient samples based the edgeR filterByExprs function. Filtering genes in a cell type-

specific manner removed genes from analysis unexpressed by a given cell type (e.g., genes 370 

specific to a different lineage) and ensured assumptions of the model to derive precision weights46 
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used to account for variations in sample quality/library size were met, i.e., the log count per million 

vs. fitted residual square root standard deviation had the expected monotonically decreasing trend 

within each cell type (see below).  

 

Estimating subject and group-level effects within protein-based clusters 

Target estimates of statistical analysis were treatment and group-level transcriptional effects 

within the protein-based clusters defined above. Models were fitted to single-cell and aggregated 

data (see below). To assess these effects, we contrasted fitted values of fixed and mixed effects 

linear models of gene expression within protein clusters. A contrast matrix L was constructed with 380 

a single combined factor variable group.time corresponding to irAE outcome group and time point 

relative to treatment with levels 1 = irAE baseline, 2 = irAE post-avelumab, 3 = no irAE baseline, 

4 = no irAE post-avelumab (columns, below). The matrix was used to make the following 

comparisons (rows) based on fitted model values (see below) 1) ICI treatment effects–across all 

subjects, 2) ICI-associated irAE effects–the fold change difference between groups and 3) 

baseline effects–the baseline difference between the irAE and non-irAE group.  

 

𝐿 =  [
−0.5 0.5 −0.5 0.5
−1 1 1 −1
1 0 −1 0

] 

 

Mixed effects models on aggregated data to estimate treatment effects across donors and 390 

fold change differences between groups  

Estimation of avelumab treatment effect across all donors and the difference in treatment effects 

between irAE groups was modeled with a mixed-effects model including a varying effect for 

subject ID to model variation in baseline expression. Models were implemented with the 

variancePartition package 'dream' method47 to fit models with precision weights in a mixed effects 

model using lme4.48 For each gene we applied the formula f1 = gene ~ 0 + group.time + 

(1|subjectID) and fit models using the function `dream`. The fitted value for expression y of each 

gene g corresponds to: 

 

 𝑦𝑔 = 𝛽0𝑔 + 𝑥𝛽1𝑔 + 𝜀𝑔  400 

 

𝛽0𝑔 = 𝛾0 + 𝑆0 

 

𝑆0 =  𝑁(0, 𝜏𝑔
2) 

 

𝜀𝑔 = 𝑁(0, 𝑑𝑖𝑎𝑔(𝑤𝑔)𝜎𝜀
2) 

 

Where x represents a combined group.time factor variable defined above, 𝛽0 corresponds to the 

(1|subjectID) term to model the variation across subjects S around the average 𝛾0 baseline 

expression, and errors 𝜀𝑔 are modeled with precision weights 𝑤𝑔 calculated using the voom46 410 

method. The first two rows of contrast matrix above were applied to estimate 1) the coefficients 

for the treatment effect across all donors and 2) the difference in fold changes between the irAE 

and non-irAE groups from mixed-effect model fits.  

 

Modeling baseline states associated with development of irAE  
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The third row of the contrast matrix above was used to estimate baseline differences using a 

fixed-effects model with limma with the function lmFit using voom46 precision weights as above in 

a fixed-effects model. The Empirical Bayes moderated t statistics for each gene comparing the 

irAE group to the non-irAE group were calculated using the limma49 eBayes function. After gene 

set enrichment (see below “Enrichment testing of hypothesis set and unbiased pathways in model 420 

contrasts”), we defined the subset of these baseline states associated with later irAEs which 

exhibited temporal stability over the course of treatment. The pathways enriched in the irAE group 

with adjusted p values < 0.01 were further filtered by removing any enrichments evidence of 

kinetic change (including weak evidence). For each enriched pathway within each cluster, if either 

the treatment across donors or the irAE-associated treatment effect enrichments (see below 

“Estimating avelumab treatment effects across donors and between groups”)  had adjusted p 

values of 0.1 or less and were either positively or negatively enriched, these were considered 

kinetically altered by treatment for the purpose of filtering the baseline signals. These kinetically 

altered signals were subtracted from the baseline enrichments in a cell type-specific fashion, and 

the remaining enriched baseline pathways associated with development of post-treatment irAEs 430 

were considered temporally stable states. 

 

 

Single-cell mixed-effect models  

The same formula f1 above (see “Mixed effects models on aggregated data to estimate treatment 

effects across donors and fold change differences between groups”) was used in a linear mixed 

model on expression of gene modules within single cells in specific T-cell subsets. The model 

estimated variation at the single-cell level instead of at the individual donor aggregated level and 

otherwise corresponds to the same model formula as described above without voom 

observational weights in the error term, i.e.,  440 

𝜀 = 𝑁(0, 𝜎2) 

 

Gene expression of each gene g in each cell i was normalized log transformed with library size 

scaling factors using the Seurat function NormalizeData() with normalization.method = 

‘LogNormalize’ to implement the transformation:  

 

log (1 +  
105 × 𝑈𝑀𝐼𝑖,𝑔

∑ 𝑈𝑀𝐼𝑖
) 

 

Average expression of gene modules/pathways was then calculated for each module for each 

single cell and standardized within each protein-based subset by subtracting the mean and 450 

dividing by the standard deviation of the average score. Models were fit using the R package lme4 

and the treatment effect across donors, and the baseline difference between irAE and no irAE 

groups was estimated using the contrast matrix L above with the emmeans package.50 Models 

were checked for convergence criteria and no models were flagged as having singular fits. 

 

Enrichment testing of hypothesis set and unbiased pathways in model contrasts  

 

To test enrichment of pathways based on the estimated gene coefficients corresponding to the 

three effects defined above, we performed gene set enrichment analysis using the fgsea 

package,51 using 250,000 permutations of the ranked gene list to form null distributions for p 460 
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values; genes were ranked based on the empirical Bayes moderated t-statistic for the baseline 

comparison of irAE status or with the raw t-statistic for mixed-effect models comparing treatment 

effects over time. Two gene sets were assessed: first a hypothesis set of modules curated from 

the Li et al. Blood Transcriptional modules,52  MSigDB Hallmark,53 Reactome pathways,54,55 and 

curated from literature56-58 were tested for enrichment (Supplementary Table 3); the full MSigDB 

Hallmark pathways were tested independently. The Jaccard similarity of enrichments within cell 

types was calculated using the geneOverlap59  package.  

 

k-cell permutation profiling of CD8 T-cell signatures and enrichment 

To assess the robustness of gene set enrichments, TEMRA cells were manually gated based on 470 

dsb normalized CITE-seq protein expression of CD3,CD8,CD45RA, and CD27. The same cells 

were gated from the previously published data on 20 healthy donors from Kotliarov et al., and the 

average expression of the mTOR-LE genes was compared across thymic cancer irAE groups and 

healthy donors using a non-parametric Wilcoxon rank test. To account for variability in the number 

of cells per donor in both manually gated and unsupervised TEMRA clusters, we quantified stability 

of enrichment to cell sampling variations. We re-ran the pseudobulk baseline differential 

expression model (as described above “Modeling baseline states associated with development 

of irAE”) 100 times with libraries constructed from random k-cell samples (without replacement) 

of 45 cells from each donor. The k value of 45 was chosen as it was the median number of cells 

in the group (healthy donors) with the lowest number of gated TEMRA across all donors. Pseudobulk 480 

libraries were constructed and differential expression testing of the irAE vs. non-irAE groups and 

healthy donors was carried out as above using limma. Genes within each k sample were tested 

for enrichment using two complementary methods with highly concordant results. 1) genes were 

filtered for testing based on the pseudobulk expression profile of the k cell pool with a minimum 

of 3 counts per million based on the design matrix as above. 2) The same genes as in the original 

TEMRA cluster were fit with limma regardless of their expression status in the k cell pool. Genes 

were then ranked by empirical Bayes t statistic comparing irAE vs. non-irAE or irAE vs. healthy 

donors (not shown and highly concordant with irAE vs. non-irAE, as expected based on the 

average expression profiles in Supplemental Fig. 3b). Gene set enrichment was assessed using 

250,000 permutations of the gene rank list for the null distribution, as described above.  490 

 

Integrated analysis of healthy donors and thymic cancer patients 

 

Seurat version 3.1.544 was used to integrate healthy donor and thymic cancer PBMC data using 

healthy donors as the reference dataset. Regularized Pearson residuals60 were used to normalize 

data for integration with a covariate for subject. Integrated data were clustered using 30 principal 

components. Differential expression was compared between integrated clusters with an ROC test 

in Seurat (FindAllMarkers, test.use = ‘roc’). Immune cells from cancer patients often clustered 

more distinctly; however, this shared state map based only on mRNA helped further define mRNA 

substates irrespective of the group comparisons described above.  500 

 

Analysis of colonic T cells from patients with and without colitis following checkpoint 

inhibitor treatment from Luoma et al. 2020 

We reanalyzed the colonic T-cell data from Luoma et al. (GSE144469) which included three 

patient groups: healthy donors, patients treated with ICIs with subsequent colitis (irAE group) and 

without colitis (non-irAE group). T cells were isolated from the site of the colitis lesion in the irAE 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.05.494592doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.05.494592


 

15 
 

group. T-cell single-cell mRNA data were clustered using 30 principal components from 2000 

variable genes (FindVariableFeatures with selection.method = ‘vst’) using Seurat version 3. 

Differential expression of genes between clusters was carried out using a one-cluster vs. all-ROC 

classifier implemented in Seurat. Cluster association with irAE group status was carried out with 510 

an aggregated binomial mixed-effects model to estimate the proportion p of cells in each cluster 

c from each subject S belonging to each group g accounting for within-donor replicated cells (i.e., 

pseudoreplication) in each cluster. The model formula n/total ~ IRAE + cluster + IRAE:cluster + 

(1|subjectid) was fit using lme4 with the glmer function (family = ‘binomial’) and weights parameter 

equal to the total number of cells from each donor, taking the form:  

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑐) = 𝛽0𝑠 + 𝑐𝛽1𝑝 + 𝑔𝛽2𝑝 + 𝑐𝑔𝛽3𝑝 +  𝜀𝑝  

 

𝛽0𝑠 = 𝛾0 + 𝑆0 

 520 

𝑆0 =  𝑁(0, 𝜏𝑝
2) 

 

𝜀𝑝 = 𝑁(0, 𝜎𝜀
2) 

 

 

Where p (proportion) was equal to ncells/total cells for each donor, c = cluster ID and g = group 

ID (irAE vs. no irAE). Data were fit in aggregated format at the level of cells per sample x cell type 

combination. The fitted marginal means were calculated for irAE group status conditional on 

cluster ID and back transformed to the log odds space using the emmeans package.  

 530 

Code availability 

Analysis code and documentation to reproduce this work is available in the  

repository: https:// https://github.com/niaid/irAE_manuscript 

 

Data availability  

Links to data generated in this study will be made available in the repository: https:// 

https://github.com/niaid/irAE_manuscript 

 

 

540 
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Supplemental Figure 1
a. Blood creatine kinase (CK) levels (y-axis) vs. time from the initiation of avelumab treatment in patients profiled with CITE-seq b. Sample 
multiplexing and CITE-seq experiment scheme. c. Left–Uniform manifold approximation projection (UMAP) of PBMC colored by main immune cell 
lineages with a subset of the map expanded (inset) containing the T cell subsets indicated in the box. Right–the distribution of the number of cells 
per subset for the clusters shown (top, main lineage, bottom, the T cell subsets shown in the bottom UMAP plot). d. CITE-seq dsb normalized and 
denoised surface protein expression from single cells in bi-axial plots with the corresponding cells in density plots colored by the spectral clustering 
annotation. The protein phenotypes align with known canonical cell types which enhances the interpretability of mRNA states associated with the 
clinical outcomes defined in Fig. 1a.
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Supplemental Figure 2
a. UpSet plot of the intersection of leading edge genes for cell state type I (treatment effect) in CD38++ CD8+ T cells shown in Fig 1c. b. As in (a) for classical 
monocyte enrichments shown in Fig 1e. c. An expanded version of the baseline cell state correlation map shown in fig 2d. Sample level baseline pseudobulk 
expression correlations of temporally stable baseline states associated with development of later irAE. Each box represents the Pearson correlation coefficient 
(two sided) of donor pseudobulk data with all correlations with FDR adjusted p value < 0.02 not shown..
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Supplemental Figure 3 
a. Manually gating CD8 TEMRA cells from healthy donors and thymic cancer patients as CD3+ CD8+ CD62L- CD45RA+ CD27- based on dsb normalized protein 
expression.  b. Average expression of the leading mTOR-LE gene signature in the manually gated subsets.  c. Robustness assessment of mTOR signature 
enrichment in irAE vs non-irAE thymic cancer patients and healthy donors; k=45 random cells were re-sampled from each donor to form a downsampled pseudobulk 
library the resampling procedure was repeated 100 times each followed by a full reanalysis of the weighted pseudobulk model with gene set enrichment based on 
effect size for the contrast indicated. Grey lines reflect the n=100 down sampled analysis with enrichment from the analysis using the full data (all cells from each 
donor) shown as the black line and the original enrichment signal from the TEMRA cluster in red.  d. As in c; showing the full distribution of normalized enrichment 
scores across the k-cell permutation testing procedure. e. UpSet plot of mTOR signatures tested in (d) with gene membership in each module shown. 
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Supplemental Figure 4
a. CD8 T cells from the n=20 healthy donor cohort were used as a reference dataset on which to project thymic cancer patient cells to form an integrated CITE-seq 
healthy and cancer T cell map. Cells are colored by integrated assay clustering using Seurat based on 2000 genes regularized Pearson residuals values. The density of 
the TEMRA cells from the thymic cancer cohort are shown overlaying the integrated mRNA based clusters. The density of cells with mTOR score > 3 absolute deviations 
from the median mTOR signature score is shown second from right. The right-most UMAP is as above, but for the density of g2m phase score.  b. The proportion of cells 
from each donor belonging to each cluster in the integrated clustering. c. Differential expression of markers between clusters based on regularized pearson residuals 
with donor effect regressed out, ROC test implemented in Seurat. d. dsb normalized protein expression in clusters as in (c).
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Supplemental Figure 5 
a. UMAP projection of CD3+ cells from melanoma and healthy colonic biopsies; colors indicate clusters derived from graph-based clustering based on 30 principal 
components from regularized Pearson residuals of 2000 genes. b. Average cluster expression of select genes as shown in Luoma et al. 
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