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fraction of aliphatic and aromatic residues, although we note the differences between legacy
and V2 are between 0-2%. Our analysis confirms that human transcription factors are highly
disordered in general, while also demonstrating that the composition of transcription factor IDRs
does not substantially change when comparing metapredict V2 to legacy metapredict. This
suggests that rather than altering the threshold for disorder identification based on composition,
metapredict V2 is taking advantage of specific structural patterns encoded through the ppLDDT
component of the predictor.

In summary, all available evidence supports the conclusion that metapredict V2 offers enhanced
performance and accuracy, especially for sequences that may undergo folding-upon-binding
that are typically difficult for canonical predictors to classify correctly.

Figure 5. Metapredict V2 provides a more accurate prediction of IDRs in transcription factors. (A)
Overview of disordered regions in the yeast transcription factor GCN4 (Uniprot ID P03069). Metapredict
legacy misses most of the N-terminal portion of the disordered region, while Metapredict V2 correctly
identifies this region and the boundary between the folded DNA binding domain (DBD). (B) Human
transcription factors ordered by the fraction of disordered residues shown for both legacy and V2
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versions. (C) Fraction of disorder in human transcription factors as calculated using legacy and V2
versions. (D) Average amino acid composition for IDRs in human transcription factors as identified by
legacy and V2 versions.

Assessment against non-natural proteins

While incorporating ppLDDT information into metapredict has improved accuracy for naturally
occurring proteins, a possible concern is that this may have a detrimental effect on non-natural
proteins. This could include protein sequences with mutations, de novo synthetic proteins, or
random peptides synthesized without evolutionary constraints or structure-informed design
principles. To explore this possible weakness, we examined examples of each of these three
cases.

The polypeptide encoded by exon 1 (Ex1) of the human Huntingtin protein (Uniprot ID P42858)
is well-studied in the context of Huntington’s disease (15-18). This ~100-residue protein
fragment is an aggregation-prone disordered protein. Ex1 contains a 21-residue glutamine tract
that undergoes repeat expansion and this expansion results in an increased propensity for
aggregation (18-22). With this in mind, the Q,, variant of Ex1 represents a protein with a
disease-associated repeat expansion that is not found in the canonical human protein, yet has
been well-characterized by a slew of biophysical methods including simulations, circular
dichroism spectroscopy, single-molecule spectroscopy, and nuclear magnetic resonance (NMR)
spectroscopy (18-25).

Given that coiled-coil domains are often glutamine-rich, we wondered if a Q,, variation of Ex1
may mislead metapredict V2 and AlphaFold2 predictions into predicting a folded protein (26).
Indeed, structure predictions with AlphaFold2 performed using ColabFold yielded a
high-confidence prediction for a single helix extending through the 17-residue N-terminus (which
is known to possess transient helicity) into the 40-residue GIn repeat (2, 27) (Fig. 6A, B).
Encouragingly, however, metapredict V2 correctly predicts this entire sequence to be
disordered, with a slight decrease in predicted disorder around the residues known to form a
transient helix in the N-terminal fragment (Fig. 6c). These results help assure that even for
sequences that AlphaFold2 demonstrably and confidently predicted incorrectly, metapredict V2
can delineate disordered regions from folded regions.
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Figure 6. Metapredict V2 correctly predicts a Q,, variant of the Huntington Exon1 (Ex1) to be disordered.
(A) Amino acid sequence of the Q, isoform of Ex1 and predicted structural models from
ColabFold-derived AlphaFold2 prediction colored by pLDDT scores (blue is high, red is low). (B)
Per-residue pLDDT scores from the top five AlphaFold2 models, with the high-confidence helix
highlighted. (C) Ex1 is predicted to be 100% disordered, although the per-residue disorder dips around
the N-terminal region that possesses transient helicity, consistent with ongoing NMR work that suggests
this region induces helicity in the polyglutamine tract (23).

We next wondered if metapredict V2 was able to correctly classify de novo synthetic proteins. To
explore this, we took three protein sequences and structures generated by a deep hallucination
network approach for de novo sequence design (28). Metapredict V2 is not only able to
unambiguously predict all three proteins to be folded but correctly identifies the boundary
between the disordered HIS-tag and the N-terminal methionine in the folded domain without
error (Fig. 7). This analysis suggests that even for de novo synthetic proteins, metapredict V2
retains a high level of accuracy.
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Figure 7. Metapredict V2 correctly predicts the disordered regions in three de novo proteins generated by
a deep hallucination network (28). In sequences 0738 and 0217, the deposited structure and sequence
possess an N-terminal HIS-tag, which metapredict V2 correctly identifies as being disordered, placing the
boundary between the HIS-tag and the folded domain at the initiator methionine. In the bottom sequence
(sequence 0515) no such HIS tag is present, and no residues are predicted to be disordered.

Finally, we wondered if polypeptides with randomly selected amino acid composition (but no
deliberate design rules) could be correctly classified as disordered or ordered with metapredict
V2. Tretyachenko et al. recently showed that soluble, randomly generated polypeptide
sequences can possess secondary structure (29). Specifically, using compositionally-biased
starting libraries, the authors generated, expressed, purified, and measured circular dichroism
(CD) spectra for 22 random, synthetic proteins. By clustering these sequences into two groups
based on the CD spectra, the authors defined two sets of protein sequences that show either
disordered or ordered structural tendencies yet are devoid of any evolutionary constraints. With
this dataset, we wondered if metapredict would be able to correctly identify the disordered and
ordered proteins from the sequence.

We took these 22 sequences, determined the fraction of residues in IDRs, and classified a
protein as “disordered” if over 50% of the residues were found in IDRs or “ordered” if not.
Encouragingly, metapredict V2 correctly classified all but one of the sequences, while
metapredict legacy performed much more poorly (Fig. 8). Curiously, the one sequence
metapredict V2 appeared to get wrong has some residual helical content (Fig. S2 in (29)) and
undergoes a major increase in helical content upon the addition of the helicity-inducing osmolyte
2,2,2-trifluoroethanol (TFE) (29). We speculate that this sequence may be a meta-stable
transient helix, poised to undergo a helix-to-coil transition, such that it sits on the boundary
between folded and disordered. In summary, metapredict V2 reveals an encouraging ability to
delineate between folded and disordered proteins and protein regions, irrespective of the origin
of the protein sequence.
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Figure 8. Metapredict V2 correctly classifies randomly generated and experimentally-verified sequences
as disordered or ordered. These sequences were taken from (29), and the classification of “ordered” or
“disordered’ was based on the clustering of CD spectra with one another. Ordered sequences are those
that cluster in a group of CD spectra that possess features consistent with secondary structure elements.
The Sequence ID reflects those used in the original paper.
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DISCUSSION

Proteins that are entirely disordered or contain disordered regions play important roles in
numerous biological processes (30-32). With this in mind, the ability to quickly, easily, and
accurately predict disordered regions from protein sequence information is a central feature in
de novo sequence analysis. It was this need that led us to develop and implement metapredict,
a deep-learning-based meta-predictor of disorder.

Our first implementation of metapredict offered a relatively accurate protein disorder predictor
capable of predicting disorders at extremely fast speeds (1). Here we describe an update to
metapredict (metapredict V2) that improves prediction accuracy by integrating predicted pLDDT
scores (Fig. 2, 3). Although execution times for metapredict V2 are ~50% of that of legacy
metapredict, metapredict V2 predicts protein disorder at a rate of between ~6,000 and ~12,000
residues per second, depending on the hardware used (Supplemental Figure 1). To put this in
context, metapredict V2 is still capable of predicting the disorder of every protein in the human
proteome in 40-60 minutes, depending on the hardware, and remains among the fastest
disorder predictors currently available. Importantly, for users who have integrated legacy
metapredict into their pipeline or rely on the speed that legacy metapredict provides, this version
remains fully accessible both from the command line and from within Python.

Although metapredict V2 is slower than legacy metapredict, we feel that the improved accuracy
of metapredict V2 is sufficient to offset this loss in speed. When evaluating the accuracy of
metapredict V2 in comparison to 33 other disorder predictors (including legacy metapredict),
metapredict V2 was identified as the second most accurate disorder predictor, with the
difference between metapredict V2 and the most accurate currently available predictor being
just 0.281 residues per 100 predicted (Fig. 9). As described previously, metapredict is orders of
magnitude faster in execution time compared to the other high-performing predictors (1). As
such, we suggest metapredict V2 provides an ideal balance of speed, accuracy, and availability.

-
o
o

— 0.281 residues

Correctly scored
residues (per 100)

Figure 9. Comparing the accuracy of metapredict V2 and legacy metapredict to other disorder predictors.
This chart shows the rank order of predictors in residues correctly scored per 100 residues using true
positive and true negative values from the Disprot-PDB dataset. metapredict V2 is highlighted in grey and
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legacy metapredict is highlighted in blue. To ensure fairness, the per residue scoring here was done using
a hard disorder threshold, as opposed to the more accurate predict disorder domains ().

Despite metapredict V2 showing improved overall accuracy in all tests we have run to
date, there are some potential limitations in disorder prediction using this new version of
metapredict. These limitations stem primarily from the fact that metapredict V2 works by
combining disorder scores from legacy metapredict with predicted pLDDT scores. As mentioned
earlier, pLDDT scores are used for AlphaFold2 (AF2) predicted protein structures to quantify
how confident one can be in the predicted structure (2). The scores used to make metapredict
V2 were predicted pLDDT (ppLDDT) scores, which were generated using a BRNN trained on
AF2 pLDDT scores from 21 proteomes (1). Thus, if there are any consistent circumstances
where AF2 generates a high pLDDT score for a given disordered region or type of disordered
region, metapredict V2 will be unlikely to predict the region to be disordered. Indeed, a recent
publication highlighted examples where known disordered proteins or protein regions had high
AF2 pLDDT scores, which they found to be at least in part due to the disordered regions
undergoing conditional folding (4).

Interestingly, when we examined the ability of metapredict V2 to predict the disorder of
some proteins identified as having high AF2 pLDDT scores, despite being known to be
disordered, we found that metapredict V2 was often able to correctly identify the proteins as
being disordered (Fig. 4A, 4E). When we examined the predicted pLDDT scores for these
proteins, we found that our pLDDT predictor did not give these regions predicted pLDDT scores
as high as the actual AF2-generated pLDDT scores. This may suggest that our pLDDT predictor
does not always produce high pLDDT scores for some disordered regions, even though the
actual AF2 pLDDT scores for the same region are relatively high. However, we note that this is
not always the case, as we were able to identify some known disordered protein regions that
our pLDDT predictor generated high ppLDDT scores. In particular, AF2 and ppLDDT scores
occasionally predict structure for regions predicted to form unreasonably long alpha-helices.
Thus, these same proteins were not predicted to be disordered by metapredict V2. Nonetheless,
metapredict V2 still offers a substantial improvement in accuracy over legacy metapredict.
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METHODS

Proteomes used for metapredict V2 network training

21 different proteomes were used to train metapredict V2, as listed below. For each sequence in
each proteome, we computed the metapredict hybrid disorder profile. These data were then
used as the training/test data for a PARROT-derived BRNN-BRNN network.

UP000002485_ 284812 _SCHPO,UP000000805_ 243232 METJA,
UP000001450_36329_PLAF7, UP000005640_9606_HUMAN, UP000001584_83332_MYCTU,
UP000001940_6239_CAEEL, UP000000625_83333_ECOLI, UP000002296_353153_TRYCC,
UP000000803_7227_DROME, UP000007305_4577_MAIZE, UP000002195_44689_DICDI,
UP000002311_559292_ YEAST, UP000002494_10116_RAT, UP000008153_5671_LEIIN,
UP000008816_93061_STAA8, UP000006548_3702_ARATH, UP000008827 3847 SOYBN,
UP000000437_7955_DANRE, UP000000589_10090_MOUSE, UP000059680_39947 ORYSJ,
UP000000559_237561_CANAL

Metapredict V2 BRNN-LSTM network training

Using PARROT, we trained a bidirectional recurrent neural network with long short-term memory
(BRNN-LSTM) on the metapredict hybrid scores. This network was trained as a regression
model using one-hot encoding, a hidden vector size of 20, and 2 layers. In addition, we used a
learning rate of 0.001, a batch size of 32, and training was done using 200 epochs. The 363,265
sequences derived from the 21 proteomes were split using a 70:15:15 split for training,
validation, and testing, respectively.

Comparing Metapredict V2 with DisProt and CAID

Comparisons between Metapredict V2 and legacy metapredict utilized the same testing from the
CAID analysis as was carried out in the original metapredict manuscript (1). Briefly, CAID
analyses used the dataset provided by (8). These sequences were obtained from the DisProt
database (7). Accuracy was quantified using the Matthew’s Correlation Coefficient (MCC). A
cutoff value of 0.5 was used such that a predicted disorder value generated by metapredict V2
with a value greater than or equal to 0.5 was considered disordered whereas a value below 0.5
was not considered to be disordered. The Disprot-PDB dataset was used for accuracy analysis
because it contains regions that have been experimentally determined to be either disordered or
not disordered, allowing for the identification of true positive, true negative, false positive, and
false-negative predictions generated by metapredict V2.

Sequence analysis

Human transcription factors were taken from Lambert, Jolma, Campitelli et al. (11). Huntingtin
protein sequence was taken from https://www.uniprot.org/uniprot/P42858 with polyQ expansion
as described in (18). Structural modeling was performed using ColabFold with AlphaFold2 (2,
27, 33). Per residue helicity was computed using the DSSP algorithm as implemented in
SOURSOP (https://soursop.readthedocs.io/), a simulation package built on top of MDTraj (34,
35). Sequences and structures for synthetic proteins from deep hallucination design were taken
from (28) using PDB IDs 7K3H, 7M0Q, and 7MST. Sequences for random polypeptide

Page 16


https://www.uniprot.org/uniprot/P42858
https://soursop.readthedocs.io/
https://doi.org/10.1101/2022.06.06.494887
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.06.494887; this version posted July 6, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

metapredict v2

sequences were taken from (29). All sequences and code for sequence analysis figures as well
as the full output from the ColabFold prediction of HttEx1%*° are available on our GitHub
repository (see below for link).

Performance tests

All performance tests were carried out using a 2021 14” Apple MacBook Pro with the Apple M1
Max system on a chip (configured with 10 CPU cores and 24 GPU cores) and 64 GB of unified
memory. The number of residues per second was calculated by having the predictor (legacy
metapredict, metapredict hybrid, or metapredict V2) predict the disorder for 500 randomly
generated amino acid sequences of 500 amino acids in length and dividing the total execution
time for the prediction to complete by the number of residues predicted.

Human transcription factor analysis

Human transcription factors were taken from Lambert, Jolma, Campitelli, et al. (11). Code,
transcription factor FASTA files, and IDRs in SHEPHARD domains format are provided at
https://github.com/holehouse-lab/supportingdata/. Specifically, the associated files can be found
under the 2021/emenecker_metapredict 2021/v2/transcription_factors/ directory. To analyze
human transcription factors we recommend using SHEPHARD
(https://shephard.readthedocs.io/en/latest/overview.html).

Code availability

All code used in the original metapredict paper has been updated to work with metapredict V2
and can be found at https:/github.com/holehouse-lab/supportingdata/ under the
2021/emenecker_metapredict_2021/ directory.
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