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Summary 

The evolution of protein-coding genes proceeds as mutations act on two main dimensions: regulation of 

transcription level and the coding sequence. The extent and impact of the connection between these two 

dimensions are largely unknown because they have generally been studied independently. By measuring 

the fitness effects of all possible mutations on a protein complex at various levels of promoter activity, we 

show that expression at the optimal level for the WT protein masks the effects of both deleterious and 

beneficial coding mutations. Mutants that are deleterious at low expression but masked at optimal 

expression are slightly destabilizing for individual subunits and binding interfaces. Coding mutations that 

increase protein abundance are beneficial at low expression but incur a fitness cost at high expression. We 

thereby demonstrate that expression level can dictate which coding mutations are beneficial or deleterious.  
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Main Text 

Mutations drive evolution through multiple effects, from altering gene expression to modifying the 

stability, assembly and function of proteins, which ultimately affect fitness. Therefore, measuring the 

fitness effects of mutations and identifying the underlying molecular mechanisms has been a long-standing 

goal in evolutionary biology (1, 2). Due to epistasis, the effects of new mutations are dependent on prior 

mutations, which makes their impact on fitness difficult to predict. Epistasis can take place among genes 

or within genes (3), including between mutations that alter different features of a gene such as its 

regulation (or expression level, used here as equivalent to promoter activity) and others that alter protein 

activity or stability (coding). Unfortunately, regulatory and coding mutations are rarely studied 

simultaneously, apart from a few cases (4, 5), such that we know little about how expression level modifies 

the fitness effects of coding mutations, and what the underlying mechanisms of such regulatory-by-coding 

epistasis would be. For instance, the relative effects of coding mutations could be amplified at low 

expression level. Conversely, mutations that are deleterious at low expression levels could become neutral 

at higher expression levels, or vice-versa. Thus, interactions between coding mutations and changes in 

gene expression could represent a vast unexplored constraint on protein evolution. 

 

The fitness landscape of a protein complex depends on its expression level 

We investigated the extent to which gene expression level impacts on the fitness landscape of a protein 

by mimicking evolutionary changes by mutations affecting promoter activity using an inducible system. 

The bacterial dihydrofolate reductase DfrB1 is a homotetrameric enzyme with a single active site (6, 7) 

that is inherently resistant to the antibiotic trimethoprim (TMP) (Fig. 1A - 1B) (DfrB1 Ki ~ 0.15 mM; 

Escherichia coli endogenous dihydrofolate reductase (ecDHFR) Ki ~ 20 pM) (8, 9). The fitness of E. coli 

can be made dependent on DfrB1 activity through the inhibition of ecDHFR using TMP. We used a 

plasmid whereby expression of dfrB1 is regulated by an arabinose-dependent promoter (Fig. 1B). By 

inducing expression in 0 to 0.4 % arabinose, we found that WT DfrB1 expression at 0.2 % arabinose 
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completely complements the inhibition of ecDHFR. This induction level was defined as the optimal 

expression level for WT DfrB1 (Fig. 1C, Fig. S1). Given the degree of complementation at each induction 

level, we refer to these expression levels as overexpressed (0.4 % arabinose), optimal (0.2 % arabinose), 

near-optimal (0.05 % arabinose), suboptimal (0.025 % arabinose) and weak (0.01 % arabinose) for the 

WT enzyme. We measured the corresponding expression levels by fusing DfrB1 to GFP (Fig. 1D). We 

observed a unimodal expression level within this range of induction. Our experiments show that DfrB1 

has a typical enzymatic fitness function with increasing fitness with expression and then saturation (10). 

 

We generated a library of all possible single amino acid changes to the sequence of DfrB1 covering amino 

acid positions 2 to 78 (Fig. S2). Individual mutants were combined in a pool and transferred to medium 

with TMP at either of the five arabinose concentrations defined above (Fig. S3). The frequency of the 

mutants in the initial pool before selection and after 10 generations where DfrB1 function was required 

for growth was measured by deep sequencing (Table S1, Table S2). Redundant codons and replicates were 

aggregated to estimate a selection coefficient for each protein variant at each induction level (Fig. 1E-F, 

Table S3). Biological replicates were highly correlated across experiments (Fig. S4). We confirmed the 

deleterious effects of previously reported mutants (Fig. S5, Fig. S6), and we validated a number of isolated 

mutants (n = 9) through growth curves (Spearman ⍴ = 0.87, p < 0.001) (Fig. S7).  
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Fig. 1. Selection coefficients (s) of amino acid changes depend on expression level. (A) DfrB1 converts 

dihydrofolate to tetrahydrofolate, an essential metabolite. (B) E. coli dihydrofolate reductase (ecDHFR) 

is inhibited by trimethoprim (TMP). DfrB1 is insensitive to TMP, and its transcription is modulated by an 

arabinose promoter. (C) Fitness-function of DfrB1 expression level. By inhibiting the endogenous 

ecDHFR with TMP (10 µg/mL), growth depends on DfrB1. Fitness is measured as a relative difference 

in growth (area under the curve) of the strain in medium with TMP relative to the same medium without 

TMP for a given arabinose concentration. Dots indicate the mean of six replicates and error bars indicate 

2.5 standard errors of the mean. (D) DfrB1-GFP expression as a function of arabinose concentration. 

Expression is shown relative to an E. coli strain not expressing GFP. (E) Selection coefficient (s) of 

individual amino acid mutants at non-optimal levels of expression compared to the optimal level. 
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Spearman correlation coefficients are shown. Lines indicate LOESS regressions. (F) s for individual 

mutants across expression levels. Colored lines indicate mutants from the different clusters (k-means, k = 

4). 

 

The selection coefficients (s) of individual mutants are broadly correlated between expression levels, 

revealing that most amino acid substitutions have effects that are relatively similar across expression 

levels, but the correlation decreases as expression level deviates from optimal value (Fig. 1E). Overall, 

the average fitness effect of amino acid substitutions at a given position decreases as expression 

approaches the optimal level (Fig. S8A). A large fraction of substitutions (528 out of 1463 (36.1 %)) 

showed statistically significant effects of expression on fitness (magnitude > 0.1, ANOVA, FDR adjusted 

p < 0.05, Fig. S8B, Table S4). Clustering identified four typical patterns (k = 4 clusters) of selection 

coefficients along the expression gradients as the best compromise between parsimony and interpretability 

(Fig. 1F, Table S5, Fig. S9A-B). As one could expect, some substitutions do not have major effects on 

fitness (cluster 4) while others are deleterious at all expression levels (cluster 1). Interestingly, within 

cluster 4, some amino acid changes are advantageous at the lowest expression level (see below). Many 

variants appear to deviate from these two patterns (clusters 1 and 4), particularly between optimal and 

weak expression levels (Spearman ⍴ = 0.94) (Fig. 1E, Fig. S10). Mutants in cluster 3 are deleterious at 

weak and suboptimal expression, but they become neutral at the optimal expression level for the WT. 

Mutants from cluster 2 are even more deleterious at low expression levels but, even if they remain 

deleterious, they improve in fitness as expression increases, even beyond optimal expression for the WT. 

This gain of fitness of many mutants at expression level higher than optimal is also visible in the 

relationship between the selection coefficients at non-optimal versus optimal expression levels in Fig. 1E. 

The relationship is convex for expression levels lower than optimal for WT and slightly concave when 

overexpressed. Our results show widespread epistasis between expression level and coding mutations, 

with different expression levels favoring distinct mutants. 
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We also examined whether mutants changed fitness ranking among expression levels. An ANOVA on the 

ranks revealed significant effects of the interaction between genotype and expression level (F = 11.57, p 

< 2.2e-16), although these effects are much smaller than those associated to genotypes alone (F = 644.23, 

p < 2.2e-16) (Table S6). To validate this change in ranking, we grew more mutants (n = 8) individually. 

As previously, mutants with higher fitness at optimal expression for WT were clearly reproduced. Mutants 

that were less deleterious at lower expression were not as consistent. This means that it is more challenging 

to measure precise selection coefficients for highly deleterious amino acid substitutions. This is caused by 

the fact that these mutations are strongly underrepresented at the final timepoints in pooled competition 

experiments. However, the differences in fitness between expression levels in the individual versus bulk 

competition assays were strongly correlated (Spearman ⍴ = 0.72, p = 0.037) (Fig. S11).  

 

The protein structure determines which amino acid changes have effects that depend on 

expression levels 

We mapped selection coefficients of all amino acid substitutions to individual positions (Fig. 2). Changes 

at conserved positions tend to be more deleterious than in non-conserved regions when comparing to 

diversity across homologs (Entropy, Fig. 2 - top) or using predictions from patterns of molecular evolution 

(11) (Fig. S12). Selection coefficients therefore reflect the long term evolution of this enzyme. The fitness 

effects of amino acid changes are heterogenous along the length of the sequence and depend on the 

structural property of each segment. For instance, substitutions in the poorly conserved and disordered 

region (positions 2-21) (7, 12) tend to be more neutral, which is consistent with the observation that the 

sequence essential for DfrB1 function begins between residues 16-26 (13). Importantly, mutants from 

specific protein sites and with different destabilizing effects tend to be enriched in different clusters (Fig. 

S9C), suggesting that expression-dependent fitness effects can be explained by the protein structure (see 

below). Comparison of the landscapes at the five expression levels confirms a dampening of color gradient 
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from top to bottom, showing that extreme fitness effects become rarer as expression level approaches the 

WT optimum. This means that at expression levels near the optimum for the WT enzyme, many amino 

acid substitutions tend to have positive and negative effects on fitness that are buffered. A change of 

expression levels therefore changes which mutations become visible to selection. 
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Fig. 2. The DfrB1 fitness landscape changes with expression level in a way that depends on 

structural features. Selection coefficient (s) of individual amino acid mutants at five expression levels. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

Top annotations indicate the protein’s local secondary structure and sequence diversity among homologs 

(Shannon entropy). The bottom annotation highlights residues that participate in the interfaces of the 

DfrB1 homotetramer, that come into contact with either the substrate (DHF) or the cofactor (NADPH), 

and the key catalytic residues. Interfaces are labeled as dimerization and tetramerization interfaces (14). 

Residues marked with a dot in the heatmaps are wild-type residues (and their synonymous mutants).  

 

Masking of deleterious mutations is encoded in the protein structure 

To capture the effect of expression level on selection coefficients, we calculated 𝚫s as the difference 

between the selection coefficients of an amino acid substitution at one of the non-optimal expression levels 

and at the optimal expression for the WT (𝚫snon-opt = snon-opt - sopt). A negative value indicates a more 

advantageous sequence at optimal expression. A positive value shows a more deleterious effect at optimal 

expression. A heatmap similar to Fig. 2 but with the 𝚫sweak scores (Fig. 3A) shows that: 1) a majority of 

positions with deleterious mutations are deleterious no matter the level of expression (𝚫sweak around 0), 2) 

the deleterious effect of some mutations is dampened at optimal expression (𝚫sweak < 0), and 3) some 

mutations are beneficial specifically at low expression (𝚫sweak > 0). The dampening of mutational effects 

by gene expression is dose-dependent since the magnitude of 𝚫s becomes smaller as expression level 

approaches the optimum (Fig. S13).  

 

The disordered N-terminal region is distinct from the rest of the protein as it contains beneficial amino 

acid changes whose effects disappear at optimal expression (𝚫sweak > 0), particularly at positions 2 and 3 

(Fig. S13). We assayed enzyme activity in cellular extracts for two mutants at position 2 and confirmed 

an increase in enzymatic activity for mutants E2R and E2V relative to the WT (Fig. S14A). We reasoned 

that the observed increase in activity could be due to higher protein abundance instead of an increase in 

catalytic efficiency given that position 2 is in the disordered region, far from the active site. Indeed, 

truncating DfrB1 at position 16 still produces an active enzyme, whereas truncating at position 26 
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destabilizes the protein by 2.5 kcal/mol and results in no measurable activity (13). Amino acid 

substitutions and nucleotide content in the first few codons of a protein are known to increase expression 

in E. coli (15), which makes this region a target for beneficial mutations when transcription levels are low. 

To test the effect of amino acid changes on protein expression, we generated GFP fusions with the entire 

sequence of one of such mutants (E2R), the WT disordered region (amino acids 1-25), and the disordered 

region with the E2R mutant. In both cases, we observed a higher protein abundance, even when only 

fusing the disordered fragment to GFP, reaching more than a 10-fold expression change relative to the 

WT sequence (Fig. S14B). Such a beneficial mutation at low expression therefore acts by increasing 

protein abundance, most likely by increasing translation rate. 

 

Whereas the disordered region is particularly rich in positive 𝚫sweak (Fig. 3B), mutation of the catalytic 

residues cannot be masked at optimal expression (𝚫sweak around 0). For instance, the Q67 mutant has a 

catalytic efficiency reduced by 100-fold with respect to the WT DfrB1 (16) and has a 𝚫sweak near 0 (𝚫sweak 

= -0.008). On the other hand, interaction interfaces are particularly rich with mutations that are masked 

by optimal expression. Because 𝚫sweak also has a zero value at sites that are completely insensitive to 

mutation, to better differentiate the effects, we mapped 𝚫sweak values in a two dimensional space where 

they are plotted against s at optimal expression (Fig. 3D). This representation shows the striking difference 

between interaction interfaces and catalytic residues, where the effects of mutations are modulated by 

expression in one case and are expression-independent in the other (Fig. 3E). Mutations that destabilize 

the protein complex, such as those in buried sites (Fig. 3B-C), could be susceptible to epistasis between 

expression level and coding mutations, since an increase in the expression level could compensate for 

lower stability, following the law of mass action. Even the sites in the disordered region with negative 

𝚫sweak (F18 and P19) (Fig. 2, Fig. 3, Fig. S15) could be explained by interaction interfaces. AlphaFold2 

(17, 18) predicts residues F18 and P19 to be in contact with W45 (Fig. S15A-B), which is known to 

interact with the disordered N-terminal region (19). These analyses show the sharp contrast between 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

mutants that depend on their structural and enzymatic roles: those with 𝚫sweak near 0 being often involved 

in catalysis, those with positive 𝚫sweak potentially increasing translation rate at the start of the coding 

sequence and those with negative 𝚫sweak being often within protein interaction interfaces. 
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Fig. 3. The deleterious effects of mutations can be buffered by WT optimal expression when they 

are slightly destabilizing but not when they affect catalytic activity. (A) 𝚫s for weak versus optimal 

expression levels. A negative 𝚫sweak value indicates mutations that are more advantageous at optimal 

expression for the WT. A positive 𝚫sweak value indicates mutations that are more advantageous at weak 

expression. Annotations at the top (Shannon entropy) and the bottom (sites of interest in the protein) are 

the same as in Fig. 2. (B) Distributions of 𝚫sweak vary with features of DfrB1 that correspond to structural 

properties. (C) Minimum, mean and maximum 𝚫sweak values mapped on the DfrB1 structure. (D) Overall 

landscape of selection coefficients at optimal expression for the WT (sopt, x-axis) and 𝚫sweak (y-axis). 

Mutants close to the dashed horizontal line have fitness effects that are independent from expression 

levels. Mutants from growth curve validations (Fig. S7, Fig. S8) are identified for reference, including the 

catalytic inefficient Q67C and the advantageous amino acid changes at weak expression E2R and E2V. 

(E) Functional sites of the protein occupy distinct regions of the selection landscape. Stop codons are 

labeled as black asterisks. 

 

Slightly destabilizing mutants are masked at optimal expression 

To confirm the contribution of protein destabilization to the observed 𝚫sweak, we computationally 

estimated the effects of amino acid changes on the protein and complex stability. Overall, we find a weak 

significant correlation between 𝚫𝚫G of subunit stability and 𝚫sweak (Spearman ⍴ = 0.10, p-value = 4.3e-

4). By mapping destabilizing effects in the sopt versus 𝚫sweak landscape, we see that highly destabilizing 

mutations tend to cluster with poor catalytic activity (for instance Q67C) and stop-codon mutants (Fig. 

4A). Similarly, for effects on the stability of individual subunits and protein interactions, higher expression 

levels tend to improve fitness at all levels of destabilization but to a very limited extent for 𝚫𝚫G greater 

than 2 kcal / mol, which largely behave like stop-codon mutants (Fig. 4B). This observation also helps 

explain the differences in the distribution of 𝚫sweak between buried and unannotated sites (Fig. 3B, 3E) 
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because mutations in buried sites tend to be more destabilizing than mutations in exposed sites. To confirm 

the predominant role of protein destabilization, we trained a random forest regressor (20) (see methods) 

on 𝚫sweak using the predicted biophysical effects of amino acid changes, structural features, changes in 

amino acid properties based on the differences in 57 indexes from ProtScale (21), and the propensity of 

amino acids to be found in protein-protein interaction interfaces (22) (Table S7). While the global 

performance was modest (R2 (test set) = 0.32, R2 (5-fold cross-validation) = 0.38 ± 0.034 (standard error 

of the mean)), it identified relative solvent accessibility, changes in hydrophobicity and effects on subunit 

stability as the top features contributing to the predictions (Fig. S16). As a result, we conclude that the 

relation between destabilizing effects and expression level is nonlinear, with expression around the WT 

optimal expression only masking slightly destabilizing mutants (𝚫𝚫G < 2 kcal / mol).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

Fig. 4. Optimal expression masks slightly destabilizing mutations. (A) Landscape of selection 

coefficients at optimal expression for the WT (x-axis) and the expression-dependent change in fitness 

effects (y-axis) labeled with respect to biophysical effects of mutations on subunit stability, the 

dimerization interface, and the tetramerization interface. Mutants at positions 2-20 were excluded from 

this analysis because their coordinates are not present in the PDB structure (2RK1). (B) Distributions of 

measured selection coefficients for mutants with different effects on protein stability or binding affinity 

at the interfaces. Stop codons from the functional protein core (residues 30 - 70) are shown for comparison. 

(C) Functional protein complex assembly is disturbed by mutations that can be masked by expression 

level. Mutations with small to moderate effects on protein stability and interface binding affinity can be 

masked by higher expression level, unlike mutations disrupting enzymatic active sites. 

 

Protein destabilization in itself does not reduce fitness 

Destabilizing mutations could affect fitness in two ways. First, by reducing the amount of homotetrameric 

complex formed, which decreases enzyme activity. A second mechanism is the potential for misfolded 

proteins to create toxic aggregates and detrimental interactions with other proteins, which could be 

amplified by a higher expression level (23). Under this scenario, highly destabilizing mutations would 

critically reduce protein complex concentration at low expression levels and any gain resulting from higher 

expression level would be counterbalanced by the toxic effect of misfolding. Such amino acid substitutions 

would remain deleterious at all expression levels, as is shown in Fig. 1F for mutants in cluster 1 that are 

enriched for highly destabilized mutants. 

 

This last hypothesis predicts that strongly destabilizing mutants would have a negative impact on fitness 

even when removing selection for DfrB1 activity. We first tested if expression of DfrB1 was toxic by 

measuring growth rate without TMP of the WT enzyme and of a construct lacking the start codon so no 

protein or much less protein is produced. We do not detect negative fitness effects in these assays (Fig. 
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S17) which suggests that the WT protein itself is not toxic. However, to examine whether some mutants 

could be toxic, we repeated the bulk competition experiment of the mutant library, inducing expression in 

0 to 0.4 % arabinose, this time removing selection for DfrB1 activity by omitting TMP. We observe lower 

signal-to-noise ratio, with a lower correlation between biological replicates (Fig. S18) than when TMP 

selected for DfrB1 activity. The distributions of selection coefficients are tightly clustered around 0, 

confirming the lack of detectable fitness effects of most mutations when selection is removed (Fig. S19, 

Fig. S20).  

 

In spite of the very weak signals in these conditions, 𝚫s values measured without TMP are weakly 

negatively correlated with the 𝚫s values measured with TMP, particularly when DfrB1 is overexpressed 

(weak expression: Spearman ⍴ = -0.06, p = 0.014; suboptimal expression: ⍴ = -0.04, p =0.062; near-

optimal expression: ⍴ = -0.006, p = 0.81; optimal expression: ⍴ = -0.07, p = 0.004; overexpression: 

Spearman ⍴ = -0.16, p = 8.79e-11). This would suggest that the most performing mutants in the presence 

of TMP have reduced fitness when expressed in the absence of a need for this enzyme. Consistent with 

this, while fitness effects in medium with TMP are lower for amino acid substitutions predicted to be 

deleterious based on molecular evolution of homologs, the correlation is inverted without TMP (Fig. S21). 

Fitness reduction in the absence of selection is therefore particularly noticeable for functional variants, 

which suggest that destabilization-based toxicity plays no or only a minor role. To further examine this, 

we analyzed the relation between 𝚫𝚫G and s (Fig. S22). We fitted generalized linear models (GLM) for 

the selection coefficients (s) observed with and without TMP using the destabilizing effects of mutations 

and their interactions with expression level (Table S8). The coefficients for destabilizing effects are all 

negative and statistically significant in the model for the data with TMP. However, only mutational effects 

on protein stability had a statistically significant effect in the GLM for the data without TMP and this 

coefficient was slightly positive (1.69e-4). Thus, we conclude that any deleterious effects caused by 

misfolding of DfrB1 in the absence of selection are minimal and that DfrB1 activity would instead reduce 
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fitness when overexpressed due to metabolic effects. This is consistent with reports that an additional copy 

of a dihydrofolate reductase alters cell metabolism (24) and the fact that the only sites for which we found 

a deleterious effect without TMP at overexpression level are mutations in the second and third codons 

(Fig. S23) that lead to increases in protein abundance and total enzyme activity (Fig. S14). This leads to 

the prediction that the E2R mutant would have a lower optimal induction level than the WT. Indeed, we 

observed that the E2R mutant leads to a higher percentage of growth recovery than the WT at low 

induction levels but decays slightly at the WT optimal expression level and overexpression, revealing a 

metabolic cost of high DfrB1 abundance (Fig. S24).  

 

Conclusion 

By measuring how expression level (used as being equivalent to promoter activity throughout) impacts 

the fitness effects of amino acid substitutions, we find that many slightly deleterious mutations tend to 

become less deleterious as expression approaches the optimal expression level of the wild-type protein. 

One key factor to explain this is the impact of mutations on protein stability rather than on the intrinsic 

enzyme activity. Coding mutations that increase protein abundance are beneficial at low expression level 

but become neutral as expression gets optimal for the WT sequence or even costly when optimal 

expression is overshot. Changes in gene regulation, for instance through alteration of promoter activity by 

mutation, can therefore dictate which mutations will be beneficial or deleterious for a coding sequence, 

and vice-versa (Fig. 4C). Over the long term, promoter activity and protein sequences will thus coevolve 

with each other. This co-evolution will be disrupted when major changes occur in the regulation of the 

expression level of a gene, such as in the event of gene duplication, genomic rearrangements, or horizontal 

gene transfer. Such events, if they lead to expression levels that are far from optimal, could result in bursts 

of adaptive protein evolution by changing which mutants become targets for selection and this, without 

improving the protein functions.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

Our results may seem counterintuitive given the observation that highly expressed proteins evolve slowly 

(25). If high expression buffers the effect of mutations, one would wrongly expect highly expressed 

proteins to evolve faster. However, since highly expressed proteins are costly to produce (26), their 

expression level may actually be below the optimal level that would be observed in the absence of 

metabolic cost. As a result, their fitness landscape would be more similar to the fitness landscapes we 

observed at weak and suboptimal expression, where purifying selection against destabilizing mutations 

would be more intense, thereby preserving protein sequence. 
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Supplementary Materials 

 

Materials and Methods 

Figs. S1 to S24 

Tables S1 to S10 

Data S1 

Materials and Methods: 

All strains, reagents, compounds and software used in this study are listed and referenced in Table S9. 

1.- Strains, media and plasmids 

MC1061 is the E. coli strain used for all cloning and mutagenesis steps, whereas E. coli BL21 (DE3) is 

the one used for the experiments conducted in this study. Transformations with plasmids were done 

according to standard procedures with in-house chemically competent cells (27). Transformed bacteria 

were grown and selected on 2x YT + glucose medium (1.0 % yeast extract, 1.6 % tryptone, 0.2 % glucose, 

0.5 % NaCl and 2 % agar; (28)) with ampicillin (AMP; 100 µg/mL). For all experiments conducted in 

liquid medium (with the exception of the growth to measure DfrB1 activity; see below), bacteria were 

grown in LB (Luria-Bertani) medium (0.5 % yeast extract, 1.0 % tryptone, 1.0 % NaCl; (29)) with AMP 

and with or without L(+)-arabinose (0.001 to 0.4 %) and trimethoprim (TMP; 10 µg/mL in DMSO). To 

measure DfrB1 activity, bacteria were grown in TB (Terrific broth) medium (2.4 % yeast extract, 1.2 % 

tryptone, 0.4 % glycerol and 89 nM potassium phosphate).  

 

The dfrB1 gene was expressed in bacteria from a pBAD vector which allows arabinose-controlled 

induction (30). pBAD-dfrB1 was constructed as follows. The pBAD vector was amplified from pBAD-

chuA plasmid (31) with CLOP198-E9 and CLOP198-F9 (PCR program: 5 min at 95 °C, 35 cycles: 20 s at 

98 °C, 15 s at 61 °C, 2 min 30 at 72 °C, and a final extension of 3 min at 72 °C). dfrB1 was amplified from 

pDNM plasmid with CLOP198-A10 and CLOP198-B10 (PCR program: 5 min at 95 °C, 5 cycles: 20 s at 
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98 °C, 15 s at 62 °C, 15 s at 72 °C, 30 cycles: 20 s at 98 °C, 15 s at 72 °C, 15 s at 72 °C, and a final extension 

of 3 min at 72 °C). Both PCR products were incubated for 1 h at 37 °C with 20 U of DpnI enzyme to 

remove parental DNA and subsequently purified on magnetic beads (Axygen AxyPrep Mag PCR Clean-

up Kit). The vector (pBAD) and insert (dfrB1), with their overlapping regions at each extremity, were then 

assembled by Gibson DNA assembly (32), producing pBAD-dfrB1 plasmid. 

 

To measure by cytometry the effect of mutating the second residue of DfrB1 on the expression level, we 

fused GFP in 3’ of the dfrB1 gene sequence and of its mutant. The plasmid was amplified from pBAD-

dfrB1 (constructed above) or from pBAD-dfrB1(E2R) (isolated from the DMS plasmid collection - see 

below) with CLOP273-A3/B3 (PCR program: 5 min at 95 °C, 35 cycles: 20 s at 98 °C, 15 s at 61 °C, 2 

min 30 at 72 °C, and a final extension of 3 min at 72 °C). GFP was amplified from pBAD-sfGFP(33) with 

CLOP273-D3/F3 (PCR program: 5 min at 95 °C, 5 cycles: 20 s at 98 °C, 15 s at 62 °C, 20 s at 72 °C, 30 

cycles: 20 s at 98 °C, 15 s at 72 °C, 20 s at 72 °C, and a final extension of 3 min at 72 °C). The PCR 

products corresponding to the plasmids and insert were incubated for 1 h 30 at 37 °C with 10 U of DpnI 

enzyme to remove parental DNA. Subsequently, the plasmids (pBAD-dfrB1 and pBAD-dfrB1(E2R)) and 

insert (sfGFP) were purified on magnetic beads (Axygen AxyPrep Mag PCR Clean-up Kit) and assembled 

by Gibson DNA assembly (32), producing pBAD-dfrB1-sfGFP and pBAD-dfrB1(E2R)-sfGFP. 

 

We also fused the GFP to a fragment corresponding only to DfrB1 first 25 residues. Vectors and the sfGFP 

insert were amplified from the same plasmids as above but using respectively CLOP273-A3/C3 or 

CLOP273-E3/F3 primers. After DpnI digestion and magnetic beads purification, Gibson DNA assembly 

produced pBAD-dfrB1[1-25]-sfGFP and pBAD-dfrB1[1-25](E2R)-sfGFP plasmids. 

 

To insert specific mutations in the dfrB1 sequence, we performed site-directed mutagenesis based on the 

QuickChange™ Site-Directed Mutagenesis System (Stratagene, La Jolla, CA). Briefly, we amplified the 
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pBAD-dfrB1 plasmid using pairs of primers containing the desired mutation at the center (see Table S10 

for the primers specific to each mutation) (PCR program: 2 min at 95 °C, 22 cycles: 20 s at 98 °C, 15 s at 

68 °C, 3 min at 72 °C, and a final extension of 5 min at 72 °C). The PCR products were then incubated for 

1 h 30 at 37 °C with 6 U of DpnI enzyme to remove parental DNA and mutated plasmids were retrieved 

directly by transformation in bacteria. We used this method to generate the following mutants: pBAD-

dfrB1(F24V), pBAD-dfrB1(K33E), pBAD-dfrB1(K33L), pBAD-dfrB1(K33M), pBAD-dfrB1(S59Y) and 

pBAD-dfrB1(I68M). 

 

To generate a mutant in which the first methionine codon of DfrB1 is replaced by a stop codon (𝚫MET 

mutant - pBAD-dfrB1(𝚫MET)), we performed a PCR reaction using 10 ng of pBAD-dfrB1 plasmid as a 

template (PCR program: 5 min at 95 °C, 25 cycles: 20 s at 98 °C, 15 s at 59 °C, 2 min 30 at 72 °C, and a 

final extension of 3 min at 72 °C) with the non-overlapping primers (CLOP265-A1 and CLOP259-H5) 

designed to incorporate a TGA stop codon on the forward primer to replace the AUG. The PCR product 

was then digested at 37 °C for 1 hour with 10 U DpnI. The digested PCR product was purified on magnetic 

beads, quantified and ~50 ng were taken for phosphorylation using 5 U of T4 PNK in T4 ligase buffer for 

30 min at 37 °C (final reaction volume of 5 µL). Subsequently, ligation was done in a reaction volume of 

10 µL by adjusting the volume of T4 ligase buffer, adding 10 U of T4 DNA ligase and incubating for 1 

hour at 22 °C. Finally, mutated plasmid was retrieved directly by transformation in E. coli BL21 bacteria. 

 

For fitness validation, some of the plasmids that were used were directly isolated from the mutagenesis 

pools but confirmed by sequencing. Briefly, an aliquot of glycerol stock for the position of interest was 

diluted and plated on solid medium. Colony PCR was performed on 32 colonies to amplify the dfrB1 gene 

using CLOP228-C1/D1 (PCR program: 5 min at 94 °C, 30 cycles: 30 s at 94 °C, 30 s at 54 °C, 35 s at 

72 °C, and a final extension of 3 min at 72 °C). Two subsequent PCR rounds were used to add specific 

row-column and plate barcodes (34). These PCRs are described in detail in the library sequencing section 
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below. All pooled samples were sent to the Genomic Analysis Platform (IBIS, Quebec, Canada) for 

paired-end 300 bp sequencing on a MiSeq (Illumina). After identification of individual mutations, 

plasmids for clones of interest were retrieved and purified from bacteria using the Presto Mini Plasmid 

Kit.  

 

All PCR reactions mentioned above or described below were performed with oligonucleotides defined in 

(Table S10), using Kapa polymerase at the exception of the colony PCRs for which Taq DNA polymerase 

was used. The integrity of all assembled and mutagenized plasmids was confirmed by Sanger sequencing 

(Plateforme de séquençage et de génotypage des génomes, CRCHUL, Canada) using either CLOP194-

G11 or CLOP196-B5 as a sequencing primer. 

 

2.- Deep mutational scanning 

A single-site mutation library of dfrB1 was generated by a PCR-based saturation mutagenesis method 

(35). The mutagenesis was carried out in a codon-position-wise manner, directly on the pBAD-dfrB1 

plasmid with the oligonucleotides defined in (Table S10). Forward oligonucleotides which have 

degenerate nucleotides (NNN) so each codon of dfrB1 is mutated were used in combination with a single 

reverse primer located in the plasmid outside the coding sequence. A first PCR to generate an amplicon 

containing the desired mutations was conducted following these steps: 5 min at 95 °C, 35 cycles: 20 s at 

98 °C, 15 s at 60 °C, 30 s at 72 °C, and a final extension of 1 min at 72 °C. The resulting PCR product was 

then used as a mega primer to introduce the mutations in pBAD-dfrB1 by amplifying the whole plasmid 

(PCR program: 5 min at 95 °C, 22 cycles: 20 s at 98 °C, 15 s at 68 °C, 5 min at 72 °C, and a final extension 

of 7 min at 72 °C). The long PCR product was digested for 90 min at 37 °C with 6 U of DpnI to remove 

parental DNA. The digestion products for individual positions were transformed into E. coli MC1061. 

More than a thousand colonies were retrieved from each transformation. After addition of glycerol, 

libraries for each position were stored separately. From the same pools of bacteria, plasmids were also 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 

extracted and purified. PCR amplification and Illumina MiSeq sequencing, performed on these plasmids 

allowed library quality control assessment (Fig. S2). In an initial round, mutagenesis of position 39 was 

not successful. Mutagenesis at this position was repeated separately and added to the final library after 

quality control. 

 

3.- Bulk competition assay  

First, E. coli BL21 was transformed with 75 ng of each individual position mutant pool (DNA miniprep 

from the DMS step above). Start and stop codon positions (positions 1 and 79) were omitted. All colonies 

were retrieved from each transformation plate in 5 mL of 2x YT liquid medium. OD600 was measured for 

each pool (final OD600 between 40-80 after being scraped and resuspended in medium). At this step, 15 % 

glycerol was added to the medium and an aliquot of each pool was stored individually for further use. In 

parallel, pools were equally mixed at an OD600 of 25 to generate a starting pool for the bulk competition 

assay. This master pool was stored for further use. 

 

Two separate bulk competition assays were performed. Details concerning arabinose concentrations, the 

presence or absence of TMP and the number of replicates are indicated in Table S1. Briefly, the master 

pool was used to inoculate at OD600 = 0.01 a first preculture in LB + AMP medium. After an overnight 

incubation at 37 °C with agitation (250 rpm), cells were diluted 1:100 in fresh medium with the addition 

of different amounts of arabinose. Following an 18-hour incubation at 37 °C (250 rpm), cells were diluted 

again at OD600 = 0.025 in a final volume of 4 mL of fresh medium containing arabinose with the addition 

of TMP or DMSO (TMP solvent - no TMP control). Cultures were then incubated as above until OD600 

reached 0.8 (5 generations). At this point, 125 µL was used to dilute back to OD600 = 0.025 in fresh 

medium and cells were grown until once again, OD600 reached 0.8 (another 5 generations). Finally, at two 

timepoints (18-hour preculture = Timepoint 0, after 10 generations = Timepoint 10), 3 mL of the culture 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 

was used to extract plasmid DNA (Fig. S3). These samples were treated as described below to prepare 

libraries for sequencing. 

 

4.- Single mutant library sequencing  

Libraries for sequencing were generated as described in Dionne et al. (36). Briefly, three PCR steps were 

done. The first one was performed directly on the small plasmid DNA preparations (4.5 ng of plasmid) 

corresponding to single-codon mutant libraries or to bulk competition assay samples (PCR program: 3 min 

at 98 °C, 20 cycles: 30 s at 98 °C, 15 s at 60 °C, 30 s at 72 °C, and a final extension of 1 min at 72 °C). The 

second PCR was performed to add Row and Column barcodes (34) for identification in a 96-well plate 

(PCR program: 3 min at 98 °C, 15 cycles: 30 s at 98 °C, 15 s at 60 °C, 30 s at 72 °C, and a final extension 

of 1 min at 72 °C). For this second PCR, the first PCR product was used as a template (2.25 µL of a 1/2500 

dilution). Quantification on gel of the second PCR product using Image Lab (BioRad Laboratories) 

allowed us to mix the libraries so each has a roughly equal amount in the final library. Mixed PCRs were 

purified on magnetic beads and quantified using a NanoDrop (ThermoFisher). Finally, 0.0045 ng of the 

purified mixed PCRs were used as template for the third PCR which adds a plate barcode as well as 

Illumina adapters (PCR program: 3 min at 98 °C, 18 cycles: 30 s at 98 °C, 15 s at 61 °C, 35 s at 72 °C, and 

a final extension of 1 min at 72 °C). Each reaction for the third PCR was performed in quadruplicate and 

then combined. After purification on magnetic beads, libraries were quantified using a NanoDrop 

(ThermoFisher) and sent to the Genomic Analysis Platform (IBIS, Quebec, Canada) for paired-end 300 bp 

sequencing on a MiSeq (Illumina) or to the Plateforme de séquençage et de génotypage des génomes 

(CRCHUL, Quebec, Canada) for paired-end 250 bp sequencing on a NovaSeq (Illumina). All raw data 

are available at SRA BioProject PRJNA842350 (accession numbers SRR19419448 and SRR19419449). 

 

5.- Bacterial growth curves 
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To measure fitness for individual WT or mutant DfrB1, growth was followed with serial OD600 

measurements in a plate reader. From an overnight preculture grown in LB + AMP medium, cells were 

diluted 1:100 in fresh medium with the addition of 0 % to 0.4 % arabinose according to the experiment. 

Following an 18-hour incubation at 37 °C (250 rpm), cells were diluted again at OD600 = 0.01 in a final 

volume of 200 µL of fresh medium containing arabinose with the addition of TMP or DMSO. The 96-

well plate was incubated at 37 °C in an Infinite M Nano plate reader (Tecan) for 20 hours. OD600 

measurements were taken every 15 min. Plate was agitated at 200 rpm in between measurements. Growth 

curves were analyzed with the Growthcurver R package (37) to calculate the area under the curve as an 

estimate of fitness. The percentage of recovered growth upon arabinose induction was calculated as 

follows: 

 

𝑔	 = 	100 ∗ (1	 −	
𝐴𝑈𝐶!"#,%&'()*%+& 	− 	𝐴𝑈𝐶&+	!"#,%&'()*%+&

𝐴𝑈𝐶!"#,&+	%&'()*%+& 	− 	𝐴𝑈𝐶&+	!"#,&+	%&'()*%+&
) 

 

where g refers to the recovered growth percentage and AUC refers to the area under the curve in the 

conditions specified by the subscript (with or without TMP, with or without arabinose to induce 

expression). 

 

6.- Expression level measurement by flow cytometry 

To measure GFP level by cytometry, a first preculture in LB + AMP medium was grown with bacteria 

containing the plasmid of interest (pBAD-sfGFP, pBAD-dfrB1-sfGFP, pBAD-dfrB1(E2R)-sfGFP, 

pBAD-dfrB1[1-25]-sfGFP and pBAD-dfrB1[1-25](E2R)-sfGFP). As for the bulk competition assay, after 

an overnight incubation at 37 °C with agitation (250 rpm), cells were diluted 1:100 in fresh medium with 

the addition of different amounts of arabinose. Following an 18-hour incubation at 37 °C (250 rpm), cells 

were diluted again at OD600 = 0.025 in a final volume of 4 mL of fresh medium containing arabinose. 
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Cultures were then incubated as above until OD600 reached 0.8 (5 generations). At the different timepoints 

(18-hour preculture = Timepoint 0, after 5 generations = Timepoint 5), small aliquots of cells were taken 

and diluted in sterile filtered water to an OD600 = 0.05 in 200 µL. GFP fluorescent measurements as well 

as forward scatter (FSC) and side scatter (SSC) data were collected from a Guava easyCyte HT cytometer 

(Luminex). From the cytometry data, E. coli cells were selected based on FSC and SSC. From the selected 

data points, GFP fluorescence signal was measured after excitation with a blue laser (wavelength = 488 

nm) and detection with a green channel (525/30 nm).  

 

7.- DfrB1 activity measurement 

Enzymatic activity of DfrB1 and of different mutants was tested in vitro. From a 16-18 h 5 mL LB + AMP 

preculture (incubation at 37 °C with agitation (230 rpm), a 10 mL culture in TB + AMP was inoculated at 

OD600 = 0.1 and incubated for 3 h at 37 °C (OD600 = 0.7 to 1) with agitation. Induction of expression was 

initiated by addition of 1 % arabinose and incubation was continued at 22 °C for 16-18 h with agitation. 

After induction, cells were pelleted for 30 min at 3000 rpm (Eppendorf Centrifuge 5810 R) at 21 °C, 

resuspended in 300 µL of lysis buffer (0.1 M KH2PO4-K2HPO4 pH 8.0, 10 mM MgSO4, 1 mM DTT, 0.5 

mg/mL lysozyme, 5 U DNase, 1.5 mM benzamidine, 0.25 mM PMSF) and incubated for 2 h at 30 °C with 

vigorous shaking. Lysates were cleared by a 30 min centrifugation at 3000 rpm (Eppendorf Centrifuge 

5810 R) at 21 °C. In a 96-well plate, cleared lysates (20 µL) were combined with 50 µg/mL TMP, 100 

µM DHF (synthesized as in (38)) and 100 µM NADPH in 50 mM KH2PO4-K2HPO4 pH 7.0 in a total 

volume of 100 µL. Measurement of absorbance at 340 nm was taken for 5 min in a Beckman Coulter 

DTX880 Multimode detector plate reader. Enzyme activity was calculated using the slope for the initial 

20 % of substrate consumption. 

 

 8.- Data analyses 

8.1.- Inferring fitness scores from sequencing data 
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Quality control of the MiSeq and NovaSeq sequencing data was performed using FastQC version 0.11.4 

(39). Trimmomatic version 0.39 (40) was used to select reads with a minimal length from the raw data 

(MINLEN parameter: 299 for MiSeq reads, 250 for NovaSeq reads) and trim them to a final length (CROP 

parameter: 270 for MiSeq reads, 225 for NovaSeq reads) . Selected reads were aligned using Bowtie 

version 1.3.0 (41) to the plate, row, and column barcodes to demultiplex sequences from each pool 

(arabinose concentration + timepoint). The remaining paired reads were merged with Pandaseq version 

2.11 (42) and identical sequences were aggregated using vsearch version 2.15.1 (43). Finally, aggregated 

reads were aligned to the reference sequence of DfrB1 to identify the mutant codon in each read. Stop 

codon UAG was removed from all analysis because it has been shown to have a lower termination 

efficiency than the other stop codons in E. coli (44, 45). 

 

Raw read counts were normalized by the total number of reads in each pool (arabinose + timepoint). The 

resulting read proportions were used to calculate selection coefficients based on the end point and the 

starting point of each experiment using the following equation: 

 

𝑠	 =
𝑙𝑜𝑔-(

𝑁.(*,*/0 	− 	𝑚𝑒𝑑𝑖𝑎𝑛(𝑁1!,*/0)
𝑁.(*,*0 	− 	𝑚𝑒𝑑𝑖𝑎𝑛(𝑁1!,*0)

	)

𝑘  

 

where s is the selection coefficient, N is the number of reads for the corresponding mutant at a specific 

timepoint, and k is the number of generations (k = 10). 

 

8.2.- Evolutionary analysis (GEMME, Evol, jackhmmer) 

A set of seven DfrB1 homologs was extracted from data published by Toulouse et al. (46). These seven 

sequences were then submitted to the online jackhmmer tool 

(https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer) (47) using the Uniprot database as a target to 
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look for additional homologous sequences. The resulting set of sequences were filtered with the following 

criteria, considering that the full-length DfrB1 sequence is 78 residues long: 

- E-score < 1e-6 

- Alignment length > 50 

- Sequence length < 100 

 

Applying these filters resulted in a final set of 82 high-confidence DfrB1 homologs. These sequences were 

aligned with MAFFT version 7.475 (48, 49) using the iterative refinement method (50, 51). The resulting 

alignment was then analyzed with the Evol library from the ProDy suite version 2.0 (52) to calculate 

Shannon entropy at each position in the alignment as a metric of evolutionary variation. In parallel, the 

same MAFFT alignment was analyzed with the GEMME model (11) to obtain predictions of the fitness 

landscape based on the variation in the alignment. 

 

8.3.- Machine learning analyses 

8.3.1.- k-means clustering 

We used k-means clustering to identify the typical patterns of expression-dependent changes in fitness 

effects (Fig. 1F). k-means clustering was run using the kmeans function from the R base stats package 

(53) by setting the seed and using values of k from 1 to 10 (Fig. S9A) and the following parameters: 

iter.max = 10, nstart = 25. k = 4 was selected as the best compromise between parsimony (based on the 

diminishing decrease in the sum of squared errors) and interpretability (cluster visualization in Fig. 1F). 

Centroids reflecting the central selection coefficients of mutants from each cluster are visualized in Fig. 

S9B and provided in Table S5. To estimate relative enrichment of mutants from specific clusters at the 

sites of interest, we organized the data in separate contingency tables indicating whether a particular 

mutant was assigned or not to that site and its corresponding cluster. We calculated the log2 fold ratio of 

observed vs expected counts of mutants from each cluster at each site (Fig. S9C). 
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8.3.2.- Random forest regressor 

A random forest regressor was trained to identify the features that better explain variation in expression 

level dependent 𝚫s. Explanatory variables included in the model were: 

- Relative solvent accessibility (RSA): Solvent accessibility was calculated using DSSP version 

2.2.1 (54) on the biological assembly of DfrB1 (PDB: 2RK1) (7). RSA was then obtained by 

dividing the solvent accessibility of each residue by the maximum solvent accessibility of that 

residue as described by Miller, et al. (55). 

- Biophysical effects of mutations: FoldX version 5.0 (56, 57) was used with the MutateX wrapper 

(58) to simulate all possible mutations on the biological assembly of DfrB1 (PDB: 2RK1). Effects 

of mutations on subunit stability and binding affinity at the dimerization and tetramerization 

interfaces were measured. 

- Differences in amino acid scores: 57 amino acid indexes were downloaded from the ProtScale 

database (21) on January 21st, 2019, as well as the index on propensity of each amino acid to 

participate in protein-protein interaction interfaces (22). For each mutation, we calculated the 

differences in index scores between the mutant residue and the WT residue. 

 

All the explanatory variables were divided by their maximum values to scale them between -1 and 1. The 

random forest model was trained using the sklearn Python library (59, 60) with 80 % of the data and tested 

with the remaining 20 %. We used the Python rfpimp library (https://github.com/parrt/random-forest-

importances) to estimate relative importances of each variable by calculating the decrease in R2 of the 

predictions if the values of a particular feature are permuted (Fig. S16A). Due to the high degree of 

collinearity in our set of explanatory variables, retraining the random forest with different seeds can 

suggest a different set of top variables. We introduced a random variable N(0, 1) as an internal control in 

the training set to identify which variables have significant contributions to the model. We selected the 
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variables that have a higher relative importance than the random variable and retrained the random forest 

to obtain the final model. Finally, we evaluated the relative importance of the variables in the final model 

by comparing the decrease in R2 when the final model is retrained without that variable (Fig. S16D). 

 

8.4.- Statistical analyses 

8.4.1.- ANOVAs 

We used two different types of ANOVAs to characterize expression-dependent changes in fitness effects 

of coding mutations. First, we performed an ANOVA for each mutation considering all of its replicates at 

all the expression levels to identify mutants whose fitness effects were significantly affected by changes 

in gene expression. To correct for multiple hypothesis testing, we applied the Benjamini Hochberg 

correction with a false discovery rate of 0.05 using the FDRestimation R package (Table S4) (61). Then, 

we did an ANOVA on ranks with all replicates of all mutations at all the expression levels by applying 

the Aligned Rank Transform from the ARTool R package (62, 63) to estimate the contribution of the 

interaction between expression level and coding mutants to fitness relative to their separate contributions 

(Table S6). 

 

8.4.2.- Generalized linear models (GLM) 

We fitted GLMs to analyze the contributions of destabilizing effects of mutations to the measured 

selection coefficients (Table S8). This analysis was done separately for the data with TMP and without 

TMP using the glm function from the R base stats package (53). The formula for the GLMs used 

expression level, destabilizing effects (𝚫𝚫G on subunit stability, 𝚫𝚫G on binding affinity at the 

dimerization interface, 𝚫𝚫G on binding affinity at the tetramerization interface), and terms for the 

interactions between expression level and each of the destabilizing effects. 
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Supplementary Figures: 

 

 

 

Fig. S1. Dose-dependent growth recovery upon DfrB1 induction. Cells expressing WT DfrB1 were 

grown in LB medium with and without trimethoprim (TMP) and at different concentrations of arabinose 

indicated above each panel.  
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Fig. S2. Quality control of the DfrB1 Deep Mutational Scanning (DMS) library. The libraries 

corresponding to each position were pooled and sequenced on a MiSeq PE300 (268 671 reads) to verify 

the coverage of the various codons across positions. A single position was not covered and was repeated 

and added to the final library. The color scale represents the percentage of reads that mapped to a mutant 

out of the library for that position. WT codons are labeled with dots.   
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Fig. S3. Experimental setup. Samples for the bulk competition experiments were taken from an 

overnight preculture of cells transformed with the DMS library. Cells were grown for five generations in 

LB medium with different concentrations of arabinose and with or without trimethoprim (TMP) until 

they reached an optical density of 0.8. They were then diluted again and grown for five more 

generations. DNA was extracted and sequenced at t = 0 and t = 10 generations. This experiment was 

repeated twice (see Table S1 for details).   
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Experiment 
with TMP ID Biological 

replicates 
Arabinose 

concentration 
Sequencing 

platform 

1 

E1.BR1.010.T.SM 1 
0.01 MiSeq E1.BR2.010.T.SM 2 

E1.BR3.010.T.SM 3 
E1.BR1.025.T.SM 1 

0.025 MiSeq E1.BR2.025.T.SM 2 
E1.BR3.025.T.SM 3 
E1.BR1.200.T.SM 1 

0.2 MiSeq E1.BR2.200.T.SM 2 
E1.BR3.200.T.SM 3 
E1.BR1.400.T.SM 1 

0.4 MiSeq E1.BR2.400.T.SM 2 
E1.BR3.400.T.SM 3 
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2 

E2.BR1.010.T.SN 1 0.01 NovaSeq 
E2.BR2.010.T.SN 2 
E2.BR1.025.T.SN 1 0.025 NovaSeq 
E2.BR2.025.T.SN 2 
E2.BR1.050.T.SN 1 0.05 NovaSeq 
E2.BR2.050.T.SN 2 
E2.BR1.200.T.SN 1 0.2 NovaSeq 
E2.BR2.200.T.SN 2 
E2.BR1.400.T.SN 1 0.4 NovaSeq 
E2.BR2.400.T.SN 2 

 

 

Fig. S4. Replicates of the bulk competition experiment with selection for DfrB1 activity (with 

TMP) correlate strongly. Spearman correlation between selection coefficients was estimated for 

different replicates of the experiment with selection for DfrB1 activity. Samples were named according 

to the table (bottom) extracted from Table S1.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

43 

 

 

Fig. S5. Selection coefficients recapitulate previously characterized poorly active mutants. Ranks 

and selection coefficients in our bulk competition assay for deleterious mutants constructed by Dam et 

al. (64) and Strader et al. (16) at a weak expression level for DfrB1 (A) and at the optimal expression 

level (B). All mutants have negative s, as expected.  
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Fig. S6. The fitness effects of only some of the low activity mutants are improved at optimal 

expression. (A) Differences in selection coefficients observed at weak expression and optimal 

expression on mutants at the tetramerization interface from Dam et al. (64) with respect to their 

measured activity relative to WT. (B) Differences in selection coefficients observed at weak expression 

and optimal expression on active site mutants from Strader et al. (16) with respect to their measured 

catalytic efficiency.  
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Fig. S7. The effects of mutations measured by bulk competition are recapitulated with individual 

growth measurements. Mutants with different magnitudes of changes in fitness effects across 

concentrations of arabinose were selected for validation in individual growth experiments. Growth was 

measured as the average of the area under the curve for two replicates per mutant at each of two 

expression levels. (A) Growth of individual mutants correlates strongly with DMS normalized fitness 

scores. The corresponding mutants and the WT are indicated next to each data point. (B) Expression-

level dependent differences in growth rate for the validated mutants. WT is indicated in blue. P-values 

were calculated using Wilcoxon’s test for differences in means of paired samples.  
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Fig. S8. Significance and magnitude of effects of expression level on the fitness of mutants. (A) 

Averages of selection coefficients observed at each position of the DfrB1 sequence. The larger dot 

indicates the position with the median effect for each expression level. (B) For each mutant, we 

performed an ANOVA and corrected for multiple hypothesis testing by applying the Benjamini-

Hochberg correction with a false discovery rate of 0.05 using the FDR estimation package (61). The 

horizontal dashed line indicates the cutoff for significance of adjusted p-values (p < 0.05) and the 

vertical lines indicate an arbitrary threshold for magnitude of changes in selection coefficients (greater 

than 0.1) due to expression. 
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Fig. S9. K-means clusters capture the main patterns of expression-dependent changes in fitness 

effects. (A) Sum of squared errors as a function of the numbers used in k-means clustering. (B) 

Selection coefficients at each expression level for the centroids of the four clusters. (C) Relative 

enrichment of each of the four clusters with mutants at particular protein sites and with specific 

destabilizing effects. 
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Fig. S10. Fitness effects of mutations are dependent on expression level. The fitness effects of 

mutants at optimal expression are shown on the x-axis and compared to the fitness effects of mutants at 

lower or higher expression level. Same data as in Fig 1E and Fig. 2. The solid line indicates a LOESS 

regression. Horizontal error bars indicate the standard error of the mean observed across biological 

replicates at optimal expression level. Vertical error bars indicate the standard error of the mean 

observed across biological replicates at non-optimal expression levels. 
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Fig. S11. Liquid cultures recapitulate well the expression level dependent differences in fitness 

effects in the bulk competition experiment. 𝚫AUCweak was calculated as the differences in the area 

under the curve observed for growth in liquid cultures at weak and optimal expression levels (AUCweak - 

AUCopt). 𝚫sweak was calculated as the differences in selection coefficients observed for each mutant in 

the bulk competition experiments at weak and optimal expression levels (sweak - sopt).   
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Fig. S12. Selection coefficients measured in the DMS bulk competition experiment with TMP 

correlate well with fitness effects deduced variation observed in natural sequences. We used 

GEMME (11) to predict mutational effects based on patterns of conservation and substitution. GEMME 

scores (0 for residues observed as often as the WT DfrB1 residue at that position and negative for 

residues observed less often) correlate well with the effects measured in the bulk competition assay with 

the mutant libraries. These analyses show that the mutational effects measured experimentally reflect the 

selective pressures these homologous sequences experience in nature. 
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Fig. S13. Expression-dependent differences in fitness effects become weaker as expression level 

approaches the optimum. (A-B) Difference between the selection coefficients of an amino acid 

substitution at one of the non-optimal expression levels and at the optimal expression for the WT (𝚫snon-

opt = snon-opt - sopt). WT residues in panel A are labeled with dots. P-values in panel B were calculated 

using Wilcoxon’s test for differences in means of paired samples.   
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Fig. S14. Mutants E2R and E2V have increased activity in cell lysates and expression level. (A) 

Comparison of relative activities observed for WT DfrB1 and mutants E2R and E2V. Bars indicate the 

means and error bars indicate the standard error of the mean of three replicates for each mutant. P-values 

were calculated with a t-test. (B) The fluorescence of GFP fused to several constructs of DfrB1 (top) 

was measured by flow cytometry (bottom). Constructs used include: 1) DfrB1 alone, 2) DfrB1 fused to 

GFP, 3) truncated DfrB1 (positions 1-25) fused to DfrB1, 4) E2R DfrB1 mutant fused to GFP, 5) E2R 

truncated DfrB1 mutant (positions 1-25) fused to GFP, 6) GFP alone.  
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Fig. S15. Predicted interactions of W45 with F18 and P19. (A) Residues F18 and P19 are predicted to 

interact with W45 in an AlphaFold2 predicted model. Residues F18, P19, and W45, as well as 

measurements are labeled. The disordered region of subunit A is shown in white, the rest of subunit A is 

shown in green, subunit B is shown in magenta, subunit C is shown in cyan. The structure was 

visualized with PyMOL (65). (B) pLDDT values assigned by AlphaFold2 to each of the predicted 
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residues. Background colors indicate confidence levels: high confidence (pLDDT > 90, green), overall 

good backbone prediction (70 > pLDDT > 90, yellow), and low confidence (pLDDT < 70, red). 

Positions to the left of the dashed vertical line are not present in the crystal structure for DfrB1 (PDB: 

2RK1). (C) Distributions of mutational effects for residues between positions 16 - 26 show that 

mutations at positions 18 and 19 are deleterious at low expression levels but can be masked at the 

optimal expression for the WT. 
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Fig. S16. Identifying the most relevant features used to predict expression level dependent 

differences in selection coefficients. (A) Relative importance of all the features considered in the 

random forest model as calculated by the decrease in out-of-bag R2 when permuting the values of that 

feature. A random variable was included to identify the features that contribute the most to the model. 

Table S7 contains a list of all variables used in this analysis. (B) Comparison of observed 𝚫sweak (sweak - 

sopt) versus predicted 𝚫sweak using a random forest (RF) regressor with all the features for the test set 

(20 % of the total dataset). (C) Comparison of observed 𝚫sweak (sweak - sopt) versus predicted 𝚫sweak using 

an RF regressor with all the top three features for the test set (20 % of the total dataset). (D) Relative 

importance of the top features in the final model as calculated by the decrease in out-of-bag R2 when 

dropping one variable at a time and retraining the model. 
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Fig. S17. No clear toxic effects of expression of DfrB1. Growth curves for cells transformed with WT 

DfrB1 or with a DfrB1 mutant with a stop codon at position 1 (𝚫MET) and grown in medium without 

TMP.  
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Experiment 
without TMP ID Biological 

replicates 
Arabinose 

concentration (%) 
Sequencing 

platform 

2 

E2.BR1.010.NT.SN 1 0.01 NovaSeq 
E2.BR2.010.NT.SN 2 
E2.BR1.025.NT.SN 1 0.025 NovaSeq 
E2.BR2.025.NT.SN 2 
E2.BR1.050.NT.SN 1 0.05 NovaSeq 
E2.BR2.050.NT.SN 2 
E2.BR1.200.NT.SN 1 0.2 NovaSeq 
E2.BR2.200.NT.SN 2 
E2.BR1.400.NT.SN 1 0.4 NovaSeq 
E2.BR2.400.NT.SN 2 
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Fig. S18. Low signal-to-noise ratio in selection coefficients in the absence of selection for DfrB1 

activity (no TMP). Spearman correlation between selection coefficients was estimated for different 

replicates of the experiment without TMP. Samples were named according to the table (bottom) 

extracted from Table S1.  
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Fig. S19. Overall distributions of selection coefficients in the experiments with and without 

selection for DfrB1 activity. The range of selection coefficients observed in the experiment with 

selection for DfrB1 activity was much broader than in the experiment without selection.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

61 

 

 

 

Fig. S20. Distributions of selection coefficients for stop codons, amino acid substitutions, and 

synonymous mutants. Mutations introducing amino acid substitutions or stop codons are deleterious in 

the experiment with selection for DfrB1 activity (with TMP), but not in the experiment without selection 

for DfrB1 activity (without TMP). P-values were calculated using Wilcoxon tests.   
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Fig. S21. Fitness effects measured in the DMS bulk competition experiment without TMP do not 

correlate well with fitness effects deduced variation observed in natural sequences. The GEMME 

scores from Fig. S12 were used.  
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Fig. S22. Protein destabilization by itself does not result in deleterious effects in the absence of 

selection for DfrB1 activity. (A) Landscape of selection coefficients measured at optimal expression 

(x-axis) and the expression-dependent change in fitness effects (y-axis) labeled with respect to 

mutational effects on subunit stability and binding affinity. (B) Distributions of measured selection 

coefficients for mutants with different effects on protein stability or binding affinity at the interfaces. 

Stop codons from the functional protein core (residues 30 - 70) are shown for reference. The scale in 

panel B is the same as in Fig. 4B for comparison with the experiment with selection for DfrB1 activity. 
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Fig. S23. The experiment without selection for DfrB1 activity does not recapitulate the masking 

effects of higher expression. (A) Differences between selection coefficients observed at optimal 

expression and other expression levels in the experiment without selection for DfrB1 activity (without 

TMP). WT residues are labeled with dots. (B) Distributions of differences in fitness effects 𝚫sover (sover - 

sover) observed for different features of DfrB1.  
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Fig. S24. Comparison of growth recovery for WT DfrB1 and E2R mutant at different expression 

levels. (A) Recovered growth is evaluated as the relative difference in growth (area under the curve) of 

the strain in medium with TMP relative to the same medium without TMP for a given arabinose 

concentration. Dots and error bars indicate the mean and the standard error of the mean of three 

replicates. (B) Cost of expression for the E2R mutant in terms of percentage of recovered growth 

compared to the median recovery at 0.001 % arabinose. The red dots indicate the mean of three 

replicates for each arabinose concentration. 
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