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Abstract 28 
 29 
Crop wild relatives represent valuable sources of alleles for crop improvement, including 30 
adaptation to climate change and emerging diseases. However, introgressions from wild 31 
relatives might have deleterious effects on desirable traits, including yield, due to linkage 32 
drag. Here we comprehensively analyzed the genomic and phenotypic impacts of wild 33 
introgressions into cultivated sunflower to estimate the impacts of linkage drag. First, we 34 
generated new reference sequences for seven cultivated and one wild sunflower 35 
genotype, as well as improved assemblies for two additional cultivars. Next, relying on 36 
previously generated sequences from wild donor species, we identified introgressions in 37 
the cultivated reference sequences, as well as the sequence and structural variants they 38 
contain. We then used a ridge regression model to test the effects of the introgressions on 39 
phenotypic traits in the cultivated sunflower association mapping population. We found 40 
that introgression has introduced substantial sequence and structural variation into the 41 
cultivated sunflower gene pool, including > 3,000 new genes. While introgressions 42 
reduced genetic load at protein-coding sequences and positively affected traits associated 43 
with abiotic stress resistance, they mostly had negative impacts on yield and quality 44 
traits. Introgressions found at high frequency in the cultivated gene pool had larger 45 
effects than low frequency introgressions, suggesting that the former likely were targeted 46 
by artificial selection. Also, introgressions from more distantly related species were more 47 
likely to be maladaptive than those from the wild progenitor of cultivated sunflower. 48 
Thus, pre-breeding efforts should focus, as far as possible, on closely related and fully 49 
compatible wild relatives.  50 
  51 
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Introduction 52 
 53 
Domestication – the process that transformed wild plants into highly productive crops – 54 
is arguably the most important innovation in human history (Diamond 2002). Not only 55 
did it spark explosive population growth and the establishment of modern civilization 56 
(Diamond 1997), but it also laid the foundation for the theory of evolution (Darwin 1859) 57 
thereby unifying the life sciences (Dobzhansky 1973). While domestication and 58 
subsequent improvement have proven spectacularly successful in modifying plant 59 
architecture and enhancing yield (Evans 1993), such changes often come with a cost, 60 
including losses of genetic diversity (Tang and Knapp 2003; Khoury et al. 2022), 61 
increases in genetic load (Moyers et al. 2018), and reductions in resistance to biotic and 62 
abiotic stress (Smedegaard-Petersen and Tolstrup 1985; Mayrose et al. 2011). This is of 63 
increasing concern in the 21st century, as environmentally resilient cultivars are needed to 64 
cope with a more hostile climate, while minimizing use of costly external inputs such as 65 
fertilizer, pesticides, and water.  66 
 67 
Fortunately, diversity lost during domestication and improvement may be regained by 68 
tapping the gene pools of crop wild relatives (CWRs). The potential utility of such wild 69 
germplasm has long been recognized by plant biologists and breeders (Harlan 1975; 70 
Tanksley and McCouch 1997; McCouch et al. 2013), leading to global efforts to collect 71 
and conserve CWRs, in addition to the crops themselves (Plucknett et al. 1987). 72 
Likewise, breeding programs often include a pre-breeding component, in which wild 73 
genetic material is introduced into domesticated breeding lines (Zamir 2001; Hübner 74 
and Kantar 2021). While many such efforts have focused on enhancing disease resistance 75 
(Dempewolf et al. 2017), CWRs also have been used to increase nutritional quality, boost 76 
yield, and enhance resistance to abiotic stressors, such as drought, salt, and flooding (Gur 77 
et al. 2004; Hajjar and Hodgkin 2007; Warschefsky et al. 2014; Hübner 78 
and Kantar 2021). Economic analyses have confirmed the value of such an approach. For 79 
example, a 2013 analysis of 32 crops estimated current benefits from CWR traits to be 80 
~$68 billion annually, with potential future benefits of ~$196 billion annually 81 
(PricewaterhouseCoopers 2013). 82 
 83 
Despite the clear value of CWR traits for crop improvement, there are downsides. The 84 
introduction of wild genetic material into cultivated lines typically occurs via repeated 85 
backcrossing or introgression (Tanksley and McCouch 1997). This process is not only 86 
time-consuming, but it also can be hampered by reproductive barriers that interfere with 87 
crosses or that reduce the fitness of hybrid offspring (Moyle and Graham 2005; Tao et al. 88 
2021). In addition, the resulting introgressions may have undesirable impacts on non-89 
target crop traits (Chitwood-Brown et al. 2021). While this can be due to negative 90 
pleiotropic effects of the target alleles, adverse effects appear to be more frequently 91 
caused by linked alleles that are deleterious in the crop genetic background (Von fels et 92 
al. 2017; Chitwood-Brown et al. 2021), a phenomenon called linkage drag. Plant breeders 93 
typically monitor the size and location of introgressions with molecular markers and/or 94 
restrict pre-breeding efforts to fully compatible wild relatives (i.e., members of the 95 
primary gene pool; Harlan and de Wet 1971) to reduce the impact of the linkage drag 96 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 7, 2022. ; https://doi.org/10.1101/2022.06.07.495047doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495047


   
 

   
 

4 

(Young and Tanksley 1989; Tanksley and McCouch 1997; Frary et al. 2004). However, 97 
in large plant genomes, regions of low recombination are widespread, making it difficult 98 
to reduce the sizes of some introgressions (Rodgers-Melnick et al. 2015; Brazier and 99 
Glémin 2022; Huang et al. 2022). Also, key traits may be found outside of the primary 100 
gene pool, making it necessary to tap less compatible wild relatives (e.g., Duriez et al. 101 
2019). The latter are classified as the secondary gene pool if they can intercross with the 102 
crop and produce at least some partially fertile hybrids (Harlan and de Wet 1971). More 103 
distantly related species that require technological interventions to produce hybrid 104 
offspring are referred to as the tertiary gene pool (Harlan and de Wet 1971). 105 
 106 
The causes of linkage drag are assumed to be like those that contribute to species 107 
differences in natural populations. These include the genetic changes responsible for 108 
phenotypic divergence, as well as various kinds of hybrid incompatibilities (Chitwood-109 
Brown et al. 2021; Tao et al. 2021). Introgressions with strongly negative effects are 110 
likely purged by selection during pre-breeding, so those successfully incorporated into 111 
the cultivated gene pool should be less harmful. However, as far as we are aware, a 112 
comprehensive analysis of the effects of such introgressions on cultivated phenotypes has 113 
yet to be conducted. The genomic impacts of these introgressions are even less clear. 114 
Introgression has been shown to reduce genetic load in maize (Wang et al. 2017) and 115 
sorghum (Smith et al. 2019) and to introduce gene presence/absence polymorphisms in 116 
sunflower (Owens et al. 2019), thereby increasing the size of its pan-genome (Hübner et 117 
al. 2019). However, a definitive analysis of the genomic impacts of such introgressions 118 
requires generation and analyses of multiple high-quality reference genomes. 119 
 120 
Here we provide a comprehensive analysis of the phenotypic and genomic effects of 121 
linkage drag using sunflower as an experimental system. Crop wild relatives have been 122 
widely employed in sunflower breeding (Dempewolf et al. 2017; Seiler et al. 2017), and 123 
recent genomic studies have estimated that ca. 10% of the cultivated gene pool is derived 124 
from wild introgressions (Baute et al. 2015; Hübner et al. 2019). While most such 125 
introgressions are from wild H. annuus, the fully compatible progenitor of the cultivated 126 
sunflower, there are significant contributions from other species as well, making it 127 
feasible to compare the effects of introgression from the primary and secondary gene 128 
pools.  129 
 130 
To estimate the impacts of linkage drag, we first sequenced and assembled reference 131 
genomes for seven cultivated and one wild sunflower genotype and improved the 132 
assemblies for two previously sequenced cultivars (Badouin et al. 2017). Then, using 133 
resequencing data previously generated for a diverse panel of wild donor species (Hübner 134 
et al. 2019; Todesco et al. 2020), we identified introgressions in the cultivar genomes and 135 
examined their impacts on sequence and structural variation in the cultivated sunflower 136 
gene pool. Lastly, we determined the locations of introgressions in the cultivated 137 
sunflower association mapping (SAM) population (Mandel et al. 2011) and used a ridge 138 
regression model to estimate their effects on 16 phenotypic traits, including quality traits, 139 
such as oil percentage in seeds, developmental traits such as flowering time, and yield-140 
related traits such as head weight.  141 
 142 
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As expected, we found that introgressions increased sequence and structural 143 
polymorphism in the cultivated gene pool, reduced genetic load at protein-coding 144 
sequences, and enhanced trait values associated with abiotic stress resistance. On the 145 
other hand, introgressions typically reduced quality and yield traits. We also found that 146 
higher frequency introgressions have larger effects than low frequency introgressions, 147 
possibly indicating that the former have been targeted by artificial selection. Lastly, 148 
introgressions from the secondary gene pool had much larger negative effects than those 149 
from the primary gene pool. Thus, we encourage pre-breeding programs to focus as far as 150 
possible on the primary gene pool.  151 
 152 
Results 153 
 154 
To identify SVs and introgressions in cultivated sunflowers, we constructed de novo 155 
genome assemblies using PacBio sequencing for seven inbred cultivated lines and one 156 
wild H. annuus genotype (Table 1; SI Appendix, Table S1; Dataset S1). Five of these 157 
assemblies were further scaffolded using Bionano optical mapping. We also improved the 158 
quality of previously sequenced assemblies (Badouin et al. 2017) for the HA412-HO 159 
inbred line using Illumina, 10×, and Hi-C sequencing (Table S1) and for the XRQ inbred 160 
line using the PacBio/Bionano combination described above. The nine cultivated lines 161 
represent a large part of cultivated sunflower genetic diversity present in the world’s 162 
genebanks (Terzic et al. 2020; SI Appendix, Fig. S1)  163 
 164 
Table 1. Description of new or improved reference genomes for sunflower (H. annuus). 165 

Genotype 
/ version Type Sequencing 

technology 
Sequence 

Depth1 
Scaffolding 
technology 

 N50 
(Kb) 

Assembly 
size (Kb) 

 Complete 
BUSCO 

Genes (%) 
HA412-

HO 
v2 

Cultivar, 
maintainer 

Illumina paired-end, 
mate pair & 10X 

Chromium 
251× Hi-C 

Sequencing 187,414 3,226,370 97.9 

XRQ 
v2 

Cultivar, 
maintainer 

PacBio RSII, 
Illumina paired-end 172× Bionano optical 

mapping 176,491 3,010,048 97.4 

PSC8 
v1 

Cultivar, 
restorer 

PacBio RSII, 
Illumina paired-end 66× Bionano optical 

mapping 179,999 3,057,327 94.5 

RHA438 
v1 

Cultivar, 
restorer PacBio Sequel 2 55× Bionano optical 

mapping 177,554 3,095,288 96.7 

IR 
v1 

Cultivar, 
maintainer PacBio Sequel 2 60× Bionano optical 

mapping 179,325 3,047,956 97.1 

HA89 
v1 

Cultivar, 
maintainer PacBio Sequel 2 34× Bionano optical 

mapping 175,389 3,002,007 97.3 

LR1 
v0.9 

Cultivar, 
maintainer PacBio Sequel 2 13× Reference-

guided  174,126 3,154,038 85.9 

OQP8 
v0.9 

Cultivar, 
restorer PacBio Sequel 2 13× Reference-

guided 177,187 3,119,769 88.1 

HA300 
v0.9 

Cultivar, 
maintainer PacBio Sequel 2 10× Reference-

guided 171,505 3,025,264 90.3 

PI659440 
v1 Wild PacBio Sequel 2 41× Bionano optical 

mapping 181,076 3,162,322 96.5 
1Polished sequence data 166 
 167 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 7, 2022. ; https://doi.org/10.1101/2022.06.07.495047doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495047


   
 

   
 

6 

All genomes were assembled into 17 pseudomolecules, corresponding to the 17 168 
chromosomes in sunflower. Each of our chromosome-level genome assemblies had a 169 
total size between 3,002 and 3,226 Mb, with N50 of 172-187 Mb (Table 1; Dataset S2). 170 
The total number of genes per genome, after stringent filtering, ranged from 44,640 for 171 
XRQv2 to 63,048 genes for HA300 (Table S5). The assemblies captured 85.9-97.9% of 172 
the universally conserved single-copy benchmark (BUSCO) genes (Table 1; SI 173 
Appendix, Table S4). BUSCO percentages were positively correlated with sequence 174 
depth rather than gene number, with the lowest BUSCO scores observed for LR1 and 175 
OQP8, which were sequenced to circa 13× depth, whereas the highest BUSCO scores 176 
were seen for HA412-HOv2 and XRQv2, which were sequenced to 251× depth and 172× 177 
depth, respectively (Table 1; Dataset S1). The genomes showed high collinearity without 178 
large inter-chromosomal translocations (SI Appendix, Figs. S2-S6). Overall, our 179 
chromosome-scale genome assemblies yielded better qualitative metrics than the two 180 
previously published reference assemblies (Badouin et al. 2017).  181 
 182 
In general, 74-83% of the genomes are composed of transposable elements (TEs), with 183 
70-73% of these being LTR-RTs (SI Appendix, Table S6). In agreement with previous 184 
studies of the cultivated sunflower genome (Staton et al. 2012), there is a major bias in 185 
TE composition towards Gypsy (50-60% of total TEs) and Copia (13-18% of total TEs) 186 
elements, while Class II TEs (DNA transposons) were much lower in abundance relative 187 
to LTR-RTs, comprising <13% of each genome (SI Appendix, Table S6). The genomic 188 
distributions of LTR-RTs in the new assemblies are similar to those previously reported 189 
for the first reference genomes for cultivated sunflower (Badouin et al. 2017; SI 190 
Appendix, Figs. S7-15).  191 
 192 
By mapping previously published whole-genome sequences (Hübner et al. 2019; Todesco 193 
et al. 2020) from native North American landraces (i.e., early domesticates) and five wild 194 
possible donor species to each genome assembly, we determined the ancestry of each 195 
cultivated line and estimated the locations and likely parentage of introgressions. Only a 196 
small portion (2-8%) of each genome was admixed (Fig. 1; SI Appendix, Fig. S16; 197 
Dataset S3), which is similar to previous estimates for the XRQ and HA412-HO genomes 198 
(Badouin et al. 2017). All cultivated genomes possessed more introgressions from the 199 
primary gene pool (primary introgressions) than those from the secondary gene pool 200 
(secondary introgressions).  201 
 202 
Sunflower is a hybrid crop, and crop wild relatives were used to develop cytoplasmic 203 
male sterile “female” lines and branching, fertility restoring “male” lines for hybrid 204 
production. The male restorer lines PSC8, OQP8, and RHA438 generally had more 205 
introgressions than the female maintainer lines (HA412, XRQ, IR, HA89, LR1, and 206 
HA300). Consistent with breeding records and previous findings (Gentzbittel et al. 1999; 207 
Baute et al. 2015; Vear 2016; Hübner et al. 2019), the restorer lines had substantial 208 
introgression from wild H. annuus on chr10, which underlies apical branching, as well as 209 
an introgression near the distal end of chr13, where the restorer of fertility locus (Rf1) of 210 
the common PET1 male sterile cytoplasm is located (Fig. 1). However, while the restorer 211 
allele in PSC8 and OQP8 was derived from H. petiolaris as expected (Leclercq 1969), an 212 
introgression from wild H. annuus was found in RHA438 at the region, suggesting 213 
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possible different origins of fertility restoration in cultivated sunflower. The majority 214 
(~68%) of the primary introgressions were unique to one genotype and only a small 215 
proportion (<0.1%) were shared across all nine genomes. Almost all secondary 216 
introgressions were unique to one genotype.  217 
 218 
We identified single nucleotide polymorphisms (SNPs) and small (<50bp) 219 
insertions/deletions (InDels), as well as different types of structural variants (SVs) 220 
including large (> 50 bp) InDels, copy number variants (CNVs), inversions, and 221 
translocations through the alignment of the high-contiguity cultivar genome assemblies 222 
(HA412-HOv2, XRQv2, PSC8, RHA438, IR, HA89). In total, we identified 12,036,913 223 
SNPs and 3,005,855 small InDels across 17 chromosomes using the HA412-HOv2 224 
genome as the reference (Fig. 1). We also detected 70,612-84,709 large InDels, 32,668-225 
47,706 CNVs, 4,776-7,738 translocations, and 261-301 inversions (>1kb) between each 226 
genome and the HA412-HOv2 reference (Fig. 1; Dataset S4). After merging, 532 227 
polymorphic inversions with a total size of 200 Mb were identified across the cultivars, 228 
including a 21-Mb region (156-177Mb) on chr5 that corresponded to the largest section 229 
of a cluster of inversions previously identified in wild Helianthus annuus (Todesco et al. 230 
2020; Fig. 1J).  231 
  232 
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 233 
Fig. 1. Introgressions and genetic variants of the high-contiguity cultivated sunflower genome assemblies. 234 
A. Chromosomes of the HA412-HOv2 reference. Diamonds mark approximate positions of centromeres. 235 
B-G. Introgressions in HA412-HO, XRQ, PSC8, RHA438, IR, and HA89 projected to the Ha412-HOv2 236 
reference. Colored bars represent introgressions from different wild donors: orange: Helianthus annuus, 237 
green: H. argophyllus, light blue: H. petiolaris subsp. petiolaris, deep blue: H. petiolaris subsp. fallax, 238 
purple: H. niveus and dark grey: H. debilis. H-I. Density of SNPs (H) and small InDels (I) (number/500 kb; 239 
0-10000 for SNPs and 0-2000 for small InDels). J. Inversions identified in genome assemblies. Regions of 240 
introgression less than 1 Mb were thickened to 1Mb for visualization.  241 
 242 
Introgression Introduced Substantial Sequence and Structural Variation into the 243 
Cultivated Sunflower Gene Pool 244 
 245 
We compared densities of SNPs and small InDels between regions with introgression in 246 
one to five genomes (polymorphic introgressed regions) and those without introgression 247 
in any of the six highly contiguous cultivar genomes (non-introgressed). We calculated 248 
densities of SNPs and small InDels in non-overlapping windows of 500kb using the 249 
HA412-HOv2 genome as the reference and compared between polymorphic introgressed 250 
regions and non-introgressed regions. Overall, regions polymorphic for primary or 251 
secondary introgressions had more SNPs and small InDels than non-introgressed regions 252 
(Fig. 2A,B). Secondary introgressions had more SNPs and small InDels than primary 253 
introgressions, although the differences were not significant. Analyses of 287 individuals 254 
comprising the cultivated SAM population (see below) revealed that introgressed regions 255 
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also possessed significantly higher numbers of SNPs compared to non-introgressed 256 
regions, and secondary introgressions displayed significantly more SNPs than primary 257 
introgressions (SI Appendix, Fig. S17).  258 
 259 

 260 
Fig. 2. Densities of A. SNPs, B. Small InDels (<50bp), C. Large InDels (>50bp) and D. CNVs in regions 261 
without introgression, regions with introgressions from the primary gene pool (primary introgressions) and 262 
regions from the secondary gene pool (secondary introgression). The densities of SNPs and small InDels 263 
were calculated in non-overlapping windows of 500kb using the HA412-HOv2 genome as the reference. 264 
Densities of large InDels and CNVs were calculated in 10,000 samplings of 500kb windows in each type of 265 
region between each genome and the HA412-HOv2 reference. Asterisks denote significance in independent 266 
t-tests: ***P<0.001.  267 
 268 
Wild introgressions also introduced large (>50bp) insertions and deletions (large InDels) 269 
into the cultivated sunflower gene pool. In each pair of genome comparisons with the 270 
HA412-HOv2 reference, both primary and secondary introgressions had significantly 271 
higher numbers of large InDels compared to regions without introgression (Fig. 2C). 272 
Conversely, introgressions had significantly fewer CNVs than non-introgressed regions 273 
(Fig. 2D). We suspect that this is due to the reduced strength of purifying selection on TE 274 
copy number in the cultivated gene pool. 275 
 276 
Across the six high-contiguity genomes, chromosomal inversions had an overlap of 58 277 
Mb with primary introgressions and 5.7 Mb with secondary introgressions, which is 278 
significantly higher than a random distribution in both cases (primary introgressions: 279 
P<0.001, secondary introgressions: P=0.0269). In each pair of genome comparisons with 280 
the HA412-HOv2 reference, the number of inversions introduced from the primary gene 281 
pool varied from 0.24 to 0.43 per Mb, which is significantly (P<0.01) higher than that in 282 
non-introgressed regions (0.07-0.08/Mb). More inversions were introduced from the 283 
secondary than from the primary gene pool in each genome, except in HA89 where no 284 
inversions were found in secondary introgressions (SI Appendix, Fig. S18).  285 
 286 
Introgression Reduced Genetic Load 287 
 288 
We estimated the effect of introgression on genetic load by calculating the ratio of the 289 
number of alternative stop codons (Pnonsense) and the number of nonsynonymous 290 
mutations (Pnonsyn) in 500-kb sliding windows (Renaut and Rieseberg 2015). The statistic 291 
was negatively correlated with recombination rate (SI Appendix, Fig. S19), in accord 292 
with previous understanding of the role of recombination in eliminating deleterious 293 
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mutations (Huang et al. 2022). Pnonsense/Pnonsyn of polymorphic primary introgressions was 294 
lower in null recombination rate regions than that of non-introgressed regions and 295 
comparable to non-introgressed regions in regions of reduced and high recombination 296 
rate (SI Appendix, Fig. S19). Secondary introgressions displayed a trend towards reduced 297 
load (i.e., lower Pnonsense/Pnonsyn ratios) compared to non-introgressed regions, but the 298 
sample size was too small to draw conclusions. Analyses of 287 individuals in the 299 
cultivated SAM population (see below) provided clearer results. While Pnonsense/Pnonsyn 300 
was also negatively correlated with recombination rate in this dataset (SI Appendix, Fig. 301 
S20), primary introgressions displayed significantly lower Pnonsense/Pnonsyn than non-302 
introgressed regions in all recombination rate categories, and secondary introgressions 303 
had significantly lower Pnonsense/Pnonsyn than non-introgressed regions in regions of null 304 
and reduced recombination rate (Fig. 3).  305 
 306 

 307 
Fig. 3. Ratio of alternative stop codons and nonsynonymous mutations (Pnonsense/Pnonsyn) in regions without 308 
introgression, regions with introgressions from the primary gene pool (primary introgressions) and regions 309 
from the secondary gene pool (secondary introgressions) in the cultivated sunflower association mapping 310 
population. Pnonsense/Pnonsyn was calculated in non-overlapping windows of 500kb. Windows of each 311 
recombination rate category (high: > 2 cM/Mb, reduced: 0.01-2 cM/Mb, null: <0.01 cM/Mb) were 312 
compared separately. Asterisks denote significance in independent t-test: *0.05>P>0.01, **0.01>P>0.001, 313 
***P<0.001. 314 
 315 
Introgressions Introduced Gene Presence/absence Polymorphisms 316 
 317 
A total of 77,334 genes were obtained across the 10 genome assemblies, among which 318 
75,791 were present in the 9 genomes of cultivars. Altogether, 31,099 genes in the pan-319 
genome displayed PAV between genomes. After filtering based on synteny, we retained 320 
75,369 genes with coordinate information for homologs, 29,948 of which showed PAV.  321 
 322 
We found that introgressions introduced significantly more gene PAVs than non-323 
introgressed regions, but gene PAVs from primary and secondary introgressions did not 324 
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differ significantly, except in one pair (Fig. 4). The total number of genes introduced by 325 
primary introgressions ranged from 889 for HA300 to 4,323 for RHA438, respectively, 326 
whereas between 26 (HA89) and 1,800 (OQP8) genes were introduced by secondary 327 
introgressions (SI Appendix, Fig. S21). On average, 12% of the PAVs result from 328 
primary introgressions and 5% from secondary introgressions. Across the nine cultivar 329 
genomes, a total of 3,187 genes were introduced by introgression from crop wild 330 
relatives. Unsurprisingly, the number of new genes introduced by introgression is closely 331 
correlated with total amount of introgression detected in a genome, so we see more new 332 
genes resulting from introgression in the restorer lines (PSC8, RHA438 and OQP8) than 333 
from maintainer lines (SI Appendix, Fig. S21).  334 
 335 

 336 
Fig. 4. Proportions of A. introduced genes and B. missing genes in introgressed and non-introgressed 337 
regions in each cultivar genome compared to the HA412-HOv2 reference. Asterisks denote significance in 338 
independent t-test: *0.05>P>0.01, **0.01>P>0.001, ***P<0.001.  339 
 340 
In addition to new genes, introgressions often lack genes that are present in syntenic non-341 
introgressed regions (Fig. 4B). Primary introgressions introduced 383 (HA300) to 1,577 342 
(RHA438) missing genes, whereas between 22 (HA89) and 2095 (OQP8) gene absences 343 
were caused by secondary introgressions (SI Appendix, Fig. S21). About 17-32% of the 344 
gene absences in primary introgressions had a homolog present in the wild H. annuus 345 
(PI659440) genome, indicating that many of such missing genes represent gene PAVs in 346 
the wild donor species.  347 
 348 
Introgressions in the Cultivated Sunflower Association Mapping (SAM) Population 349 
 350 
We generated a SNP dataset using previously published sequence data for 287 351 
individuals in the SAM population (Mandel et al. 2011; Hübner et al. 2019), as well as 352 
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the aforementioned whole-genome sequences from native North American landraces and 353 
five possible wild donor species. Then, we determined the locations and parentage of 354 
introgressions in each of the 287 cultivated genotypes. We found that all samples 355 
contained putative introgressions and that all chromosomes appeared to have experienced 356 
introgression in at least one of the SAM samples (Fig. 5). The amount of introgression in 357 
each sample varied from 0.4% to 11% with a number of samples having large blocks of 358 
introgression (Dataset S5). On average, each sample had ca. 3% of the genome covered 359 
with introgressions from the primary gene pool and 0.1% derived from the secondary 360 
gene pool, which is similar to the estimates from the genome assemblies, but lower than 361 
previously estimated for the SAM population using a different method (Hübner et al. 362 
2019). Restorer lines had more introgression than maintainer lines on average (3.8% vs. 363 
2.9%). Maintainer and restorer lines showed distinct patterns of introgression on the first 364 
half of chr8, a substantial portion of chr10, part of chr12, as well as the end of chr13, 365 
broadly consistent with previously identified regions of high divergence between these 366 
groups (Baute et al. 2015; Hübner et al. 2019; Owens et al. 2019). Small regions of 367 
introgression from the secondary gene pool were identified at the end of chr13 in most of 368 
the restorer lines, but not in maintainers. These regions roughly correspond to the 369 
introgression from H. petiolaris in the PSC8 genome, corroborating previous findings of 370 
the Rf1 restorer allele at this position (Gentzbittel et al. 1999; Baute et al. 2015).  371 
 372 
Using these datasets, we evaluated the presence or absence of introgressions in 1kb non-373 
overlapping windows across the genome. We took this approach to account for the fact 374 
that most introgressions are fragmented by recombination as they are incorporated in the 375 
cultivated sunflower gene pool and to permit genome wide association studies (GWAS) 376 
and various population genomic analyses. A total of 505,038 and 5,243 introgression 377 
variants were detected at a ≥ 3% minor allele frequency cut off for primary (wild H. 378 
annuus) and secondary germplasm donors, respectively (Fig. 5).  379 
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 380 
Fig. 5. Frequency of introgression variants in the SAM population and associated introgressions with traits 381 
in GWA analysis. A. Chromosomes of the HA412-HOv2 reference. B. Frequency of introgression variants 382 
from the primary germplasm. C. Frequency of introgression variants from secondary germplasm. D. 383 
Introgressed genomic intervals associated with developmental traits (number of branches, head weight, 384 
head diameter, stem weight, leaf weight, and plant biomass). E. Introgressed genomic intervals associated 385 
with quality traits (seed size and oil percentage). F. Introgressed genomic intervals associated with flower 386 
pigmentation (anthocyanins in disk florets, anthocyanins in stigmas). Blue and red representing 387 
introgressions from primary and secondary germplasm, respectively.  388 
 389 
We then performed GWAS of the introgression variants for 16 traits that were previously 390 
phenotyped (Mandel et al. 2013; Nambeesan et al. 2015; Lee et al. 2022) in common 391 
gardens at three locations (Watkinsville, GA, Ames, IA, and Vancouver, BC) using a 392 
model that corrects the population structure and familial relatedness. Our results revealed 393 
that introgressions have a significant effect on the phenotypic variation in the SAM 394 
population (SI Appendix, Fig. S24). After merging GWA outliers in the range of 10 Mb, 395 
introgression intervals were found to underlie 27 quantitative trait loci (QTLs) for 12 396 
phenotypic traits (Table S7; Fig. 5). Of these, 23 (85.18%) were introgressed from 397 
primary germplasm (wild H. annuus), while 4 (14.81%) were introgressed from 398 
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secondary germplasm. The introgressed QTLs reduced head diameter and head weight, 399 
but increased plant biomass, number of branches, anthocyanins in disk florets, number of 400 
days to flowering, dry leaf weight, oil percentage, seed size, dry stem weight, and 401 
anthocyanins in stigmas. For stem diameter, introgressed QTLs with negative and 402 
positive effects were found. The 27 QTLs were not fully independent. A primary 403 
introgression near the beginning of chr10 that introduced branching into restorer lines, 404 
also effects oil content, seed size, head diameter, and head weight.  405 
 406 
However, GWAS does not consider the effects of introgression variants that fall below a 407 
stringent significance threshold. Therefore, we employed the following ridge regression 408 
model to estimate phenotypic effects across all introgression variants: 409 
 410 

y = 1β + Zg + ε 411 
 412 
Where y is a vector of the phenotypic trait; Z is an incidence matrix containing the allelic 413 
states of the markers (Z = {-1, 1, 0}); -1 and 1 represent homozygous non-introgressed 414 
and introgressed genotypes at a locus, respectively and 0 represents the heterozygous 415 
state; β is a vector of fixed effects; g is the vector of marker effects; and ε is a vector of 416 
residuals.  417 
 418 
To assess whether introgressions overall have a significant impact on the 16 phenotypic 419 
traits, we compared the average value of introgression marker effects to a null 420 
distribution. Our results indicated that introgressions overall have negative effects on 421 
traits associated with yield, including head diameter, head weight, leaf area, leaf weight, 422 
seed size, seed weight, stem diameter, and stem weight (Fig. 6). This pattern was seen for 423 
introgressions from both the primary (wild H. annuus) and secondary gene pool. In 424 
contrast, biomass, branching, and specific leaf area (SLA) showed an increase in the trait 425 
value for introgressions from both gene pools. Branching was introgressed into restorer 426 
lines to prolong the flowering period for hybrid production and increased SLA is thought 427 
to be associated with drought tolerance (Wellstein et al. 2017), so both changes can be 428 
viewed as potentially desirable. We also observed gene pool-specific effects for stigma 429 
and disk floret anthocyanins and oil percentage; primary introgressions increase 430 
anthocyanin content and reduce oil percentage, whereas introgressions from secondary 431 
germplasm do not cause significant change (Fig. 6). Lastly, a comparison of effect sizes 432 
of introgression variants from the primary versus secondary gene pool indicate that the 433 
latter have much larger effects on average (SI Appendix, Fig. S25).  434 
 435 
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436 
Fig. 6. Standardized average effect sizes of introgression variants (calculated from Z-score normalized trait 437 
values) in the SAM population. Gray dots show the null distribution of effect sizes. Red, blue and yellow 438 
represent the decreasing, increasing, or neutral effects of introgressions on phenotypic traits at P-value < 439 
0.05. BC: British Columbia, GA: Georgia, IA: Iowa. 440 
 441 
Next, we asked whether the frequency of introgression variants was correlated with their 442 
effect size. Higher frequency introgressions are more likely to have been targets of 443 
artificial selection, so we were especially interested in the potential for linkage drag 444 
associated with such introgressions. We found a significant correlation (P<0.05) between 445 
the frequency and the effect size of introgression variants from both the primary and 446 
secondary gene pools across all traits and common gardens (Fig. 7; SI Appendix, Fig. 447 
S26). In general, higher frequency introgressions have larger phenotypic effects than 448 
lower frequency introgressions. Changes in beta coefficients were mostly consistent 449 
between donor gene pools: biomass, branching, SLA, oil percentage, and stigmas 450 
anthocyanins had positive beta values for introgressions from both the primary and 451 
secondary gene pool, whereas negative beta values were observed for the other traits.  452 
 453 
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 454 
Fig. 7. Results from linear regression model where X = introgression frequency in SAM population and Y = 455 
introgression effect on phenotype trait. A. The standard beta coefficient of all traits in three common garden 456 
experiments. B. A fitted linear regression line for branching, oil percentage, and days to flower for 457 
introgressions from primary and secondary germplasm.  458 
 459 
Discussion 460 
 461 
New Genomic Resources for Sunflower 462 
 463 
For the past two decades, the plant biology community has made substantial investments 464 
into the generation of genomic tools and resources for crops and their wild relatives, 465 
especially high-quality reference sequences (Thudi et al. 2021). These investments are 466 
now bearing dividends, ranging from exciting new discoveries about plant domestication 467 
(Purugganan 2021) to the genetic dissection of key ecological and agronomic traits 468 
(Kuroha et al. 2018; Temme et al. 2020) to increases in the speed and precision of plant 469 
breeding (Jannink et al. 2010). Despite these successes, the goalposts have moved. Plant 470 
genomes have been shown to vary remarkably in their content and structure, even within 471 
species (Lei et al. 2021; Bayer et al. 2020), and these differences often underlie variation 472 
in phenotypic traits (Gage et al. 2019). Thus, tens or even hundreds of reference quality 473 
genomes are needed to fully understand the genomic basis of phenotypic variation (Gage 474 
et al. 2019; Della Coletta et al. 2021). Here we report progress toward this goal by 475 
providing eight new chromosome-level genomes for sunflower along with significant 476 
improvements of two previously published sunflower genomes (Badouin et al. 2017). 477 
These ten publicly available genomes, which encompass much of the genetic space in the 478 
cultivated sunflower gene pool (SI Appendix, Fig. S1), represent a valuable resource for 479 
sunflower research and breeding. 480 
 481 
While the genomes were sequenced and assembled using different sequencing 482 
technologies and depths, we were able to obtain chromosome level assemblies for all 483 
genotypes, even with sequencing depth as low as 10× when using PacBio HiFi reads and 484 
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reference-guided assembly (for HA300; Table 1). We did see a trade-off between lower 485 
sequence coverage and BUSCO scores, suggesting that the quality of gene annotation 486 
suffers at lower sequencing depths. However, excellent BUSCO scores were obtained 487 
with sequence depth in the 30x range with HiFi reads, which may represent an optimal 488 
balance between sequencing cost and genome quality. 489 
 490 
The cultivated genomes range from 3.02 to 3.23 Gb in size, with the wild genome at 3.16 491 
Gb falling in the middle. Thus, domestication in sunflower does not appear to been 492 
accompanied by a change in genome size. On the other hand, the 10 genomes are ca. 15% 493 
smaller than previous genome size estimates for H. annuus (which included HA89, one 494 
of the genomes sequenced here) based on Feulgen staining (Sims and Price 1995) and 495 
flow cytometry (Baack et al. 2005). Given that the two different scaffolding approaches 496 
(Bionano optical mapping and Hi-C sequencing) employed in the present study resulted 497 
in similar genome size estimates, we suspect that previous work over-estimated the size 498 
of the sunflower genome.  499 
 500 
Synteny comparisons of the six high-contiguity genomes failed to reveal large-scale 501 
chromosomal rearrangements between the genomes, except for one 21 Mb inversion. 502 
However, we did find millions of small indels, thousands of deletions and insertions, and 503 
hundreds of inversions. We also detected numerous differences in gene content, with 504 
approximately 40% of the 77,334 genes in the sunflower pan-genome varying between 505 
genomes. This is higher than the 27% previously reported based on re-sequencing data 506 
from the SAM population (Hübner et al. 2019), possibly because the present study is 507 
based on comparisons of fully assembled reference genomes. Estimates of the proportion 508 
of genes displaying presence absence polymorphisms in other plant species range from 509 
15-66% (Bayer et al. 2020; Hufford et al. 2021), so the level of polymorphism in 510 
sunflower is not unusual. Like other plant species, gene presence-absence polymorphisms 511 
have been shown to play an important functional role in sunflower. For example, 512 
Todesco et al. (2020) showed that a PAV for HaFT1 was responsible for a 77-day shift in 513 
flowering time between two ecotypes of the silverleaf sunflower. More recently, Lee et 514 
al. (2022) found that the complementation of PAVs in sunflower hybrids was the primary 515 
cause of heterosis.  516 
 517 
Genomic Consequences of Introgression 518 
 519 
Analyses of the ten genomes provide insights regarding the sources of variation among 520 
them. Consistent with previous reports, about three quarters of the sunflower genome is 521 
made up of LTR transposons and other TEs, and many of the differences between 522 
genomes result from variability in the accumulation, movement, and elimination of TEs 523 
(Badouin et al. 2017). Also, sunflower is the product of a whole genome duplication 524 
event approximately 29 Mya (Barker et al. 2008, 2016; Badouin et al. 2017), and the 525 
differential retention of duplicated sequences likely contributes to genomic diversity as 526 
well.  527 
 528 
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Introgression from wild relatives represents another potential source of variation (Hübner 529 
et al. 2019; Owens et al. 2019). By examining the location and parentage of 530 
introgressions in the cultivated genomes, we were able to show that introgressed regions 531 
have greater diversity than non-introgressed regions as measured in terms of SNPs, small 532 
indels, deletions, insertions, inversions, and gene PAVs. The impact of the introgressions 533 
was most pronounced for the latter, with introgressions accounting for about 17% of 534 
PAVs. This is qualitatively similar to wheat, where differences in the gene content of 535 
introgressions from divergent donors appears to cause reduced performance (Hao et al. 536 
2020). Introgressions also reduced genetic load at protein coding genes and variation in 537 
CNVs, possibly because of relaxed purifying selection in the cultivated gene pool. CNVs 538 
in sunflower are mostly caused by variation in TE copy number, which may explain why 539 
introgression affects them differently than gene PAVs. 540 
 541 
A previous study of the SAM population showed that the absence allele at PAVs often 542 
has deleterious impacts on yield-associated traits (Lee et al. 2022), and we speculate that 543 
they may be the primary genetic cause of linkage drag. The genetic architecture of 544 
linkage drag has implications for mitigation strategies. If the maladaptive allele is 545 
commonly the absence variant of a PAV, then it could be complemented in hybrids 546 
containing the domesticated allele, whereas an allele that was maladaptive for other 547 
reasons (e.g., additive effect polygenes) is unlikely to be rescued in hybrids. 548 
Unfortunately, we were unable to directly test this hypothesis in the present study 549 
because the SAM population is comprised mainly of inbred lines. 550 
 551 
Phenotypic Consequences of Introgression 552 
 553 
Introgressions from the primary gene pool (i.e., wild H. annuus) had a significant impact 554 
on all 16 traits phenotyped in the SAM population, whereas those from the secondary 555 
gene pool affected 13 of the 16 traits (Fig. 8). This is unsurprising since introgressions 556 
from wild H. annuus are much more frequent in the SAM population than those from the 557 
secondary gene pool. On the other hand, the effect sizes of secondary introgressions are 558 
much larger on average than those from wild H. annuus (SI Appendix, Fig. S25).  559 
 560 
Examination of the direction of effects of the introgressions indicates that most reduce 561 
desirable agronomic trait values, especially traits that correlate closely with yield, 562 
including head diameter, head weight, seed size, and seed weight, though there are 563 
exceptions. For example, introgressions typically increase SLA, which is frequently 564 
associated with greater drought tolerance (Wellstein et al. 2017). This makes sense given 565 
that sunflower wild relatives are more drought tolerant than cultivars (Baack et al. 2008; 566 
Seiler et al. 2017). In addition, introgressions show an increase in biomass, but this 567 
appears to be a by-product of increased branching, which has been introduced into 568 
restorer lines to prolong flowering and thus pollen shed. Lastly, while introgressions may 569 
negatively affect traits on average, there can be individual introgressions with effects in 570 
the opposite direction. For example, an introgression on chr10 from wild H. annuus that 571 
is associated with increased branching also results in increased oil content and seed size 572 
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(Table S7). Overall, however, introgressions from wild H. annuus negatively affected the 573 
latter two traits. 574 
 575 
An unexpected result was that higher frequency introgressions had larger effects on traits 576 
(both positive and negative). We speculate that such high frequency introgressions have 577 
been directly targeted by artificial selection. In some instances, the trait we phenotyped 578 
was likely the target of selection (e.g., branching and oil content), whereas maladaptive 579 
trait values are most likely the product of linkage drag for traits such as disease resistance 580 
that were not phenotyped in the present study.  581 
 582 
Conclusions 583 
 584 
In summary, by utilizing a combination of high-quality reference genomes and genotypic 585 
and phenotypic analyses of the SAM population, we provide a comprehensive assessment 586 
of the impact of linkage drag on the cultivated sunflower genome and on plant 587 
performance. We show that despite the numerous benefits deriving from tapping crop 588 
wild relatives, such as the introduction of desirable traits and genetic and phenotypic 589 
variation (Warschefsky et al. 2014; Dempewolf et al. 2017), there can be downsides, 590 
including reductions in yield-related traits. We speculate that this is largely due to the 591 
introduction of variation in gene content; cultivars containing introgressions not only 592 
have new genes, but they also are missing genes that would otherwise be present, which 593 
can have deleterious consequences (Lee et al. 2022).  594 
 595 
So, what strategies can be employed to mitigate the effects of linkage drag? Marker-596 
assisted selection is widely employed to reduce the sizes of introgressed regions (Young 597 
and Tanksley 1989; Hao et al. 2020), although this can be challenging in genomic regions 598 
of low recombination, such as near the branching locus on chr10. Genome editing and 599 
other biotechnology approaches have the potential to introduce favorable alleles without 600 
linkage drag (Kawall 2019), although we recognize that the application of such 601 
approaches are currently limited by regulatory and socio-political factors (Friedrichs et al. 602 
2019). If the genetic factors underlying linkage drag are mostly recessive, such as would 603 
be the case for missing genes, then hybrid production offers an effective strategy for 604 
ameliorating linkage drag. Lastly, our results indicate that introgressions from distantly 605 
related species are much more problematic than those from the fully compatible wild 606 
progenitor of cultivated sunflower. Thus, linkage drag could be ameliorated by restricting 607 
pre-breeding efforts to closely related and fully compatible wild relatives. While certain 608 
desirable traits might not be expressed in close relatives, many of the underlying alleles 609 
may exist in the primary gene pool, albeit at a lower frequency. If so, there is a growing 610 
potential for the use of bioinformatics approaches to identify compatible genebank 611 
germplasm containing the allele(s) of interest (Guerra et al. 2022). Furthermore, natural 612 
introgression from the secondary gene pool into the primary gene pool may provide a 613 
source of alleles that have already been purged of deleterious incompatibilities and show 614 
reduced linkage drag.  615 
 616 
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Materials and Methods 617 
 618 
For full materials and methods, see SI Appendix, Supplementary Information Text. 619 
 620 
Diversity Analyses 621 
 622 
To show the relationships of the nine sequenced inbred lines to cultivated sunflower 623 
genetic diversity, we positioned them in genetic space using principal components 624 
analysis (SI Appendix, Fig. S1) based on unpublished genotypic data comprising 16,048 625 
SNP markers genotyped on 2,850 cultivated lines.  626 
 627 
Nucleic Acid Extractions, Library Preparations, and Sequencing 628 
 629 
For DNA sequencing, high molecular weight DNA was extracted from young leaves 630 
using several different protocols, including a modified CTAB protocol (Todesco et al. 631 
2020) for HA412-HO, magnetic bead extraction (Mayjonade et al. 2016) for the 632 
remaining cultivated genotypes, and the QIAGEN Genomic-tip 100g procedure for 633 
PI659440. 634 
 635 
For the HA412-HOv2 genome (which is an updated version of the HA412-HO genome, 636 
Badouin et al. 2017), paired-end and mate-pair libraries were generated and sequenced 637 
using Illumina sequencing technology to a total depth of 214× (Dataset S1). In addition, 638 
10× Genomics Chromium libraries were prepared and sequenced using Illumina to 37× 639 
depth (Dataset S1).  640 
 641 
For XRQv2 (which is an updated version of the XRQ genome; Badouin et al. 2017) and 642 
the newly sequenced genotypes, library preparation and sequencing employed Pacific 643 
Biosystems (PacBio) technology (Dataset S1). RSII system raw reads were generated for 644 
XRQv2 and PSC8, Sequel II system raw/CLR plus HiFi reads for IR and RHA438, and 645 
Sequel II HiFi reads for PI659440, HA89, LR1, OQP9 and HA300. 646 
 647 
We sequenced full-length cDNA using PacBio SMRT sequencing technology (IsoSeq) 648 
for the IR, RHA438, PI659440, and HA89 lines. In brief, leaf, bud and stem tissues were 649 
collected for each accession, flash frozen in liquid nitrogen. RNA was subsequently 650 
extracted using the Spectrum Plant Total RNA kit from Sigma-Aldrich, and purified 651 
cDNAs were sequenced on PacBio’s Sequel II instrument. 652 
 653 
Scaffolding 654 
 655 
To enable chromosome-level scaffolding of the HA412-HOv2 genome, Hi-C libraries 656 
(Burtin et al. 2013) were generated by Dovetail Genomics and sequenced to 49× depth by 657 
the McGill University and Génome Québec Innovation Centre. For the XRQv2, PSC8, 658 
IR, RHA438, PI659440, and HA89 genomes, scaffolding was aided by the production of 659 
optical maps. Briefly, ultra-HMW DNA was purified from young flash frozen leaves 660 
according to the Plant tissue DNA Isolation Base Protocol of Bionano Genomics (BNG). 661 
The ultra-HMW DNA was subsequently labelled, stained, loaded onto Saphyr chips, and 662 
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run on BNG’s Saphyr platform according to the Saphyr System User Guide. Digitalized 663 
labelled DNA molecules were assembled to optical maps using BNG’s Access software.  664 
 665 
Genome Assembly 666 
 667 
De novo assembly was conducted using different protocols depending on the genotype, 668 
the accuracy of raw sequence data and the bioinformatics tools available at the time when 669 
each genotype was sequenced (Dataset S2). In brief, the HA412-HOv2 genome was 670 
assembled with DeNovoMAGIC v3 (NRGene Technologies), and scaffolded using Hi-C 671 
sequencing data (Dovetail Genomics) and the HiRise assembler (Putnam et al. 2016).  672 
 673 
Contigs for XRQv2, PSC8, IR, and RHA428 were generated using a meta-assembly 674 
approach (Raymond et al. 2018), whereas assembly of the other genomes used canu v2 675 
(Koren et al. 2017). A first scaffolding step was performed for six genomes (XRQv2, 676 
PSC8, IR, RHA438, PI659440, and HA89) using BNG optical maps, and AllMaps (Tang 677 
et al. 2015) was used to anchor the sequences on the 17 chromosomes for all nine PacBio 678 
genomes.  679 
 680 
Genome Annotation 681 
 682 
Gene models were predicted using the EuGene pipeline (Sallet et al. 2019), as described 683 
previously (Badouin et al. 2017). Previous RNAseq (Badouin et al. 2017) and IsoSeq 684 
(PRJNA517222) data were used for functional annotation of the HA412-HOv2, XRQv2, 685 
and PSC8 genomes. We generated IsoSeq data for the IR, RHA438, PI659440, and HA89 686 
lines, which were employed for the annotation of each genome. IsoSeq data for HA89 687 
were used to annotate the LR1, OQP9 and HA300 genomes. Details of the annotation 688 
processes along with assessment results generated with BUSCO v5.1.2 (-m prot -l 689 
embryophyta_odb10) software (Manni et al. 2021) are provided in Dataset S3.  690 
 691 
To ensure that we were not over-estimating gene content variation among the ten 692 
sunflower genomes, we developed a pipeline to filter out gene fragments resulting from 693 
TE activity and other genomic processes 694 
(https://github.com/megahitokiri/Sunflower_annotation_Snakemake). At each step, 695 
parameters were fine-tuned by comparison with a set of functionally well-characterized 696 
genes to ensure the filtering was not overly aggressive. First, we employed the Extensive 697 
de novo TE Annotator (EDTA) to find areas with high content of repeated elements (Ou 698 
et al. 2019). Gene models whose exonic or 3`UTR regions overlapped more than 75% 699 
with TEs or other repetitive sequences were filtered out. The remaining gene models 700 
were further filtered to remove those with pseudogene marks, lacking introns, or that 701 
predicted proteins of less that 50 amino acids in length (Table S5).  702 
 703 
Identification of Sequence and Structural Variants 704 
 705 
Because reference-guided scaffolding of the low-depth genomes (LR1, OQP8 and 706 
HA300) can cause spurious results, we only included the six high-contiguity cultivar 707 
genomes (HA412-HOv2, XRQv2, PSC8, RHA438, IR, and HA89) to identify sequence 708 
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and structural variants. Each of the other five genomes was aligned to the HA412-HOv2 709 
reference using the nucmer4 program in MUMmer v4 (Marçais et al. 2018) with 710 
parameters ‘-b 1000 -c 1000’. The alignment results were filtered using the delta-filter 711 
program in MUMmer with parameters ‘-1 -i 90 -l 1000’ to remove dubious alignments 712 
and retain only one-to-one alignments for further detection of SNPs and small InDels 713 
(<50bp). We identified SNPs and small InDels within unambiguous alignment blocks 714 
using the show-snps program in MUMmer with the parameters ‘-C -l -r -T’. The results 715 
of each pair of genomes were converted into VCF format using the HA412-HOv2 716 
genome as the reference and the VCFs were combined using bcftools merge (Danecek et 717 
al. 2021).  718 
 719 
We filtered the alignment results using delta-filter with parameters ‘-m -i 90 -l 1000’, and 720 
the show-coords program in MUMmer was used to extract alignment blocks with 721 
parameters ‘-T -H -r -d’ from the filtered alignment results. We then used SyRI v1.4 722 
(Goel et al. 2019) to parse the filtered results of MUMmer to identify candidate 723 
inversions, intra-, and inter-chromosomal translocations. We merged the structural 724 
variants following a stepwise method reported in Audano et al. (2019). We set the 725 
HA412-HOv2 genome as the reference and the structural variants identified between 726 
XRQv2 and the reference as the initial callset. New sites between each genome and the 727 
reference were added in sequence. Any variants in a callset that had 50% reciprocal 728 
overlap with an existing variant was excluded. The merging was performed separately for 729 
each type of variant. Neighboring blocks belonging to same type of events were merged. 730 
 731 
Large InDels and CNVs were identified using SVMU (Chakraborty et al. 2019) by 732 
parsing the delta file generated by delta-filter with parameters ‘-m -i 90 -l 1000’. The 733 
pipeline was run for each comparison with snp_mode = ‘l’ and without LASTZ 734 
alignments. From the SVMU summary file, structural mutations with the tag INS/DEL 735 
and estimated size >50bp were treated as large InDels (in each sample genome with 736 
respect to the HA412-HOv2 reference), and those with the tag CNV-R/CNV-Q/nCNV-737 
R/nCNV-Q and estimated size >50bp were treated as CNVs.  738 
 739 
Identification of Gene Presence and Absence Variation 740 
 741 
We constructed a pan-genome for H. annuus using the nine cultivated genomes plus the 742 
one wild reference sequence (Table 1). We prepared a combined GFF3/FASTA file and 743 
extracted proteins from coding regions using the TRANSDECODER (version 5.5.0- 744 
gff3_file to proteins) method (https://github.com/TransDecoder/TransDecoder). The 745 
protein files were input into the Roary pan-genome assembler (Page et al. 2015), 746 
modified to handle eukaryotic gene models, using a minimum threshold for detection of 747 
90%, no splitting of paralogs and PRANK core genes alignment. Core alignments were 748 
assessed via a dendogram generated by Roary (SI Appendix, Fig. S22).  749 
 750 
To distinguish between genes exhibiting true presence-absence polymorphisms and those 751 
that were annotated in one or more of the genomes but present and not annotated in 752 
others, we used representative nucleotide sequences of pan-genome genes generated by 753 
Roary to map them to each reference genome using GMAP (Wu and Watanabe 2005) 754 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 7, 2022. ; https://doi.org/10.1101/2022.06.07.495047doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495047


   
 

   
 

23 

with the parameters ‘-t 12 -O -n 1 -f 2 --min-trimmed-coverage=0.90 --min-755 
identity=0.90’. Custom scripts were used to integrate the mapped genes into the pan-756 
genome table.  757 
 758 
Identification of Introgressions 759 
 760 
To identify introgressed regions in the genome assemblies of cultivated sunflower, we 761 
employed previously published resequencing data (Hübner et al. 2019; Todesco et al. 762 
2020) from native North American landraces and five wild sunflower species (Helianthus 763 
annuus, H. argophyllus, H. petiolaris, H. niveus and H. debilis) that are probable donors 764 
to modern cultivated lines based on breeding records and previous studies (Vear 2016; 765 
Badouin et al. 2017; Seiler et al. 2017; Hübner et al. 2019). For each assembly, raw reads 766 
of 48 landrace and wild samples were aligned to the genome and a VCF was generated 767 
using a GATK pipeline (SI Appendix, Supplementary Information Text). Introgressed 768 
regions in the genomes were identified using the ‘site-by-site’ linkage admixture model 769 
in STRUCTURE (Pritchard et al. 2000; Falush et al. 2003).  770 
 771 
Projection of Introgressed Regions onto HA412-HOv2 Reference 772 
 773 
We extracted the large alignment blocks (tag SYN/INV/TRANS/INVTR/DUP/INVDP) 774 
identified by SyRI between an assembly and the HA412-HOv2 reference as a lift-over 775 
map and converted the introgressions identified in each assembly to coordinates in the 776 
HA412-HOv2 reference. For each introgressed region, alignment blocks overlapping 777 
with the region were extracted and the positions in the original genome of the 778 
overlapping portions were projected to the reference based on the proportion relative to 779 
the start and end positions of the alignment block. Projected alignments of overlapping 780 
introgressed regions or that were within 1kb in the HA412-HOv2 reference were merged.  781 
 782 
Genetic Variation Analysis 783 
 784 
The densities of SNPs and small InDels were calculated using vcftools (Danecek et al. 785 
2011) in non-overlapping 500-kb windows. Windows overlapping with >50% with 786 
primary or secondary introgressed regions in at least one but not all genomes were 787 
defined as polymorphic introgressed windows. Densities of SNPs and small InDels were 788 
then compared between polymorphic introgressed regions and non-introgressed regions. 789 
We further annotated functional SNPs using snpEff v5.0c (Cingolani et al. 2012) and 790 
calculated the ratio of the number of alternative stop codons (Pnonsense) and the number of 791 
nonsynonymous mutations (Pnonsyn) in the 500-kb windows and compared polymorphic 792 
introgressed windows and non-introgressed windows within the same recombination rate 793 
category (high: > 2 cM/Mb, reduced: 0.01-2 cM/Mb, null: <0.01 cM/Mb). For the SAM 794 
population, we defined polymorphic introgressed windows as those with MAF > 0.01. 795 
SNP density and Pnonsense/Pnonsyn were then calculated in non-overlapping windows of 500 796 
kb and compared in the same way as for the genome assemblies.  797 
 798 
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For large InDels and CNVs, in each pair of genomes, we randomly sampled fragments of 799 
500kb for 10,000 times within polymorphic primary introgressed regions, polymorphic 800 
secondary introgressed and non-introgressed regions, respectively. Densities of large 801 
InDels and CNVs were calculated and compared between these regions.  802 
 803 
We permutated the locations of the inversions identified across the genome assemblies 804 
10,000 times and calculated how often the overlapping size with primary introgressions 805 
and secondary introgressions exceeded the observed value, respectively. In each pair of 806 
genomes, an inversion was defined as introgression-introduced if one orientation of the 807 
inversion overlapped with primary or secondary introgressions while the other orientation 808 
did not. The incidences of inversions were calculated for polymorphic primary 809 
introgressed regions, polymorphic secondary introgressed regions and regions without 810 
introgression.  811 
 812 
Effects of Introgression on Gene Presence Absence Variation 813 
To determine how introgression affected gene content, we filtered the table of gene 814 
presence-absence polymorphism based on synteny between the genomes as determined 815 
by MUMmer4 (Marçais et al. 2018). Using the synteny-filtered table of gene presence-816 
absence polymorphisms, as well as the introgressions identified in each genome, we 817 
assigned a single introgression value for each gene in a genome if > 50% of the gene 818 
overlapped with regions of primary or secondary introgressions. Each missing copy in a 819 
genome was assigned an introgression value if the corresponding MUMmer alignment 820 
overlapped >50% with regions of primary or secondary introgressions. We compared 821 
each of the cultivar genomes to the HA412-HOv2 reference and examined the 822 
presence/absence of genes in introgressed and non-introgressed regions.  823 
 824 
Effects of Introgressions on Phenotypic Variation in the SAM Population 825 
 826 
We made use of 287 cultivated accessions in the SAM population, which was previously 827 
sequenced to 5-25x depth (Hubner et al. 2019). The SAM population includes close to 828 
90% of cultivated sunflower genetic diversity (Mandel et al. 2011) and is comprised of 829 
both inbred and open-pollinated lines, as well as oilseed and confectionary cultivars. All 830 
287 accessions, as well as the aforementioned 48 landrace and wild samples, were 831 
mapped to the HA412-HOv2 reference genome, and a SNP data set was generated using 832 
a pipeline similar to that described above (SI Appendix, Supplementary Information 833 
Text). We then used the SNP data set to identify introgressions from the primary and 834 
secondary germplasm in all accessions using the software package PCAdmix (Brisbin et 835 
al. 2013), a principal component analysis-based algorithm for inferring local ancestry 836 
along chromosomes in admixed genomes. Prior to the PCAdmix analysis, the VCF was 837 
filtered to retain only bi-allelic SNPs in the 50% tranche from GATK Variant Quality 838 
Score Recalibration with genotyping rate > 90%, and the SNPs were phased using Beagle 839 
5.1 (Browning et al. 2018) for each species separately. No pruning was set in the 840 
PCAdmix analyses.  841 
 842 
The identified introgressed regions from wild annuus and secondary germplasm were 843 
used to call introgression variants in the SAM population. We assessed the presence or 844 
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absence of introgressions in 1kb non-overlapping windows across the genome of each 845 
sample in the SAM population. Introgression variants were subsequently filtered for 846 
minor allele frequency ≥ 3%. 847 
 848 
For the phenotypic analyses, we employed data for 16 traits that were generated as part of 849 
a common garden study carried out in 2011 at three locations: Watkinsville, GA and 850 
Ames, IA in the USA and Vancouver, BC, in Canada (Mandel et al. 2013; Nambeeson et 851 
al. 2015; Lee et al. 2022). To identify associations between introgression variants and the 852 
phenotypic traits, a genome wide association (GWA) analysis was carried out using 853 
EMMAX (Kang et al. 2010). Population structure was corrected by the first three 854 
principal components of the LD-pruned SNP dataset (calculated with PLINK --indep-855 
pairphase 50kb 50 0.2; Purcell et al. 2007). To correct for relatedness between samples in 856 
the GWA analysis, the SNP dataset was used to estimate a kinship matrix by EMMAX.  857 
 858 
To identify significantly associated introgression markers and the direction of the 859 
introgression on phenotypic data, we generated double-sided Manhattan plots, in which 860 
introgression markers that increase or decrease trait values were shown with − log10(P-861 
value) and log10(P-value), respectively. To avoid false-positive associations, Bonferroni 862 
correction was used as the threshold of significant association. 863 
 864 
To further explore the signature of linkage drag on phenotypic data, a ridge regression 865 
model was used to estimate the effect of each introgression variant on a given trait with 866 
the mixed.solve function in R package rrBLUP version 4.6.1 (Endelman et al. 2011). The 867 
average effect size of introgressions for each trait was compared to a null distribution. 868 
We assessed the significance of an introgression variant's effect on phenotype variation 869 
by testing whether the observed impact size of introgressions was either larger than the 870 
95th percentile of the tail of the null distribution (significantly larger) or smaller than the 871 
5th percentile of the tail of the null distribution (significantly smaller). To construct the 872 
null distribution, 10,000 introgression effect size estimates for each trait were generated 873 
by shuffling introgression variants between samples and calculating the average effect 874 
size of introgressions. We further compared the effect size of introgression on each trait 875 
for primary versus secondary germplasm donors. 876 
 877 
A linear model (Y ∼  X) was fit to evaluate the effects of frequency on the phenotypic 878 
impact of introgression, where Y is a vector of introgression effect and X is a vector of 879 
introgression frequency. The beta coefficient of X can therefore represent the 880 
contribution of frequency to the direction and effect size of introgression variants.  881 
 882 
Data Availability. Genome assemblies and annotations are available at 883 
https://www.heliagene.org/ and https://sunflowergenome.org/ for the PacBio and Illumina 884 
genomes, respectively. Raw sequences are deposited in NCBI (Table S8). Custom scripts 885 
for the analyses are available upon request and will be sent to GitHub before publication.  886 
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