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Abstract

Deep learning-based approaches are revolutionizing imaging-driven scientific research.
However, the accessibility and reproducibility of deep learning-based workflows for imaging
scientists remain far from sufficient. Several tools have recently risen to the challenge of
democratizing deep learning by providing user-friendly interfaces to analyze new data with
pre-trained or fine-tuned models. Still, few of the existing pre-trained models are
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interoperable between these tools, critically restricting a model’s overall utility and the
possibility of validating and reproducing scientific analyses. Here, we present the BioImage
Model Zoo (https://bioimage.io): a community-driven, fully open resource where
standardized pre-trained models can be shared, explored, tested, and downloaded for further
adaptation or direct deployment in multiple end user-facing tools (e.g., ilastik, deepImageJ,
QuPath, StarDist, ImJoy, ZeroCostDL4Mic, CSBDeep). To enable everyone to contribute and
consume the Zoo resources, we provide a model standard to enable cross-compatibility, a rich
list of example models and practical use-cases, developer tools, documentation, and the
accompanying infrastructure for model upload, download and testing. Our contribution aims
to lay the groundwork to make deep learning methods for microscopy imaging findable,
accessible, interoperable, and reusable (FAIR) across software tools and platforms.

Main

Since the first major success of modern deep learning (DL) on the ImageNet Large Visual
Recognition Challenge, convolutional neural networks (CNNs) have redefined the
state-of-the-art on virtually all open computer vision problems. Prominent examples include
tasks as diverse as image synthesis1, scene understanding2, and image enhancement3, but the
overall effect of DL technology has been so extensive that it is difficult to find an
image-related task that has not profoundly benefited from it. Microscopy imaging has been
no exception: DL-based methods in image reconstruction4–7, classification8–10,
segmentation11–13 , and artificial labeling14,15 have enabled both flagship projects16–19 and
common “bread-and-butter” tasks, allowing image analysis to keep pace with recent
advancements in imaging technology and instrumentation.

Deep neural networks are controlled by millions of parameters whose values need to be found
during the training process. While this parameterization enables trained DNNs to generalize
to previously unseen data, it makes the training process very computationally intensive as
well as time- and data-consuming. It is therefore common practice to use a network that was
previously trained on the desired task and re-adjust it to new data by a few additional training
iterations. The value of pre-trained networks is substantial: a great share of newly published
methods exploit popular architectures pre-trained on the largest available public datasets20.
Companies and research groups maintain their collections with publicly shared networks
organized into the so-called model zoos (https://pytorch.org/hub/,
https://www.tensorflow.org/hub, https://modelzoo.co/, https://huggingface.co/ ). With the
growing adoption of AI-based methods, new collections have started to appear for biomedical
data, i.e. in genomics (https://kipoi.org/), single-cell transcriptomics
(https://sfaira.readthedocs.io/en/latest/), or medical imaging (https://monai.io/).
Nevertheless, the existing model repositories contain very few networks trained on
microscopy data. On one hand this is because many repositories only take models trained on
publicly available data, on the other hand because most model zoos are designed for method
developers, not users (i.e. microscopists). When submitting a model to a model zoo, computer
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scientists from the natural image domain or bioinformatics primarily address other developers
who will use the models in their code and deploy them without requiring any further help. In
contrast, a new microscopy image analysis method creates impact by reaching out to
end-users: scientists in experimental labs and imaging facilities who benefit from
point-and-click tools in combination with scripting21. Thus, wide adoption by life scientists
will only efficiently occur when DL solutions can be directly called from a convenient
graphical user interface (GUI) or, better yet, if they are integrated into existing and familiar
image analysis software suites. The integration is, however, far from trivial and needs to be
performed time and time again for each independent software tool.

In recent years, a growing community of DL method developers has gone far beyond simply
publishing the source code of their new ideas. New Fiji/ImageJ22,23 or napari32 plugins
(CSBDeep24, StarDist25,26, U-Net27) and standalone GUI-based tools (CellPose12,
NucleAIzer11, DeepCell26 ) have pushed both the performance and the accessibility of the DL
state-of-the-art for microscopy image restoration and segmentation. ImJoy29 was developed to
ease the sharing and deployment of deep learning tools by providing a scalable and
interactive plugin framework backed by the web and Python ecosystem. DeepImageJ30

brought many popular CNNs to the broad user base of Fiji, allowing to seamlessly combine
network inference with other analysis steps available within Fiji’s UI.  ZeroCostDL4Mic31

has democratized the training process, making an extensive collection of networks available
through user-friendly Google Colab notebooks and demonstrating the power of cloud
computing infrastructure for quick network evaluation. While such tools provide tremendous
value to life science researchers, their siloed network collections are confined to execution in
individual tools, severely limiting the reusability, reproducibility, and interoperability of DL
models in microscopy image analysis pipelines.

To address the limitations listed above, we present the BioImage Model Zoo (Figure 1), a
model repository tailored to the needs of the whole microscopy image analysis community.
At the core of our developments lies a unified way of describing and consuming trained DL
models. This is achieved through a standard model description format that captures all
necessary model metadata, including input and output data format, pre-trained weight values
and training data provenance. Our libraries allow for standardized model execution with
minimal code and easy integration into user-facing tools and frameworks. The BioImage
Model Zoo is already supported by ilastik33, deepImageJ22 , ImJoy29, StarDist16,17,
ZeroCostDL4Mic31, and QuPath34. We are now ready to welcome new community partners:
our ambition is to make the uptake of our metadata formats so straightforward that any
method developer or coding user will be able to contribute models to the Zoo and enrich their
own tools by consuming the models from our repository.

To life scientists and method developers alike, we offer the bioimage.io website, built to
provide an interactive, user-friendly experience with all the content in the BioImage Model
Zoo. Our growing collection already contains models for a variety of popular microscopy
image analysis tasks. Importantly, models of the Zoo are not stored in isolation: to enhance
reproducibility, we store references to the associated datasets and model creating notebooks.
Additionally, pre-trained networks combined with notebooks that trained these networks are
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providing an ideal set of tutorial-like basis for non-expert users to see and learn how they can
train similar models on their own data. In this way every user who wishes to train new
models can learn to do so and contribute their trained models to the Zoo. Furthermore,
inspired by previous approaches12,28,29 for browser-based interaction with DL models, the Zoo
is enriched with the ImJoy application framework called the BioEngine which enables users
to test models on their own data directly in the browser.

All models in the Bioimage Model Zoo can be searched and downloaded for future use in a
growing number of desktop- and cloud-based tools, and referenced by their unique identifier
when mentioned in scientific works, hence making this new infrastructure adhere to the
FAIR35 principles. We envision that the BioImage Model Zoo will become a big step towards
democratizing access to the latest AI developments in the life sciences.

Results

Standardized DL models
Interoperability between desktop tools has always been a significant concern for the bioimage
analysis community.  Unavoidable incompatibilities introduced by programming language
and platform heterogeneities have challenged the community and limited global
dissemination efforts and direct tool interoperability. While DL comes with specific demands
and requirements, we believe it offers the unique opportunity to bring computational tools
closer together: many pre-trained networks contain all the necessary information to apply
them to new data. A well-defined, open specification of the pre-trained network metadata will
allow performing this step programmatically, i.e., without the need to read and modify the
underlying network source code. In the BioImage Model Zoo, we have defined such a
specification following the requirements of initial community partners (see Online Methods).
While the format is designed with flexibility in mind, we expect it to evolve further with the
development of DL tools, frameworks and with more community partners joining our efforts.
Importantly, our specification is a syntactic wrapper of the existing formats for neural
network weights, which enables direct programmatic network inference on new data. The
weights themselves are stored as defined by the corresponding DL frameworks, e.g., PyTorch
or Tensorflow. Starting from the current version (v0.4), we commit to keeping our
infrastructure and libraries backward-compatible to future format amendments, i.e., all
contributed models will remain usable.
Every model in the Zoo has a DOI (see Model Submission) and is additionally assigned a
nickname that is easier to remember, composed of an adjective and an animal name, e.g.
chatty-frog or passionate-t-rex. The BioImage Model Zoo format stores all of the network
metadata as required or optional fields. Required fields contain the technical specifications of
the model that are necessary for correct deployment (e.g., input and output shape, pre- and
post-processing routines). Additionally, there are required fields that are not strictly necessary
for running the model but they ensure full reproducibility and proper credit attribution within
the Zoo and in derived work (e.g., “Author”, “Contributor”, or “License”). In contrast, a
plethora of additional useful information can be added to integrate specific metadata needed
by diverse DL-based workflows, e.g., StarDist25,26 (see Figure 2).   Thus, the community
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partners support all required fields of the BioImage Model Zoo format in their corresponding
tools and introduce their optional fields for more complex workflows or in anticipation of
future needs. We work towards the vision of making all trained neural networks in the Zoo
executable in all the open source tools represented by the community partners, barring the
intrinsic incompatibilities between deep learning frameworks.

Figure 1. Life-cycle of deep learning models in the BioImage Model Zoo. A trained model following
the format specifications in the Zoo is uploaded to bioimage.io through the web interface and its
content is hosted in Zenodo. Any user can search and download any model in the BioImage Model
Zoo. They can apply the model to analyze new data in the user-friendly software supported by
community partners. Furthermore, trained models can be directly integrated in custom-made bioimage
analysis workflows by using our Python or Java libraries. . Each model in the BioImage Model Zoo is
displayed through an interactive model card that provides core information (e.g., description, license,
authors and publication information, source code, and links to the training datasets and notebooks to
(re-)train the models) and enables interaction with its content (i.e., processing an image with the
trained model in the browser). Finally, any user can (re-)train or fine-tune the model, and contribute it
back to the BioImage Model Zoo.

A user-friendly resource for the whole community

The BioImage Model Zoo provides a unified and accessible DL models repository to promote
their use across different bioimage analysis tasks. On the BioImage.IO website, every model
is displayed as an auto-generated interactive “model card” (see Figure 1). It shows the
example input-output data pair and lists the most critical information about the model, such
as the author(s) and instructions on how it can be run and validated. Most model cards allow
users to open the in-browser “Test Run” application and test the model on example images as
well as on their own data. Furthermore, each card provides a channel for communication with
users and encourages them to leave (moderated) comments about the model. In addition to
the pre-trained model weights and metadata, the model card can keep a link to the training
data and notebooks. To make these persistent, we support very basic cards to describe
notebooks and datasets hosted elsewhere, they can be found under “Applications” and
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“Datasets” tabs of the website. We strongly encourage our contributors to provide the full
chain of training data, model weights and the training code.

As an illustration of the analyses we aim to enable, here we describe four microscopy use
cases that cover the range from directly applying a pre-trained model, fine-tuning a model
without using any code, incorporating several models into custom applications, and
publishing a recently developed method for domain adaptation.

Use case 1: Applying pretrained models across tools (Fig. 2). Here, we consider an
example problem of nucleus segmentation in H&E stained tissue sections. We choose the
pre-trained model for the H&E modality from the popular instance segmentation method
StarDist16,17. This model was trained on two H&E datasets38,39 using the StarDist Python
library and is versatile enough to be applied to similar yet slightly different H&E data. This
model is now available in the BioImage Model Zoo (id: 10.5281/zenodo.6338614 or
chatty-frog) and can be deployed in multiple supporting tools. Specifically, we use this model
to segment H&E images from the recently released Lizard dataset40 in deepImageJ, QuPath,
ZeroCostDL4Mic, and the StarDist Python library (see Fig. 2). Through the integration with
all of these tools, researchers can now choose to apply the model with the tool  they are most
familiar with or that is most suitable for their further analysis needs, for example by enabling
integration with other Fiji plugins (deepImageJ), convenient curation and quantification
(QuPath), fine-tuning of the model on new data (ZeroCostDL4Mic) or programmatic use in
Python (StarDist Python library).

Figure 2. Segmentation of nuclei in H&E stained tissue sections. (Center) The pretrained StarDist
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model for nucleus segmentation in H&E stained images is available in the BioImage Model Zoo. We
run it in four different consumer softwares that support the model format and StarDist specific
post-processing: (top left) deepImageJ, which allows the integration with the StarDist Fiji plugin and
the Fiji ecosystem; (top right) QuPath, which provides convenient curation and quantification;
(bottom left) ZeroCostDL4Mic, which also offers fine-tuning of the model on new data; (bottom
right) StarDist Python library, which enables integration within Python analysis pipelines.

Use Case 2: Easy fine-tuning (Fig. 3). In this case study, we demonstrate how a model from
the BioImage Model Zoo can be executed in ilastik, fine-tuned in ZeroCostDL4Mic and
executed again in deepImageJ. We address the problem of segmenting tissues into cells based
on cellular membrane staining. For this, the DL models corresponding to the state-of-the-art
solution41 are available through the BioImage Model Zoo (id 10.5281/zenodo.6334583, or
passionate-t-rex) and the training procedure has been reimplemented using the
ZeroCostDL4Mic framework (id 10.5281/zenodo.5749843 or humorous-owl) (see Figure 3).
As the first step, we download the model and run it in the ilastik Neural Network
Classification workflow on a publicly available dataset that was not part of the training
set41,43. We use the boundary predictions in the ilastik Multicut workflow to correct a few of
the wrong segmentation edges and build a new annotated dataset to fine-tune the model in the
corresponding ZeroCostDL4Mic notebook (see Figure 3a). The fine-tuned model - well
adapted to the new dataset - is exported from the notebook and uploaded to the BioImage
Model Zoo (id 10.5281/zenodo.6348728 or non-judgemental-eagle) (see Figure 3b). Finally,
the model can be used in deepImageJ as part of a larger analysis pipeline, including also
morphological measurements (see Figure 3c). The original training data, also displayed in the
BioImage Model Zoo, is linked to the trained models through the metadata listed in the model
description file. Thus, anyone can try to improve the performance of the segmentation by
incorporating the most recent computer vision ideas.
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Figure 3. Boundary-based segmentation of cells in light microscopy; (a) The 3D U-Net for cell
segmentation in confocal stacks of Arabidopsis thaliana ovules is available in the BioImage Model
Zoo. We apply it to an independent dataset featuring arabidopsis leaves41. The predictions are very
noisy, complicating direct post-processing. We generate a curated instance segmentation using the
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predictions as input to the interactive ilastik multicut workflow for boundary based segmentation; (b)
We fine-tune the model on the curated segmentation from (a) in ZeroCostDL4Mic, obtaining a model
that performs better on the new data. We upload the new model to the Zoo; (c) The new model is now
available for everyone to use. Here, we apply it to the leaf data using deepImageJ and then obtain an
instance segmentation through simple watershed post-processing with MorphoLibJ42, which enables
us to extract per cell measurements such as sphericity distribution.

Figure 4. Building a single cell classification analysis workflow with three models in the BioImage
Model Zoo, executed locally using our Python library or through the BioEngine. (a) Models for the
winning solution of the Human Protein Atlas single cell classification competition are hosted in the
BioImage Model Zoo. Images from the Human Protein Atlas were first segmented with the nucleus
segmentation and cell segmentation models, and for each segmented cell, an InceptionV3-based
model predicts the protein localization, based on the green channel. (b) The workflow can be
reproduced using our “bioimageio.core” python library locally, using napari to visualize the results.
(c) With the BioEngine it can also be replicated directly in the browser, using Kaibu (an ImJoy plugin)
for visualization. The BioEngine application executes models on remote servers (on-premise or in the
public cloud) and the workflow can be composed in a JupyterLite notebook or in an ImJoy plugin.

Use Case 3: Building multi-model pipelines (Fig. 4). In this example, we take the winning
DL solution from the Human Protein Atlas (HPA) single cell classification competition
hosted on Kaggle (https://www.kaggle.com/c/hpa-single-cell-image-classification/) and make
it available in a BioEngine web application and a standalone application implemented with
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napari32. The challenge addressed both cell segmentation and classification of cells according
to the protein localization pattern. The proposed workflow starts by running a UNet-based
model for cell and nucleus segmentation to obtain the cell masks. Then, each masked single
cell image is fed into another DL model that predicts one or several protein localization
labels. We have uploaded the three models for cell boundary prediction (id
10.5281/zenodo.6200635 or loyal-parrot), nucleus prediction (id 10.5281/zenodo.6200999 or
conscientious-seashell) and protein classification (id 10.5281/zenodo.5910854 or
straightforward-crocodile) to the BioImage Model Zoo.
We use the bioimageio.core Python library (see Online Methods) to implement a desktop
application that downloads the three models, performs cell segmentation and classification as
well as visualization of the results using napari (see Figure 4a). Similarly, we use the
BioEngine to implement a web-based application that performs segmentation and
classification online using the models in the Zoo, and visualizes the results (see Figure 4b).
The BioEngine app can be started straight from the app icon on the model card and runs
directly in the browser. In either case, only a minimal amount of simple Python code is
needed to integrate a pipeline of multiple networks with a user-friendly GUI.

Figure 5. Domain adaptation for EM mitochondria segmentation with pre-trained models from the
Zoo; (a) We show several options for interactive training of a shallow classifier (i.e., Random Forest)
that segments mitochondria in new EM data: Fiji plugins “Trainable Weka segmentation” and
“Labkit'' and the pixel classification workflow in ilastik; (b) The domain adaptation model trained
with the method from Matskevych et al44. is available in the Zoo. It can be used to significantly
improve the mitochondria predictions from the Random Forest classifier, using either deepImageJ for
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the results obtained with Weka/Labkit or the ilastik neural network workflow for the ilastik pixel
classification result.

Use Case 4: Dissemination of new DL approaches (Fig. 5). Here, we show how the
pre-trained models of the Zoo can be exploited for domain adaptation through the approach
proposed by Matskevych et al44. We use their trained model for mitochondria segmentation in
electron microscopy (EM) already available in the BioImage Model Zoo (model id:
10.5281/zenodo.6406756 or hiding-blowfish) and the images from the MitoEM challenge45.
This model is trained to improve 2D mitochondria predictions from a “shallow” classifier
(e.g., Random Forest). This approach  provides more robust results for mitochondria
segmentation in EM modalities when applied to new images  since the model only sees the
changes in the shape distribution, rather than the intensity distribution. For a new EM dataset,
“shallow” pixel classification can be performed fast and interactively using established tools
such as ilastik, LabKit46 or the Trainable Weka toolkit47. The “enhancer” model can be
applied using the ilastik neural network workflow or deepImageJ to significantly improve the
segmentation results without further data annotation or training.

A growing network collection
The BioImage Model Zoo contains trained DL models for popular microscopy image analysis
tasks, from nucleus segmentation in light microscopy over modality agnostic image
restoration methods, to membrane segmentation in electron microscopy images. It is aimed
for anyone to submit new ones independent of the bioimage analysis application. We benefit
from the version traceability and DOI assignment of Zenodo (https://zenodo.org/) to store
models. Contributors are guided through every step of the submission process by a detailed
tutorial (https://bioimage.io/docs/#/contribute_models/). The intellectual property of each
model is fully preserved with the information of the original authors, who also decide on the
license of model re-use. Any new contribution is expected to (i) conform to the defined
metadata format, (ii) provide a test image for automatic testing and (iii) contain sufficient
documentation on how the results can be validated. Each new model submission triggers
automatic quality assurance which is finished by the manual acceptance or rejection of the
model by a human curator.

The BioImage Model Zoo integrates programmatic tools for Python and Java that allow
developers to import, execute, and export specification-conforming models. Furthermore, we
build on the success of the ZeroCostDL4Mic project to simplify the training, testing and use
of DL models and equip some of the most used notebooks (i.e., 2D and 3D U-Nets, 2D U-Net
for semantic segmentation and 2D StarDist) with a final step to export the trained model to
the BioImage Model Zoo model file format, ready for direct upload to the Zoo.

Because DL models are critically dependent on the training schedules and datasets, and
intrinsically on the scripts used to train them, the BioImage Model Zoo also reserves space to
gather information about datasets and Python notebooks. Our metadata format includes fields
for training data and general links, e.g. for training notebooks, while the Zoo itself can host
links to datasets and notebooks in an interconnected manner. Different models can be linked
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to the same dataset or notebook, supporting the tracking of models that improve the
performance of a specific task or allowing researchers to upload new models that share their
architecture but have been trained differently.

The performance of a DL model strongly depends on its training data. Since networks only
learn from the images in the training set, they are specialized to perform well on similar
images, but not every network will perform equally well on user’s data. For a quick and easy
qualitative validation of the models in the Zoo, the BioEngine enables model testing directly
from the bioimage.io website. For most models, users can upload an example image or even a
small dataset and process it automatically in one click in the browser or via our cloud server
infrastructure (de.NBI cloud). We rely on model developers to provide sufficient
documentation on how their model can be validated. Additionally, every model is required to
contain a test input image and the corresponding expected output. These are used within our
continuous integration pipeline to test the model by automatically comparing the obtained
prediction with the provided test output. The documentation for all existing models in the
Model Zoo contains a section on “Recommended Validation”, describing the appropriate
metrics and often also contains links to scripts or example notebooks.

With these simple submission tools and multiple training examples, we hope to enable image
analysts outside the narrow circle of professional DL method developers to contribute their
models to the community (see Use Cases 1 and 2 and Figure 1).

Web application for testing models
To further facilitate the adoption and evaluation of DL methods among non-expert users in
the life sciences, we provide point-and-click “Test Run” buttons for quick execution and
evaluation of the models in the BioImage Model Zoo via a ready-to-use web application.
More specifically, we built an application framework, named BioEngine, on top of the ImJoy
plugin framework and recently developed cloud computing infrastructure for AI model
serving.  The BioEngine backend is a multi-model and multi-user model serving framework
built on top of the Nvidia Triton Inference Server
(https://developer.nvidia.com/nvidia-triton-inference-server). It allows mounting the entire
repository of models of the BioImage Model Zoo on the server, and dynamically scheduling
the model inference tasks into a limited number of GPUs based on users’ requests. Like
DeepCell Kiosk28, we use a Kubernetes cluster to manage a set of container-based server
components and perform auto-scaling of the computational instances in response to the
varying number of users. The BioEngine allows the user to load their image files via a
user-friendly ImJoy web application, to be processed either in the browser or on our remote
cloud servers. The result is then displayed directly in the browser using image viewers such
as Kaibu49, itk-vtk-viewer50, or vizarr51 (see also Use Case 3 and Figure 4). We provide the
“Test Run” BioEngine application to enable basic interaction with most models in the
browser. Model contributors can create more tailored applications for each model to improve
the user experience further or combine models in a workflow (as demonstrated in Use Case 3
and Figure 4). More examples, such as the Mutex Watershed52 plugin for affinity-based
instance segmentation (id: 10.5281/zenodo.6079314 or wild-whale), can be found in the Zoo.
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While these applications and computing infrastructure are meant for demonstration and
evaluation purposes on small amounts of data, we envision a future where such infrastructure
can be distributed for on-premise deployment and maintained by experts in users’ research
institutions and universities.

Discussion and Outlook
We introduced the BioImage Model Zoo: a community-driven infrastructure which is
designed to (i) enable easy and direct use of cutting-edge AI for life science applications in a
growing number of user-friendly open-source software tools, (ii) promote the rapid and
effective dissemination of DL developments for bioimage analysis, and (iii) enrich and
support advanced bioimage analysis workflow development by enabling the interoperability
of DL models.

The BioImage Model Zoo aims to become the key repository where DL models can be
deposited and shared according to FAIR principles:

● (Findable) All our models are freely available and displayed through a convenient
search interface of the Zoo, uniquely identified with a DOI and a memorable
nickname.

● (Accessible) For model users, we provide a rapidly growing collection of pre-trained
models that can be used from within multiple popular “point-and-click” analysis tools
created by members of the BioImage Model Zoo community. We envision that
integration with “point-and-click” tools will greatly simplify collaboration between
biologists and method developers or analysis facility staff. By simply filling out the
fields of our model metadata format, the developers already make their model
accessible to non-computational collaborators.

● (Interoperable) We provide a flexible open network format specification and libraries
for developers that streamline the creation and consumption of models in all types of
user-friendly and programming tools.

● (Reproducible) The training history of each model and the provenance of its training
data can seamlessly be traced back through the model description format we
proposed. Furthermore, we encourage model developers to link the models to
available training code and openly accessible data in the form of runnable scripts or
notebooks. Integration with user-friendly training tools such as ZeroCostDL4Mic
enables the users of such tools to become model contributors and in this way, paves
the way for open and FAIR science in the age of DL-based image data analysis.

The BioImage Model Zoo is tailored for non-expert users willing to exploit DL in their
routine image analysis tasks. We designed our web-based model repository in a user-friendly
spirit, with models displayed as documented graphical cards with interactive buttons which
let any user dive into the model content. The test images and outputs provide a quick view on
the applicability of each model to a new user task, while the test run functionality allows to
evaluate it more precisely. We envision that the BioEngine – the technology behind the test
runs – will in the future be expanded to provide more web-based tools associated with the
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Zoo and its models, such as the example segmentation plugin we describe above.

We have designed the model metadata format with a focus on interoperability and
reproducibility. Still, due to the stochastic nature of network training procedures, no full
reproducibility can be achieved even when the same code and the same training data is used.
Similarly, no theoretical guarantees can be given on the performance of any network on
previously unseen data. We hope that future research in Bayesian deep learning, uncertainty
estimation and out-of-distribution sample handling will allow the community to address these
challenges in a more general and principled manner. For the moment, we rely on model
contributors to recommend the validation workflows most appropriate for the image analysis
task.

AI-based methods have the critical potential to boost life sciences research through
automation of all image-related tasks, from smart microscopy to novelty detection and
quantitative image analysis at scale. The BioImage Model Zoo provides prompt access to
novel models that are packaged for easy use in popular image analysis tools, scripts or
custom pipelines. Through the integration of ZeroCostDL4Mic and, in general, the
development of easy-to-use libraries for running the models in scripts and notebooks, we
hope to turn many life scientists into the Zoo contributors, sharing (re-)trained models and
training datasets for the benefit of the whole community.

Finally, the benefits to the method development community will not be limited to the
improvement of the deployment process. A collection of cross-compatible models will allow
for multi-component modular pipelines as shown in Use Case 3, where each component can
be optimized separately or jointly with others. Availability of multiple models trained for the
same task will enable building model ensembles, improving robustness and generalization of
the final prediction. Furthermore, such model collections will give a new boost to research on
automatic model selection, ultimately making the Zoo even more accessible to the whole
microscopy community. We expect this type of interdisciplinary exchange to become a
critical step towards accelerating and advancing life sciences research.
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Online Methods

Community Partners
While the BioImage Model Zoo is open to contributions from anyone, some groups, e.g., particular
GitHub organizations, may contribute extensively or seek a closer integration of their software and the
BioImage Model Zoo. Often these groups can also be granted a credit of trust as they contribute to
maintenance and development efforts. Our current community partners are ilastik, deepImageJ,
QuPath, StarDist, ImJoy, ZeroCostDL4Mic, CSBDeep and HPA. Community partners are listed on
the bioimage.io website; unlike other contributors they are allowed to contribute resources without
manual approval (see Contributing to the BioImage Model Zoo section in the Online Methods).
Furthermore, their continuous integration scripts can be included in (model) resource testing (see
Model testing infrastructure in the Online Methods). Any group can become a community partner
simply by creating a GitHub issue stating their intentions and supplying some basic information on
their project. Upon approval, the subsequent steps include creating their own resource collection. In
more detail, we set up a GitHub Actions workflow to validate their collection, for which we provide
templates, and optionally, another GitHub Actions workflow to test the functioning of their software
with the BioImage.IO resources. This is described in more detail in the following sections (see
Contributing to the BioImage Model Zoo and Model testing infrastructure in the Online Methods). A
step-by-step guide is provided as part of our updated documentation at
https://bioimage.io/docs/#/community_partners/README.md.

The bioimage.io website
The bioimage.io website is the central entry point for users of the BioImage Model Zoo. It enables
users to browse the bioimage.io resources, provides a user-friendly upload form to contribute such
resources and hosts our documentation (https://bioimage.io/docs). The website’s source code and our
documentation are available at https://github.com/bioimage-io/bioimage.io. The website’s content
–the BioImage.IO resources– are fetched dynamically from the bioimage.io collection (details in
Resource hosting and serving in the Online Methods). Each resource has a unique ID. For resources
hosted via Zenodo, the DOI of the entry is used as the ID. For resources contributed directly via a
community partner, the ID is specified in the partner repository and prefixed with the partner name in
order to guarantee uniqueness. Models have an additional associated animal nickname in order to
provide a more memorable identifier. Contributed models need to provide example test input and
output which are used by the Zoo’s infrastructure to perform automatic quality assurance, reducing the
chances of failure when deploying them in the consumer software. We strongly encourage resource
contributors to provide extensive tags that enable efficient model search and discovery in the Zoo. To
this end, we provide a library of tags following the EDAM ontology48 and use those to enable search
by keywords or free text.
Each resource is represented by a card displaying compact information such as name, a short
description, cover images and links to other bioimage.io resources (e.g., link to the notebook to train
a model and vice versa). Links to applications provide user-friendly interaction with the resource via
BioEngine Apps (see “BioEngine”). For example, each model is linked to the bioimage.io Packager
application, which allows the download of ready-to-use models. The card representing a bioimage.io
resource expands on click for more details–full description, contributors and citations–and convenient
buttons to copy the resource ID or animal nickname. These identifiers can be used to refer to the
model in consumer software provided by the community partners, custom scripts/notebooks utilizing
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our developer tools (see Developer tools in the Online Materials) or for documentation purposes.
Extended details for models also include a description of model training, as well as test summaries
reporting which software (versions) can run inference with the given model (see Model testing
infrastructure in Online Methods).

Resource Types & Formats
BioImage Model Zoo can store and display multiple kinds of Resources, described through Resources
Description Files (RDF) which are stored as a YAML file. Potential Resources include models,
datasets, notebooks and applications, but we envision other types of Resources arising with further
development of the Zoo. The “general RDF” contains the most essential information we require to be
able to build a card for a Resource and show it to our users.  For models and collections, additional
metadata information is expected to enable the Zoo testing functionality.

General RDF
A (general) RDF is a YAML file that adheres to our RDF specification. The required and optional
fields in an RDF, such as name, description, authors, or citations are described in detail in our
documentation (https://bioimage.io/docs/#/bioimageio_spec).
To empower the  bioimage.io consumer software, we enable arbitrary fields (gathered within the
config field) to specify additional metadata information, which is not (yet) incorporated into our RDF
specification but that enables further exploitation of the content of the Zoo.
For some resource types–models and collections, at the time of writing–this general RDF is extended
to provide the minimal technical information required to ensure the cross-compatibility and
deployment in the consumer software.

Model RDF
The Model RDF (https://bioimage.io/docs/#/bioimageio_model_spec) extends the general RDF
specification to describe trained neural networks. It has a ‘weights’ field that contains the location of
one or several network weight files (i.e., weights of a model instance stored in different formats).
Currently, we support the following weight formats: Keras HDF5, ONNX, PyTorch state dictionary,
Tensorflow Javascript, Tensorflow Saved Model Bundle and Torchscript (see
https://bioimage.io/docs/#/bioimageio_weights_spec). The input and output tensors of the model are
described in additional fields. These ‘inputs’ and ‘outputs’ fields hold a description of the data type, a
shape description and the axis types and order, which is restricted to up to three spatial axes (‘xyz’), a
channel axis (‘c’) and a batch axis (‘b’). Each input/output tensor has its own ‘description’ text and
may specify transformations–‘preprocessing’ for ‘inputs’, ‘postprocessing’ for ‘outputs’–from a
defined set (https://bioimage.io/docs/#/bioimageio_preprocessing_spec,
https://bioimage.io/docs/#/bioimageio_postprocessing_spec). Fields for test inputs and outputs
provide data for testing that the model runs as expected. The optional sample inputs and outputs can
be used to illustrate model use hands-on. Model RDFs additionally contain documentation on how the
model was trained. Like any RDF, a model RDF may be linked to other bioimage.io resources such as
notebooks and datasets, which enable experienced users to reproduce or refine the model.

Collection RDF
Collection RDFs conveniently describe a group of resources and are primarily used by bioimage.io
community partners to contribute resources via GitHub to the BioImage Model Zoo. The collection
RDF extends the general RDF by a ‘collection’ field holding a list. Each list entry represents an
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independent RDF, which is based on the collection RDF itself without the ‘collection’ field, updated
first by content loaded from the entry’s ‘‘rdf_source’ field if present, and second, by any other field
specified in the entry, except for the ‘id’ field. The collection  needs to have an `id` field (e.g., id:
‘ilastik’) and the same for each entry (e.g., id: ‘torch-em-3d-unet-notebook’), which expand to a
unique identifier in the BioImage Model Zoo for this specific resource (e.g., id:
‘ilastik/torch-em-3d-unet-notebook’). Therefore, each collection entry is required to have a unique
identifier. The prepending of the collection id guarantees that nested collections have unique resource
identifiers as well.

Resource hosting and serving
All repositories that comprise the BioImage Model Zoo are hosted on GitHub. Our documentation
(https://bioimage.io/docs/) utilizes the ImJoy Docs tool (https://imjoy-team.github.io/imjoy-docs/) and
is hosted with the bioimage.io website source at https://github.com/bioimage-io/bioimage.io.
The BioImage Model Zoo content displayed by the website is managed by the bioimage.io collection
repository (https://bioimage.io/docs/#/bioimageio_collection_repo), which holds a curated list of
resources. The bioimage.io resources defined by the RDF are either hosted on Zenodo or in dedicated
GitHub repositories in the respective partner GitHub organization (see “Contributing to the Model
Zoo”).

Contributing to the BioImage Model Zoo
The default way to contribute a model is to upload the model RDF file (i.e., ‘rdf.yaml’) to a Zenodo
record linked to the bioimage.io community in Zenodo.
Alternatively, the bioimage.io website is equipped with an interactive guide to upload the model
metadata and all the required files. This process validates the metadata directly in the browser using
our bioimageio.spec library (see “Developer tools'') . Then, it publishes the new resource on Zenodo
under the contributors Zenodo username. This process also triggers an update of the bioimage.io
collection via a netlify server to avoid any delays in the process of finalizing the contribution as
described below.
Note that our core library can be used to create a bioimage.io model programmatically with the
‘build_model’ function (see Developer tools in the Online Methods).

Updating the bioimage.io collection is facilitated by a GitHub Actions workflow in the collection
repository. This workflow queries Zenodo for records with the ‘bioimage.io’ keyword  and generates a
pull request (PR) in the BioImage.IO collection repository for each new resource. Such a contribution
PR adds a resource entry in the form of a `resource.yaml` file based on the `rdf.yaml` file in the
Zenodo record and serves as a platform for bioimage.io maintainers and contributors to discuss the
inclusion of the new resource. Relevant aspects and the conclusion of this discussion are described in
the following paragraph.

Upon creation of a contribution PR, a generated animal nickname, e.g. ‘creative-panda’, is added to
the ‘resource.yaml’, which serves as an alternative, more memorable resource identifier. The
generated animal nickname may be altered in the first contribution PR for a given resource.
Additionally, any field of the original ‘rdf.yaml’ may be updated, which is intended for small changes
like typos or formatting. Substantial changes should be reflected in the Zenodo record as a new
version.
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A Zenodo record version has a concept DOI and a version DOI (https://help.zenodo.org). All versions
of a Zenodo record share the same concept DOI. In the bioimage.io collection repository each
`resource.yaml` corresponds to the concept DOI of a Zenodo record and holds a list of the existing
versions. A resource as a whole or a particular version of it may be blocked by setting a ‘status’ field
in the ‘resource.yaml’ to ‘blocked’.
For each accepted version, an updated ‘rdf.yaml’ is generated and validated by a GitHub Actions
workflow running in the contribution PR to ensure that the resource is a valid RDF and that test
outputs can be reproduced from test inputs. In addition to this technical check, a bioimage.io
maintainer checks that the resource has an intuitive name and a suitable description, as well as
complete documentation. Once these requirements have been satisfied, a bioimage.io maintainer will
merge the PR and accept the new resource (version).

Yet another option to contribute is through a community partner. This implies adding or updating a
resource to the community partner’s registered collection RDF. For the time being, model resources
may only be contributed via Zenodo to ensure their persistence.

To update a contributed resource a user can create an updated version of the respective Zenodo record
(either through our interactive upload guide or manually on zenodo.org). This will trigger a PR analog
to the initial contribution PR. Updates to partner collections on GitHub are detected by hash
comparison and incorporated automatically.

Resource testing infrastructure
In the bioimage.io collection repository, GitHub Actions workflows are used to test the resources.
Tests include validation of the RDF (see Resource Description File in the Online Methods) and – for
models – recreation of test outputs in dynamically created test environments. As alluded to in
“Contributing to the Bioimage Model Zoo”, these test results also support the maintainer’s decision to
accept or block a newly submitted resource from Zenodo within a generated contribution PR.
However, these validation tests are also run regularly on already accepted resources, e.g., upon release
of a new bioimageio.spec or bioimageio.core version (see Developer tools in the Online Methods).
This ensures long-term compatibility of the resources in the bioimage.io collection of our software
tools.
The community partners can provide additional test summaries for each resource.  To this end, a
dedicated GitHub Actions workflow in the partner repository is triggered by the GitHub Actions
workflow updating the collection. The bioimage.io bot (https://github.com/bioimageiobot) needs to be
invited as a collaborator for this additional functionality. The bot can then trigger the partner’s
workflow with a payload containing new or updated resource IDs from within the workflow, updating
the collection in the central collection repository. The community partner is in full control over how
these new or updated resources are tested. To report the generated test summaries in the bioimage.io
website, they need to be included in the central test summary. Any test summary is required to include
a test name and result status, as well as an error message and its traceback or warning messages as
appropriate. The folder where these partner test summaries are deployed is registered in the
bioimage.io collection repository, which enables each update to incorporate the latest partner test
summaries and therefore, the bioimage.io website to display them in the expanded model card.
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Developer tools: bioimage.io libraries for working with models

Python
We provide two Python libraries for conveniently interacting with models. The first is
bioimageio.spec (https://bioimage.io/docs/#/bioimageio_spec) that defines the different RDFs (see
“Resource Description File”) using marshmallow
(https://github.com/marshmallow-code/marshmallow). It implements programmatic access to the
configuration stored in the model RDF by representing it as a Python dataclass. This representation
can be created from a URL,  Zenodo DOI, BioImage.IO ID or a BioImage.IO animal nickname. A
crucial part of the bioimageio.spec library is its “validate” command, checking if models or other
resources adhere to the RDF specification. It generates error and warning reports accordingly, which
facilitates the creation of high quality metadata. Other commands include automatic upgrade of an
RDF (partially) or update RDFs with another (partial) RDF. The validation, update and packaging
functionalities are also available through the BioImage.IO command line tool “bioimageio”.

The bioimageio.spec library only requires minimal dependencies, which makes it easy to include it in
Python applications or even Python in the browser applications, such as the model upload
functionality (see Contributing to the BioImage Model Zoo in the Online Methods), which uses the
bioimageio.spec library via Pyodide (https://pyodide.org/en/stable/).
The second, more advanced library is our bioimageio.core library
(https://github.com/bioimage-io/core-bioimage-io-python) which requires further dependencies to
implement more nuanced interactions with models. It primarily provides functionality to run inference
with a BioImage.IO model for all supported weight formats except tensorflow-js. Prediction can be
run for a single input batch, with padding to support input data that does not fit the model’s input
shape requirements, or with tiling to support input data that is too large given the available
computational resources. The standardized pre- and post-processing specified in the model RDF are
automatically applied. Based on this prediction functionality, bioimageio.core also implements a test
function that checks whether the expected test output can be reproduced from the test input of the
associated model. Furthermore, it offers functionality to create a model RDF, package associated
model data in a ready-to-use ZIP archive, and convert between selected subsets of weight formats
(e.g., converting tensorflow to keras weights or pytorch state dict to torchscript weights). It is
implemented to be used without any deep learning framework, or only a subset of them, being
installed. For example, some core functionality, like download of models, is supported without any
deep learning framework installed, while prediction always depends on a deep learning framework. If
only Pytorch is installed, then prediction is only possible for models containing Pytorch state dict or
Torchscript weights; if Tensorflow is available as well, then also, then models with Tensorflow saved
model bundle weights are supported, and so on Prediction and model test functionality are also
available as command line tools. This library should be used by Python based consumer software to
implement BioImage Model Zoo support. It is already used for this purpose by ilastik, the StarDist
python library, ZeroCostDL4Mic and several BioEngine Apps (see “BioEngine”).

Java
Two general purpose Java libraries do currently exist, one lightweight core library and a library that
aims to provide all required functionality to integrate with our bioimage.io infrastructure.
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The lightweight library core-bioimage-io-java (https://github.com/bioimage-io/core-bioimage-io-java)
allows model consumers and producers to load (save) to (from) the latest model RDF specification.
Exported files are fit for direct upload to the bioimage.io model zoo website. The only dependency of
this library is SnakeYAML (https://github.com/snakeyaml/snakeyaml), preventing any unnecessary
bloating of dependencies or licensing issues for existing projects that decide to use
core-bioimage-io-java.

The second library, imagej-modelzoo (https://github.com/imagej/imagej-modelzoo), builds on top of
the aforementioned core library and is part of the ImageJ253 and Fiji22 ecosystem. It is available as a
Java library, but is also available on an ImageJ2/Fiji update site (CSBDeep). It provides the means to
train and run inference of Tensorflow 1.x models. The library does this by transforming ImgLib254

images into an adequate tensor representation. It also back-transforms resulting tensors into the
required ImgLib2 data structures. Additionally, after installing the mentioned update site, this library's
functionality can be called directly from ImageJ macros.

When used to run model inference, imagej-modelzoo takes an open image in ImageJ2/Fiji and applies
the standardized pre- and post-processings, as specified in the model RDF, before executing the
Tensorflow 1.x compatible model as described above. The resulting output image can then be saved in
any format supported by ImageJ2/Fiji.

At the time of publication, two demonstrator deep learning models are available: Noise2Void6 for
denoising 2D or 3D images, and DenoiSeg55 for joint denoising and segmentation. Both demonstrator
plugins can be used as blueprints for developers interested in offering similar functionality.

BioEngine

The BioEngine application framework enables the deployment of deep learning models in the
browser. It is built on top of the ImJoy plugin framework which allows connecting plugins that run
across languages or servers. While BioEngine apps can run completely in the browser by using
in-browser deep learning frameworks such as Tensorflow.js or ONNX.js, a typical BioEngine app for
model testing consists of the web application plugin for providing user interface and the
computational backend for performing the actual model inference. To enable the execution of most
models in the mainstream deep learning frameworks such as Tensorflow, Keras and PyTorch, we built
a BioEngine backend that uses a set of container-based server components managed within a
Kubernetes cluster. The cluster is managed by a recently developed data management and AI model
serving software named Hypha. We developed a custom model runner for the BioEngine using the
bioimageio.core python library: the user sends requests from the BioEngine
app, the requests are routed by Hypha and Nvidia Triton Inference server, and finally, processed by
the model runner. The BioEngine is not only designed to be accessible from the web applications
within the BioImage Model Zoo, but currently can also be accessed by other desktop software
including ilastik, Icy, or QuPath. We provide the corresponding client library
(https://pypi.org/project/pyotritonclient/) in Python and Javascript for performing server-side model
inference.
The BioEngine can also be used to deliver more advanced functionality as web applications linked to
models in the Zoo. For example, we used it to implement an application that delivers the best
performing approach from a recent Kaggle challenge for protein classification in cellular images, see
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Use Case 3 in “Use-cases” for details. We also used it to implement the Mutex Watershed application,
which provides online instance segmentation for models that predict pixel affinities. Pixel affinities
correspond to a directed boundary prediction (is there a label transition across a fixed direction and
pixel offset in the image) and the Mutex Watershed can turn these into an instance segmentation
directly. Here, we use a version of this algorithm compiled to WebAssembly with Emscripten
(https://emscripten.org/), which allows us to run it in the browser directly.

Use-cases
Case 1: The StarDist model for nucleus segmentation in H&E images was trained with the StarDist
python library (https://github.com/stardist/stardist) using the two published datasets38,39. It was then
exported as model RDF using the dedicated function in the StarDist python library
(https://github.com/stardist/stardist/blob/master/stardist/bioimageio_utils.py), which uses the
bioimageio.core package internally (see “Developer tools: Bioimage.io libraries for working with
models”). An example of this training can also be seen in the notebook at
https://github.com/stardist/stardist/blob/dbd4641b78e83c37b970d2064b8bf0d5a40951a7/examples/ot
her2D/bioimageio.ipynb. The model predicts the intermediate StarDist representations, foreground
probabilities and distances, to which a non-maximum-suppression algorithm can be applied to obtain
an instance segmentation. In deepImageJ, the implementation of this algorithm from the StarDist Fiji
plugin is used and is invoked via an ImageJ macro. QuPath implements its own version of this
algorithm and the model inference is implemented using the tensorflow java library. ZeroCostDL4Mic
uses the StarDist python library internally, but offers a notebook
(https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebo
oks/BioImage.io%20notebooks/StarDist_2D_ZeroCostDL4Mic_BioImageModelZoo_export.ipynb)
that can be executed in Google Colab (which offers free GPU access without further configuration)
without knowledge of the underlying code. The StarDist python library is the reference StarDist
implementation and also contains the original implementation of the StarDist non-maximum
suppression.

Case 2: The 3D U-Net was trained to segment cell boundaries using the 3D U-Net ZeroCostDL4Mic
notebook
(https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebo
oks/BioImage.io%20notebooks/U-Net_3D_ZeroCostDL4Mic_BioImageModelZoo_export.ipynb) and
data from Wolny et al.41. It can be directly applied to the new data from https://osf.io/fzr56/ in the
ilastik neural network workflow. The network predictions are then saved and, together with the raw
data, used as input to the ilastik multicut workflow. This workflow implements graph based instance
segmentation and contains an interactive edge classifier. We use it to label a few edges and thus obtain
a curated instance segmentation. We then use the same ZeroCostDL4Mic notebook to fine-tune the
model on the data, using boundaries derived from the curated instance segmentation as target. The
fine-tuned model can be exported from the notebook as model RDF, using bioimageio.core internally,
and we upload it to the Zoo. The new model is applied directly in deepImageJ and its boundary
predictions are post-processed to obtain an instance segmentation using the Morphological
Segmentation plugin of MorphoLibJ42. This segmentation is used to derive instance based statistics,
like the sphericity histogram.

Case 3: The solution is produced by the winning team (bestfitting) of the Human Protein Atlas -
Single Cell Classification competition hosted on the Kaggle platform
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(https://www.kaggle.com/c/hpa-single-cell-image-classification/). The workflow consists of three
models, one for nuclei segmentation, one for cell segmentation, and the other one for multi-label
classification. The nuclei segmentation model and the cell segmentation one share the same model
architecture (DPN-Unet) produced by the data science bowl 2018 nuclei segmentation competition13,
but trained on different datasets. The top-winning teams trained the nuclei segmentation model with
the data from the same competition, and the cell segmentation was trained with the HPA cell
segmentation dataset56. In the demonstrated workflow, we first load an image from the human protein
atlas (https://www.proteinatlas.org/), the nuclei channels are segmented with the nuclei segmentation
model. Then, the image is fed into the cell segmentation model, the cell instances are extracted by
applying a watershed-based processing (with the nuclei mask as seed). Each cell is then cropped,
background and other cells are masked, and fed into the Inception-v3 based multi-label classification
model. The model inference is either run locally via bioimage.core Python library running in a conda
environment, or through the BioEninge backend running in our cloud computing cluster in the web
application. The results are displayed with napari32 for the local demo and Kaibu49 with the remote.

Case 4: The mitochondria domain adaptation model is trained using torch-em
(https://github.com/constantinpape/torch-em), a pytorch based library implementing deep learning
approaches for microscopy image analysis. It was trained on 2D EM images of mitochondria from the
Segmented anisotropic ssTEM dataset of neural tissue57. This model is trained to improve
mitochondria foreground predictions by exploiting predictions of a shallow classifier. The model only
gets these predictions as input and can thus be used in a domain adaptation setting. For mitochondria
segmentation in images from a different EM modality or target tissue the user only needs to train a
shallow model, which is fast and convenient due to established tools that provide interactive training
functionality. Here, we demonstrate this approach with the trainable Weka47 plugin, Labkit46 and
ilastik pixel classification for data from the MitoEM challenge45. The predictions can then be
improved by applying the domain adaptation model, using either deepImageJ or the ilastik neural
network workflow (any other software that supports running bioimage.io models would also work).
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