ABSTRACT
Cellular senescence is a stress response that activates innate immunity. However, the interplay between senescent cells and the adaptive immune system remains largely unexplored. Here, we show that senescent cells display enhanced MHC class I (MHC-I) antigen processing and presentation. Immunization of mice with senescent syngeneic fibroblasts generates CD8 T cells reactive against both normal and senescent fibroblasts, some of them targeting senescence-associated MHC-I-peptides. In the context of cancer, we demonstrate that senescent cancer cells trigger strong anti-tumor protection mediated by antigen-presenting cells and CD8 T cells. This response is superior to the protection elicited by cells undergoing immunogenic cell death. Finally, induction of senescence in patient-derived cancer cells exacerbates the activation of autologous tumor-reactive CD8 tumor-infiltrating lymphocytes (TILs) with no effect on non-reactive TILs. Our study indicates that immunization with senescent cancer cells strongly activates anti-tumor immunity, and this can be exploited for cancer therapy.
STATEMENT OF SIGNIFICANCE Our study shows that senescent cells are endowed with a high immunogenic potential, superior to the gold standard of immunogenic cell death. The induction of senescence in cancer cells can be exploited to develop efficient and protective CD8-dependent anti-tumor immune responses.
Competing Interest Statement
M.S. is shareholder of Senolytic Therapeutics, Life Biosciences, Rejuveron Senescence Therapeutics and Altos Labs, and is advisor of Rejuveron Senescence Therapeutics and Altos Labs. The funders had no role in the study design, data collection and analysis, decision to publish, or manuscript preparation.
Footnotes
Financial support: J.A.L.-D. and M.K.: Spanish Association for Cancer (AECC). E.C. laboratory: Fonds de recherche du Québec – Santé (FRQS), the Cole Foundation, CHU Sainte-Justine and the Charles-Bruneau Foundations, Canada Foundation for Innovation, the National Sciences and Engineering Research Council (NSERC) (#RGPIN-2020-05232), and the Canadian Institutes of Health Research (CIHR) (#174924). F.P. laboratory: Karolinska Institute Starting Grant, Starting Grant from the Swedish Research Council (2019_02050_3), and by grants from the Harald Jeanssons Foundation, the Loo and Hans Osterman Foundation, and Cancerfonder (21 1637 Pj). M.S. labpratory: IRB and “laCaixa” Foundation, and by grants from the Spanish Ministry of Science co-funded by the European Regional Development Fund (ERDF) (SAF2017-82613-R), European Research Council (ERC-2014-AdG/669622), and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement of Catalonia (Grup de Recerca consolidat 2017 SGR 282).
Conflict of interests: M.S. is shareholder of Senolytic Therapeutics, Life Biosciences, Rejuveron Senescence Therapeutics and Altos Labs, and is advisor of Rejuveron Senescence Therapeutics and Altos Labs. The funders had no role in the study design, data collection and analysis, decision to publish, or manuscript preparation.