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Abstract 

Cooperation is essential for all domains of life. Ironically, it is intrinsically vulnerable to 
exploitation by cheats. Hence, there is an explanatory necessity that triggers a lot of 
evolutionary biologists to search for mechanisms that could support cooperation. In general, 
cooperation can emerge and be maintained when cooperators are sufficiently interacting with 
themself to provide a kind of assortment and reciprocity. One of the most crucial and 
common mechanisms to achieve that task are kin selection, spatial structure, and enforcement 
(punishment). Here I used agent-based simulation models to investigate these pivotal 
mechanisms against conditional defector strategies and concluded it could easily violate all of 
them and take over the population. This surprising outcome may cue us to rethink the 
evolution of cooperation as it illustrates that maintaining cooperation may be more difficult 
than previously thought. Moreover, besides the theoretical findings, there are empirical 
applications such as invading the cooperator population of pathogens by genetically 
engineered conditional defectors, which could be a potential therapy for many incurable 
diseases. 
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1. Introduction 
 
A long-standing puzzle in evolutionary theory is how cooperative behavior can evolve and 
persist within the selfish natural world. Once cooperation exists, it is always vulnerable to 
exploitation by defective free riders who adopt selfish strategies for reaping the highest 
possible profit without paying the share. Thus, invest most of their energy in reproduction. 
Therefore, cheaters could out-compete the cooperators and take over the population. Since 

Ferriere & ( problemHaldane pointed out that there was no general principle to solve this 
. Many partial mechanisms have been suggested, Such as kin selection, group Legendre 2013)

West punishment (selection, reciprocity, policing, spatial structure, sanction, reward, and 
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. Darwin himself had suggested some core concepts 2007; Nowak 2006; Cremer et al. 2019)
introduced conditional defector strategies that violate  , Ihis paperIn t. f these mechanismso

Kin selection, punishment, and spatial structure mechanisms. 

 
1.1. What are conditional defector strategies? 
 
From a conceptual viewpoint, a conditional defector strategy may be any cheating strategy 
that could somehow cooperate. In other words, it is a cheater who pays additional costs or 
wastes a portion of the profit to survive. So, it is not obligated to defect in all behaviors or at 
all times. However, it may cooperate in some behaviors, now and then; it may cooperate with 
some agents, etc. So they are not pure defectors 
 
1.2. Some forms of conditional defector strategies: 
 
1.2.1. Cooperate for the spread 
 

Dispersal is beneficial because it decreases Kin competition, sustains the resources, and 
outset colonization. Without dispersal, the fate of all populations is extinction, (Bonte & 
Dahirel 2017). Hence, an intermediate dispersal rate of cooperators is essential for 
cooperation maintenance, (Parvinen 2011; Waite et al. 2015). Nevertheless, dispersal is a 
costly behavior that increases the mortality of dispersers or decreases their fecundity, (Bonte 
et al.2012; Lion & Baalen 2008). Therefore, some studies focused on the joint evolution of 
dispersal and cooperation, (Parvinen 2013). Or the correlation between cooperation, dispersal 
rate, and dispersal cost, (Galliard et al. 2005). Their findings asserted that the low dispersal 
cost selects against cooperation. Thus, if cheaters can reduce their dispersal costs, they may 
turn the game against cooperators. Usually, cheats are not good migrators because dispersal 
itself is a cooperative behavior. The migrators leave their suitable habitats to other unknown 
environments and face dangerous predators to colonize a new patch. Such behavior is costly 
for the migrators. Nevertheless, its benefits are also gained by non-migrators because it 
decreases kin competition. From such a point of view, dispersal is considered cooperative 
behavior that naturally does not expect to be abundant in cheats. Hence, cheaters go extinct 
rapidly with the depletion of local patches they dominated without global prevalence like 
cooperators; this might be the fundamental problem of cheaters. However, the probable 
solution is adopting a conditional defection strategy wherein free-riders would cooperate only 
for the spread. The actors of this selfish strategy would have a high dispersal rate with the 
lowest possible cost because they share migration costs. Thus, the exploitation rate of public 
goods and interactions among defectors and cooperators will increase. In other words, the 
conditional defectors can exclusively cooperate for all collective behaviors related to 
migration (coalition dispersal) but defect otherwise. Therefore, these selfish successful 
migrators can convert the structured meta-population into a well-mixed game and violate the 
spatial structure mechanism. 

(Ridley 2012) is considered a piece of empirical evidence for the assumption that individuals 
reduce their dispersal costs by sharing it. Thereby they can achieve successful migrations. 
Also, in metastases cancer, migrating in groups (coalition dispersal) raises the efficacy up to 
50-fold more than individual dispersal, (Tissot et al. 2019; Kümmerli et al. 2009). 

1.2.2. Pay for the escape 
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Conditional defectors can pay some of their wealth or waste some profits to escape 
punishment by producing substances to mislead punishers. Or possession of the significant 
tag that marks cooperators. Similarly, by reducing their payoff to be more similar and 
familiar to cooperators. If cheaters reduced the benefits, it might be hard to have been noticed 
by a quorum-sensing system or other defense mechanisms. It is considered a kind of imitation 
or tag-based decision that prevents cooperators from detecting and punishing the defectors. 

Anyway, those cheaters pay a cost to escape sanction or reduce the accuracy of the 
monitoring/punishment system. Therefore, they can merge with cooperator populations 
accordingly, violating punishment and kin-selection mechanisms. 

2. Methods 
 
I used two agent-based simulation models to investigate the concepts of "cooperate for the 
spread" and "pay for the escape" both of them are Net logo models created by Dr. Susan 
Hanisch. 
Afterward, I modified the first model to represent the concept of sharing the dispersal costs. I 
used the second model without modifications. But instead, I assigned definite values of some 
parameters that highlight the pay for the escape strategy. 
 
2.1. First model 

The original model was entitled "Evolution and patchy resource", (Hanisch 2017a). She 
developed the model in the first place for educational purposes. The model illustrates 
concepts of cooperators-cheaters competition, natural selection, spatial structure mechanism, 
multilevel selection, and founder effect.  

2.1.1. Changeable variables: 

● Distance-resource-areas: the distance between the centers of the resource areas. 

● Size-resource-areas: the size of resource areas as a radius in the number of patches. 

● Living costs: the costs that each agent has to deduct from energy per iteration for basic 
survival. 

● Mutation rate: The probability accordingly offspring agents have different traits than their 
parents. 

● Evolution: the ability of agents to produce offspring.  

2.1.2. Constant variables: 

●The number of patches is 112 * 112 patches. 

●Carrying capacity per patch: Resource = 10, Agents = 1 

● The growth rate of the resource = 0.2 
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● The resources on a patch regrow by a logistic growth function up to the carrying capacity: 
New resource level = current resource level + (Growth-Rate * current resource level) * (1 - 
(Current resource level / carrying capacity). 

● The cost for producing offspring is 10 subtracted units of energy. 

● The initial level of energy of agents is set at living costs. 

2.1.3. Role of randomness: 

● Agents are distributed randomly in resource areas at the beginning of a simulation. 

● Sustainable behavior is distributed randomly with a probability of Percent-Sustainables 
among the initial agent population. 

● The order in which agents move and harvest within one iteration is random. 

● Agents move to a randomly selected patch if several patches fulfill the objectives. 

● The order in which agents produce offspring within one iteration is random. 

● Agents reproduce offspring with a probability of (0.0005 * Energy). 

● Agents place offspring on a randomly selected unoccupied neighboring patch. 

● Offspring mutate with a potentiality of Mutation-rate. 

2.1.4. Model Processes: 

In each iteration, each agent moves around in random order. There are three likelihoods: 

● If there are no unoccupied patches in 2 patch radius, they stay on the current patch. 

● If there are unoccupied patches with resources amounting to more than living costs, the 
agents move to them.  

● If the resource amount was less than the living costs, the agents move randomly to other 
unoccupied patches. 

The agents harvest the resources from separated patches to gain energy for metabolism and 
proliferation. If the energy level of any agent falls to zero, it dies. The cooperator type 
harvests half of the resource, while the greedy type consumes 0.99 %. 

The living costs are deducted from the energy amount of the agent constantly everywhere all 
the time. This process occurs regardless of whether an agent moves within the patch, between 
the patches, or even not moving. Therefore, the model doesn't consider dispersal cost 
explicitly. 
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If there is an unoccupied neighbor patch, the agent can reproduce in probability 0.0005 of his 
energy and place the offspring on the unoccupied neighbor patch, then transfer 10 units of the 
energy to his offspring. 

Resources regrow only on resource patches. If the resource amount is more than or equal to 
0.1. Then it regrows. If the resource is less than 0.1. it is set to be 0.1.   

2.1.5. Output diagrams and monitors: 

●The average energy of agents: average energy levels of sustainable and greedy agents, 
resulting from resource harvest, minus living costs and reproduction. 

●Trait frequencies: The relative frequencies of sustainable and greedy agents in the total 
population, resulting from mutations, different reproduction rates, and death. 

●Agent Population: The absolute number of the total population size, resulting from 
reproduction and death. 
 
2.1.6. Modifications: 

In the first modification, I added a different type of cost that agents only incur when they 
disperse from one patch to another (in-between the patches). It is the slider entitled 
"dispersal-costs." 

In the second modification, I added another sharing dispersal costs tool to reduce them by 
dividing their value by the sum number of included agents (flock-mates) in the identified 
range from the same type. It is the slider entitled "group-dispersal-range." which is the flock 
mate's areas as a radius in the number of patches. So, changing the value of the group 
dispersal range will change the area around every agent. Accordingly, the number of its flock 
mates who share the dispersal costs also changes. 

The group dispersal range is variable and not exclusively for greedy agents but applies to all 
agents. So, it represents the case of the wild-type of cooperators who also can cooperate for 
the spread. The group dispersal range also does not only target the agents in between patches. 
But it counts the agents inside and outside the patches. For example, once an agent starts its 
dispersion with a determined range containing 10 agents, 4 from another type, 3 non-
dispersal agents from the same type that existed inside a patch, and 3 dispersal agents from 
the same type outside the patches. The dispersal costs for this agent will be divided by 6. This 
case may represent in the real world via public good of diffusible stuff or similar techniques. 

Cheaters can arise within cooperator patches by mutation or immigration. Therefore, to 
investigate the efficacy of migration, the mutation rate value should be 0 to cancel its effect 
in the meta-population dynamics.   
 
2.2. Second model 

The model entitled "Evolution, resources, monitoring, and punishment." (Hanisch  2017b), is 
a simulation of a population with four types of agents competing for the same resource. It 
demonstrates many concepts like kin selection, cooperation, selfishness, public good, 
monitoring, punishment, sharing the costs, positive /negative frequency-dependent selection, 
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and multilevel selection. The four agent colors and types: 1) Red: greedy, non-punishing. 2) 
Orange: greedy, punishing. 3) Turquoise: sustainable, non-punishing. 4) Green: sustainable, 
punishing. 

Punishing agents can perceive other agents in their environment to some degree called 
(perception accuracy) and react to their behavior. There are three kinds of punishment: 
Punishers can kill agents with greedy harvesting behavior, stop them from harvesting in the 
next iteration (I selected this kind), or have them pay a penalty fee to their neighbors. 

Agents have a cost (energy) to pay for, both detection and punishment, so this behavior is 
altruistic. Punisher agents of one type share punishment cost equally.  

2.2.1. Changeable variables: 

● Death rate: The probability accordingly agents die independent of their energy level. 

● Carrying capacity: the maximum amount of resource units on a patch from 1-to 100. 

● Growth rate: the rate at which resources on patches regrow. The maximum sustainable 
yield is calculated based on carrying capacity and growth rate. 

● Harvest-sustainable: the number of resource units harvested by sustainable agents. 

● Harvest-greedy: the number of harvested resource units by sustainable agents. 

● Perception-accuracy: the probability with which punishing agents notice greedy agents. 

● Costs-perception: the costs in units of energy, punishing agents have to pay for perceiving 
other agents. 

● Costs-punishment: the costs as units of energy that punishing agents have to pay in each 
iteration for punishing other agents.  All punishing agents of an agent divide the costs of 
punishment. 

● Punishment: the kinds of punishing behavior that punishing agents perform. 

● Fine: if the kind of punishment is “pay fine” the fine in energy units that punished agents 
have to pay (shared between all their neighbors). 

● Living costs and Mutation-rate: see the first model. 

2.2.2. Constant variables: 

● The number of patches: There are 60*60 patches in the world. 

● The initial energy level of agents is set at living costs + 1. 

● The initial amount of resource units on a patch is set to Carrying-capacity. 

● The resources on a patch regrow: see the first model. 
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2.2.3. Role of randomness: 

* In addition to items in the first model. 

● Agents take on their traits (harvest preference and ability to notice and punish) randomly 
based on the probability of Percent-sustainable and Percent-punishers. 

● The order in which punishing agents notice greedy agents within one iteration is random. 

● Greedy agents get noticed by punishing agents with a probability of Perception-accuracy. 

● The order in which detected greedy agents get punished within one iteration is random. 

● Agents produce offspring with a probability of (0.001 * Energy). 

● Agents die with a probability of Death-rate. 

2.2.4. Model Processes: 

In each iteration, each agent attempts to harvest resources from the patches it is on and the 
eight neighboring patches until the harvest preference level is reached, except for the 
punished agent with the sanction (suspend harvest once), its harvest amount = 0 in the current 
iteration. If the amount of resources available is lower than the amount that the unpunished 
agent attempts to harvest. Then the agent moves to a neighboring unoccupied patch with the 
most resources after losing one energy unit as a move cost. 

Punishers pay the costs of perception for sense greedy agents. The greedy neighbors have 
been noticed with the probability of perception accuracy. The agent lost an amount of energy 
as living costs. The agent dies with the probability of death rate or if the energy level falls to 
zero. 

If there is an unoccupied neighbor patch, the agent can reproduce in probability 0.001 of its 
energy and place the offspring on the unoccupied neighbor patch, then transfer half of its 
energy to its offspring that mutate with the probability of mutation rate. 

Resources regrow on all patches. If the resource amount is more than or equal to 0.1. Then it 
regrows. If the resource is less than 0.1. it is set to be 0.1.   

2.2.5. Output diagrams and monitors: 

● Populations (% of carrying capacity): The state of the resource and the agent population in 
the world as a percentage of total carrying capacity; resulting from resource harvesting 
behavior and resource regrowth, agent reproduction, and death. 

● Average harvest per iteration: The average harvested amounts of agents per iteration by 
trait, resulting from harvested resource units, minus costs for monitoring and punishing (for 
punishing agents), minus fines (for punished agents in case of punishment “Pay fine”) 

● The average energy of agents and Trait frequencies: see the first model. 
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2.2.6. How does the model represent a conditional defector strategy? 

The model goal is to highlight the role of kin selection and punishment mechanisms in 
supporting cooperation evolution against cheats. I didn't need to modify the model but just 
thought about what the conditional defector should do to upside down the game? The answer 
was to pay for the escape. 

For instance, if the standard Harvest-greedy of a cheater (greedy, non-punishing) was 13 and 
the Perception-accuracy of its actual punishers was 75%. Now suppose this cheater faces 
troubles, and it cannot dominate. But if it gives up some of its profit to become 12, to escape 
punishment, and to reduce the Perception-accuracy to 60%, it could dominate and take over 
the population. 

The conditional cheater can pay something and reduce its profit to escape punishment by 
reducing Perception-accuracy if there is a positive correlation between the values of these 
two variables, which allow the cheater's dominance. Therefore, this model is proper if it can 
support/deny such correlation. 

3. Results 

All experiments I carried out via a built-in tool in the Net logo called Behavior Space. And all 
data analyses I carried out via a Python library called Glueviz and excel. 

3.1. The experiments of the first model  

The default values of the variables: Mutation rate = 0, (to investigate only the effect of 
dispersal). Dispersal-costs = 8, (high value). The agent's shape is Bacteria. Size-Resource-
Areas = 4, (Relatively small). Living-costs = 1. Percent-Sustainables = 90%, (most of the 
population consists of cooperators in the beginning). Number-Agents = 80, (started number). 
Distance-Resource-Areas = 20, (Relatively far). Evolution switch is true, (natural selection is 
working). Group-dispersal-range = 0, 30, 50, 70,100,150, and 200.  

They are 63 runs of 7 experiments. 15 repeated runs for group dispersal range = 0, and 8 
repeated runs for each other value. Approximately all runs with group dispersal range= 0, 
finished in favor of cooperators and the extinction of cheaters as expected that cheaters 
cannot sustain their patches and cannot arrange successful migrations to other patches due to 
the high dispersal costs. 

This situation significantly changed in the rest runs of group dispersal ranging from 30 to 200 
where cheaters can share the dispersal costs. Consequently, all these runs finished in favor of 
cheaters, and all cooperators were extinct. Fig 1. Also, cheaters in these runs outcompete 
cooperators quickly with a fewer number of steps as long as the group dispersal range 
increases from 30 to 70. Then the average of steps is somewhat convergent for the group 
dispersal range from 70 to 200. Fig. 2. And Fig. 3. 

The results agree with the intuitive predictions that cheaters could thrive, violate the spatial 
structure mechanism, and dominate the whole meta-population as long as they could 
cooperate to decrease the dispersal costs. 

3.2. The experiments of the second model. 
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The default values of the variables: Mutation rate = 1%. The kind of Punishment is 
suspended harvest once. Carrying capacity = 100. Number Agents = 250, (started number). 
Costs perception = 0.5. Growth rate = 0.3. Costs-punishment = 0.8. Percent-Punishers = 20%, 
(started ratio). Harvest-sustainable = 7. Percent-Sustainables = 99%, (most of the population 
consists of cooperators in the beginning). Living-costs = 4. Death-rate = 1. Perception-
accuracy% = 99%, 90%, 70%, 60%, 50%, 40%, and 30%.  Harvest-greedy = 15, 14, 
13,12,11,10, and 9. 

They are 44 runs of 7 experiments, all runs were 15000 ticks (iterations) and began with a 
99% percent frequency of cooperators, and then they all finished up with greedy non-
punishing taking over the population, the frequency of greedy non-punishing was above 90% 
in the final steps in all runs Fig. 4. And above 80% as a mean of all steps Fig. 5. I excluded 
the percent 100% accuracy, as it seems to me there is no such perfect monitoring case in 
nature. I began with 99% accuracy and then degraded to reach 30%, parallel to similar 
degradation in the greedy harvest amount from 15 to 9, Table. 1.  

The results demonstrate a strong positive correlation (with correlation coefficient (r) = 0.99) 
between the values of the two variables (harvest greedy and perception accuracy). Which 
allow cheater dominance. Fig 6. Table. 1. Changing these values without considering this 
positive correlation prevents the dominance of cheaters (unpublished results). The dominance 
of cheaters means that they violated kin selection and punishment mechanisms. 

4. Discussion 

The conditional defector strategies can violate the most crucial supporting mechanisms of 
cooperation, such as spatial structure, kin selection, and punishment. This surprising outcome 
may cue us to rethink the evolution of cooperation as it illustrates that maintaining 
cooperation may be more difficult than previously thought. The two forms that I presented in 
this paper are general, as they have a broad range of applications and are simple. The zero-
determinant (ZD) extortion strategy is also a conditional defector strategy if it has a tag-based 
decision to cooperate with relatives who adopt the same (ZD) extortion strategy but cheat 
otherwise. At that time, it could be stable and win the game against the opponent's strategies, 
(Adami & Hintze 2013). In addition, when selfish strategies could modulate benefits and 
costs, they can outcompete tit for tat and generous strategies, (Stewart & Plotkin 2014). On 
the other hand, cheaters who can increase their dispersal rate without decreasing the dispersal 
costs often cannot achieve triumph, not drive the cooperators (wild type) to go extinct, or 
even harm themselves if the benefits of exploitation do not offset the costs of dispersal. For 
instance, the social parasite of P. punctatus ants is a wingless cheater queen. Although it has 
a high dispersal rate, it has costly migration on foot for long distances. Therefore, the 
colonies persisted for a long time instead of the supposed rapid collapse of the whole 
population, (Dobata et al. 2011).  

The findings of the present paper suggest a potential therapy application. The conditional 
defectors can be used as suicidal agents to drive the population of pathogens into the self-
destruction process. From an evolutionary perspective, tumors or microbes are considered 
populations consisting of cooperating cells that struggle for survival by adopting many 
collective costly actions to produce the intrinsic common resources, (Axelrod et al. 2006; 
Celiker & Gore 2013; West et al. 2007). Yet. Conditional defectors can violate the crucial 
mechanisms that support cooperation. Thereby, outcompeting the cooperators. The cheaters 
also would go extinct after cooperators because they cannot do the necessary collective 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495117
http://creativecommons.org/licenses/by-nc/4.0/


actions. Undoubtedly, the production of the common resources or the public good I meant is 
not independent of cooperators like the two models in the present paper. Instead, its 
production ought to rely on cooperators. For example,  the essential excretions of microbe 
deplete after the cooperator's extinction. Cheaters can drive the whole population to go 
extinct; it is a well-established evolutionary prediction. This robust outcome appears in many 
theoretical and empirical studies and is known as the tragedy of the commons or evolutionary 
suicide, (Hardin 1968; Parvinen 2005; Rankin & López�Sepulcre 2005). This phenomenon 
can occur if free riders have a fitness advantage over cooperators (wild-type) in an 
environment set by the cooperators. Creating the evolutionary suicide within the pathogen 
populations would mean the end of infections, or even endemics as cheaters are not static 
chemical substances but infectiously transmissible organisms. 

It is not the first time someone suggests using cheaters in attacking pathogens as cooperator 
populations. For instance: (Brown et al. 2009). Suggested trojan horse therapy to reduce the 
virulence of pathogens or release beneficial medical substances inside its colonies. 

(Notton et al. 2014). suggested the therapeutic Interfering Particles (TIPs) or hijacker therapy. 
It is a therapeutic utilize for the defective interfering particles (DIPs) that are molecular 
parasites of viruses or incomplete RNA particles lacking essential packaging elements. It is 
believed that it could defeat HIV and other viruses (like SARS-CoV-2). Moreover, (DIPs) are 
transmissible antivirals that can transfer from one person to another until ending the endemic 
in infected areas like sub-Saharan Africa, (Rast et al. 2016). 

 (Archetti 2013). Suggested autologous therapy. It aims to increase the diffusion range of the 
growth factors that the tumor is excreting. Hence, this could increase the tumor's vulnerability 
to exploitation,(Archetti & Pienta 2019). 

(Domingo-Calap et al.  2019). Manipulated a defector strain of Vesicular stomatitis virus 
called Δ51. And it doesn't excrete a costly enzyme that suppressant the interferon. It could 
defeat the wild type. Then leads to the tragedy of the commons. 

Other treatments and descriptive game-theoretic models of cancer are reviewed here,(Wölfl et 
al. 2021). 

So far, many previous papers have suggested closely related ideas. But the defense 
mechanisms of cooperators were always a huge obstacle. I think now conditional defector 
strategies can surpass these obstacles. 

5. Data and Software Availability 

https://www.comses.net/codebases/8437728b-3e1f-46f3-80be-65f4f5909d81/releases/1.0.0/ 

6. Acknowledgment 

I express thanks to my mentor Dervis Can Vural, Associate Professor. Physics Department, 
the University of Notre Dame, for his brilliant expert advice and encouragement. My 
colleague Mr. Karim Soliman for his extraordinary support and too long discussions on the 
construction of this study. 

7. References 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495117
http://creativecommons.org/licenses/by-nc/4.0/


 

evolutionary feedbacks, adaptive dynamics, and -ere, R., & Legendre, S. (2013). Eco1. Ferri
Philosophical Transactions of the Royal Society B: Biological  evolutionary rescue theory.

(1610), 20120081.368 ,Sciences 

 (2007). Evolutionary explanations for 2. West, S. A., Griffin, A. S., & Gardner, A. 
R672.-(16), R66117 ,Current biology cooperation. 

(5805), 314 ,science 3 Nowak, M. A. (2006). Five rules for the evolution of cooperation.
1563.-1560 

rey, E. (2019). 4 Cremer, J., Melbinger, A., Wienand, K., Henriquez, T., Jung, H., & F
Journal of  Cooperation in microbial populations: theory and experimental model systems.

4644.-(23), 4599431 ,molecular biology 

5. Bonte, D., & Dahirel, M. (2017). Dispersal: a central and independent trait in life 
479.-2(4), 47126 ,Oikos history. 

6. Parvinen, K. (2011). Adaptive dynamics of altruistic cooperation in a metapopulation: 
Bulletin of  evolutionary emergence of cooperators and defectors or evolutionary suicide?.

2626.-(11), 260573 ,mathematical biology 

., & Shou, W. (2015). Defectors can create conditions that rescue 7. Waite, A. J., Cannistra, C
(12), e1004645.11 ,PLoS computational biology cooperation. 

8. Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., ... & Travis, 
312.-(2), 29087 ,logical reviewsBio J. M. (2012). Costs of dispersal. 

9. Lion, S., & Baalen, M. V. (2008). Self�structuring in spatial evolutionary 
295.-(3), 27711 ,Ecology letters ecology. 

10. Parvinen, K. (2013). Joint evolution of altruistic cooperation and dispersal in a 
19.-, 1285 ,Theoretical population biology small local populations. metapopulation of 

11. Le Galliard, J. F., Ferriere, R., & Dieckmann, U. (2005). Adaptive evolution of social 
The American  traits: origin, trajectories, and correlations of altruism and mobility.

224.-(2), 206165 ,Naturalist 

12. Ridley, A. R. (2012). Invading together: the benefits of coalition dispersal in a 
cooperative bird. Behavioral Ecology and Sociobiology, 66(1), 77-83.  

as, F. (2019). Panabieres, C., Loeuille, N., & Thom-13. Tissot, T., Massol, F., Ujvari, B., Alix
(1916), 286 ,Proceedings of the Royal Society B Metastasis and the evolution of dispersal.

20192186. 

14. Kümmerli, R., Gardner, A., West, S. A., & Griffin, A. S. (2009). Limited dispersal, 
Evolution: International Journal  tudy.budding dispersal, and cooperation: an experimental s

949.-(4), 93963 ,of Organic Evolution 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495117
http://creativecommons.org/licenses/by-nc/4.0/


15. Hanisch, S. (2017a). Evolution and patchy resource. GlobalESD NetLogo Models.  

16. Hanisch, S. (2017b). Evolution, resources, monitoring, and punishment. GlobalESD 
NetLogo Models. 

determinant strategies -Adami, C., & Hintze, A. (2013). Evolutionary instability of zero17. 
8.-(1), 14 ,Nature communications demonstrates that winning is not everything. 

evolving 18. Stewart, A. J., & Plotkin, J. B. (2014). Collapse of cooperation in 
17563.-(49), 17558111 ,Proceedings of the National Academy of Sciences games. 

19. Dobata, S., Sasaki, T., Mori, H., Hasegawa, E., Shimada, M., & Tsuji, K. (2011). 
Molecular  Persistence of the single lineage of transmissible ‘social cancer’in an asexual ant.

455.-(3), 44120 ,ecology 

20. Axelrod, R., Axelrod, D. E., & Pienta, K. J. (2006). Evolution of cooperation among 
13479.-(36), 13474103 ,Proceedings of the National Academy of Sciences tumor cells. 

Trends in  peration: insights from microbes.21. Celiker, H., & Gore, J. (2013). Cellular coo
15.-(1), 923 ,cell biology 

22. West, S. A., Diggle, S. P., Buckling, A., Gardner, A., & Griffin, A. S. (2007). The social 
77.-, 5338 ,Annu. Rev. Ecol. Evol. Syst. lives of microbes. 

gedy of the commons: the population problem has no technical 23. Hardin, G. (1968). The tra
1248.-(3859), 1243162 ,science solution; it requires a fundamental extension in morality. 

264.-(3), 24153 ,Acta biotheoretica Parvinen, K. (2005). Evolutionary suicide. 24  

        Rankin, D., & López�Sepulcre, A. (2005). Can adaptation lead to 25.  J. 
619.-(3), 616111 ,Oikos extinction?. 

26. Brown, S. P., West, S. A., Diggle, S. P., & Griffin, A. S. (2009). Social evolution in 
ion organisms and a Trojan horse approach to medical intervent-micro

Philosophical Transactions of the Royal Society B: Biological  strategies.
3168.-(1533), 3157364 ,Sciences 

27. Notton, T., Sardanyés, J., Weinberger, A. D., & Weinberger, L. S. (2014). The case for 
Trends in  ectious disease.wide inf-transmissible antivirals to control population

405.-(8), 40032 ,biotechnology 

28. Rast, L. I., Rouzine, I. M., Rozhnova, G., Bishop, L., Weinberger, A. D., & Weinberger, 
L. S. (2016). Conflicting selection pressures will constrain viral escape from interfering 

PLoS computational  proof antivirals.-Principles for designing resistanceparticles: 
(5), e1004799.12 ,biology 

cancer therapies by autologous cell -29. Archetti, M. (2013). Evolutionarily stable anti
172.-(1), 1612013 ,Evolution, Medicine, and Public Health defection. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495117
http://creativecommons.org/licenses/by-nc/4.0/


30. Archetti, M., & Pienta, K. J. (2019). Cooperation among cancer cells: applying game 
117.-(2), 11019 ,Nature Reviews Cancer theory to cancer. 

Moreno, M., & Sanjuán, R. (2019). Social -Otero, E., Durán-Calap, P., Segredo-31. Domingo
1013.-(6), 10064 ,Nature microbiology munity evasion in a virus.evolution of innate im 

32. Wölfl, B., Te Rietmole, H., Salvioli, M., Kaznatcheev, A., Thuijsman, F., Brown, J. S., ... 
& Staňková, K. (2021). The contribution of evolutionary game theory to understanding and 

30.-, 1Dynamic Games and Applications ng cancer.treati 

 

 

Figure.1: Cheaters (red) and cooperators (blue). Cheaters could thrive only when they start to 
share the dispersal costs to some degree. When group dispersal range = 0. Each cheater pays 
the dispersal costs by itself. Therefore, cheaters cannot arrange successful migrations and 
cannot violate the spatial structure mechanism. Hence, they encounter local extinction at their 
patches. 
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Figure 2: The runs that finished in favor of cheaters: (Dark yellow), above 8220 steps. (Light 
green), from 5000 to 8220 steps. (Pink), blew 5000 steps. The runs that finished in favor of 
cooperators: (Gray) All of them from 9000 to 30000 except one run persisted until the 
predefined stop limit of experiments 50000, with Three cheating agents as a final frequency. 

 

Figure 3: Group dispersal range = 30 (blue), 50 (dark green), 70 (sky blue), 100 (light green), 
150 (orange), 200 (red). Cheaters did out-compete cooperators in all of these runs. However, 
the extinction of cooperators is likely to be done more quickly, with fewer steps in the higher 
group dispersal ranges. 

 
 
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495117
http://creativecommons.org/licenses/by-nc/4.0/


 
Table.1: 
 
experiment number of runs Perception-accuracy% Harvest-greedy 
1 8 99% 15 
2 8 90% 14 
3 4 70% 13 
4 4 60% 12 
5 8 50% 11 
6 8 40% 10 
7 4 30% 9 
Correlation coefficient (r) = 0.99 (rounded to 2 decimal places). 

 
 
 

 
Figure 4: The four agent colors and types: 1) Red: greedy, non-punishing. 2) Orange: greedy, 
punishing. 3) Turquoise: sustainable, non-punishing. 4) Green: sustainable, punishing. The 
frequency of greedy non-punishing was above 90% in the final steps in all runs. 
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Figure 5: Combination between the frequency of The four agent types in the final and mean 
steps: greedy non-punishing (red) was above 90% in the final steps in all runs. And above 
80% as a mean of all steps, also in all runs. 
 
 
 

 
 
Figure 6: A strong positive correlation (with correlation coefficient (r) = 0.99) between the 
values of (harvest greedy and perception accuracy), which allow for cheater dominance. 
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