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Abstract  

Age-related cognitive impairment is multifactorial, with numerous underlying and frequently co-morbid 

pathological correlates. Amyloid beta (Aβ) plays a major role in Alzheimer’s type age-related cognitive 

impairment, in addition to other etiopathologies such as Aβ-independent hyperphosphorylated tau, 

cerebrovascular disease, and myelin damage, which also warrant further investigation. Classical 

methods, even in the setting of the gold standard of postmortem brain assessment, involve semi-

quantitative ordinal staging systems that often correlate poorly with clinical outcomes, due to imperfect 

cognitive measurements and preconceived notions regarding the neuropathologic features that should 

be chosen for study. Improved approaches are needed to identify histopathological changes correlated 

with cognition in an unbiased way. We used a weakly supervised multiple instance learning algorithm on 

whole slide images of human brain autopsy tissue sections from a group of elderly donors to predict the 

presence or absence of cognitive impairment (n = 367 with cognitive impairment, n = 349 without). 

Attention analysis allowed us to pinpoint the underlying subregional architecture and cellular features that 

the models used for the prediction in both brain regions studied, the medial temporal lobe and frontal 

cortex. Despite noisy labels of cognition, our trained models were able to predict the presence of cognitive 

impairment with a modest accuracy that was significantly greater than chance. Attention-based 

interpretation studies of the features most associated with cognitive impairment in the top performing 

models suggest that they identified myelin pallor in the white matter. Our results demonstrate a scalable 

platform with interpretable deep learning to identify unexpected aspects of pathology in cognitive 

impairment that can be translated to the study of other neurobiological disorders.  

 

Keywords 

Deep learning, brain aging, cognitive impairment, myelin pathology, Luxol fast blue, multiple instance 

learning, interpretability  
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Introduction 

Cognitive impairment is not an invariable part of the aging process and unimpaired cognition is a core 

feature of most criteria of successful aging [1]. While Alzheimer’s disease (AD) type amyloid-beta peptide 

(Aβ) deposition in senile plaques may play a role in age-related cognitive impairment, it is clear that 

removing or ameliorating Aβ alone will not alleviate all cognitive impairment in aging [2]. The 

neuropathologic correlates of cognitive impairment are multifactorial, with mixed pathologies accounting 

for the majority of cases in community samples [3,4]. Data suggest that multiple forms of brain pathology 

can each be uniquely associated with risk of age-related cognitive impairment, including cerebrovascular 

disease, neuritic plaques and neurofibrillary tangles, Lewy body disease, TDP-43 pathology, and 

hippocampal sclerosis [5,6]. To pave the way towards better prevention and treatment options for age-

related cognitive impairment, there is an urgent need to identify the structural features of brain 

microanatomy that are robustly associated with the condition using unbiased assessment protocols [7,8]. 

One approach to identifying structural correlates of cognitive impairment is to perform clinicopathologic 

correlation in postmortem human brains.  

Recent advances in digital pathology, namely whole slide image (WSI) scanning and analysis, 

provide an opportunity to address the question of clinicopathologic correlation in a way that is less biased 

towards established paradigms [9]. Studies have begun to apply computational analysis of WSI data 

using deep learning to answer neuropathologic questions [10–12]. However, the use of deep learning in 

neuropathology has often been limited by the need for intensive manual annotations. Moreover, deep 

learning analysis in neuropathology has often used supervised learning to study an existing domain of 

structural features, rather than the discovery of potentially unexpected features.  

Weakly supervised deep learning offers a clear path towards WSI analysis in neuropathology with 

less bias and without the need for laborious manual annotations. In weakly supervised learning, the deep 

learning algorithm attempts to classify the WSI on the basis of a single slide-level diagnosis or label, 

rather than pixel-level inputs [13]. Weakly supervised learning approaches using multiple instance 

learning have had remarkable success thus far in digital pathology, especially in oncology [13,14]. 
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However, unlike cancer pathology, where a gold standard diagnosis can be ascertained, the 

neuropathologic etiologies of cognitive impairment are poorly understood, graded rather than categorical, 

overlapping, and dynamically interacting [15–17]. Moreover, clinical measures of cognitive function 

available for clinicopathologic correlation in neuropathology are frequently imprecise, non-standardized, 

ephemeral, and collected at distant time points prior to death [18–20]. As a result, the use of weakly 

supervised learning to correlate age-related cognitive impairment with neuropathologic features using 

WSI data will be dependent on noisy labels of cognition. 

To the best of our knowledge, no study has yet reported a weakly supervised deep learning 

approach on brain tissue WSI data to identify features associated with age-related cognitive impairment. 

It is uncertain the degree to which deep learning models will be able to identify robust features to make 

the prediction of whether an autopsy brain donor had antemortem cognitive impairment in the setting of 

noisy labels. In this study, we used WSI data stained with Luxol fast blue (LFB), hematoxylin, and eosin 

(LH&E), from the hippocampus and frontal cortex in a previously described cohort of elderly individuals 

with a spectrum of age-related pathologies [21–25]. We leveraged a published weakly supervised deep 

learning algorithm, clustering-constrained-attention multiple instance learning (CLAM) [14], on this 

histopathologic data to identify pathoanatomic features that are associated with cognition. Our approach 

re-purposes the classification procedure as a method for inferring pathoanatomical group differences 

between those found to have any aspect of cognitive impairment and those who were not. We explored 

the association between the deep learning model predictions on neuropathologic data and antemortem 

evidence of cognitive impairment. To interpret these results, we dissected the deep learning model’s 

attention weights using additional machine vision techniques. Our study shows that weakly supervised 

deep histopathology is a promising platform to perform clinicopathologic correlation in neuropathology.   
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Materials and methods 

Description of the overall cohort and subset analyzed in this study  

Our study used digital WSIs of stained formalin-fixed paraffin embedded (FFPE) tissue from the frontal 

cortex and hippocampus of a subset of individuals from a previously described collection [21–23]. The 

cohort is a convenience sample derived from our ongoing studies of brain aging, which was collected by 

eliciting samples from multiple institutions. Extensive neuropathological assessments were completed at 

the contributing institutions using standardized criteria. This assessment included CERAD neuritic plaque 

severity score and Braak stage [26]. This cohort contains individuals with varying degrees of primary age-

related tauopathy (PART) pathologic change, including PART possible (mild amyloid plaques) and PART 

definite (amyloid plaque negative), among other age-related changes [27]. Neuropathological exclusion 

criteria consisted of other neurodegenerative diseases including Lewy body disease, progressive 

supranuclear palsy (PSP), corticobasal degeneration (CBD), chronic traumatic encephalopathy (CTE), 

Pick disease, Guam amyotrophic lateral-sclerosis-parkinsonism-dementia, subacute sclerosing 

panencephalitis, globular glial tauopathy, and hippocampal sclerosis. There are also individuals that do 

not meet the neuropathologic criteria for PART (e.g., two cases with moderate amyloid), and therefore it 

should be considered an aging-related cognitive impairment cohort. Cerebrovascular pathology was 

defined in an inclusive manner based on clinical or gross pathoanatomic evidence of vascular disease in 

the brain in the provided records. In this cohort, ARTAG positivity or absence was assessed on matched 

phosphorylated tau immunohistochemical stains as previously described [22].  

Inclusion criteria in the subset of this cohort analyzed in this paper were individuals who had 

antemortem clinical evidence of either normal cognition or cognitive impairment, while those without such 

data were excluded. This led to a data set with WSI and matched pathoclinical data from a total of n = 

716 donors (Table 1). For the definition of cognitive impairment, we used a hierarchical method based 

on the three metrics in the available clinical data to identify any evidence of cognitive impairment. First, 

if available, a clinical dementia rating (CDR) score >= 0.5 was used as the primary measure of cognitive 

impairment; if CDR was not available, then the presence of any clinical diagnosis suggestive of cognitive 
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impairment was used as the secondary measure; and finally, if the first two more global metrics were not 

available, then a Mini-Mental State Examination (MMSE) score <= 24 was used as a measure of cognitive 

impairment [28]. To maximize the sample size available for the study, cognitive data was included even 

if the time of assessment relative to death was unknown. Brain donors with any evidence of cognitive 

impairment were considered a part of the cognitively impaired (CI) group, while donors with negative data 

in all the available categories were included in the non-cognitively impaired (NCI) group. CDR scores 

with dementia severity score greater than 3 were converted to a maximum of 3 for consistency across 

centers. 

 
Slide preparation 

Luxol fast blue, hematoxylin, and eosin (LH&E) stains were performed on 4-µm-thick FFPE sections as 

previously described [23]. Sections mounted on positively charged slides were dried overnight. For each 

batch of slides stained, a known severe AD case was included as a positive staining control. WSI were 

scanned using an Aperio CS2 (Leica Biosystems, Buffalo Grove, IL) digital slide scanner at 20x 

magnification (0.5 microns per pixel).  

 

Weakly supervised learning pipeline  

We used Python (v. 3.7.7), PyTorch (v. 1.3.1), and CLAM to perform deep learning on WSIs [14]. Models 

were trained using 4 NVIDIA V100 GPUs available on Minerva, a high-performance computing cluster at 

the Icahn School of Medicine at Mount Sinai. LH&E WSIs were segmented into tiles of 256 x 256 pixels 

using the default automated segmentation settings in CLAM. All the tissue in the WSI was included in the 

segmentation and downstream analysis. For example, for WSIs generated from blocks with two tissue 

sections on the slide, both tissue sections were automatically segmented and used in downstream 

analyses.  

To perform feature extraction, for each tile, the first three blocks of a ResNet50 model pre-trained 

on ImageNet was used to convert each 256 x 256-pixel tile into a 1024-dimensional feature vector. 
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Training in CLAM uses attention-based pooling to leverage tile-level feature vectors in assembling slide-

level representations for each of the two classes. For network training, we used the default CLAM 

parameters, with a single attention branch model and a learning rate of 2e-4. For WSI classification 

training, we used 10-fold Monte Carlo cross-validation to split the data set into 10 folds of training sets 

(80% of cases), validation sets (10% of cases), and test sets (10% of cases). A separate model was 

trained on each of the 10 folds, using performance on the validation set for early stopping during training, 

and performance on the test set at the end of training as a measure of prediction accuracy.  

We used R (v. 4.0.1) and ggplot2 (v. 3.3.5) to perform downstream analysis and visualization of 

results from the weakly supervised deep learning analysis. To evaluate the performance of the deep 

learning algorithm, we compared the performance of all 10 independently trained models to chance (i.e., 

an area under the receiver operating characteristic (ROC) curve, or AUC, of 0.5) using one-sample 

Wilcoxon signed rank tests with continuity correction and plotted the average ROC curves using vertical 

averaging and linear interpolation [29]. For the analysis from each of the two brain regions studied, we 

used the best-performing model, as measured by the arithmetic mean of the area under the curve and 

the balanced accuracy on the test set, for subsequent analyses. To perform differential rank correlation 

analysis between groups, we used the DGCA package [30], with 10,000 permutations of the data used 

to generate empirical p-values.  

 

Attention interpretation analysis  

For each WSI, we used CLAM to perform tissue-level attention analysis of the top performing trained 

models. In these heatmaps, the red colors represent regions assigned relatively high attention by the 

model and blue colors represent regions assigned relatively low attention, normalized to the attention 

values in the rest of the slide.  

To evaluate the macrostructural features most associated with cognitive impairment, we used V7 

to annotate the macroscopic tissue types in a randomly chosen subset of WSIs from both the 

hippocampus and frontal cortex. One trained researcher (M.S.) created the annotations, and an expert 
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neuropathologist (J.F.C.) reviewed them to ensure accuracy. The V7 annotations were converted to the 

same tile-level space as the tile-level attention score output from CLAM. We z-transformed the attention 

scores and we then calculated the median tile-level attention score for each tissue region within each 

slide. We compared the median attention scores across tissue types with paired t-tests.  

To evaluate the microstructural features most associated with cognitive impairment, we examined 

the 100 tiles with the highest attention scores from each WSI. In order to quantify the amount of dark blue 

staining in LHE stained tiles, we used the positive pixel counting function in the Python package 

HistomicsTK (v 0.1.0) [31]. This function converts RGB color space images to HSI (hue, saturation, 

intensity) color space and calculates the number of pixels in a user-defined hue range. The parameters 

used to count the positive pixels were created based on manually identifying the appropriate dark blue 

hue range in HSI space (Supplementary Fig 1). As a normalization measure, we also measured the 

ratio of the dark blue to light blue color stain in each tile. Outlier tiles with zero positive pixels were 

removed from further analysis. The same positive pixel counting analysis pipeline was applied to each of 

the top 100 attention tiles identified from each WSI in the data sets. To minimize the impact of outliers, 

the median of the results was found for each slide. The slide-level median values between different 

groups were then compared with t-tests. The multivariate combination of the total dark blue pixel counts 

and the ratio of dark to light blue pixel counts between groups predicted to be cognitively impaired or not 

were compared with two-dimensional kernel density estimation using the MASS R package (v. 7.3-51.6) 

and visualized with contour lines.   

 

Association of deep learning predictions with pathoclinical traits  

We used rank correlation analysis to compare slide-level probability estimates of cognitive impairment 

and slide-level averages of dark blue color density with other pathoclinical traits in the data set, namely 

age, cerebrovascular pathology, hippocampal aging-related tau astrogliopathy (ARTAG) positivity, and 

Braak score provided by the brain bank of origin. To further dissect the relationships between age, clinical 

labels of the presence or absence of cognitive impairment, and the slide-level median values of dark blue 
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pixel counts, we used asymptomatic chi square conditional independence tests from the R package 

bnlearn (v. 4.6.1) [32].  

 

Code availability  

We used the publicly available software tool CLAM [14] to perform deep learning on WSIs and the publicly 

available software tool HistomicsTK [31] to perform positive pixel counting of the top attention tiles. Scripts 

used to perform key custom parts of the downstream data analysis are available at the following URL: 

https://github.com/andymckenzie/deep_histopathology_manuscript.  
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Results  

Prediction of cognitive impairment using weakly supervised deep learning  

We re-purposed a weakly supervised deep learning algorithm previously used for classification in the 

setting of a known gold standard label as method for inference of pathophysiology in the setting of noisy 

cognitive labels (Fig 1) [14]. We ran this analysis pipeline on an existing collection of WSIs and trained 

the model to classify brain tissue sections as coming from the subset of individuals with evidence of 

antemortem cognitive impairment or not (Table 1). In the hippocampus, across the test set of each 10 

folds of cross-validation, we found a mean AUC on the 10% of held out test subsets of 0.63 (one-sample 

Wilcox signed rank test p-value = 0.006; Fig 2B-C) and a mean balanced accuracy of 0.59 (p = 0.013, 

Fig 2C). In the frontal cortex, we found a mean AUC of 0.67 (p = 0.002, Fig 2B-C) and a mean balanced 

accuracy of 0.58 (p = 0.009; Fig 2B). While the models have modest accuracy as a pure classification 

task, in both brain regions the classification accuracy was significantly greater than chance, suggesting 

that the models have utility for the inference of pathophysiology.  

We next evaluated slide-level predictions of the probability of cognitive impairment using the 

highest performing models in each brain region, parsing out the sub-components of the cognitive 

impairment classifications (Fig 2D-E). In the hippocampus data, we found that the probability of cognitive 

impairment estimate was significantly associated with the diagnostic category (57% in the CI group vs 

33% in the NCI group, t-test p-value < 2.2e-16), MMSE (ρ = -0.32, p = 1.1e-7), and CDR (ρ = 0.5, p < 

2.2e-16). In the frontal cortex data, we found that the probability of cognitive impairment estimate was 

also significantly associated with the diagnostic category (49% in the CI group vs 39% in the NCI group, 

p = 9.8e-11), MMSE (ρ = -0.30, p = 1.2e-4), and CDR (ρ = 0.52, p = 3.9e-12). While these strong 

associations with the cognitive labels are expected because they are what the models were trained on, 

they show that the model has not overly anchored on any one of the three cognitive labels employed. 

The correlation of the probability estimates of the models from the hippocampus and frontal cortex was 

highly significant and of moderate strength (ρ = 0.41, p = 1.5e-14; Supplementary Fig 2), suggesting 
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that the models trained on the two different brain regions are identifying partially independent signals for 

cognitive impairment.  

To explore the reasons for the imperfect classification accuracy we identified, we found the 

correlation of the probability estimates of cognitive impairment with age across groups (Fig 3A-B). In the 

hippocampus, there was a significant correlation between age and the estimated probability of cognitive 

impairment in the non-cognitively impaired group (ρ = 0.37, p = 1.2e-12), a weaker but still significant 

correlation in the cognitively impaired group (ρ = 0.18, p = 9.0e-4), and a significant difference in 

correlation (z-score for difference = -2.6; empirical p-value = 0.014). In the frontal cortex, there was a 

significant correlation between age and the estimated probability of cognitive impairment in the non-

cognitively impaired group (ρ = 0.45, p = 1.1e-9), no significant correlation in the cognitively impaired 

group (ρ = -0.12, p = 0.11), and a significant difference in correlation (z-score = -5.3; empirical p-value = 

1e-4). These differential correlation results with age suggests that one reason for imperfect classification 

accuracy may be mislabeling of brain donors with more advanced age who did have cognitive impairment 

as not cognitively impaired.  

 

Attention-based interpretation identifies an association of white matter pathology with cognitive 

impairment   

To explore the underlying anatomical features used as evidence by the deep learning algorithm, 

we performed attention-based interpretation analysis using the highest performing models from each 

brain region. In the hippocampus, on a macro-anatomic scale, the model was found to have qualitatively 

higher attention in white matter regions as opposed to grey matter (Fig 4A-B). On a microanatomic scale, 

the models were qualitatively found to have a lower level of LFB staining intensity in the hippocampal top 

attention tiles from the cases labeled with cognitive impairment (Fig 4C). To quantify sub-regional 

differences of the attention signal in the hippocampus, we manually annotated tissue types in a randomly 

chosen subset of WSIs and used these annotations to measure the region-specific attention scores 

produced by the model. Quantitative attention scores were found to be significantly higher in the white 
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matter (average attention z-score = 0.62) than in the grey matter (average attention z-score = -0.41; 

paired t-test for difference p-value = 9.4e-8). The same trend of higher attention scores in the white matter 

was found across cognitive status labels (Fig 4D), suggesting that this result is not due to confounding 

by cognitive impairment label but instead to properties of the models.  

To quantify the microanatomic scale results from the hippocampus, we used positive pixel 

counting on the 100 tiles with the highest attention scores as measured by the model, henceforth called 

the “top tiles.” LFB stains CNS myelin sheaths dark blue [24] and our chosen pixel range was designed 

to capture this LFB staining intensity (Supplementary Fig 1). In the hippocampus, the WSIs predicted 

to be from brain donors with cognitive impairment had a significantly lower LFB staining intensity in the 

top tiles (t-test difference p-value = 7.6e-7, Fig 4E). To normalize for possible variation in staining intensity 

across slides, we measured the ratio of dark blue staining to light blue staining in the top 100 attention 

tiles. We found that there was a significantly lower ratio of dark blue staining to light blue staining (t-test 

p = 4.1e-5; Fig 4F). The LFB staining intensity and the ratio of dark blue to light blue staining intensity in 

the top tiles are correlated (ρ = 0.14, p = 2.8e-4) and jointly distinguish donors predicted by the model to 

be cognitively impaired or not (Fig 4G).  

We next performed the same analysis in the frontal cortex data set, where the results largely 

echoed those of the hippocampus, with generally stronger effect sizes. Qualitatively, the frontal cortex 

model was also found to have higher attention in white matter regions (Fig 5A-B) and a lower level of 

LFB staining in the top tiles (Fig 5C). Quantitatively, attention scores were found to be significantly higher 

in the white matter (average attention z-score =1.03) than in the grey matter (median attention z-score = 

-0.85, t-test p-value < 2.2e-16; Fig 5D). The group labeled as cognitively impaired had a significantly 

lower LFB intensity in the top tiles (t-test p = 7.3e-6, Fig 5E) and there was a significantly lower ratio of 

dark blue staining to light blue staining (t-test p < 2.2e-16, Fig 5F). And as with the hippocampus data 

set, these two measures are correlated and jointly distinguish between brain donors with and without 

labels of cognitive impairment (Fig 5G).   
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Deep histopathological findings are partially independent of several known pathoanatomic features  

We compared the deep learning model results with previously established clinicopathologic 

features, namely age, Braak stage, cerebrovascular pathology, and hippocampal ARTAG. This 

association analysis was focused on the hippocampal data set because it has a substantially higher 

sample size and is therefore better powered to detect correlations (Fig 6A). We found that there was a 

significant rank correlation of the model’s cognitive impairment probability estimates with age (ρ = 0.32, 

p < 2.2e-16), Braak stage (ρ = 0.13, p = 6.2e-4), ARTAG positivity (ρ = 0.15, p = 1.5e-4), and 

cerebrovascular pathology (ρ = 0.29, p = 9.0e-5). We also found that there was a significant association 

of LFB staining intensity in the top attention tiles with age (ρ = -0.18, p = 1.0e-6) and cerebrovascular 

pathology (ρ = -0.24, p = 0.0014), but not with Braak stage (ρ = -0.05, p = 0.18) or with the presence of 

ARTAG pathology (ρ = -0.05, p = 0.24). This result suggests that the deep learning algorithm has 

identified a signal for cognitive impairment that is associated with some aspects of known 

pathophysiology.  

We further dissected the association between age, LFB staining intensity in the top tiles, and 

cognitive impairment labels in the hippocampal data set with conditional independence tests. We found 

that the label of cognitive impairment was not conditionally independent of age when accounting for LFB 

staining intensity in the top tiles (mutual information = 42.3, p = 3.4e-9 by asymptomatic chi square test). 

Additionally, the label of cognitive impairment was not conditionally independent of LFB staining intensity 

in the top tiles when accounting for age (mutual information = 21.8, p = 7.1e-5). These results suggest 

that while these three variables are all significantly associated with one another, chronological age does 

not fully explain the association of LFB staining intensity in the top tiles with cognitive impairment, nor 

vice versa.  

We next performed correlation analysis on the frontal cortex data set (Supplementary Fig 3), 

omitting cerebrovascular pathology as a variable because the intersected sample size was too low for 

reliable estimates in the frontal cortex data set. While the results between brain regions were 

predominantly similar, one difference is that there was not a significant correlation identified between the 
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model’s cognitive impairment probability estimates and Braak stage in the frontal cortex, although it 

trended towards significance (ρ = 0.11, p = 0.06). Because the hippocampus has a larger sample size 

than the frontal cortex, it is better powered to detect a significant correlation between Braak stage and 

probability of cognitive impairment. To address the possibility that this difference in sample size affected 

any differences in correlation between the regions, we filtered the sample to select only those cases 

containing data from both the hippocampus and frontal cortex and tested for a differential correlation. In 

this subset of the data, we found a higher rank correlation between Braak stage and the probability of 

cognitive impairment derived from the hippocampus (ρ = 0.29, p = 7.4e-8) than in the frontal cortex (ρ = 

0.11, p = 0.06), which was a significant difference in correlation (z-score for difference = -2.4, empirical 

p-value = 0.02; Fig 6B). In order to query the robustness of this result, we employed data on positive 

pixel counts for AT8 staining in the medial temporal lobe (MTL), a measure of tau burden that has been 

previously described in this cohort [22]. We found that there was a significant rank correlation between 

AT8 staining burden in the MTL and the probability of cognitive impairment derived from the hippocampus 

(ρ = 0.37, p = 9.2e-12), a weaker but still significant correlation with the probability of cognitive impairment 

derived from the frontal cortex (rho = 0.12, p = 0.029), and that there was a significantly higher correlation 

between these two measures in the hippocampus (z-score for difference = 3.2, empirical p-value = 0.001; 

Fig 6C). One way to interpret these findings is that the contributions of different types of histopathology 

to the deep learning-derived predicted probability of cognitive impairment may differ by brain region.  
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Discussion  

In this study, we used deep learning models to identify a reduction in LFB staining intensity in the top 

attention tiles from brain sections of donors with antemortem evidence of cognitive impairment. Because 

LFB staining in brain tissue is generally used to quantify the amount of myelin [24,25], the signal that we 

identified is likely due to decreased myelin staining intensity. Our results are not able to distinguish 

decreased myelin density with spared axons as opposed to axon injury and associated myelin loss. In 

many cases, diminished myelin density in aging is associated with cerebrovascular disease [33]. This is 

consistent with the strong correlations we identified in this study between cerebrovascular pathology, the 

predicted probability of cognitive impairment, and decreased LFB staining in the top attention tiles. Even 

when accounting for age, there was still an association between decreased LFB staining in the top 

attention tiles and cognitive impairment. Treating cerebrovascular disease risk factors such as 

hypertension has been found to decrease white matter pathology and partially reverse age-related 

cognitive impairment [33]. However, age-associated decreases in myelin density have numerous 

possible causes other than cerebrovascular disease, such as nearby AD cortical pathology [34,35], a 

primary effect of aging [36–38], repetitive head impacts [39], or the accumulated effects of excessive 

alcohol use [40]. It is unclear the extent to which the decreased myelin density we found to be associated 

with age-related cognitive impairment are explained solely by cerebrovascular pathology as opposed 

these other possible etiologies, which warrants further investigation.    

While postmortem brain gene expression and pathoanatomical studies in aging and AD have 

often focused on grey matter, neuroimaging findings over the past several decades have frequently found 

alterations in the white matter to be strongly associated with cognitive impairment [41]. Leukoaraiosis 

(leuko – white, araiosis – rarefaction) is a common neuroimaging abnormality of the white matter that can 

be found in periventricular or subcortical areas [42,43]. On T2-weighted and FLAIR MRI, leukoaraiosis is 

frequently described as white matter hyperintensities [44]. While leukoaraiosis is strongly associated with 

cerebrovascular disease, the precise etiology remains unclear [43,44]. Clinically, leukoaraiosis is 

associated with cognitive deficits such as bradyphrenia [33]. Histologically, leukoaraiosis has been 
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suggested to be associated with decreased density of myelin sheaths [45]. Our deep learning models 

identified a neurohistologic signal for cognitive impairment that was (a) focused in the white matter, (b) 

in some cases scattered in a non-uniform pattern across the tissue, (c) and associated with decreased 

myelin staining intensity. Although our data set lacks associated in vivo neuroimaging data to draw 

conclusive statements, one clear possibility is that the white matter histologic alterations the deep 

learning models identified may reflect similar etiopathology as the neuroimaging finding of leukoaraiosis. 

We propose that diminished LFB staining intensity in particular areas identified by a deep learning model 

may be a quantitative way to assess for the presence of leukoaraiosis-associated neuropathology in 

postmortem brains.  

 It is important to consider the limitations of this study. First, compared to previously published 

weakly supervised learning publications in oncology (which are often n > 1000), the data set employed 

here (n = 716) is not as large [13,14]. Because there is an absence of significant Aβ burden in this cohort, 

it also limits the representativeness of the cohort to the population at large. This adds to the numerous 

selection biases in brain donation-based autopsy cohorts in general [46]. Second, the WSI data set 

analyzed only contains one stain, the LH&E stain. While LFB staining is ideal for detecting myelin, it is 

possible that it may have highlighted the white matter to a disproportionate degree that affected the deep 

learning algorithm results. Third, we were unable to assess for comorbid TDP-43 pathology, which would 

allow us to screen for limbic-predominant age-related TDP-43 encephalopathy (LATE), a common TDP-

43 proteinopathy associated with an amnestic dementia in elderly individuals [47]. Additionally, because 

we only looked at two brain regions, we have limited anatomical sampling, which is problematic because 

we know that cognitive impairment is determined by accumulated lesion burden across the brain. Finally, 

it is possible that a fixation or staining artifact may affect the cognitive impairment probability estimates 

and/or attention signals. For example, deeper areas of the brain were often found to have qualitatively 

higher attention signals, which may have been artifactual. However, this is considered less likely as – 

again qualitatively – the attention signal appears to follow anatomical compartments, such as the deep 

white matter, while sparing the subcortical U-fibers, regardless of the depth of these compartments.  
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 Although there are some additional limitations to our study, we expect that our methodology lays 

the groundwork for further probing of the histopathology of age-related cognitive impairment in future 

studies that will be able to address these limitations. For example, while our current slide-level predictive 

accuracy is modest, as our data sets grow, we expect it will improve in discriminative power and will 

better enable us to pinpoint morphological features associated with cognitive impairment. Additionally, 

while we only focused on a robust yet general approach to assessing myelin, i.e. LH&E stained tissue 

sections, future studies deploying additional modalities of assessing myelin injury, such as 

immunohistochemical staining for oligodendrocyte, axonal, vascular, inflammatory, and myelin markers, 

will help to further elucidate the pathogenesis of age-related cognitive impairment. Finally, because we 

only have WSI data available from two brain regions, we are limited in our ability to explain why the results 

from the two brain regions appeared to differ in some ways. Our ability to interpret differences in deep 

learning-derived metrics across brain regions will improve with richer data sets containing WSIs from 

more brain regions.  

As compared to cancer pathology, which has heretofore been the main use case of weakly 

supervised deep learning in digital pathology, in studying the neuropathology of dementia, there is less 

of an emphasis on diagnosis and more of an emphasis on the inference of pathophysiology. This is in 

part because cancer can be more frequently associated with one causal type, whereas cognitive deficits 

in the brain are generally due to overlapping pathologies with complex patterns of comorbidity. The 

multifactorial nature of cognitive deficits lends itself well to multidimensional interpretation studies. First, 

it emphasizes the value of quantitative probability estimates of cognitive impairment instead of binary 

labels, which allow for more precise correlation analysis with other clinicopathologic features. Second, 

the relative focus on understanding pathophysiology in neuropathology also underscores the value of 

deterministic computer vision studies, such as positive pixel counting, as a downstream method for 

interrogating attention or other interpretability signals present in deep learning models. While the 

prediction capacity of deep learning models in digital pathology can be expected to continue to improve 

rapidly, our ability to understand what histopathologic features those models are focused on is lagging. 
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Improving our suite of methods for the interpretation of deep learning models will allow us to best harness 

them and to understand how they may be flawed or biased. Because the study of the neuropathology of 

dementia remains driven by human ingenuity, more interpretable deep learning methods will be essential 

to accelerate its adoption across the field.  

Predicting the presence or absence of cognitive impairment with the use of single histology 

sections on an individual level is an extremely challenging task. There are known barriers related to 

disease heterogeneity, variation in clinician practices, and cognitive reserve [8,48]. In this study, we 

employed a deep learning classification model for inference of pathophysiology from histology slides with 

noisy labels of cognitive impairment, resulting in predictions with modest accuracy but significantly above 

chance level. Interpretation studies suggested that top performing models in the hippocampus and frontal 

cortex focused on similar aspects of white matter pathology. On a macroanatomic level, they had higher 

attention on white matter than gray matter; on a microanatomic level, the highest attention tiles showed 

differences in LFB staining intensity between slides from brains donors predicted to have cognitive 

impairment or not. Both the probability estimates of cognitive impairment and the measure of LFB staining 

intensity in the top attention tiles were partially independent of several known pathoclinical features, 

suggesting that they may be identifying unexpected aspects of pathophysiology. On the other hand, the 

probability estimates of cognitive impairment were not completely explained by LFB intensity in the top 

attention tiles; for example, ARTAG positivity was significantly associated with the probability estimates 

of cognitive impairment from the deep learning models but not with LFB intensity in the top attention tiles. 

Our results demonstrate that weakly supervised deep learning is a promising approach to dissect 

pathoanatomic features associated with cognitive deficits in neurohistologic data sets in an unbiased 

manner.  
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Tables and Figures 
 
Table 1. Description of cohort subset and whole slide image dataset used in this study.   
Category Non-cognitively 

impaired 
Cognitively 
impaired 

Total group p-value for 
difference* 

Sample size 367 349 716 Not applicable 
Age (Mean +/- 
SEM)  

83.0 +/- 0.58 87.4 +/- 0.48 85.2 +/- 0.39 p = 1.02 * 10-8 

Proportion 
female 

0.54 0.53 0.54 Not significant 

Mean Braak 
score 

2.4 2.5 2.4 Not significant  

Proportion 
CERAD 
neuropathology 
positive 

0.15 0.18 0.17 Not significant 

Proportion 
hippocampal 
ARTAG positive 

0.22 0.31 0.27 p = 0.015 

Proportion with 
hippocampal 
WSI 

0.99 0.99 0.99 Not significant 

Proportion with 
frontal WSI 

0.46 0.46 0.46 Not significant 

This table describes the pathoclinical characteristics of the subset of brain donors employed in this study. 
The significance of differences in categorical variables between the non-cognitively impaired and 
cognitively impaired groups was assessed with a two-proportions z-test, while the significance of 
differences in numerical variables was assessed with a t-test. WSI = Whole slide image; SEM = Standard 
error of the mean; ARTAG = Aging-Related Tau Astrogliopathy; CERAD = Consortium to Establish a 
Registry for Alzheimer's Disease. 
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Figure 1. Workflow for performing weakly supervised deep learning of age-related cognitive impairment.  
A: Generation of digital neuropathology whole slide images (WSI) with associated cognitive labels. 
Human brain sections were stained with Luxol fast blue (LFB) and counterstained with hematoxylin & 
eosin (LH&E). Cognitive labels were generated based on clinical diagnosis, clinical dementia rating 
(CDR) scores, and/or mini-mental state exam (MMSE) scores. B: WSI were segmented into tiles and 
passed through a convolutional neural network for feature extraction. The resulting tile-level feature 
vectors were passed through an attention network. Each feature vector was multiplied by its associated 
attention score and a weighted summation operation was performed to create slide-level feature vectors. 
The slide-level feature vectors were then passed through a classification network. The attention and 
classification networks were trained via backpropagation. C: For interpretation analysis, attention 
heatmaps were created by mapping the attention scores at their associated tile locations in the original 
WSI. Among the top attention tiles, a dark blue hue range associated with LFB staining was counted and 
quantified to calculate a slide-level median staining intensity value.  
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Figure 2. Weakly supervised classification predicts cognitive impairment based on whole slide image 
data from the hippocampus and frontal cortex.  
A: Venn diagram showing the overlap of the measures used for defining the presence of cognitive 
impairment in brain donors. B: Average receiver operating characteristic curves across 10-fold cross-
validation. Error envelopes show ± 1 standard deviation. Horizontal dotted lines show chance-level 
predictions. C: Summary statistics for test evaluation of model performance across 10-fold cross-
validation in the frontal cortex and hippocampus. Balanced accuracy refers to the accuracy of predictions 
weighted by the proportion of labels in both groups in the test split. Horizontal lines are shown at the 
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arithmetic mean values. D-E: Probability estimates of cognitive impairment from the top-performing model 
by each measure of cognitive impairment in the hippocampus (D) and frontal cortex (E). CDR = Clinical 
Dementia Rating; MMSE = Mini-Mental State Examination; AUC = Area Under the Curve. 
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Figure 3. Differential correlations of cognitive impairment probability estimates and age by clinical 
cognitive impairment label.  
Scatter plots for the correlation of age and the deep learning model probability estimates for cognitive 
impairment in the hippocampus (A) and frontal cortex (B) are shown. Trend lines show predictions using 
a linear model in each group of data and grey error envelopes show the associated 95% confidence 
intervals. NCI = Not Cognitively Impaired; CI = Cognitively Impaired.  
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Figure 4. Interpretation of tissue-level attention maps and tile-level staining intensity in the hippocampus 
suggests myelin loss.  
A-B: Representative WSIs labeled and predicted to be in the non-cognitive impaired (upper) or cognitively 
impaired (lower) groups (A) and corresponding representative attention heatmaps (B). In these 
heatmaps, dark red indicates high attention, while dark blue indicates low attention. C: Top 5 highest 
attention tiles (upper) and blue hue range positive pixel annotations (lower) from the matching WSIs as 
shown in sub-figures A/B. Scale bar = 20 μm. D: Median z-transformed attention score values in the grey 
matter and white matter. Each data point is a median attention score from the white matter or the grey 
matter from one WSI. E-F: Median dark blue range pixel counts as a measure of LFB staining intensity 
(E) and ratio of the dark blue to light blue pixel counts in the top attention tiles of WSIs predicted and 
labeled to have cognitive impairment or not (F). G: Scatter plot and contour lines showing the relationship 
between dark blue range pixel counts and the ratio of the dark blue to light blue pixel counts in the top 
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attention tiles of WSIs. Orange dots indicate that the WSI was predicted to come from a CI donor, while 
blue dots indicate NCI. * = p < 0.05, *** = p < 0.001. GM = Grey Matter; WM = White Matter; CI = 
Cognitively Impaired; NCI = Not Cognitively Impaired.  
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Figure 5. Interpretation of attention maps and tile-level myelin density in the frontal cortex suggests 
myelin loss. 
A-B: Representative WSIs labeled and predicted to be in the non-cognitive impaired (upper) or cognitively 
impaired (lower) groups (A) and corresponding representative attention heatmaps (B). In these 
heatmaps, dark red indicates high attention while dark blue indicates low attention. C: Top 5 highest 
attention tiles (upper) and blue hue range positive pixel annotations (lower) from the matching WSIs as 
shown in sub-figures A/B. Scale bar = 20 μm. D: Median z-transformed attention score values in the grey 
matter and white matter. Each data point is a median attention score from the white matter or the grey 
matter from one WSI. E-F: Median dark blue range pixel counts as a measure of LFB staining intensity 
(E) and ratio of the dark blue to light blue pixel counts in the top attention tiles of WSIs predicted and 
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labeled to have cognitive impairment or not (F). G: Scatter plot and contour lines showing the relationship 
between dark blue range pixel counts and the ratio of the dark blue to light blue pixel counts in the top 
attention tiles of WSIs. Orange dots indicate that the WSI was predicted to come from a CI individual, 
while blue dots indicate NCI. *** = p < 0.001. GM = Grey Matter; WM = White Matter; CI = Cognitively 
Impaired; NCI = Not Cognitively Impaired.  
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Figure 6. Deep histopathology features are partially associated with several known clinicopathologic 
features and partially independent.  
A: Correlation analysis of deep histopathology results and clinicopathologic features: age, Braak score, 
evidence of cerebrovascular pathology (coded as 0 = not present and 1 = present), ARTAG positivity in 
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the hippocampus (coded as 0 = not present and 1 = present), cognitive label (coded as 0 = not cognitively 
impaired and 1 = cognitively impaired), probability of cognitive impairment as predicted by the top-
performing model trained on the hippocampal data, and median LFB staining intensity in the top attention 
tiles in the hippocampus data set. Upper right: rank correlation values and associated p-values (* = p < 
0.05, ** = p < 0.01, *** = p < 0.001). Diagonal: histograms of variables. Lower left: scatterplots with linear 
model trend lines for the variable pairs (red lines) and 95% confidence intervals (blue envelopes). This 
plot was made using the R package GGally (v. 2.1.2). B-C: Scatter plots for probability of cognitive 
impairment estimated in the frontal cortex and hippocampus with Braak stage (B) and AT8 staining 
positive pixel counts in the medial temporal lobe (MTL) (C). Trend lines show predictions via a linear 
model and grey envelopes show associated 95% confidence intervals. CI = Cognitive impairment; 
ARTAG = Aging-related tau astrogliopathy; LFB = Luxol Fast Blue.  
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Supplementary Figures 

 

 
 

Supplementary Figure 1. Annotation procedure of blue hue ranges in Luxol fast blue, 
hematoxylin, and eosin-stained tiles.  
Representative tiles show the annotation method used for positive pixel counting in the Luxol fast 
blue, hematoxylin, and eosin (LH&E) stained histology tiles. For the annotation heatmap, the 
darker blue pixel range is highlighted as red while the lighter blue pixel range is highlighted as 
light blue.  
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Supplementary Figure 2. Correlation of slide-level probability estimates of cognitive impairment 
in matched brain donors between the two brain regions.  
Scatter plots showing the probability estimates of cognitive impairment by the top-performing 
models in the same brain donors between WSIs in the hippocampus and frontal cortex data sets. 
The blue line shows predictions from a linear model and grey error envelopes show 95% 
confidence intervals for the linear model.  
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Supplementary Figure 3. Scatterplot matrix of deep histopathology features with 
clinicopathologic features in the frontal cortex.  
Correlation analysis of deep histopathology results and clinicopathologic features: age, Braak 
score, ARTAG positivity in the hippocampus (coded as 0 = not present and 1 = present), cognitive 
label (coded as 0 = not cognitively impaired and 1 = cognitively impaired), probability of cognitive 
impairment as predicted by the top-performing model trained on the frontal cortex data, and 
median LFB staining intensity (pixel counts) in the top attention tiles in the frontal cortex data set. 
Upper right: rank correlation values and associated p-values (* = p < 0.05, ** = p < 0.01, *** = p < 
0.001). Diagonal: histograms of variables. Lower left: Scatterplots with linear model trend lines for 
the variable pairs (red lines) and 95% confidence intervals (blue envelopes). This plot was made 
using the R package GGally (v. 2.1.2). CI = Cognitive impairment; ARTAG = Aging-related tau 
astrogliopathy; LFB = Luxol Fast Blue.  
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