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Abstract 27 

Host-associated microbiomes are essential for a multitude of biological processes. Placed at 28 

the contact zone between external and internal environments, the little-studied oral microbiome 29 

has important roles in host physiology and health. Here we investigate the contribution of host 30 

evolutionary relationships and ecology in shaping the oral microbiome in three closely related 31 

gorilla subspecies (mountain, Grauer’s, and western lowland gorillas) using shotgun 32 

metagenomics of 46 museum-preserved dental calculus samples. We find that the oral 33 

microbiomes of mountain gorillas are functionally and taxonomically distinct from the other 34 

two subspecies, despite close evolutionary relationships and geographic proximity with 35 

Grauer’s gorillas. Grauer’s gorillas show intermediate bacterial taxonomic and functional, and 36 

dietary profiles. Altitudinal differences in gorilla subspecies ranges appear to explain these 37 

patterns, proposing a close connection between dental calculus microbiome and the 38 

environment, which is further supported by the presence of gorilla subspecies-specific 39 

phyllosphere/rhizosphere taxa. Mountain gorillas show high abundance of nitrate-reducing oral 40 

taxa, which may contribute to high altitude adaptation by modulating blood pressure. Our 41 

results suggest that ecology, rather than evolutionary relationships and geographic proximity, 42 

primarily shape the oral microbiome in these closely related species.  43 

 44 

Background 45 

The microbial communities that are found on and inside multicellular organisms are not only 46 

remarkably diverse, but also play a crucial role in a vast set of biological processes, such as 47 

energy uptake (Arora and Sharma, 2011; Nieuwdorp et al., 2014), detoxification (Nichols et 48 
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al., 2019; Turner and Bucking, 2019), immune responses (Nikitakis et al., 2017; West et al., 49 

2015) and even neurochemical and hormonal processes that eventually influence behaviour 50 

(Suzuki, 2017; Vuong et al., 2017). The extensively studied gut microbiome is shaped by a 51 

multitude of factors, including host phylogenetic relationships, social interactions, and dietary 52 

adaptations (Moeller et al., 2016; Nishida and Ochman, 2018; Youngblut et al., 2019). In 53 

comparison to the gut microbiome, the oral microbiome has received far less attention. Yet, it 54 

is of particular importance, as it connects the external and the internal environments and is 55 

located directly at the entry point to the digestive and the respiratory tracts. The oral 56 

microbiome plays an important role in oral diseases, such as caries and periodontitis, and has 57 

been implicated in systemic disorders including cardiovascular disease (Nakano et al., 2011), 58 

atherosclerosis (Teles and Wang, 2011), Alzheimer’s disease (Olsen and Singhrao, 2015), 59 

several cancers (Flynn et al., 2016; Gao et al., 2016) and preterm births (Cobb et al., 2017).  60 

Although studies have linked oral microbiome composition to both dietary habits (Adler et al., 61 

2016; Hyde et al., 2014b; Janiak et al., 2021; Nearing et al., 2020) and host evolutionary 62 

relationships (Brealey et al., 2020; Ozga and Ottoni, 2021), it is unclear which of the two 63 

predominantly drives the evolution of the oral microbiome and how they interact. Early studies 64 

suggested that the oral microbiome is strongly heritable and mostly transferred vertically 65 

(Corby et al., 2007; Li et al., 2007), with neonate microbiomes resembling those of their 66 

mothers (Dominguez-Bello et al., 2010). Moreover, studies in wild animals have indicated that 67 

different species harbour distinct oral microbiota (Brealey et al., 2020; Ozga and Ottoni, 2021). 68 

Both observations suggest that host evolutionary relationships have a strong effect on oral 69 

microbiome structure. Other studies have highlighted the effect of diet on the oral microbiome 70 

(Janiak et al., 2021; Wade, 2013), for instance by uncovering differences between young 71 

infants and adults of humans and non-human primates, hence providing a potential link with 72 
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age-related dietary changes (Cephas et al., 2011). However, distinguishing between host 73 

evolutionary and ecological factors as well as their contribution to oral microbiome evolution 74 

remains difficult, as most previous studies have focused on rather distantly related host species 75 

that occupy distinct ecological niches (Boehlke et al., 2020; Li et al., 2013; Smith et al., 2021; 76 

Soares-Castro et al., 2019).  77 

In recent years,  dental calculus - the calcified form of dental plaque that forms on the teeth of 78 

mammals - has emerged as a useful material for the study of oral microbiomes across diverse 79 

mammalian species (Brealey et al., 2020; Fellows Yates et al., 2021; Ottoni et al., 2019; 80 

Warinner et al., 2014). Since dental plaque undergoes periodic mineralizations, it effectively 81 

fossilises on the living host, reducing postmortem contamination from environmental 82 

microorganisms (Warinner et al., 2015). It thus preserves a snapshot of oral and respiratory 83 

microbial communities (Warinner et al., 2014), dietary components (Adler et al., 2013; Radini 84 

et al., 2017; Sawafuji et al., 2020) and host DNA (Mann et al., 2018). Museum collections can 85 

be efficiently used for the study of oral microbiomes from wild animals (Brealey et al., 2020; 86 

Fellows Yates et al., 2021), minimising the exposure and disturbances associated with sampling 87 

from live hosts. Furthermore, the detection of damage patterns, a common verification method 88 

for ancient DNA (Briggs et al., 2007), can also be implemented on such historical specimens 89 

to distinguish endogenous taxa from modern contaminants (Fellows Yates et al., 2021). 90 

Previous research suggests that microbial communities in historical and modern dental calculus 91 

are remarkably similar (Velsko et al., 2019), therefore studying museum specimens provides 92 

reliable information about present-day microbiomes. The exceptional preservation in the 93 

calcified matrix also allows assembly of near complete metagenome-assembled genomes 94 

(MAGs) (Brealey et al., 2020). 95 
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In this study, we use dental calculus to uncover ecological and evolutionary factors that drive 96 

oral microbiome evolution in a group of closely related species. We focus on gorillas, which 97 

consist of two species, western gorilla (Gorilla gorilla) and eastern gorilla (G. beringei), each 98 

of which is further divided into two subspecies. Our sampling covers three of the four 99 

subspecies: western lowland gorilla (G. g. gorilla), Grauer’s gorilla (G. b. graueri) and 100 

mountain gorilla (G. b. beringei). Eastern and western gorillas diverged approximately 250,000 101 

years ago, with evidence for substantial gene flow until more recently (McManus et al., 2015; 102 

Xue et al., 2015). Western lowland gorillas are found in western equatorial Africa, primarily at 103 

low elevations below 500 m above sea level (masl). Their diet consists mainly of various plant 104 

parts and fruits (Rogers et al., 2004). The eastern subspecies - mountain and Grauer’s gorillas 105 

- occur on the eastern side of the Congo basin. They are estimated to have diverged from each 106 

other 10,000 years ago (Roy et al., 2014). Grauer’s gorillas occupy the largest altitudinal range 107 

of all gorillas, ranging from 500 to 2,900 masl (Plumptre et al., 2016). Mountain gorillas are 108 

found at even higher elevations, with most of the range of the Virunga Massif population above 109 

2,200 masl and extending to up to 3,800 masl. Consequently, these altitudinal differences lead 110 

to different dietary profiles among populations and subspecies (Doran et al., 2002; Ganas et 111 

al., 2004; Michel et al., 2022; Rogers et al., 2004; van der Hoek et al., 2021), primarily 112 

reflecting availability of fruits that are highly seasonal and become scarce with increasing 113 

altitude (Ganas et al., 2004).  114 

The presence of ecological and dietary differences in these closely related gorilla subspecies 115 

provides an opportunity to evaluate the effects of host evolutionary relationships and ecological 116 

factors on oral microbiomes. We used shotgun metagenomic sequencing of dental calculus 117 

samples from museum specimens (collected between 1910 and 1986) to taxonomically and 118 

functionally characterise the oral microbiota, as well as to assemble bacterial MAGs and 119 
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identify dietary components from the three gorilla subspecies.  Between closely related gorilla 120 

subspecies, ecology has a large impact on the taxonomic composition and function capacities 121 

of the oral microbiome. Our analyses highlight subspecies-specific differences that can be 122 

attributed ecological/dietary differences, and bacterial members of the oral microbiome that 123 

may contribute to adaptation to high-altitude lifestyle. 124 

 125 

Results 126 

Data pre-processing and confirmation of oral microbial signature 127 

We produced paired-end shotgun sequencing data from the gorilla dental calculus of 26 newly 128 

collected samples, and complemented these with an additional 31 dental calculus samples from 129 

previously published studies (Brealey et al., 2020; Fellows Yates et al., 2021) (Table S1). Four 130 

dental calculus samples were sequenced independently in this study and by Fellows Yates et 131 

al. (2021). At a later stage of the analysis, this set of technical duplicates allowed us to assess 132 

the effect of the dataset in our taxonomic analysis, but only the sample with the largest number 133 

of reads for each sample pair was retained for further analyses. 134 

Raw sequencing data consisted of, on average, 15,533,319 reads (mean value) per sample 135 

(ranging from 1,032 to 95,367,058; Table S1) and 105,653 reads per negative control (both 136 

extraction and library preparation, ranging from 19 to 1,132,867; Table S1). After raw sequence 137 

pre-processing (which included removal of poly-G tails, adapter and barcode sequences, 138 

merging of forward and reverse reads, and quality filtering), phiX and gorilla/human sequences 139 

were removed by mapping against respective reference genomes and the resulting unmapped 140 

reads were used for taxonomic classification using Kraken2 (Wood et al., 2019) with the 141 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.06.494923doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.494923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

standard database, which includes all bacterial, archaeal and viral genomes from NCBI. 142 

Samples with low read counts, low proportion of oral taxa, as well as duplicate samples (those 143 

processed at two different facilities), were removed (Methods). The final dataset consisted of 144 

46 dental calculus samples (13 western lowland gorillas, 17 mountain gorilla, 16 Grauer’s 145 

gorilla; Figure S1), each containing 561,978-77,307,443 reads (mean: 11,365,074, SD: 146 

15,577,988; Table S1). We then applied a multi-step procedure, relying on negative controls 147 

and museum environmental samples, to remove contaminant taxa (Methods). The final dataset 148 

contained a total of 1007 microbial species (in 430 genera), of which 3.4% (n=34) were 149 

members of the core hominid oral microbiome (Fellows Yates et al., 2021) and 4.2% (n=42) 150 

members of the Human Oral Microbiome Database (HOMD; (Chen et al., 2010); Table S2). 151 

These microbial species accounted for ca. 14% of the total microbial non-normalised 152 

abundance.  153 

The final dataset also included six genera that have been listed as common contaminants by 154 

Salter et al. (2014) and Weyrich et al. (2019), but contain known oral taxa (Chen et al., 2010; 155 

Fellows Yates et al., 2021), including Streptococcus oralis and Staphylococcus saprophyticus. 156 

Species belonging to these genera were retained after confirming, where possible, that they 157 

exhibit typical post-mortem DNA damage patterns (Methods). 158 

 159 

Partial mitochondrial genomes from dental calculus allow host subspecies identification 160 

We recovered host mitochondrial sequences from 44 of 46 samples, which we used to confirm 161 

gorilla subspecies identity. On average, 31.2% (0.44 - 94.2%; Table S3) of the reference 162 

mitochondrial genome was covered by mapped reads, with notable variation in the proportion 163 
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of genome covered and coverage depth (0.01 - 77.04%, average: 3.27%) between samples. 164 

Sample weight (information available for n=24 samples), sample age (n=36), or dataset (newly 165 

generated versus previously published by Fellows Yates et al. (2021)) (n=46) did not have an 166 

effect on mtDNA genome completeness (ANOVA, p>0.54), whereas host subspecies identity 167 

was marginally significant (ANOVA, F-value=3.12, p=0.054). Mountain gorillas had a larger 168 

proportion of the mtDNA genome covered by mapped reads than other gorilla subspecies. The 169 

cause of this difference is unknown but could be related to factors affecting the shedding of 170 

host DNA into the oral environment, such as differences in  dietary abrasiveness, salivary flow, 171 

or inflammation.  172 

To assist with host taxon assignment, we identified 403 diagnostic sites between western and 173 

eastern gorillas and 72 diagnostic sites between the two eastern gorilla subspecies (mountain 174 

and Grauer’s gorillas) using published gorilla mitochondrial genomes (Methods). In most 175 

samples, reads mapped to only a small number of diagnostic sites (Table S3). We accepted 176 

molecular taxon assignment for samples with reads mapping to at least six diagnostic sites in 177 

six separate reads. For six samples, data was insufficient to distinguish between eastern and 178 

western gorilla species and for additional six samples we could not reliably distinguish between 179 

mountain and Grauer's gorilla subspecies. In these cases, we accepted the host subspecies 180 

identification based on museum records, after consulting collection locality, where possible. 181 

All but one sample containing a sufficient number of diagnostic sites were successfully 182 

assigned to their reported subspecies. The exception was sample MTM010 (museum accession: 183 

631168, Swedish Museum of Natural History - NRM), which was confirmed to be a mountain 184 

gorilla, in accordance with the museum records, although it was previously reported as a 185 

western lowland gorilla based on preliminary genomic information (Fellows Yates et al., 2021). 186 
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 187 

Oral microbiome diversity and composition differ by host subspecies 188 

We evaluated the differences in microbial alpha diversity between gorilla subspecies by 189 

measuring species richness and community evenness (Figure 1). Host subspecies had only a 190 

marginal effect on the normalised microbial richness (ANOVA, p=0.061; Figure 1a) but a 191 

significant effect on the transformed community evenness (ANOVA, p<0.001; Figure 1b), with 192 

the microbial communities of mountain gorillas showing the lowest evenness. 193 

 194 

Figure 1. (a) Estimates of community richness, using Chao1 index and (b) community evenness, using Shannon 195 
index, alongside corresponding ANOVA results (tables). Pairwise comparisons in (a) and (b) show FDR-adjusted 196 
p-values of the Tukey’s test (NS=not significant, *p<0.05, **p<0.01). For the ANOVA models, sqrt(500-x) and 197 
exp(x) transformations were implemented on the Chao1 estimator and Shannon index values, respectively.  198 

 199 
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Microbiome composition differed by gorilla subspecies (Figure 2, Table 1). This effect 200 

persisted even after other potentially confounding factors, such as sequencing depth and 201 

dataset, were taken into account. Sequencing depth, included as read count, and dataset were 202 

significant factors for the presence-absence-based Jaccard measure, whereas neither of these 203 

factors significantly affected relative abundances as estimated with Aitchison distances (Table 204 

1). We confirmed that belonging to different datasets had little to no effect on relative 205 

abundance by considering three pairs of samples that were derived from the same museum 206 

specimen, but were independently sequenced in this study and in Fellows Yates et al. (2021): 207 

the duplicate samples appeared close to each other on ordination plots, in particular on the plot 208 

based on Aitchison distances (Figure S2). The fourth sample pair (G0004-IBA002) was 209 

excluded, as both replicates had lower than 3% oral component, according to microbial source 210 

tracking using FEAST (Shenhav et al., 2019) (Figure S3). Pairwise PERMANOVAs 211 

(PERMutational ANalysis Of VAriance) (Anderson, 2001) showed strong differentiation 212 

between mountain gorillas and the other two subspecies, using both presence-absence and 213 

abundance metrics (Table 1). Lastly, we found no significant effect of sex on the oral 214 

microbiome using a subset of samples that could be genetically sexed (n=38; Methods; Table 215 

S4). 216 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.06.494923doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.494923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

 217 

Figure 2. Principal coordinate analysis (PCoA) plots of the individual microbiomes based on a) Jaccard distance 218 
and b) Aitchison distance. Host subspecies is displayed in different colours, whereas the dataset is indicated by 219 
different shapes (circles for Fellows Yates et al. (2021) and triangles for the newly generated data). 220 

  221 
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Table 1. PERMANOVA results, showing the effect size (R2) and p-value of factors putatively contributing to the 222 
variance among sampled microbiota, using Jaccard (reflecting presence-absence of taxa) and Aitchison (reflecting 223 
relative abundance of taxa) distances. Pairwise PERMANOVA between subspecies show the effect size (R2) and  224 
p-values adjusted for false discovery rate. P-values below 0.05 are shown in bold. 225 

  Jaccard 
distances 

Aitchison distances 

Terms Within-factor 
comparison 

R2 p R2 p 

Read count  0.069 < 0.001 0.023 0.297 

Dataset  0.037 0.005 0.029 0.083 

Subspecies 0.067 < 0.001 0.074 0.001 

 Western lowland vs 
Grauer’s 

0.029 0.853 0.041 0.223 

 Western Lowland vs 
Mountain 

0.086 0.001 0.085 0.001 

 Grauer’s vs Mountain 0.073 0.001 0.072 0.001 

Residuals  0.826 - 0.874 - 

 226 

Among the 1007 microbial (species-level) taxa in our dataset, we detected 91 that significantly 227 

differed in abundance among gorilla subspecies and 11 that significantly differed in abundance 228 

between the datasets, using ANCOM (Mandal et al., 2015) (Table S5). Ten of these 11 taxa 229 

also differed in abundance by subspecies but because they could reflect dataset-specific 230 

artefacts, we removed the entire genera they belonged to from the list of subspecies-associated 231 

taxa. Among the remaining 78 differentially abundant taxa, all but six were absent from at least 232 
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one host subspecies. The abundances of these taxa were comparable to not differentially 233 

abundant taxa (n=929) (t-test: t(123.59)=1.24, p=0.22): 37 taxa ranked above average and 75 234 

were in the third quartile of abundance ranks, so that their absence from some host subspecies 235 

is unlikely to be explained by non-detection due to low abundance. 236 

Mountain gorillas, in particular, appeared to be missing many of these differentially abundant 237 

microbial taxa (Figure 3) — which is consistent with the general observation of a marginally 238 

reduced microbial richness in this subspecies (Figure 1) — even after accounting for the effect 239 

of read depth. Microbial taxa that were absent in mountain gorillas included the orders 240 

Rhodobacteriales, Pseudonocardiales, Corynebacteriales (represented mainly by 241 

Corynebacterium and Mycolicibacterium), Bacillales (including Staphylococcus), and 242 

Rhizobiales (including bacteria associated with the Fabaceae rhizosphere, such as 243 

Agrobacterium deltaense, A. fabacearum (Delamuta et al., 2020; Yan et al., 2017), and three 244 

Rhizobium species (Poole et al., 2018)). The presence of rhizosphere- and phyllosphere-245 

associated taxa in the other two subspecies, western lowland and Grauer’s gorillas, may reflect 246 

habitat or dietary differences among the subspecies. Microbial taxa enriched in mountain 247 

gorillas primarily belonged to the orders Enterobacterales and certain Lactobacillales, like 248 

Streptococcus sp. and Lactobacillus gasseri. The microbiomes of Grauer’s gorillas resembled 249 

those of western lowland gorillas, both overall (Figure 2, Table 1) and in terms of differentially 250 

abundant taxa (Figure 3). However, they also shared some similarities with mountain gorillas 251 

(e.g. a presence of Limosilactobacillus/Lactobacillus species, which were absent in western 252 

lowland gorillas), showing an intermediate or mixed composition (Figure 3). 253 
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 254 

Figure 3. Heatmap depicting centred log-ratio (CLR) normalised abundances of 78 differentially abundant 255 
microbial taxa, coloured by taxonomic order (y axis), per sample (x axis). Due to the CLR normalisation, very 256 
low abundances or those equal to zero appear as negative values. For clarity, absent taxa (non-normalized 257 
abundance equal to zero) are shown in grey.  258 

 259 

Gorilla subspecies harbour functionally distinct oral communities 260 

After removing reads mapping to identified contaminants, the retained (“decontaminated”) 261 

metagenomic reads were functionally characterised with an assembly-free approach using the 262 
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HUMAnN2 pipeline (Franzosa et al., 2018) (Methods). The normalised abundances of gene 263 

families were regrouped under gene ontology (GO) terms, and were aggregated across 264 

microbial taxa. Results of functional analyses were broadly consistent with those observed for 265 

community-level taxonomy. Specifically, gorilla subspecies was marginally significant 266 

(p=0.06) in explaining functional differences in the oral microbiome, whereas neither 267 

sequencing depth nor dataset had a significant effect (Table 2). The functional profiles of 268 

mountain gorilla microbiomes differed significantly from the other two subspecies (Table 2).  269 

We used ANCOM to identify differentially abundant biological processes in the dental calculus 270 

microbial communities of the gorilla subspecies, requiring that these processes were 271 

represented in at least 30% of the samples in at least one subspecies. Mountain gorillas stood 272 

out again, as they missed genes for 236 of the 262 differentially abundant processes (Table S6). 273 

In contrast, western lowland and Grauer’s gorillas were missing only 13 and 6 processes, 274 

respectively. Among six processes that were found in all three gorilla subspecies, mountain 275 

gorillas differed significantly from the others in four processes.  276 

  277 
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Table 2. PERMANOVA results, showing the effect size (R2) and p-value of factors putatively contributing to the 278 
variance in abundance of biological processes among sampled microbiota. Pairwise PERMANOVA between 279 
subspecies show the effect size (R2) and  p-values adjusted for false discovery rate. P-values below 0.05 are shown 280 
in bold. 281 

Terms Within-factor 
comparison 

R2 P 

Read count  0.008 0.712 

Dataset  0.030 0.220 

Subspecies  0.100 0.060 

 Western lowland vs 
Grauer’s 

0.013 0.695 

 Western Lowland vs 
Mountain 

0.124 0.031 

 Grauer’s vs Mountain  0.132 0.031 

Residuals  0.861  

 282 

Metagenome-Assembled Genomes 283 

We applied an iterative assembly and binning approach (Methods) to resolve initial MAGs 284 

using decontaminated sequencing reads from all samples and museum controls. Across all 285 

samples, we constructed a total of eight high-quality (>90% completion, <5% contamination) 286 

and 27 medium quality MAGs (>50% completion, <10% contamination), belonging to 24 287 

distinct bacterial families (Table S7). Among these 35 MAGs, 25 could be classified to the 288 

genus level, with two MAGs assigned to provisional/uncultured genera (UBA8133 and 289 

RUG013; Table S7). To place the MAGs within a broader evolutionary context, we constructed 290 
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a phylogenetic tree including the MAGs and phylogenetically closest bacterial genomes from 291 

the Genome Taxonomy Database (GTDB; (Parks et al., 2018); Figure S4). However, for 292 

several MAGs assembled in this study we were unable to identify a closely related published 293 

genome.  294 

Fourteen MAGs reconstructed from dental calculus samples were also present in museum 295 

controls (a gorilla skin sample, a gorilla petrous bone, a skull swab and a museum shelf swab). 296 

Eight MAGs were present only in the skin sample and only at low abundances (Figure S5). 297 

However, five MAGs were found at higher abundance in at least one of the museum controls 298 

compared to any gorilla dental calculus sample (Figure S5). This includes MAGs of 299 

Erysipelothrix (found in gorilla petrous bone), two different Planococcaceae (found in the 300 

petrous bone and museum shelf swab), as well as Propionibacterium and Exiguobacterium 301 

(both isolated from museum skull swab). These MAGs belong to genera that are common 302 

contaminants in metagenomic studies (i.e. Propionibacterium, which is a major genus of 303 

common skin bacteria (Salter et al., 2014)) and persistent in environmental reservoirs (i.e. 304 

Erysipelothrix; (Eriksson et al., 2014)). These five MAGs were excluded from downstream 305 

analyses. To further authenticate our reconstructed MAGs, we used a collection of isolation 306 

source records from public databases of bacterial ecological metadata (Table S8). Taxa with a 307 

high proportion (>=25%) of isolation records from sources categorised as 308 

environmental/contaminant were considered as potential contaminants (Table S8). Using this 309 

approach, we identified 10 additional MAGs that represent likely contaminants (Figures S5& 310 

S6).  311 

The remaining 20 MAGs recovered here are members of the oral microbiome and are present 312 

in databases of common oral taxa (Chen et al., 2010; Fellows Yates et al., 2021). This includes 313 
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taxa commonly associated with dental plaque communities: Rothia (Tsuzukibashi et al., 2017), 314 

Olsenella (Abusleme et al., 2013; Socransky et al., 1998), Corynebacterium (Mark Welch et 315 

al., 2016), Lautropia (Gerner-Smidt et al., 1994), Neisseria (Donati et al., 2016) and 316 

Actinomyces (Kolenbrander et al., 2010). Rothia species are particularly abundant in gorillas 317 

compared to humans and other non-human primates (Fellows Yates et al., 2021). Three other 318 

MAGs were present in at least 65% of all samples: a MAG most closely related to Neisseria 319 

(in 95.7% of samples) was found in all Grauer’s and mountain gorillas, and the MAGs 320 

characterised to the family Actinomycetaceae and the genus Lautropia, both of which were 321 

found in all samples of mountain gorillas (Figure S5). 322 

For two MAGs of high completeness and high prevalence in our samples (Neisseria and 323 

Limosilactobacillus gorillae), we produced an alignment of core genes to further investigate 324 

how they relate to the known diversity of these taxa. The Neisseria MAG clustered with a 325 

subset of Neisseria species isolated exclusively from humans and was more divergent from 326 

Neisseria species that formed a clade with isolates from other animals (Figure 4a). Its 327 

phylogenetic placement suggests a distinct and not yet identified Neisseria taxon. We also 328 

recovered a near-complete MAG of Limosilactobacillus gorillae (Figure S7), a species 329 

previously isolated from faeces of mountain and western lowland gorillas (Tsuchida et al., 330 

2018, 2015). The dental calculus L. gorillae MAG was sister to the gorilla faecal isolate but 331 

distinct from faecal isolates of other primates (Figure S7a).  332 

Oral bacteria play an important role in the metabolism of inorganic nitrate and its reduction to 333 

nitrite and nitric oxide, which is essential for the regulation of cardiovascular, metabolic, and 334 

neurological processes (Bryan et al., 2017; Hezel and Weitzberg, 2015). Several oral nitrate 335 

reducing bacteria, including Rothia, Neisseria, Veillonella, Corynebacterium, Actinomyces, 336 
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Selenomonas, Propionibacterium, Fusobacterium, and Eikenella (Rosier et al., 2022), were 337 

present in gorilla dental calculus samples (Figure S5, Table S5). We used MAGs of Rothia, 338 

Neisseria, and Veillonella, which were prevalent in the study samples (Figure S5) to analyse 339 

the presence of nitrate-reducing genes in these members of the gorilla oral microbiome. 340 

Although we recovered a medium quality MAG of Corynebacterium from some samples of 341 

western and Grauer’s gorillas (Figure S5), it was less prevalent and abundant in gorilla dental 342 

calculus and is lacking well-characterised genes involved in nitrate reduction. For Neisseria, 343 

we could confirm the presence of five nitrate reducates (nar), seven genes that provide the 344 

cofactor molybdenum to the nitrate reductase enzymes, and four additional genes involved in 345 

the regulation of nitrate and nitrite reduction (aniA, nirB, nirD, norB; Figure 4a). Only two 346 

genes involved in nitrate reduction, narY and mopII, were not found in the gorilla dental 347 

calculus MAG. However, these genes are also absent from other nitrate-reducing oral bacteria 348 

(Rosier et al., 2020). Genomic data thus suggests that Neisseria isolated from gorilla dental 349 

calculus likely has the full capacity to reduce nitrate. The Neisseria MAG recovered in this 350 

study was significantly more abundant in mountain gorillas compared to the other host 351 

subspecies (Figure 4b).  352 

Rothia and Veillonella possessed a smaller repertoire of nitrate-reducing genes compared to 353 

Neisseria. The Rothia MAG recovered in this study had several nitrate reductases and 354 

molybdenum cofactor genes, but they differed from genes present in R. dentocariosa, a 355 

bacterium well studied for its nitrate-reducing capacity (Figure S8; (Rosier et al., 2020). We 356 

were also able to identify nine genes involved in nitrate metabolism in Veillonella, a well 357 

known reducer of nitrate in the oral cavity (Hyde et al., 2014a) (Figure S8). Similar to 358 

Neisseria, Veillonella was significantly more abundant in mountain gorillas than in the other 359 
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two gorilla subspecies, whereas the abundance of Rothia did not differ among gorilla 360 

subspecies (Figure S8b and d).  361 

 362 

Figure 4: a) Maximum-likelihood phylogeny based on the alignment of core gene sequences from the Neisseria 363 
MAG and additional published genomes of the same genus. Tip points are coloured by host species identity, and 364 
tip labels include the isolation source for each published genome. Scale bar units are the number of substitutions 365 
per site and node values represent the proportion of node support out of 100 bootstrap replicates, with unlabeled 366 
nodes having complete support (1.0). To the right, the presence of key genes involved in the reduction of nitrate 367 
in the oral cavity is shown for each Neisseria species. b) Relative abundances (CLR transformed) of the 368 
Neisseria MAG in different gorilla subspecies. The results of a Wilcoxon test are denoted by brackets above 369 
boxplots (NS = not significant; *** = p > 0.001). 370 

 371 

Altitude may drive oral microbiome composition 372 

Both taxonomic and functional analyses suggest that Grauer’s gorilla oral microbiomes are 373 

more similar to western lowland gorillas than to mountain gorillas, despite sharing a close 374 

evolutionary relationship and an adjacent geographic range with the latter. However, the 375 

distribution ranges of all three gorilla subspecies differ in elevation, with mountain gorillas 376 

occurring at the highest altitudes. As altitude can influence temperature, humidity and food 377 

diversity, which in turn can influence microbial communities, we performed partial Mantel 378 

tests between altitudinal distances and taxonomic (Jaccard/Aitchison distances) or functional 379 

(Euclidean distance) composition of the oral microbiome, while accounting for log-380 
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transformed geographical distance. Geographic location and altitude of the specimens were 381 

approximated based on museum records. However, when considering the entire dataset, we did 382 

not detect a correlation between altitude and either taxonomy or function (Mantel test: R 383 

ranging from -0.13 to 0.06, p>0.12). 384 

Since Grauer’s gorillas occupy the widest altitudinal range of all gorilla subspecies, we divided 385 

Grauer’s gorilla samples into high- (>1000 masl, n=8) and low-altitude (≤1000 masl, n=8) 386 

groups and tested for differentiation of the oral microbiome both between these groups and 387 

among host subspecies. While no compositional differences were identified between the oral 388 

microbiomes of western lowland and low altitude Grauer's gorillas using relative abundance 389 

measures, western lowland and high altitude Grauer's gorillas displayed marginally significant 390 

differences based on pairwise PERMANOVA (FDR-adjusted p-value=0.075, Table 3). The 391 

oral microbiome of mountain gorillas consistently differed from other subspecies, independent 392 

of altitude grouping (Table 3). Yet, high-altitude Grauer’s gorillas showed considerable overlap 393 

with mountain gorillas in the first two axes of a PCoA based on Aitchison distances (Figure 394 

S9).  395 

  396 
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Table 3. Results of the pairwise PERMANOVA showing the effect size (R2) of comparisons of taxonomic 397 
composition based on Aitchison distances among four gorilla groups (western lowland, low-latitude Grauer’s 398 
[≤1000 masl], high-altitude Grauer’s [>1000 masl], and mountain gorillas) and the associated p-values (adjusted 399 
for false discovery rate). P-values below 0.05 are shown in bold. 400 

Comparison R2 p-value (FDR-
adjusted) 

Western Lowland vs Low-altitude Grauer’s 0.048 0.515 

Western Lowland vs High-altitude Grauer’s 0.070 0.075 

Western Lowland vs Mountain 0.083 0.002 

Low-altitude Grauer’s vs High-altitude Grauer’s 0.084 0.164 

Low-altitude Grauer’s vs Mountain 0.098 0.002 

High-altitude Grauer’s vs Mountain 0.087 0.002 

 401 

To further investigate the effect of altitude on the oral microbiome, we identified a set of 402 

differentially abundant taxa between mountain and western lowland gorillas (n=41) and asked 403 

if Grauer’s gorillas from different altitudes show similarities with these two subspecies. We 404 

observe no significant difference between low-altitude Grauer’s and western lowland gorilla 405 

and between high-altitude Grauer’s and mountain gorillas, whereas all other comparisons were 406 

significant (p<0.003, Table S9).  407 
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Dental calculus reflects dietary differences of gorilla subspecies 408 

After removing reads assigned to bacterial and viral taxa, we performed taxonomic 409 

classification of the eukaryotic diversity present within our samples to characterise gorilla 410 

dietary components using Kraken2 with the NCBI ‘nt’ database. Despite applying extensive 411 

decontamination procedures (Methods) and removing taxa with few supporting reads (<10), 412 

we still recovered erroneous assignments, such as mollusks or other mammals, which gorillas 413 

are unlikely to consume (Mann et al., 2020). We therefore restricted our analyses to eukaryotic 414 

families that are known to be part of the gorilla diet ((Michel et al., 2022; Remis et al., 2001; 415 

Rogers et al., 2004; Rothman et al., 2014; Yamagiwa et al., 2005); Methods). The majority of 416 

the 371 genera (65 families) detected in our dataset (Figure S10) were plants (n=360), but we 417 

also identified insects, specifically ants, (N=7) and lichen-forming fungi of the Parmeliaceae 418 

family (N=6).  419 

We detected 22 genera that differed in abundance across gorilla subspecies, all belonging to 420 

plants, except for the fungal genus Parmotrema (Figure 5, Table S10). The broad dietary 421 

patterns observed here agree with literature reports. For instance, bamboo - represented here 422 

by the African genus Oldeania, as well as Asian genera Phyllostachys, Bambusa, and 423 

Ferrocalamus, which are likely misclassifications of African bamboo species (Brealey et al., 424 

2020) - was mainly detected in mountain and Grauer’s gorillas, as expected (Rothman et al., 425 

2014; Yamagiwa et al., 2005); Figure 5). Marantochloa and Thaumatococcus of the 426 

Marantaceae family were detected in western lowland gorillas, which are known to consume 427 

them (Rogers et al., 2004), but also in Grauer’s gorillas, where the family Marantaceae has 428 

been reported as part of the diet (Michel et al., 2022). The family Fabaceae is consumed by all 429 

gorilla subspecies and the genus Tamarindus detected here is likely a misidentification of 430 
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another member of this family, as Tamarindus itself has not been reported to be part of gorilla 431 

diet. Grauer’s gorillas appear to have the most diverse diet of the three subspecies, consuming 432 

foodstuffs typical of both western lowland and mountain gorillas (Figure 5). This is in 433 

accordance with the literature (Michel et al., 2022; Remis et al., 2001; Rogers et al., 2004; 434 

Rothman et al., 2014; Yamagiwa et al., 2005), which reports 61 plant families as being part of 435 

their diet, as opposed to 41 and 45 families for western lowland and mountain gorillas, 436 

respectively. 437 

Similar to our analyses of differentially abundant bacteria, dietary components which were 438 

differentially abundant between mountain and western lowland gorillas showed no significant 439 

difference between low-altitude Grauer’s and western lowland gorilla and between high-440 

altitude Grauer’s and mountain gorillas, while significantly differentiating low- and high-441 

altitude Grauer’s gorillas (Table S9).  442 
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 443 

Figure 5. Heatmap based on normalised abundances for differentially abundant dietary taxa at the genus level. 444 
For clarity, taxa with abundance equal to 0 are shown in grey. The bars on the right indicate if the family (light 445 
green) or the specific genus (dark green) have been reported as part of the diet of each gorilla subspecies (grey: 446 
no mention). Horizontal white lines separate plant families. 447 

 448 

Discussion 449 

Using three gorilla subspecies, we investigated how evolutionary relationships and ecological 450 

factors shape the dental calculus oral microbiome in closely related host taxa. Ecologically, all 451 

three subspecies differ from each other, but Grauer’s and mountain gorillas are geographically 452 

proximate and more closely related to each other than to western lowland gorillas. One of the 453 

strongest differences between the three subspecies is the altitude of their ranges, which in turn 454 

influences diet, reflected, e.g., in the level of frugivory. Western lowland gorillas occupy the 455 
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lowest altitudes and are the most frugivorous (Rogers et al., 2004; Takenoshita and Yamagiwa, 456 

2008). Mountain gorillas occupy the highest altitude and are the least frugivorous (Ganas et 457 

al., 2004; Maisels et al., 2018; Plumptre et al., 2016), whereas Grauer’s gorillas live across the 458 

largest altitudinal range and hence straddle the ecological conditions faced by both western 459 

lowland and mountain gorillas (Yamagiwa et al., 2008). Ecological conditions and dietary 460 

differences are expected to affect the host-associated microbial communities (Janiak et al., 461 

2021; Kartzinel et al., 2019; Li et al., 2013; Wade, 2013; Youngblut et al., 2019).  462 

By investigating the oral microbiome preserved in dental calculus, we show that oral microbial 463 

communities among closely related gorilla subspecies differ, both taxonomically and 464 

functionally. In particular, multiple lines of evidence show that the oral microbiome of 465 

mountain gorillas differs from the other gorilla subspecies in taxonomic composition, relative 466 

abundance, and functional profiles of microbial taxa (Tables 1 and 2), despite the close 467 

evolutionary relationship and geographic proximity between mountain and Grauer’s gorillas. 468 

The oral microbiome of Grauer’s gorillas shows strong similarity to western lowland gorillas, 469 

although the two species are more distantly related and separated by the Congo Basin. When 470 

considering differentially abundant microbial taxa and dietary profiles, Grauer’s gorillas 471 

appear intermediate, displaying a combination of taxa found in both western lowland and 472 

mountain gorillas (Figure 3 and 6). This suggests that host phylogenetic relationships are less 473 

important for the structure of the oral microbiome in closely related species than ecological 474 

conditions, possibly including diet.  475 

These observations deviate from previous studies that identified a phylogenetic signal in the 476 

oral microbiome in wild animals. However, these studies compared distantly related species 477 

like chimpanzees, humans (Li et al., 2013), other great apes (Boehlke et al., 2020), and even 478 
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more diverse groups of mammals (Brealey et al., 2020; Ozga and Ottoni, 2021). Often the 479 

effects of host phylogenetic relationships and ecology could not be decoupled. For instance, 480 

Smith et al. (2021) found differences among three snake species that each occupied a distinct 481 

ecological niche. Similarly, Soares-Castro et al. (2019) studied three marine mammals, among 482 

which the most evolutionary divergent species also lived in a different habitat, so the effects of 483 

ecology were indistinguishable from those of evolutionary relationships.  484 

Yet, ecological effects on a short evolutionary scale, as observed in this study, do not preclude 485 

co-diversification of the host and its associated microbiome over longer evolutionary time. 486 

They rather point to the presence of rapid and dynamic responses of the host-associated 487 

microbial communities to environmental conditions, potentially through the seeding of the 488 

dental calculus oral microbiome at least to some extent with environmental taxa (see below). 489 

In addition, our results are in accordance with other studies that propose external factors, such 490 

as diet, influencing the oral microbiome (Adler et al., 2016; Hyde et al., 2014b; Janiak et al., 491 

2021), including Li et al. (2013) who observed that the oral microbiome of captive apes is 492 

distinct from their wild counterparts and more similar to other captive apes, highlighting the 493 

importance of environmental factors/diet.  494 

 495 

Oral microbiome diversity might reflect ecology or diet 496 

Our analyses provide a tentative suggestion that ecological differences, approximated here by 497 

altitude, may be the primary factor shaping oral microbiome diversity. Specifically, grouping 498 

Grauer’s gorillas into low- and high-altitude populations, we showed that low-altitude 499 

populations harbour an oral microbiome that is indistinguishable from western lowland 500 
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gorillas, whereas high-altitude populations show near-significant differences (Table 3). 501 

Although the oral microbiome of Grauer’s gorillas is significantly different from mountain 502 

gorillas independent of the altitude, this may be because most mountain gorillas in our dataset 503 

were collected above 3000m, notably higher than any of the Grauer’s gorilla samples (600-504 

2100m; Table S1). We also observe compositional differences between high- and low- altitude 505 

groups of Grauer’s gorillas when considering oral and dietary taxa that differentiate mountain 506 

and western lowland gorillas (Table S9). The high-altitude populations of Grauer’s gorillas 507 

appear indistinguishable from mountain gorillas, whereas low-altitude Grauer’s gorillas show 508 

no differences to western lowland gorillas, supporting the effect of ecological differences 509 

connected to altitude that shape microbial and dietary composition. Generally, the dietary 510 

profiles of Grauer’s gorillas appear to contain dietary items present in both western lowland 511 

and mountain gorillas (Figures 6 and S10). Our observation from dental calculus is in line with 512 

previous studies (Table S11), which report considerable overlap in the diet of Grauer’s gorillas 513 

with western lowland (30 of the 41 plant families) and mountain (30 of the 45 plant families) 514 

gorillas. In contrast, only 16 dietary families are consumed by both western lowland and 515 

mountain gorillas.  516 

It is also intriguing to speculate that the local environment itself could affect the composition 517 

of the dental calculus community by serving as a source of at least some colonising taxa, for 518 

example via the consumed phyllosphere and rhizosphere. A recent study of the human oral 519 

microbiome found that specific taxa within the dental plaque community are evolutionarily 520 

close to environmental bacteria, whereas those living on the tongue surface are more closely 521 

related to other host-associated taxa (Shaiber et al., 2020). This finding suggested that dental 522 

plaque microbial communities could be more affected by the environment than other host-523 

associated microbiomes. Within the gorilla oral microbiome, we detected microbial taxa that 524 
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likely have a dietary origin and differ in abundance among host subspecies, possibly reflecting 525 

dietary differences. In particular, bacteria associated with the Fabaceae rhizosphere, including 526 

Agrobacterium deltaense, A. fabacearum (Delamuta et al., 2020; Yan et al., 2017), and three 527 

Rhizobium species (Poole et al., 2018) may be derived from the consumed dietary items or 528 

accidentally ingested soil. These bacteria were significantly more abundant in the dental 529 

calculus of western lowland and Grauer’s gorillas than in mountain gorillas (Figure 3, Table 530 

S5). Two lines of evidence provide a link between these microbial taxa and dietary differences 531 

among the gorilla subspecies. First, our data suggest a higher abundance of the family 532 

Fabaceae in western lowland and Grauer’s gorillas (Figures 6 and S10, Table S10) compared 533 

to mountain gorillas. Second, although no comparative data exists on the prevalence of roots 534 

and rhizomes in the diet of different gorilla species, indirect evidence suggests that western 535 

lowland gorillas consume more roots than mountain gorillas. Behavioural observations report 536 

frequent root and rhizome consumption in western lowland gorillas of all ages (Fletcher and 537 

Nowell, 2008) and comparative dentition analyses show increased tooth wear in western 538 

lowland gorillas compared to mountain gorillas, in which tooth wear is well explained by the 539 

time spent feeding on roots  (Galbany et al., 2016).  540 

Although dental calculus is a highly suitable material for the study of the oral microbiome, 541 

several previous studies have identified caveats associated with dietary analyses from this 542 

source material (Haas et al., 2022; Mann et al., 2020; Ottoni et al., 2019). Sample 543 

contamination, the low proportion of eukaryotic reads, and the sparsity of eukaryotic reference 544 

databases lead to biases and present a considerable challenge to the analysis of dental calculus. 545 

In addition, reference genome contamination can result in false positive taxonomic assignments 546 

(Mann et al., 2020). In the present study, the authenticity of putatively dietary taxa could not 547 

be assessed using damage patterns due to low abundance of eukaryotic reads. Nevertheless, we 548 
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were able to detect dietary differences among gorilla subspecies, which are mostly in 549 

agreement with  previous knowledge of gorilla diets (Figure 5) (Michel et al., 2022; Remis et 550 

al., 2001; Rogers et al., 2004; Rothman et al., 2014; Yamagiwa et al., 2005). 551 

 552 

Metagenome-assembled genomes add to the understanding of wild microbiomes 553 

The recovery of high quality MAGs from metagenomic data can provide an important 554 

perspective on the evolutionary relationships among microbial taxa and between 555 

microorganisms and their hosts. As reference databases are often biased towards organisms of 556 

medical, agricultural, and industrial importance (Marcelino et al., 2020; Velsko et al., 2018), 557 

MAGs recovered from novel environments, such as dental calculus oral microbiome of non-558 

human animals, may represent poorly described, understudied or completely unknown 559 

microbial lineages (Jiao et al., 2021). Several of the high and medium quality MAGs 560 

constructed in this study were recovered in higher abundance from environmental controls than 561 

from any dental calculus samples and were considered to represent environmental 562 

contaminants. However, other MAGs were highly abundant in the dental calculus samples and 563 

belong to taxa that are members of the oral microbiome (Figures S5 & S6). Many of these 564 

MAGs were distinct from the evolutionary closest sequenced genomes available in GTDB 565 

(Figures S4, S7, S8, Figure 4), suggesting that they may represent undescribed bacterial 566 

lineages, in line with discoveries of novel microbial diversity in unstudied host species (Levin 567 

et al., 2021; Youngblut et al., 2020). The closest evolutionary relatives of several bacterial taxa 568 

with high quality MAGs were found among isolates from primates, including humans (Figures 569 

5a, S7, S8). 570 
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In this study, we recovered a near-complete MAG of Limosilactobacillus gorillae, which was 571 

more closely related to a faecal isolate from a captive gorilla than to a faecal isolate from 572 

another primate (Figure S7a). Usually associated with gorilla faeces (Tsuchida et al., 2014), 573 

the presence of L. gorillae within the oral microbiome may be the result of coprophagy, a 574 

common behaviour among wild gorillas (Graczyk and Cranfield, 2003). However, questions 575 

remain regarding the persistence of faecal-associated bacteria within dental calculus and their 576 

potential function within the plaque biofilm. Coprophagic behaviour is suggested to serve as a 577 

route for vertical or horizontal transmission of gastrointestinal microbiota between individuals 578 

(Abusleme et al., 2020) and may have a stabilising impact on host-associated microbial 579 

communities overall (Bo et al., 2020).  580 

We also reconstructed MAGs of Neisseria, Rothia, and Veillonella and confirmed the presence 581 

of nitrate-reducing genes in these members of the gorilla oral microbiome (Figures 5a, S8). 582 

The reduction of nitrate to nitrite from dietary sources by oral bacteria provides the precursor 583 

to nitric oxide (NO), which is an important signalling and effector molecule (Jones et al., 2021). 584 

Along with multiple benefits to circulatory health (Lundberg et al., 2018), nitric oxide is 585 

increased in response to hypoxic stress (Feelisch, 2018; Levett et al., 2011), and results in 586 

increased blood oxygen levels in the host (Beall et al., 2012). Human populations adapted to 587 

high altitude exhale higher concentrations of nitric oxide compared to low-land populations 588 

(Beall et al., 2001; Erzurum et al., 2007). For these reasons, regulation of nitric oxide 589 

metabolism is thought to be beneficial to high-altitude adaptation (Beall et al., 2012).  590 

Mountain gorillas live at elevation of up to 3,800 masl (Williamson et al., 2013) and hence are 591 

exposed to hypoxic stress (Ruff et al., 2022). They also show higher abundance of Neisseria 592 

and Veillonella compared to the other two gorilla subspecies, which live at considerably lower 593 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.06.494923doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.494923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

32 

altitudes (Figures 5b and S8d). Although it is not known if dietary nitrate amounts differ among 594 

gorilla subspecies, the primarily herbivorous diet of mountain gorillas is naturally rich in 595 

nitrate. Taken together, it is likely that high abundance of nitrate-reducing oral taxa may aid 596 

mountain gorillas cope with the physiological demands of their high-altitude habitat. This 597 

finding is particularly intriguing, as comparative genomic analyses failed to uncover host-598 

encoded genes related to high-altitude adaptation in mountain gorillas (Xue et al., 2015). Our 599 

results suggest an important role for host-associated microbiomes in promoting host 600 

adaptations.  601 

 602 

Mitochondrial DNA in dental calculus can aid taxonomic assignments of the host 603 

The mitochondrial sequences recovered from the dental calculus metagenomes were used to 604 

confirm gorilla subspecies identity. Six of the samples yielded mitochondrial genomes with 605 

completeness >80% and coverage >3X (maximum 94% completeness and 77X coverage, Table 606 

S3). However, in many cases even a few mitochondrial fragments were sufficient to allow 607 

subspecies assignment. We could genetically distinguish gorilla species (eastern versus 608 

western gorillas) with mitochondrial genome coverage as low as 2.6% and eastern gorilla 609 

subspecies (mountain versus Grauer’s) with coverage as low as 6.6%. Grauer’s and mountain 610 

gorilla mitochondrial genomes could be successfully distinguished despite differing by only 611 

0.5% (72 positions, excluding the hypervariable D-loop region (van der Valk et al., 2018)). 612 

This observation supports the usefulness of dental calculus as material for obtaining genetic 613 

information about the host (Mann et al., 2018; Ozga et al., 2016; Warinner, 2016; Warinner et 614 

al., 2015). 615 
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 616 

Conclusions 617 

Our study is, to our knowledge, the first to investigate the evolution of the dental calculus oral 618 

microbiome at the early stages of the speciation process of the host and adds to the new but 619 

growing field of research on the microbiomes of wild animals. We find that in closely related 620 

species, evolutionary relationships are less important than ecology in explaining taxonomic 621 

composition and function of the oral microbiome. Host-associated microbial communities have 622 

been proposed to contribute to host adaptation, partly because they can respond rapidly to 623 

changing environmental conditions (Alberdi et al., 2016). We find that taxa enriched in the 624 

mountain gorilla oral microbiome may facilitate their high-altitude lifestyle through increased 625 

nitrate reduction potential and the associated physiological benefits. Our discovery of distinct 626 

phylo- and rhizosphere taxa in the dental calculus of different gorilla subspecies suggests a 627 

close connection between this host-associated microbiome and the local environment. 628 

Colonisation of the host by environmental taxa with beneficial functions in local adaptation 629 

and health may present an exciting evolutionary route to be explored in the future.  630 

 631 

Methods 632 

Sample collection 633 

The study dataset consisted of dental calculus samples from 57 specimens of three gorilla 634 

subspecies: 16 western lowlands gorillas, 22 Grauer’s gorillas, and 19 mountain gorillas (Table 635 

S1). Dental calculus samples of western lowland gorillas were collected at the Royal Museum 636 
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for Central Africa (RMCA, Tervuren, Belgium) and the Cleveland Museum of Natural History 637 

(CMNH, USA). Samples of mountain gorillas came from the Swedish Museum of Natural 638 

History (Naturhistoriska Riksmuseet - NRM, Stockholm, Sweden) and the RMCA. Samples of 639 

Grauer's gorillas were collected primarily at RMCA, with a few samples from NRM and the 640 

Royal Belgian Institute of Natural Sciences (RBINS, Brussels, Belgium). Our dataset consisted 641 

of newly generated shotgun data from 26 specimens and published gorilla dental calculus 642 

sequences: two samples from Brealey et al. (2020) and 29 samples from Fellows Yates et al. 643 

(2021). We also included sequences from 35 published and newly generated extraction blanks, 644 

twelve library preparation blanks, and four museum controls. One extraction and one library 645 

blank had too few reads for taxonomic classification and were therefore excluded from 646 

downstream analysis (Table S1). The museum controls consisted of two swabs taken at NRM 647 

from a museum shelf surface holding reindeer (Rangifer tarandus) specimens and from the 648 

surface of a brown bear (Ursus arctos) skull. In addition, we included data from two gorilla 649 

specimens from previous studies (van der Valk et al., 2019, 2017): A petrous bone sample from 650 

a specimen at NRM and a skin sample from RMCA (ENA accession numbers: ERR2503700 651 

and ERR2868193, respectively). These sequences were generated to study the gorilla host, 652 

however, we removed host reads and retained microbial reads for our analyses. 653 

Preparation of Genomic Libraries and Metagenomic Shotgun Sequencing 654 

All samples were processed in cleanroom facilities following appropriate methods for working 655 

with ancient and historical DNA. DNA was extracted according to the protocol by Dabney et 656 

al. (2013) with slight changes, as described in Brealey et al. (2020) and Fellows Yates et al. 657 

(2021). The datasets differed in library preparation protocol, indexing strategy, sequencing 658 

platform, read length, and sequencing depth (Table S1). Samples from four specimens were 659 
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processed in both laboratory facilities: Uppsala University, Uppsala, Sweden and the Max 660 

Planck Institute for the Science of Human History, Jena, Germany (Fellows Yates et al., 2021). 661 

We used these technical duplicates to assess putative batch effects (Fig. S3), but only retained 662 

one sample per pair for biological analyses, selecting the one with the largest number of reads.  663 

For the newly generated data, we followed the protocol as detailed in Brealey et al. (2021). 664 

Briefly, dental calculus samples ranging in weight from < 5 mg and up to 20 mg were surface-665 

decontaminated using UV light (10 min at 254 nm) and washing in 500 µl of 0.5M 666 

ethylenediaminetetraacetate (EDTA) for 1 min (Brealey et al., 2021, 2020; Ozga et al., 2016). 667 

DNA was extracted using a silica-based method (Dabney et al., 2013) in batches of at most 16 668 

samples with two negative controls. DNA was eluted in 45 µl of EB buffer (10 mM tris-669 

hydrochloride, pH 8.0; QIAGEN, Netherlands) supplemented with 0.05% (v/v) Tween-20. 670 

Double-stranded genomic libraries for all newly generated and previously sequenced samples 671 

were prepared following the double indexing protocol (Dabney and Meyer, 2012; Meyer and 672 

Kircher, 2010). Newly generated libraries and those previously published by (Brealey et al., 673 

2020) included double in-line barcodes to guard against index hopping (van der Valk et al., 674 

2020). A detailed protocol for library preparation is provided in Brealey et al. (2020). Library 675 

blanks were included for each batch of approximately 20 samples. Adapter-ligated libraries 676 

were quantified by a quantitative PCR assay, allowing us to estimate an appropriate  number 677 

of index PCR cycles, which ranged from 8 to 20. Following indexing, individual libraries were 678 

purified with Qiagen MinElute columns and quantified using a quantitative PCR assay. All 679 

extraction and library blanks consistently showed lower DNA content than calculus samples 680 

(Table S1). We pooled 1.5 µl of each indexed library (including blanks and museum controls) 681 

and performed size selection with AMPure XP beads (Beckman Coulter, IN, USA) for 682 
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fragments of approximately 100-500 bp in length. The pooled library was sequenced by 683 

SciLifeLab Uppsala on two Illumina NovaSeq S2 flowcells using paired-end 100 bp read 684 

length and V1 sequencing chemistry. 685 

Preprocessing of sequencing data 686 

For each sample, the data generated from different sequencing runs was concatenated into a 687 

single file (separately for reverse and forward reads) and poly-G tails, which are artefacts of 688 

the two-colour sequencing chemistry of the NextSeq and NovaSeq Illumina platforms, were 689 

removed using fastp (V0.20.0; Chen et al., 2018). We removed unpaired reads with BBTools 690 

`repair.sh` (V38.61b; Bushnell, 2014). For newly generated data, we used AdapterRemoval 691 

(V2.2.2; Schubert et al., 2016) to clip adapters, trim reads based on minimum phred quality 692 

(>=30) and length (30bp), and merge forward and reverse reads. The unmerged reads were 693 

excluded from downstream analysis (Table S1). In-line barcodes in newly generated data were 694 

trimmed from both ends using a Python script (Brealey et al., 2020). Read quality filtering was 695 

performed using PrinSeq-Lite (V0.20.4; Schmieder and Edwards, 2011) with a mean base 696 

quality threshold of 30. PCR duplicates were removed using a Python script (Brealey et al., 697 

2020), which randomly kept one read among those with the same sequence. All commands and 698 

scripts used in our bioinformatic analysis are available at 10.5281/zenodo.6861585. 699 

Sequences of the phiX bacteriophage, which is used as an internal control for Illumina 700 

sequencing (Mukherjee et al., 2015), were removed from the dataset by mapping against the 701 

phiX genome (GenBank: GCA_000819615.1) using BWA-MEM (V0.7.17; Li and Durbin, 702 

2009). Unmapped reads were retained using SAMtools (V1.12; Danecek et al., 2021) and 703 

converted to FASTQ for downstream analysis, using the ‘bamtofastq’ function of BEDtools 704 

(V2.29.2; Quinlan and Hall, 2010). To remove host reads and potential human contamination, 705 
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we mapped all the reads to a combined file containing western lowland gorilla and human 706 

reference genomes (GenBank: GCF_000151905.2 and GCF_000001405.38, respectively), 707 

repeating the steps above. Extraction blanks, library blanks, and museum controls were only 708 

mapped to the human genome. The unmapped reads were used in oral microbiome and dietary 709 

analyses, whereas the mapped reads were extracted, sorted, and indexed using SAMtools, and 710 

used for the host genomic analyses.  711 

Host genome analysis 712 

Mitochondrial genome analysis. From the host mapped BAM files, we extracted all reads 713 

mapping to the gorilla mitochondrial genome from position 1 to position 15,446, with a 714 

mapping quality of 30 or higher, using SAMtools. Nucleotide positions 15,447-16,364, which 715 

contain the D-loop, were excluded to prevent the hypervariable regions from introducing biases 716 

in our analyses. We calculated sample coverage and the total number of reads mapping to the 717 

mitochondrial genome with SAMtools and generated a consensus sequence in FASTA format 718 

with ANGSD (V0.933; (Korneliussen et al., 2014). 719 

Subspecies assignment verification. The subspecies identity of each sample was initially 720 

assigned using museum records. We confirmed these assignments using diagnostic sites within 721 

the host mitochondrial genome. Using 102 published mitochondrial genomes (Das et al., 2014; 722 

Hallast et al., 2016; Hu and Gao, 2016; van der Valk et al., 2018; Xu and Arnason, 1996); 723 

Table S12), we identified two sets of diagnostic sites that were fixed for different alleles in 724 

each of the contrasted groups using a custom Python script. The first set was species-specific, 725 

identifying membership in western versus eastern gorillas. The second set was subspecies-726 

specific, distinguishing between mountain and Grauer’s gorillas. 727 
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Molecular sexing of samples. We used sexassign (Gower et al., 2019) to determine the sex of 728 

each individual (Table S1). To this end, we mapped filtered reads, prior to removing host and 729 

human reads, to the gorilla reference genome (GCF_000151905.2) and counted reads mapping 730 

to the X chromosome and the autosomes. sexassign conducts a likelihood ratio test comparing 731 

the observed X-to-autosome ratio to expected ratios for males (RX ~0.5) and females (0.8 > RX 732 

< 1.2).  733 

Initial taxonomic classification and decontamination 734 

Taxonomic classification with Kraken2/Bracken. After removing host and human reads, the 735 

retained unmapped reads were taxonomically classified using Kraken2 (V2.1.1; Wood et al., 736 

2019) with default parameters. We used the standard Kraken2 database (accessed by the 737 

software on 1st September 2021), which includes all bacterial, archaeal and viral genomes from 738 

NCBI. Abundances were re-estimated at the species level using Bracken (V2.6.2; Lu et al., 739 

2017), by redistributing reads from higher taxonomic levels to the species level, (setting read 740 

length to 55 and the rest of parameters in default). The average read length was set to 55 bp, 741 

which corresponded to the average of the mean read length of our data. The raw species table 742 

and the corresponding metadata were combined into a phyloseq object (V1.34.0; (McMurdie 743 

and Holmes, 2013) in R (V4.0.4; R Core Team, 2015). Taxonomic information was assigned 744 

based on taxonomic IDs from the NCBI taxonomy database using the ‘classification’ function 745 

of the taxize package (V0.9.99; (Chamberlain and Szöcs, 2013). 746 

Removal of low-quality samples and contaminant taxa. Samples containing less than 300,000 747 

processed reads were excluded from downstream analysis (for the distribution of read counts 748 

per sample see Figure S11). We then evaluated the composition of the microbial communities 749 

of the retained samples with FEAST (V0.1.0; Shenhav et al., 2019) using default parameters. 750 
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FEAST makes use of user-provided reference microbiomes to partition the composition of the 751 

study samples and to estimate the proportional contribution of the reference “sources”. We 752 

provided 29 such sources sampled from six different environments that were chosen to reflect 753 

both the oral cavity and potential contaminants. Specifically, we included human calculus (n=5; 754 

Mann et al., 2018) and human plaque (n=5; Human Microbiome Project Consortium, 2012; 755 

Lloyd-Price et al., 2017) as oral sources, and human gut (n=5; Human Microbiome Project 756 

Consortium, 2012; Lloyd-Price et al., 2017), human skin (n=5; Oh et al., 2014), tundra soil 757 

(n=5; Johnston et al., 2016) and laboratory contaminants excluding human sequences (n=4; 758 

Salter et al., 2014) as potential contaminants (Table S13). Gorilla dental calculus samples for 759 

which the proportion of the metagenomic community similar to the human oral microbiome 760 

(human calculus and human plaque considered jointly) was lower than 3%, according to the 761 

output of FEAST, were excluded from further analyses. The threshold was decided based on 762 

the distribution of the oral proportions in the study samples (Figure S3b). 763 

For the retained samples, we then carried out a multi-step approach to remove putative 764 

contaminant microbial taxa. First, we used the R package decontam (V1.10.0; Davis et al., 765 

2018) with the ‘isContaminant’ function (method="combined", normalize = TRUE). The 766 

package employs two main approaches: a prevalence-based approach, which identifies 767 

contaminants based on their increased prevalence in blanks, and a frequency-based approach, 768 

which relies on the observation of a reverse relationship between taxon abundance and DNA 769 

quantity in the sample. We used a combination of both decontamination approaches, performed 770 

separately for the subset of newly generated data, which also included two previously published 771 

samples processed in the same facility (Uppsala University, Sweden; Brealey et al., 2020), and 772 

data from gorilla dental calculus published by Fellows Yates et al. (2021) and processed at the 773 

Max Planck Institute for the Science of Human History, Germany. We refer to these datasets 774 
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as ‘newly generated’ and Fellows Yates et al. (2021), respectively. Thresholds were allowed 775 

to differ by dataset (0.2 for newly generated and 0.3 for Fellows Yates et al. (2021)) and 776 

selected to minimise the number of oral taxa (taxa reported as oral in Chen et al. (2010) and 777 

Fellows Yates et al. (2021)) among all taxa identified as contaminants (Figure S12). All taxa 778 

identified as contaminants were then removed from the full dataset, regardless of which subset 779 

they were identified in.  780 

Second, we performed abundance filtering on the entire dataset, setting each taxon to 0 if it had 781 

relative abundance <0.005% in a given sample. We chose this threshold, as it retained the 782 

highest number and proportion of oral taxa, while excluding known contaminant taxa (Table 783 

S2). Third, we considered the relative abundances of taxa in the museum controls to remove 784 

likely environmental contaminants. A microbial taxon was removed as a likely contaminant if 785 

it was found to have a higher relative abundance in at least one of the four museum controls 786 

than in any of the samples. Finally, we considered bacterial genera identified as common 787 

contaminants in typical molecular and specialised ancient DNA laboratories (Salter et al., 2014; 788 

Weyrich et al., 2019). Some of the listed genera included taxa found in the Human Oral 789 

Microbiome Database (HOMD; accessed July 14 2021; (Chen et al., 2010) and in the core 790 

hominid oral microbiome (Fellows Yates et al., 2021). Therefore, we used a two-step approach 791 

to remove these potential contaminant taxa. We directly removed genera that were listed only 792 

as contaminants and did not appear in the oral databases. Taxa that were present in both 793 

contaminant lists and the oral databases and had a sufficient number of reads in our dataset 794 

were investigated further by running mapDamage2 (V2.0.9; Jónsson et al., 2013). To this end, 795 

we identified the sample with the highest abundance of a given taxon (according to Kraken2 796 

output, requiring at least 10,000 reads) and mapped the reads to the respective reference 797 

genome. Taxa with too few reads to be tested were automatically retained. Since many taxa 798 
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needed to be investigated in this way, making a visual inspection impractical, we assessed the 799 

presence of damage using a custom R script (Data and  Materials). The presence of typical 800 

post-mortem DNA damages was assumed if deamination (C-to-T in the 3’ end and G-to-A in 801 

the 5’ end) was the most frequent change for at least two of the three terminal positions for 802 

each fragment end and had the frequency above 0.02 for at least one position. This rule was 803 

employed because in-line barcodes can create atypical DNA damage patterns in metagenomic 804 

data, showing lower damage at 1st terminal position (Brealey et al., 2020). Bacterial taxa with 805 

no damage were assumed to be modern contaminants and were therefore removed. The 806 

resulting dataset was used for downstream taxonomic analyses. 807 

Sequence-level decontamination. We applied additional filtering by removing sequencing 808 

reads from taxa identified as contaminants (n=167) to allow for functional characterization of 809 

microbial communities and reconstructing metagenome-assembled genomes (MAGs). To this 810 

end, we used two approaches. First, we removed reads assigned to contaminants using the 811 

‘extract_kraken_reads.py’ script from the KrakenTools suite (V1.2; Wood et al., 2019). Using 812 

the read-level taxonomic assignments by Kraken2, we removed reads assigned to the 167 813 

contaminant taxa identified above. This approach retained sequencing reads of all taxa not 814 

identified as contaminants (i.e. those included in the final taxonomic dataset), but also a large 815 

number of unclassified reads. 816 

The reads which remained unclassified by Kraken2 could contain reads belonging to 817 

contaminant taxa. Therefore, we performed a further decontamination step. We constructed a 818 

dataset containing the genomes of the identified contaminant taxa and a selection of abundant 819 

non-contaminant taxa from our dataset. To identify non-contaminant taxa, we selected all taxa 820 

with more than 10,000 reads in at least one sample (as long as they were not identified as 821 
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contaminants), for a total of 72 unique taxa. The non-contaminant taxa were included to avoid 822 

forcing the reads to map to the contaminants. For both contaminants and non-contaminants, 823 

one genome per taxon was selected from the NCBI assembly summary files for bacteria, 824 

archaea, and viruses (NCBI ftp accessed 14 April 2021, available at 825 

https://github.com/markella-moraitou/Gorilla_dental_calculus/RD2_mapping/) with the 826 

following order of priority: genome representation (full > partial), RefSeq (yes > no), assembly 827 

level (full > chromosome > scaffold > contig), publication date (most recent). Twenty 828 

contaminant, and 11 non-contaminant taxa did not have a reference genome available in NCBI 829 

assembly. For them, we obtained a different genome from the same genus, unless that genus 830 

was already represented, using the taxize R package, and selected one genome per missing 831 

taxon as a replacement. 832 

Finally, all references (consisting of 155 contaminant genomes and 61 non-contaminant 833 

genomes) were concatenated into a combined database. We mapped the FASTQ files from the 834 

previous decontamination step to this combined reference using BWA-MEM with default 835 

settings and then used SAMtools to retain the unmapped reads and reads that mapped primarily 836 

to the non-contaminant genomes.  837 

Taxonomic analyses 838 

All taxonomic analyses were performed at the species level. To account for the compositional 839 

nature of the data, a centred-log ratio (CLR) normalisation was applied (Gloor et al., 2017) 840 

using the ‘transform’ function of the microbiome R package (V1.12.0; Lahti and Shetty, 2018). 841 

Oral composition. To assess differences in oral microbiome composition by subspecies and 842 

sex, we used two distance measures: Jaccard distances (Jaccard, 1901), which only consider 843 
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presence-absence of taxa, and Aitchison’s distances (Aitchison and Aitchison, 1986), which 844 

also take into account relative abundances and are calculated as Euclidean distances on the 845 

CLR-transformed data. We performed PERMANOVAs using these two distance metrics by 846 

applying the ‘adonis’ function of the vegan package (V2.5-7; Oksanen et al., 2011) and setting 847 

the parameter ‘method’ to ‘jaccard’ and ‘euclidean’ for the non-normalised and normalised 848 

data, respectively. Because of the unequal distribution of host subspecies among the two 849 

datasets (newly generated versus Fellows Yates et al. (2021); Figure S1), we included dataset 850 

as a factor in each model and considered it prior to evaluating the contribution of biological 851 

variables. We used the ‘adonis.pair’ function of the EcolUtils R package (V0.1; Salazar, 2019) 852 

to perform pairwise PERMANOVAs for significant factors using Jaccard and Aitchison 853 

distance matrices produced with the ‘vegdist’ function of the vegan package. Principal 854 

Coordinate Analysis (PCoA) plots were generated using the ‘plot_ordination’ function of the 855 

phyloseq package. Because sex assignment was missing for some samples (Table S1), we re-856 

ran PERMANOVAs for each distance measure for the subset of samples that could be sexed.  857 

Alpha diversity. We used the ‘estimate_richness’ function of the phyloseq package to estimate 858 

alpha diversity with two different metrics, applied to the non-normalized data: the Chao1 859 

estimator (Chao et al., 2009), which evaluates species richness while accounting for the number 860 

of species that are missing from the dataset, and the Shannon index (Shannon, 1948), which 861 

reflects evenness. To assess the effect of the host subspecies on alpha diversity, we ran an 862 

ANOVA model and confirmed the model met assumptions of normality, using a Shapiro-863 

Wilk’s test on the Studentized residuals, and visually assessed the fit against the residuals 864 

(Quinn and Keough, 2002). Both Chao1 and Shannon models were transformed to account for 865 

skew (‘sqrt(500-x)’ and ‘exp(x)’, respectively). Finally, we used a Tukey post-hoc test to 866 

compare the different levels of the factor(s) that were statistically significant. 867 
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Identification of differentially abundant taxa. We identified bacterial taxa that significantly 868 

differed in abundance between host subspecies using ANCOM-II (Mandal et al., 2015), a 869 

method appropriate for compositional data, which accounts for the sparsity of the taxon table 870 

(Kaul et al., 2017). To account for the association between host subspecies and dataset (newly 871 

generated versus Fellows Yates et al. (2021); Figure S1) and to reduce the possibility that we 872 

identify dataset-specific taxa as differentially abundant, we ran the analysis twice. First, we 873 

identified microbial taxa that differed in abundance between host subspecies, while accounting 874 

for read depth. Second, we identified microbial taxa that differed in abundance between 875 

datasets, while accounting for the host subspecies. Only genera that differed among subspecies 876 

and did not differ by dataset were considered relevant for evaluating microbiome differences 877 

among gorilla subspecies. Differentially abundant taxa were identified as those above the 0.9 878 

quantile of the ANCOM W-statistic and Kruskal-Wallace post-hoc test (Bonferroni adjusted 879 

p-values < 0.05), or those that were structurally absent from one or more subspecies. Only 880 

microbial taxa identified at the genus or species level were considered.  881 

Following this procedure, we also used ANCOM to identify taxa that differed in abundance 882 

between mountain and western lowland gorillas, for both microbial and dietary taxonomic 883 

datasets. These taxa were then used to explore the effects of altitude, separating Grauer’s 884 

gorillas into high- and low-altitude populations and performing comparisons using both 885 

Jaccard and Aitchison distances in pairwise PERMANOVAs, in which differences in dataset 886 

identity were included as factors. 887 

Functional analysis 888 

Decontaminated metagenomic reads were functionally characterised using an assembly-free 889 

approach implemented in the HUMAnN2 pipeline (V0.11.2; Franzosa et al., 2018) using the 890 
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MetaPhlAn2, UniRef50, and ChocoPhlAn databases (Segata et al., 2012; Truong et al., 2015). 891 

The output tables containing the abundances of gene families with specific function were 892 

regrouped to show gene ontology (GO) terms (Ashburner et al., 2000; Gene Ontology 893 

Consortium, 2021), normalised to copies per million reads and feature abundances across taxa 894 

were aggregated in a single feature table, which was imported into R for further analysis. We 895 

subset our dataset to GO terms referring to biological processes and used PERMANOVA on 896 

their Euclidean distances to investigate functional differences of the oral microbiome by host 897 

subspecies. We then compared the abundances of biological processes among host subspecies 898 

using ANCOM, using the same approach as above.  899 

Metagenome-assembled genomes (MAGs) 900 

We used the metaWRAP pipeline (V1.3.2; Uritskiy et al., 2018) to construct MAGs from 901 

decontaminated sequencing reads. To increase the amount of data available for building the 902 

initial assemblies with MEGAHIT (Li et al., 2016), we concatenated the reads across all 903 

samples. The initial assembly was split into genomic bins using three different metagenomic 904 

binning tools (metabat2; V2.9.1 (Kang et al., 2019), maxbin2; V2 2.2.4 (Wu et al., 2016), 905 

CONCOCT; V0.4.0 (Alneberg et al., 2013)) and we retained only those bins that were 906 

consistently defined by all three tools. For each MAG, we assigned taxonomic identity with 907 

GTDB-TK (Chaumeil et al., 2019) and constructed a phylogeny containing our MAGs and 908 

closely-related reference genomes identified by GTDB-TK. The abundance of MAGs in each 909 

sample was estimated using salmon (V0.13.1; Patro et al., 2017) and the CLR-transformed 910 

abundances were visualised using pheatmap (Kolde and Others, 2012). For each assembled 911 

and taxonomically identified MAG, we extracted and curated records of isolation sources 912 

(sources listed in Table S8) following an approach described by Madin et al. (2020). This 913 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.06.494923doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.494923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

46 

information was used to categorise the isolation sources for taxa into one of the following 914 

categories: “contaminant”, “environmental”, “host-associated”, “oral”, or “unknown”.  915 

To evaluate evolutionary relationships for select MAGs, reference genomes or gene sequences 916 

for the identified species/genus were downloaded from GenBank and Genome Taxonomy 917 

Database (GTDB; V202; (Parks et al., 2018). We created alignments using the amino acid 918 

sequences of core genes with PhyloPhlAn (V.3.0.2; Segata et al., 2013) and constructed 919 

maximum-likelihood phylogenies using FastTree (V2.1.10; Price et al., 2010), which we 920 

visualised using ggtree (V3.1.0; Yu et al., 2017). 921 

We used two different approaches to determine the presence of genes involved in the nitrate 922 

reduction pathway in MAGs belonging to oral genera with nitrate reduction ability (see 923 

references provided in Rosier et al. (2020)). First, we used the pangenomic tool Panaroo 924 

(Tonkin-Hill et al., 2020) to determine presence of genes across a set of fragmented MAG 925 

assemblies. Second, we performed a translated BLAST search (tblastn, V2.11.0; Camacho et 926 

al., 2009) using protein sequences obtained from UniProt against MAG contigs. Genes in 927 

MAGs and reference genomes were considered as present if detected with either method.  928 

Estimating ecological variation in oral microbiome composition 929 

Using altitude as a proxy for ecology and diet, we estimated the correlation between altitudinal, 930 

geographical and microbiome distances. First, we approximated altitude and geographic 931 

location (latitude, and longitude) for each specimen based on the collection locality as retrieved 932 

from museum records. We constructed Euclidean distance matrices for altitudinal and 933 

geographical distance using R package vegan. Using the ade4 R package (1.7-16; Dray et al., 934 

2007), we performed partial Mantel tests (10,000 permutations) between microbiome distance 935 
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matrices (Pearson correlation used for Jaccard distances and Spearman's rank coefficient 936 

correlation for Aitchison taxonomic and Euclidean functional distances) and altitudinal 937 

distances, while accounting for the effect of log-transformed geographical distances.  938 

To further investigate the effects of altitude on Grauer’s gorilla microbiomes, which is the 939 

subspecies with the largest altitudinal range (Plumptre et al., 2016), we grouped the Grauer’s 940 

gorilla samples into low- (500-1000 m above sea level [masl]) and high-altitude (>1000 masl) 941 

populations. We evaluated the contribution of altitude by performing a PERMANOVA, after 942 

accounting for potential dataset and host subspecies effects. Post hoc tests were performed 943 

using pairwise PERMANOVA, as described above. 944 

Dietary Analysis 945 

Eukaryotic reads in dental calculus were used to identify taxa potentially consumed by gorillas. 946 

Before taxonomically classifying these reads, we removed reads assigned to prokaryotes and 947 

viruses from the metagenomic dataset using the ‘extract_kraken_reads.py’ script from 948 

KrakenTools. The resulting FASTQ files were used as input in a second run of Kraken2 using 949 

the NCBI ‘nt’ database (accessed 27 September 2021). A joint feature table containing species 950 

and genus-level assignments was produced using kraken-biom and imported into R for further 951 

analysis. The genome coverage for these taxonomic classifications was insufficient for 952 

verification using mapDamage2.  953 

Preprocessing of feature table. The feature table produced by kraken-biom was used in a 954 

phyloseq object along with a corresponding taxonomic matrix, created using the taxize R 955 

package. Using this matrix, we aggregated all identified taxa to the genus level, and used the 956 

decontam (V.1.10.0; Davis et al., 2018) R package to remove likely contaminants, as described 957 
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above for the oral microbiome analyses, including using different cut-offs for each dataset. 958 

Then, all genera present in the museum controls or with fewer than 10 reads per sample were 959 

removed, to reduce contaminants, spurious and unreliable classifications. Despite this filtering, 960 

spurious classifications or contaminants were still present (species that are unlikely to be 961 

consumed by gorillas, e.g. mollusks), so we restricted it to genera belonging to taxonomic 962 

families that were previously reported to be consumed by gorillas (Michel et al., 2022; Remis 963 

et al., 2001; Rogers et al., 2004; Rothman et al., 2014; Yamagiwa et al., 2005). Since only few 964 

reference genomes of tropical plants are available and classically-used barcoding genes 965 

represent only a small part of the genome, accurate taxonomic classification from a sparse 966 

metagenomic sample is difficult and can likely only be achieved on genus or family level 967 

(Mann et al., 2020). For this reason, we focused our analysis not only on genera known to be 968 

consumed by gorillas, but also included all detected genera in the same family. The resulting 969 

feature table was used to detect differentially abundant dietary components with ANCOM 970 

using the same approach as described above, while accounting for differences in the number 971 

of reads per sample.  972 

Collecting gorilla diet reference data. We produced a reference dataset of gorilla foods (Table 973 

S11) by searching the literature for plant species known to be consumed by the three gorilla 974 

subspecies based either on direct observations, analyses of food remains and faeces or more 975 

recently on molecular evidence (Michel et al., 2022; Remis et al., 2001; Rogers et al., 2004; 976 

Rothman et al., 2014; Yamagiwa et al., 2005). We retrieved the corresponding taxonomic IDs 977 

from NCBI using the taxize R package. For the taxa that had no match in the NCBI Taxonomy 978 

database, we manually searched the database and corrected the names that were obviously 979 

misspelt (difference of 1-2 characters from the NCBI entry). For the remaining taxa, we 980 

manually searched the GBIF species database (Wheeler, 2004) and obtained GBIF taxonomic 981 
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IDs. However, several taxa (26 out of 314) could not be found in either database and therefore 982 

were excluded from our analysis. The taxonomic IDs obtained from either NCBI or GBIF were 983 

used with the ‘classification’ function of taxize to obtain the genus and family name for each 984 

taxon.  985 

Availability of Data and Materials 986 

Sequencing data generated in this study have been deposited on ENA, under Project Accession 987 

Number: PRJEB49638. Scripts for both preprocessing and downstream analysis are available 988 

at 10.5281/zenodo.6861585. 989 
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