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Regulatory networks as large and complex as those implicated in cell-fate choice are expected to
exhibit intricate, very high-dimensional dynamics. Cell-fate choice, however, is a macroscopically
simple process. Additionally, regulatory network models are almost always incomplete and / or
inexact, and do not incorporate all the regulators and interactions that may be involved in cell-
fate regulation. In spite of these issues, regulatory network models have proven to be incredibly
effective tools for understanding cell-fate choice across contexts and for making useful predictions.
Here, we show that minimal frustration— a feature of biological networks across contexts but not
of random networks— can compel simple, low-dimensional steady-state behavior even in large and
complex networks. Moreover, the steady-state behavior of minimally frustrated networks can be
recapitulated by simpler networks such as those lacking many of the nodes and edges, and those
that treat multiple regulators as one. The present study provides a theoretical explanation for the
success of network models in biology and for the challenges in network inference.

I. INTRODUCTION

Biological network models that describe the regula-
tory relationship between different molecular players or
between higher-level biological entities (such as signal-
ing pathways or cell types) have been extremely useful
in systems biology [1, 2] to model and understand the
features of cell-fate regulation [3]. With the advent of
high-throughput molecular profiling techniques, network-
based models and approaches have become nearly indis-
pensable [4, 5]. Identifying features that distinguish bio-
logical networks from random networks has been an area
of active research. Previous studies have argued that bi-
ological networks present a scale-free degree distribution
[6, 7], are hierarchically organized [8], and exhibit recur-
rence of certain patterns called motifs with a higher prob-
ability than expected by random chance [9]. However,
these and other analyses of topological differences have
provided little insight into the functional differences be-
tween actual biological networks and random networks,
differences that enable biological networks to effectively
regulate cell fates.

Two functional behaviors of biological regulatory net-
works stand out. First, physics would suggest that even
systems with a relatively small number of independent
variables are expected to exhibit exceedingly complex
behaviors [10, 11]. However, cell-fate regulation, suc-
cessfully modeled using large and complex networks, is
a macroscopically simple process [12–18]. Different cell
fates are characterized by distinct expression patterns
or activity levels of sets of genes (including transcrip-
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tion factors, micro-RNAs, etc.) [19]. The typical ap-
proach to model the establishment of distinct cell fates is
to simulate the dynamics of a regulatory network using
a methodology of choice (ordinary differential equation-
based modeling or rule-based modeling, among others),
identify the steady states of network dynamics, and then
map each steady state or each group of similar steady
states to a distinct cell fate. While the set of cell types—
specific gene expression patterns seen in biology— is
fairly limited, dynamical models of the size and complex-
ity of biological regulatory networks should, in general,
be capable of exhibiting a far more diverse set of expres-
sion patterns at steady state. Is there then a universal
feature of regulatory networks in biology that restricts
the set of gene expression patterns commonly seen?

Second, nearly all network descriptions of cell-fate
regulation involve models that are inexact and / or
incomplete— such network models do not incorporate
all of the genes involved or all the interactions between
the chosen genes, and often treat multiple biomolecules
as a single regulator. This is a consequence of the lim-
ited resolution of current experimental techniques, lim-
ited data availability, noise in the collection and inter-
pretation of data from high-throughput experiments, the
high context-dependence of biological assays, and, in
many cases, choices made to simplify the modeling task.
For example, gene networks of widely different sizes have
been used to usefully model the regulation of choice be-
tween epithelial and mesenchymal cell-fates [13, 14, 20–
22]. While none of these network models can claim to be
more exact than the others, all can claim to recapitulate
the gene expression patterns associated with epithelial
and mesenchymal cell fates, and to provide useful insights
into the regulation of the underlying biological process.
The success of these incomplete and inexact regulatory
network models raises the following question: is there a
universal feature of regulatory networks in biology that
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allows us to re-capitulate the observed biological behav-
ior and make useful predictions without the need to know
and incorporate the exact network structure?

Our previous work [23] answered, in part, the first
question. We identified minimal frustration as a key
property of biological regulatory networks across con-
texts and showed, within a Boolean modeling framework
[14], that biological networks exhibit certain steady states
with exceptionally low frustration. These states are the
ones that are most frequently encountered when simulat-
ing network behavior and correspond to the gene expres-
sion patterns seen in biology. Such low-frustration states
are not seen in the case of random networks that have
the same topological features as the biological network.
While minimally frustrated biological networks can still
exhibit steady states with non-biological gene expression
patterns, such steady states are rarely dynamically en-
countered.

In the present study, we extend our analysis to or-
dinary differential equation-based models of biological
regulatory networks. We show that provided the net-
work is minimally frustrated as defined previously [23],
the steady-state network behavior is simple and largely
one-dimensional, in spite of the complex and multi-
dimensional nature of the network model. This prop-
erty underlies the suitability of large biological networks
for describing a macroscopically one-dimensional process
such as cell-fate regulation. We then go on to answer the
second question posed above and show that the behavior
modeled by a minimally frustrated network can be reca-
pitulated by much smaller, simpler network models either
lacking many of the regulators and interactions present
in the original network, or combining multiple regulators
into single nodes. Thus, the present study builds upon
the analysis in [23] to establish minimal frustration as a
key feature of biological regulatory networks and helps
explain the success of necessarily incomplete systems bi-
ology models in modeling cell-fate regulation.

II. MODELING REGULATORY DYNAMICS

Specifying regulatory networks— A regulatory network
involved in cell-fate regulation can be specified using a di-
rected graph. A node in such a graph may correspond to
a transcription factor, a micro-RNA, an epigenetic mod-
ifier, or any other regulatory factor. Each directed edge
in the graph is signed— either activating or inhibiting—
depending on the type of the regulatory relationship be-
tween the regulators. Mathematically, a regulatory net-
work with N nodes can be described with an N ×N con-
nection matrix J such that Jij = +1 if the edge i← j is
activating and Jij = −1 if the edge is inhibitory; Jij = 0
if there is no edge from j to i. Provided that the rules
governing how the different inputs to a node combine are
available, the network dynamics may be simulated either
within a discrete modeling framework (a Boolean frame-
work being the most commonly used [24]) or a continu-

ous framework involving ordinary differential equations
(ODEs).

Boolean modeling and definition of frustration— In a
Boolean modeling framework, the state of an N -node
network is specified by a sequence of N binary variables
{s1, s2, ..., sN}, with si = +1 if the regulatory species rep-
resented by node i is active and / or highly expressed, and
si = −1 otherwise. The various inputs to a given node,
as described by the connection matrix J , may combine
additively or via more complex logic-based rules. Here,
we consider the simple case wherein the inputs to any
given node combine additively and independently [14].
In such a scenario, the discrete-time network dynamics
are given as [23]

si(t+ 1) =


+1

∑
j Jijsj > 0

−1 if
∑

j Jijsj < 0

si(t)
∑

j Jijsj = 0

(1)

The network state is updated in an asynchronous fash-
ion: at any given point in time, a node is chosen at
random and its state updated using Eq. 1. Note that
simulating the dynamics of biological regulation using
Eq. 1 requires only the network connection matrix J—
there are no other parameters involved. One can iden-
tify the stable states of such dynamics as any network
state {si} wherein si(t + 1) = si(t) for all i. For ev-
ery network state, one can define frustration as the frac-
tion of network edges that are not satisfied in that state,
i.e., the fraction of edges for which Jijsisj < 0 [23, 25].
In the case wherein the inputs to a given node combine
via logic-based rules, frustration of a network state may
be similarly defined. However, the precise mathematical
definition is more complex in such a scenario (see [23]).

Throughout this manuscript, we refer to a network as
being minimally frustrated if, within the Boolean mod-
eling framework described above, the network exhibits
certain steady states with frustration significantly lower
than that of the steady states exhibited by random net-
works with similar topological features (i.e., random net-
works with the same number of nodes and edges, the
same number of activating and inhibitory edges, and the
same in-degree and out-degree for each node). Such ran-
dom networks can be generated from the original bio-
logical network by repeatedly choosing a pair of network
edges at random and swapping their targets (Appendix
Sec. 1). The random networks thus obtained may be
more or less modular (as quantified by the directed Lou-
vain modularity [26]) than the corresponding biological
network (Fig. S1).

ODE-based modeling— In an ODE-based modeling
framework, the regulatory network state is described by
a continuous N -dimensional vector {y1, y2, ..., yN} where
yi describes the expression or activity level of the regu-
lator represented by node i. Given a connection matrix
J , the network dynamics (in continuous time) can be de-
scribed using a set of ordinary differential equations of
the form [27]
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dyi
dt

= gi
∏

j,Jij 6=0

HS(yj , λij ,Θij , nij)− kiyi (2)

Here, HS is the shifted Hill function:
HS(yj , λij ,Θij , nij) = λij + (1 − λij)

1
1+(yj/Θij)nij .

Note that λij > 1 if the edge i ← j is activating
(i.e., if Jij = +1) and λij < 1 if the edge i ← j is
inhibitory (i.e., if Jij = −1). Once again, we assume
that the inputs to any given node act independently of
one another. The system of ODEs in Eq. 2 associates
two kinetic parameters with each network node: gi,
the production rate, and ki, the degradation rate of
the regulator represented by node i. Three kinetic
parameters are associated with each network edge: λij ,
the maximum fold change in the production rate of node
i that node j can cause, Θij , the threshold parameter
of the Hill function, and nij , the Hill coefficient. The
system of ODEs in Eq. 2 describes a general setup to
model the dynamics of a system of regulatory nodes
that can activate or inhibit one another. Such a system
can be defined for any given connection matrix J . A
more specialized setup with different equations explicitly
modeling different modes of biological regulation (e.g.,
transcriptional regulation, micro-RNA-mediated regula-
tion, ubiquitination-mediated regulation, etc.) may be
chosen to model specific biological systems of interest.

For a given network connection matrix J , the dynam-
ics in an ODE-based framework will, of course, depend
on the choice of the kinetic parameters involved in Eq. 2.
The choice of an appropriate parameter set will vary with
the biological context and, in general, can be exceedingly
difficult. Here, we analyze generic, statistical features of
the dynamics for a fixed connection matrix J and an en-
semble of kinetic parameter sets generated using the ran-
dom circuit perturbation (RACIPE) approach [27] (see
Appendix Sec. 2 for details). RACIPE generates an en-
semble of kinetic parameter sets in a systematic fashion
such that the ensemble is representative of all biologi-
cally relevant possibilities. This approach ensures that
our analysis is not restricted to the dynamical behavior
under a fixed parameter set fitted to some given (arbi-
trarily chosen) experimental context. More importantly,
it allows us to capture the heterogeneity in dynamical
behavior that is inherent in biological systems.

III. RESULTS

A. Steady-state dynamics of biological regulatory
networks are simple

We analyzed features of the set of steady states ex-
hibited by multiple biological regulatory networks taken
from the literature [15, 16, 22] for an ensemble of ki-
netic parameter sets (as described in Appendix Sec. 2),

and compared these features with those obtained for ran-
dom networks with similar topological features. Fig. 1
a-c show that in the case of biological networks, most of
the variation in the steady states is one-dimensional—
along the first principal component. This suggests
that while these networks are complex— they involve
many biomolecular regulators and numerous interactions
among them— their behavior at steady state is simple
and can be sufficiently described by a single order pa-
rameter (e.g., the first principal component). There is no
need to specify the expression / activity levels of all of
the network nodes to describe the network steady state.
In contrast, in the case of random networks, the behavior
at steady state is much more complex: a much smaller
fraction of the total variance in the set of steady states
is captured by the first principal component than in the
case of the biological network sharing similar topological
features. Thus, describing the steady state in the case
of random networks would require specifying the expres-
sion / activity levels of many or all of the network nodes,
and restricting the description to the first (or even the
first few) principal component(s) would be uninformative
(Fig. S2). Note that RACIPE was run ab intio for each
biological network and each random network instance.
Thus, the ensemble of kinetic parameters for which the
network behavior is simulated is distinct in each case.

Analyzing the underlying structure in the set of steady
states obtained in different cases, we find that the distri-
bution of the first principal component in the case of
the biological networks analyzed here is largely bimodal
(Fig. 1 d-f). This indicates that the steady states ob-
tained for the ensemble of parameter sets in the biolog-
ical case cluster into two distinct groups. This obser-
vation is confirmed visually by hierarchical clustering of
the set of steady states obtained (top-left plot in Fig. 1
g-i) wherein we see two sets of steady states with dis-
tinct activity patterns of the network nodes (also, see
Fig. S3). No such discernible pattern can be seen in the
case of random networks (plots other than the top-left
one in Fig. 1 g-i). Note that each parameter set in the
ensemble generated by RACIPE may be interpreted as
modeling a different cell in a population [27], with the
variation in the ensemble capturing the cell-to-cell vari-
ation in the population. The readily evident clustering
of the steady states into two distinct groups (Fig. 1 d-i)
indicates that most of the steady states of these networks
can be mapped to one of two phenotypic states with dis-
tinct gene expression patterns. This is consistent with
the role of these networks in establishing two distinct cell
fates: epithelial cells and mesenchymal cells in the case
of the epithelial-mesenchymal transition (EMT) network
[22], neuroendocrine cells and mesenchymal cells in the
case of the small cell lung cancer (SCLC) network [16],
and stem cells and differentiated cells in the case of the
pluripotency network [15].

Recall that the only input to RACIPE is the connec-
tion matrix J . The approach does not take any other
experimental data as input, generating the ensemble of

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495167doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495167
http://creativecommons.org/licenses/by/4.0/


4

0 0.2 0.4 0.6 0.8 1

PC1 % Variance

0

5

10

15

20

25

30

F
re

q
u

e
n

c
y

Pluripotency network

Random
networks

Biological
network

0 0.2 0.4 0.6 0.8 1

PC1 % Variance

0

5

10

15

20

25

F
re

q
u

e
n

c
y

SCLC network

Random
networks

Biological
network

0 0.2 0.4 0.6 0.8 1

PC1 % Variance

0

5

10

15

20

25

30

F
re

q
u

e
n

c
y

EMT network

Random
networks

Biological
network

a b c

g i

-1.5 -1 -0.5 0 0.5 1 1.5

PC1

0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a

b
ili

ty

d

-1.5 -1 -0.5 0 0.5 1 1.5

PC1

0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a

b
ili

ty

e

-1.5 -1 -0.5 0 0.5 1 1.5

PC1

0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a

b
ili

ty

h

f

Random network 1

Random network 2 Random network 3

Biological network Random network 1

Random network 2 Random network 3

Biological network Biological network Random network 1

Random network 2 Random network 3

Expression level Expression level Expression level

FIG. 1. Steady-state dynamics of complex biological networks are simple and largely one-dimensional. a-c Distribution of the
percentage variance explained by the first principal component (PC1 % variance) in the case of random networks (histograms)
with the same number of nodes and edges, and similar topological features as the biological network (dashed vertical lines with
arrows). Note that the principal components were sorted in decreasing order of the percentage variance explained. Thus, in
each case, the first principal component (PC1) is the one that explains the greatest percentage of the variance in the steady
states. The sets of steady states for biological and random networks were obtained using the approach described in Appendix
Sec. 2. See Fig. S2 for the fraction of variance in the steady states explained by the other principal components. d-f Distribution
of the first principal component (PC1) projection of the steady states obtained for the three biological networks. See Fig. S3
for the projection of the steady states along the first and second principal components. g-i Expression levels of the different
network nodes in the various steady states obtained for biological and random networks. Different steady states are shown
along the rows while the network nodes are shown along the columns of the heatmap, with the colors indicating the expression
levels. Both rows and columns were hierarchically clustered to obtain the heatmap in each case (see Appendix Sec. 3). The left
column (panels a, d, and g) shows the behavior in the case of the epithelial-mesenchymal transition (EMT) network [22], the
middle column (panels b, e, and h) shows the behavior in the case of the SCLC network [16], and the right column (panels c,
f, and i) shows the behavior in the case of the pluripotency network [15].
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kinetic parameters in an unbiased fashion so as to cap-
ture the range of possible network behaviors. Thus, the
structure in the steady states obtained using RACIPE
(shown in Fig. 1 d-i) is an intrinsic property of biological
connection matrices that is seen to be absent in random
networks.

Fig. 1 demonstrates the capability of the biological net-
works analyzed here to robustly establish cell types with
biological gene expression patterns. Biological networks
exhibit this behavior for a broad range of kinetic param-
eter sets in a manner that is dependent on the network
connection matrix J . While these networks can still ex-
hibit certain steady states that cannot be uncontrover-
sially mapped to one of the two groups that correspond to
biological phenotypic states (Fig. 1 d-f) and with expres-
sion patterns not seen in canonical cell types, such steady
states are infrequently encountered when simulating net-
work dynamics starting from random initial conditions.
Such steady states with aberrant expression patterns are
seen at a higher frequency in the case of the SCLC net-
work (see Fig. 1 e, h) as has been noted elsewhere [16].
The non-canonical expression patterns corresponding to
such aberrant steady states, while suppressed in healthy
cells, have been reported in cancer cells [16, 28].

B. Minimal frustration underlies the simple
steady-state dynamics of biological regulatory

networks

We have previously demonstrated that biological regu-
latory networks taken from the literature (including the
ones analyzed in Fig. 1), within a Boolean modeling
framework, exhibit certain steady states with frustration
lower than that of steady states exhibited by random
networks with similar topological features, i.e., biological
regulatory networks are minimally frustrated [23]. In the
previous section (Sec. III A), we have shown that, within
an ODE-based modeling framework, the steady states
exhibited by biological networks are simple and largely
one-dimensional. In both cases, we argue that the re-
ported biological network behavior underlies the ability
of large and complex networks to describe cell-fate regu-
lation. To determine if the two features— minimal frus-
tration within a Boolean modeling framework and simple,
largely one-dimensional steady-state dynamics within an
ODE-based modeling framework— are directly related,
we simulated the evolution of a population of random
networks with the same topological features as the EMT
network [22] subject to different selection pressures (see
Appendix Sec. 4 for the detailed methodology). Under
selection for networks for which the steady-state dynam-
ics are largely one-dimensional (as quantified by the per-
centage of variance in the set of steady states explained
by the first principal component) (Fig. 2 a), we obtained
networks that were minimally frustrated (Fig. 2 b). Re-
ciprocally, selection for the low-frustration property (Fig.
2 c) led to the emergence of networks with largely one-
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FIG. 2. Selection for networks with simple, one-dimensional
steady-state dynamics automatically selects for minimal frus-
tration, and vice versa. a-b Results of an evolution simulation
wherein networks for which a larger fraction of the variance
in steady-state behavior can be explained by a single princi-
pal component (i.e., networks that exhibit simpler, more one-
dimensional steady-state dynamics) are selected for at each
generation. c-f Results of an evolution simulation wherein
networks with minimally frustrated steady states are selected
for at each generation. Panel e shows the expression lev-
els of network nodes at steady state for a network randomly
chosen from the population at generation 0. Panel f shows
the expression levels at steady state for a network randomly
chosen from the population at generation 1000. In panels a
and c, the mean population PC1 score is shown. In panels b
and d, the mean population frustration score is shown. Both
these scores are defined in Appendix Sec. 4. In panels e-f, dif-
ferent steady states (obtained using RACIPE; see Appendix
Sec. 2) are shown along the rows while the network nodes are
shown along the columns of the heatmap. Expression levels
are indicated by the color (see adjacent color bars). Both
rows and columns were hierarchically clustered to obtain the
heatmaps. In panels a-d, the black curve shows the behav-
ior for an evolution simulation in the absence of any selection
pressure. The other colors indicate independent simulation
runs (with selection). See Appendix Sec. 4 for details of the
simulation setup.

dimensional steady-state dynamics (Fig. 2 d). Moreover,
under selection for low frustration, we obtained networks
that exhibited steady-state gene expression patterns very
similar to the biological case (compare Fig. 2 f and the
top-left plot in Fig. 1 g). It has previously been suggested
that a large, complex regulatory network can exhibit low-
dimensional gene expression patterns if the network has
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a modular topology [29]. However, we did not see an
increase in the modularity of networks in the population
while selecting for networks with largely one-dimensional
steady-state dynamics (Fig. S4).

The behavior in Fig. 2 shows that the minimal frus-
tration property and the property of exhibiting simple,
largely one-dimensional steady-state dynamics over an
ensemble of parameter sets are, in fact, equivalent— se-
lection for one automatically selects for the other. Since
a Boolean model, defined here simply by the connection
matrix J , can be built into a corresponding ODE-based
model by including a suitable set of kinetic parameters
and mathematical expressions, we may conclude that the
minimal frustration property within the Boolean frame-
work underlies the simple steady-state dynamics seen in
the ODE-based framework. An approach for directly ob-
taining a Boolean modeling framework starting from an
ODE-based model would be helpful for verifying if sim-
ple steady-state dynamics in an ODE-based model can
underlie minimal frustration within a Boolean modeling
framework. Such an approach will be investigated in a
future study.

C. Simplicity of steady-state dynamics is preserved
under node and edge deletions

Robustness of functional behavior to genomic and en-
vironmental perturbations is a well-known feature of bi-
ological systems [30]. To determine if the functional
characteristic of biological regulatory networks high-
lighted here— simple, largely one-dimensional steady-
state dynamics— is robust to node and edge deletion,
we deleted nodes (Fig. 3 a) and edges (Fig. 3 b) in the
EMT network [22] one-by-one (following the approach
detailed in Appendix Sec. 5), and reported the percent-
age of variance in the steady states that is explained by
the first principal component (corrected for the num-
ber of nodes in the network) at each step. Fig. 3 a-b
show that the steady-state dynamics remain largely one-
dimensional even as nodes and edges are successively
deleted from the EMT network, and this behavior is
maintained over the deletion of a large fraction of nodes
and edges. Similar behavior is observed in the case of
a minimally frustrated network (Fig. 3 c-d) obtained at
the end of the evolution simulation subject to selection
for low frustration shown in Fig. 2 c, as well as for other
biological networks (Fig. S5). The shape of the distribu-
tion of the first principal component can also withstand
the deletion of a large fraction of network nodes and edges
(Fig. 3 e-f and Fig. S6). Note that the change in the vari-
ance along the first principal component depends on the
order in which the nodes or edges are deleted (compare
the red (blue) plots with the pink (light blue) plots in
Fig. 3 a-d), indicating that certain nodes and edges in
the network are more important that others in maintain-
ing the simple, one-dimensional network dynamics.
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FIG. 3. The simple, one-dimensional steady-state behavior
(as characterized by a large fraction of the variance in the
steady states being explained by the first principal compo-
nent (PC1)) is preserved under node and edge deletion in the
case of the 26 node, 100 edge epithelial-mesenchymal (EMT)
network [22] (a-b) as well as in the case of a minimally frus-
trated network obtained via an evolution simulation (c-f). e-
f Change in the distribution of the first principal component
(PC1) projection of the steady states during node (e) and
edge (f) deletion. We see that a large fraction of the nodes
(e) and edges (f) in the original network can be deleted be-
fore the distribution of the first principal component deviates
significantly from the distribution in the case of the original
network (shown in the top-left plots in e and f). See Fig. S6
for a quantitative comparison of the distributions obtained
after node or edge deletion with the original distribution.

D. Networks lacking multiple nodes and edges can
recapitulate biological expression patterns

Until now, we have shown that in spite of their large
size and complexity, minimally frustrated networks such
as biological networks taken from the literature exhibit
fairly simple, one-dimensional steady-state dynamics.
Based on this observation, we hypothesized that “sim-
pler” network models should be capable of recapitulat-
ing the steady-state behavior exhibited by a larger, more
complex network provided the larger network is mini-
mally frustrated. Here, by “simpler” we imply networks
lacking multiple nodes and / or edges present in the origi-
nal network. A different manner of network simplification
is addressed in the next section.
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FIG. 4. The pattern of node expression / activity levels at steady state exhibited by the 26 node, 100 edge epithelial-
mesenchymal (EMT) network [22] is recapitulated by simpler networks obtained upon node deletion (panel a) or edge deletion
(panel c). Each heatmap shows the expression levels (indicated by the color) of the same eight nodes of interest across the
different steady states obtained for each network. Different steady states are shown along the rows while the network nodes
are shown along the columns of the heatmaps. The heatmaps shown here were generated by hierarchically clustering the rows
(i.e., the steady states). Each heatmap shows the network nodes (i.e., the columns) in the same order. The simpler networks
obtained are shown alongside the corresponding heatmaps. b, d The simpler networks obtained upon node or edge deletion
recapitulate the response of the larger, original EMT network to multiple gene knockouts. In each plot shown in b and d, the
blue histogram shows the distribution of the first principal component in the control case while the pink histogram shows the
distribution obtained upon gene knockout. The principal component analysis was carried out for the eight nodes of interest.
Each row in panels b and d shows the behavior for a fixed network (whose size is indicated in the figure) while each column
shows the response to a given gene knockout (KO). See Fig. S7 for a quantitative comparison of the distributions obtained after
gene knockout with the distributions in the control case. The simpler networks analyzed here were obtained by successively
deleting randomly chosen nodes (panels a and b) or edges (panels c and d) while ensuring that the eight nodes of interest are
retained in the simpler networks. The same set of eight nodes were the nodes of interest in panels a-d: four epithelial state
markers (CDH1, miR-200b, miR-200c, miR-34a) and four mesenchymal state markers (VIM, ZEB1, SNAI1, and TWIST1).

In agreement with the above hypothesis, we find that
networks lacking numerous nodes and edges present in
the EMT network [22] (see Appendix Sec. 5 for how such
networks were obtained) can still recapitulate the pattern
of node expression / activity levels exhibited by the full
26 node, 100 edge EMT network (Fig. 4 a, c). Impor-
tantly, these smaller, simpler networks exhibit strikingly
similar behavior in response to gene knockouts as the full
EMT network (Fig. 4 b, d): the change in the distribu-

tion of the first principal component upon gene knockout
in the simpler networks is qualitatively similar to the
change in the case of the original network. Thus, given
experimental data on the gene expression profiles seen in
cells and even data on the effect of knocking out multiple
genes, it is impossible to identify any one network model
as uniquely the correct one. Instead, one can employ
many useful network models of different sizes and vary-
ing complexities to model EMT, each missing a differ-
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ent subset of the nodes and edges present in the original
network. Clearly, it is not necessary to know the exact
network to recapitulate the overall biological behavior.
In fact, the 26 node, 100 edge EMT network considered
as the full EMT network in this section is itself not the
“correct” network— while it captures many of the fea-
tures of EMT regulation, it cannot claim to incorporate
all the regulators that can affect EMT or even the entire
set of interactions among the regulators it does incorpo-
rate. Note that useful network models of EMT cannot
be simplified beyond a certain limit: exceedingly simple
networks cannot adequately recapitulate biological be-
havior. This can be clearly seen in Fig. 4 c. Interestingly,
the behavior described above is not limited to the EMT
network. Fig. S11 shows that for a minimally frustrated
network obtained via the evolution simulation (Fig. 2 c-
d), the steady-state node activity pattern can also be
recapitulated by simpler networks with fewer nodes and
edges.

E. Networks that combine regulators can
recapitulate biological behavior

In the previous section, we analyzed the steady-state
behavior of simpler networks that lack many of the nodes
and edges present in the larger, original network. Here,
we consider simpler networks obtained by combining sets
of nodes in the original network and treating each set as
a single regulator. Such a network simplification was
motivated by the observation that in the literature, cell
types and cell-state transitions have been described both
in terms of the expression levels of individual genes as
well as in terms of the overall activity levels of different
pathways (often comprising numerous genes) [31, 32]. We
first developed a systematic procedure to combine sets
of nodes into a single regulator (described in Appendix
Sec. 6). Fig. S8 shows the sequence of networks obtained
by repeatedly applying this “coarse-graining” procedure
to the EMT network [22]. Note that the network ob-
tained at each step has both fewer nodes and edges, and
is thus simpler than the network in the previous step.

Consistent with the behavior in Fig. 4, we find that
the simpler networks obtained by applying the above-
mentioned coarse-graining procedure to the 26 node, 100
edge EMT network are able to recapitulate the steady-
state expression patterns exhibited by the original net-
work (Fig. 5 a). Fig. S9 shows two of the simplified net-
works obtained via the coarse-graining procedure. Note
that the network shown on the right therein groups
together various epithelial factors (miR-101, miR-200a,
miR-141, CLDN7, OVOL2, GRHL2, miR-30c, miR-9)
into a single regulatory node and various mesenchymal
factors (FOXC2, ZEB2, SNAI2, TGF-beta, TWIST2,
GSC, KLF8, TCF3, miR-205, and NP63) into another
regulatory node, instead of treating each of these factors
separately. This simplified network exhibits a steady-
state expression pattern very similar to the one exhibited

by the original, larger EMT network (compare the first
and last panels in Fig. 5 a). We also applied our coarse-
graining procedure to a larger EMT network taken from
the literature, one with 72 nodes and 142 edges [14]. Like
other biological networks analyzed in the present study,
this network is also minimally frustrated [23]. Once
again, the simpler networks obtained by coarse grain-
ing reproduced the steady-state expression patterns of
the key EMT-related genes (Fig. 5 b) exhibited by the
larger, original network. The grouping of different nodes
in the simpler networks is biologically interpretable (see
the network on the right in Fig. S10): genes that are in
the same pathway are grouped together. The Hypoxia
stimulus, HIF1 gene, and LOXL gene are grouped to
form a node representing the hypoxia pathway. Vari-
ous factors involved in growth-factor signaling, includ-
ing platelet-derived growth factor (PDGF) and recep-
tor (PDGFR), epithelial growth factor (EGF) and re-
ceptor (EGFR), insulin-like growth factor (IGF1) and
receptor (IGF1R), and fibroblast growth factor (FGF)
and receptor (FGFR), are also grouped to form a single
node representing the many signaling pathways known
to drive EMT. The Notch pathway genes and factors
(NOTCH, NOTCH intracellular domain (NOTCHic),
DELTA, Jagged, and HEY1) are grouped together, and
so are the molecular players involved in the Wnt signaling
pathway (TCF / LEF, Wnt, Frizzled, and AXIN2).

Fig. S11 shows that the ability of simpler, coarse-
grained networks to recapitulate the steady-state gene
expression patterns exhibited by the larger network is not
limited to the case of biological networks taken from the
literature but extends to minimally frustrated networks
obtained via the evolution simulation.

F. A data-driven example

So far, we have analyzed the behavior of previously
published biological networks that were constructed by
aggregating information from the literature and from bi-
ological databases using a variety of methods [14–16, 22].
For our final example, we turn to a network constructed
directly from gene expression data.

Regulation of MYC-pathway activation in breast tu-
mors— Terunuma et al. obtained the bulk gene expres-
sion profiles from 61 breast tumor samples and identified
a subset of tumors that showed a MYC-activated phe-
notypic state [33]. This phenotype was associated with
elevated levels of the oncometabolite 2-hydroxyglutarate,
DNA hypermethylation, and poor disease prognosis. We
used the gene expression data from this study as an input
to the GRNBoost2 algorithm [34] and obtained a regu-
latory network that may be involved in the regulation of
tumor cell-fate choice between high MYC-activation and
low MYC-activation states (see Appendix Sec. 7 for the
detailed methodology). The inferred regulatory network
consists of 138 nodes and 451 edges. We have previously
shown that such an inferred network is minimally frus-
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FIG. 5. a (Bottom) Simpler networks obtained by repeatedly applying the coarse-graining procedure described in Appendix
Sec. 6 to the 26 node, 100 edge epithelial-mesenchymal (EMT) network [22] recapitulate the steady-state expression patterns
exhibited by the larger, original network. Each heatmap shows the expression levels (indicated by the color) of the same
eight nodes of interest (same as the nodes of interest in Fig. 4) across the different steady states obtained for each network.
(Top) The original 26 node, 100 edge EMT network is shown (left) along with the simpler networks obtained via the coarse-
graining procedure. b (Top) Simpler networks obtained via the coarse-graining procedure applied to the 72 node, 142 edge
EMT network [14] exhibit steady-state expression patterns similar to the pattern obtained for the larger, original network.
Each heatmap shows the expression levels (indicated by the color) of the same twelve nodes of interest across the different
steady states obtained for each network. The twelve nodes of interest were Ecadherin, KLF4, cateninmemb, miR200, GSK3,
TrCP, cateninnuc, ZEB1, SNAI1, TWIST1, ZEB2, and FOXC2. (Bottom) The original 72 node, 142 edge EMT network is
shown (left) along with the simpler networks obtained via the coarse-graining procedure. In both a and b, the coarse-graining
procedure was applied while ensuring that the nodes of interest are not combined with any other network node at any step.
In all heatmaps, different steady states are shown along the rows while the network nodes are shown along the columns of
the heatmaps. The heatmaps shown here were generated by hierarchically clustering the rows (i.e., the steady states). Each
heatmap shows the network nodes (i.e., the columns) in the same order.

trated, just like the biological networks taken from the lit-
erature [23]. Here, we report that the inferred regulatory
network modeled using ODEs exhibits steady states that
vary mostly along the first principal component (Fig. 6
b; red dot), once again consistent with the behavior seen
in the case of biological networks taken from the litera-
ture (Fig. 1). This was not true for the case of networks
inferred by using randomly shuffled gene expression pat-
terns as input to our network inference methodology (Fig.
6 b; blue dots). Importantly, simulation of dynamics of

the inferred network using RACIPE (Appendix Sec. 2) re-
capitulated the gene expression patterns seen in patient
tumor samples (Fig. 6 a, d). As in the case of biologi-
cal networks taken from the literature, the steady-state
gene expression patterns exhibited by the large inferred
network could be recapitulated by simpler networks ob-
tained by node deletion, edge deletion, or via the coarse-
graining procedure (Fig. 6 d). Interestingly, the simpler
networks obtained via the coarse-graining procedure bet-
ter preserve the steady-state expression patterns of the
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FIG. 6. A network inferred from a gene expression dataset [33] exhibits the same behavior as biological networks taken from
the literature and other minimally frustrated networks. a Expression of 30 MYC-associated genes in 61 breast tumor samples
obtained by Terunuma et al. [33]. Different tumor samples are shown along the rows while the genes are shown along the
columns. Color indicates the expression level. b Fraction of variance in the steady states explained by the first principal
component (PC1) in the case of the network inferred from the gene expression profiles obtained from breast tumor samples [33]
(red dot) and in the case of networks inferred from randomized gene expression profiles (blue dots). Note that the principal
components are sorted in decreasing order of the fraction of variance explained. Thus, the first principal component is the
one that explains the greatest fraction of the variance in the steady states. c The percentage of variance in the steady states
explained by the different principal components in the case of the network inferred from a biological dataset [33] (pink curve)
and in the case of networks inferred from randomized gene expression datasets (blue curves). d (Left) The network inferred
from the expression profiles of breast tumor samples [33] exhibits steady states with gene expression patterns similar to those
seen in the breast tumor samples in a. (Right) Simpler networks obtained via node deletion (top row), edge deletion (middle
row), or coarse graining (bottom row) recapitulate the expression patterns exhibited by the larger inferred network. Each
heatmap shows the expression levels of the same 30 nodes of interest across the different steady states. The simpler networks
were obtained by deleting nodes and edges in random order while retaining the 30 nodes of interest at each stage. While
applying the coarse-graining procedure, the 30 nodes of interest were not at any stage combined with any other network node.
In all heatmaps, different steady states are shown along the rows while the network nodes are shown along the columns of
the heatmaps. The heatmap in a was obtained by hierarchically clustering both the rows (i.e., the patient expression profiles)
and the columns (i.e., the genes of interest). The heatmaps in d were generated by hierarchically clustering the rows (i.e., the
steady states): each heatmap shows the network nodes (i.e., the columns) in the same order as in a. The names of the 30
nodes of interest are listed below the heatmaps in a and d (right).

nodes of interest as compared to the simpler networks
obtained via node or edge deletion.

The result shown in Fig. 6 indicates that the behav-
iors described in the present study do not apply just to

chosen biological networks taken from the literature or to
idealized minimally frustrated networks obtained via the-
oretical exercises. The behaviors reported here extend to
a biological network inferred from real biological data—
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here, the gene expression profiles of patient breast tumor
samples.

IV. DISCUSSION

Large, complex networks involving numerous molecu-
lar players and various regulatory relationships among
them are frequently used to describe and model cell-fate
choice in biology, especially as high-throughput assays
have become increasingly commonplace. From a dy-
namical systems perspective, such networks would be
expected to exhibit complex behaviors in very high-
dimensional spaces [10, 11]. However, in most cases,
cell-fate choice appears to be a macroscopically simple
and low-dimensional process [12], and where a given cell
falls on the spectrum between distinct cell fates can be
specified with a single order parameter. For example,
pseudotime, which is essentially a one-dimensional order
parameter, has been widely used to order cells along a
cell-fate trajectory based on their gene expression pat-
terns [35, 36]. Multiple studies have described metrics,
a single number in each case, to specify where a sample
lies on the epithelial-mesenchymal spectrum on the basis
of the gene expression in that sample [37–39]. Another
one-dimensional metric has been developed to assess the
stemness of leukemia samples [40]. In the present study,
we have shown that large, complex networks can exhibit
largely one-dimensional steady-state behavior provided
the network is minimally frustrated (as defined in [23]).
Importantly, we demonstrate that minimally frustrated
networks can be simplified— one can obtain multiple
smaller networks that can recapitulate the behavior ex-
hibited by the larger network. Since biological networks
are minimally frustrated (shown in [23]), it is possible
to develop network models that can recapitulate biolog-
ical behavior without the need to incorporate all of the
details of biological regulation.

The minimal frustration property described here is
closely related to the near-monotone nature of biologi-
cal networks characterized previously by Sontag and co-
workers [41, 42]. Monotone systems are unlikely to ex-
hibit chaotic behaviors and their response to perturba-
tions is robust and predictable. The near-monotonicity of
biological networks has been implicated in their dynami-
cally stable behavior [42]. In predicting that the dynam-
ics of minimally frustrated biological networks are largely
one-dimensional, with steady states that exhibit biologi-
cal gene expression patterns having very large basins of
attraction, the present analysis provides far more func-
tional insight than does the prediction of monotone dy-
namics. Interestingly, the mathematical framework for
characterizing the monotonicity of dynamical systems
provides a promising methodology for extending the con-
cept of minimal frustration beyond biological regulatory
networks to signaling and other biochemical networks.
This idea will be explored in a future study.

As genome-wide transcriptional profiling became com-

monplace, first via microarray analysis and then via
RNA-seq, it was recognized that gene expression datasets
are effectively low-dimensional, as evidenced by the ex-
tensive covariation in the gene expression levels [43, 44].
The observed low-dimensionality has been attributed to
the co-regulation of genes within regulatory modules,
with the number of modules in the underlying network
determining the dimensionality of the gene expression
dataset [29]. Our analysis suggests that the regulatory
network need not be modular to generate gene expres-
sion datasets that are low-dimensional: the random net-
works in our analysis can be more or less modular as
compared to the biological network with similar topo-
logical features (Fig. S1). The steady-state expression
profiles obtained from the biological networks are how-
ever always more one-dimensional as compared to ran-
dom networks (Fig. 1). While selection for networks that
exhibit low-dimensional steady-state expression patterns
automatically results in the emergence of minimally frus-
trated networks (Fig. 2 a-b), such a selection pressure
does not result in networks with higher modularity (Fig.
S4). These results clearly establish that low-dimensional
steady-state gene expression is a consequence of the min-
imal frustration property of the underlying regulatory
network, independent of the network modularity.

Sethna and co-workers have previously shown that sys-
tems biology models are sloppy— the dynamical behav-
ior of these models is dominated by a small number of
combinations of kinetic parameters [45, 46]. This prop-
erty makes dynamical models with poorly constrained
kinetic parameters sufficient for recapitulating biologi-
cal behavior and for making useful predictions. In the
present study, we have shown that regulatory network
models can recapitulate biological behavior and make
useful predictions even if the network connection matrix
J is poorly constrained: one need not have a complete
and exact description of the regulatory network underly-
ing a biological process to obtain a useful model of the
process. Interestingly, while the sloppy parameter sensi-
tivities reported by Sethna and co-workers are not lim-
ited to systems biology models and seem to extend to
multi-parameter models in general [47, 48], the behavior
reported in the present study is restricted to minimally
frustrated networks.

Just as parameter fits even to comprehensive time se-
ries data fail to yield precise estimates of the underlying
kinetic parameters due to the sloppy parameter sensi-
tivities of systems biology models [46], our analysis sug-
gests that collecting gene expression profiles at increas-
ingly higher resolution and from more and more cells [49]
is unlikely to yield more accurate biological regulatory
networks. Pratapa et al. [50], benchmarking twelve dif-
ferent network inference algorithms on a variety of sim-
ulated and experimental gene expression datasets, found
low stability in network prediction across datasets for the
same biological process, and little agreement between the
predictions by different algorithms for the same dataset.
This is unsurprising in light of our observation that the
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expression profiles generated by biological networks and
other minimally frustrated networks can be recapitulated
by various simpler networks that lack several of the nodes
and edges present in the original network (Fig. 3 and Fig.
4), as well as by lower resolution, coarse-grained networks
that approximate the activity of several nodes by a single
regulator (Fig. 5). Thus, the present study explains why
the inference of gene regulatory networks from expression
data remains a formidable challenge despite more than
20 years of research, and one that is unlikely to benefit
from higher-resolution experimental data [50]. Instead
of striving to obtain exact regulatory networks involved
in establishing cell type-specific gene expression patterns
by collecting higher-resolution data and employing ad-
vanced statistical techniques, efforts to understand cell-
fate choice must focus on building imperfect, predictive
network models with rapidly verifiable predictions, and
on carrying out experiments that are optimally designed
to constrain the network connection matrix.

Our analysis shows that in the case of biological regu-
latory networks and in the case of minimally frustrated
networks in general, steady-state expression patterns are
largely preserved under progressive coarse graining of the
network, a simplification procedure during which sets of
network nodes are combined into single regulators (Fig.
5). Such behavior was previously reported for the small
cell lung cancer (SCLC) network [16] analyzed in Fig.
1 [51]. This result provides a theoretical explanation
for the popularity, despite the increasingly high reso-
lution at which gene expression levels can be charac-
terized by modern experimental techniques [49], of ap-
proaches involving the aggregation of genes into mean-
ingful sets. One such approach is gene set enrichment
analysis [52], whose popularity has endured the transi-
tion from microarray analysis to RNA-seq as the pre-

ferred method for transcriptome characterization. Previ-
ous studies have shown that gene pathways-based metrics
that coarse grain the information contained in the expres-
sion levels of the constituent genes retain crucial infor-
mation about the biological sample [31]. Note that the
strategy to coarse grain a regulatory network described
here is fairly simplistic, and proposed only as a sample
strategy to demonstrate that the network behavior can be
preserved under such a procedure. There exist numerous
possibilities for vastly improving upon the present strat-
egy; for example, by introducing an objective function
that a network coarse-graining procedure must optimize.
Strategies for coarse graining other biological network
models including signaling networks and metabolic net-
works have been described elsewhere [53, 54] and could
motivate improvements to the strategy introduced here
for regulatory networks.

Finally, while previous studies have attributed the ro-
bustness of biological networks to the different topologi-
cal features of these networks, our analysis posits a fairly
simple explanation: the structure of biological networks
is far more complex and requires far more information
to describe as compared to the nature of the underlying
biological process. Consequently, loss of features such as
nodes and edges from the biological network description
is unlikely to significantly affect the biological behavior.
Since simple steady-state dynamics can emerge from a
complex regulatory network only if the network is min-
imally frustrated, we posit that the minimal frustration
property of biological networks is responsible for their
functional robustness.

This work was supported by the National Science
Foundation grant PHY-2019745.
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[13] S. N. Steinway, J. G. Zañudo, W. Ding, C. B. Rountree,

D. J. Feith, J. Loughran, Thomas P., and R. Albert, Can-
cer Res. 74, 5963 (2014).

[14] F. Font-Clos, S. Zapperi, and C. A. M. L. Porta, Proc.
Natl. Acad. Sci. U.S.A. 115, 5902 (2018).

[15] R. Chang, R. Shoemaker, and W. Wang, PLOS Comput.
Biol. 7, 1 (2011).

[16] A. R. Udyavar, D. J. Wooten, M. Hoeksema, M. Bansal,
A. Califano, L. Estrada, S. Schnell, J. M. Irish, P. P.
Massion, and V. Quaranta, Cancer Res, 77, 1063 (2017).

[17] S. Li, X. Zhu, B. Liu, G. Wang, and P. Ao, Oncotarget
6, 13607 (2015).
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Appendix: Methods

1. Generation of random networks

Given a specific biological network, random networks
were generated in a manner that preserved the number of
nodes and edges in the network, the number of activating
and inhibitory edges in the network, and the in-degree
and out-degree of each network node. Starting with the
biological network, we chose two edges in the network at
random and switched their target nodes. This operation
was repeated multiple times to obtain a random network
with similar topological features as the given biological
network. The behavior of many such random networks
generated by starting from a given biological network has
been analyzed in Fig. 1, Fig. S1, and Fig. S3.

2. Random circuit perturbation (RACIPE)

The random circuit perturbation (RACIPE) approach
[27] was developed to analyze the robust dynamical fea-
tures of a regulatory network when the exact kinetic pa-
rameters governing the dynamics are unavailable. Given
a network connection matrix J , this approach generates
an ensemble of kinetic parameter sets for the system of
ODEs in Eq. 2. RACIPE generates the ensemble in a sys-
tematic fashion so that the dynamical network behavior
over the ensemble can capture the full range of biological
possibilities (see [27] for details). Each parameter set in
the ensemble is comprised of 2N + 3E individual param-
eters, where N is the number of nodes in the regulatory
network and E is the number of edges in the network
(equal to the number of non-zero entries in the matrix J).
For each parameter set in the ensemble, the ODE system
in Eq. 2 is integrated numerically starting from multiple
random initial conditions. The steady states obtained
for a given parameter set in the ensemble by integration
over a long time and for multiple initial conditions can
then be analyzed to determine if the network behavior
for the given parameter set is mono-stable, bi-stable, or
multi-stable.

In the present study, to analyze the behavior of a reg-
ulatory network using the RACIPE approach, we gener-
ated an ensemble with 100 parameter sets. For each pa-
rameter set in the ensemble, we analyzed the dynamics
starting from 100 randomly generated initial conditions
(unless specified otherwise). The set of steady states thus
obtained for a given network connection matrix J was
analyzed in this study (using principal component anal-
ysis (PCA), hierarchical clustering, etc.). Note that we
consider all the unique steady states obtained for each
parameter set. Thus, say we consider an ensemble con-
sisting of 10 parameter sets. Simulating the network
dynamics for each parameter set starting from random
initial conditions, we find that 5 of the parameter sets
result in one unique steady state each, 2 result in two
steady states each, and 3 result in three steady states

each. Thus, the set of steady states analyzed will consist
of a total of (5×1) + (2×2) + (3×3) = 18 states. Before
analysis, the expression / activity level of each node in
the set of steady states was log2 transformed.

All RACIPE simulations were car-
ried out using the code available from
https://github.com/simonhb1990/RACIPE-1.0.

3. Hierarchical clustering and heatmaps

We used the MATLAB R© [55] function clustergram
[56] to analyze the underlying structure in the set of
steady states obtained for different regulatory networks.
The M × N matrix of the set of steady states obtained
for a given network (as described in Appendix Sec. 2; M
steady states for a network with N nodes) was used as
the input to the clustergram function. This function
returns a heatmap showing the expression levels of differ-
ent nodes in the various steady states. Here, the expres-
sion level is indicated by the color (see color bar for each
heatmap). In the heatmap returned by the clustergram
function, steady states with similar expression levels of
the different nodes are shown together. At the same time,
nodes with similar expression levels across the different
steady states are also shown together. We used the Eu-
clidean distance between vectors as the distance metric
for hierarchical clustering. In each figure showing one
or more heatmaps, we note in the caption if both rows
and columns of the steady-state matrix were hierarchi-
cally clustered or if clustering was only carried out along
a single dimension.

4. Evolution simulations

For the evolution simulations in Fig. 2, we first gener-
ated a population of random networks. For this, we used
the 26 node, 100 edge epithelial-mesenchymal (EMT)
network [22] as the starting point and followed the proce-
dure described in Appendix Sec. 1. Each network in the
population of random networks thus generated had the
same topological features as the EMT network. For the
simulation in Fig. 2 a-b, we started with a population of
127 random networks (chosen for faster calculations on
the computing cluster). For the simulation in Fig. 2 c-
f, we started with a population of 500 random networks.
At each time point (generation), we calculated two scores
for each network in the population:

1. Frustration score— We simulated the network dy-
namics within a Boolean modeling framework (see
[23] for details) starting from 50 random initial
conditions. For each random initial condition, we
simulated the network dynamics for 500 discrete
time steps and calculated the frustration of the end
state. Thus, we obtained 50 frustration values for
each network. The minimum of these values was
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assigned as the frustration score of the network. A
low value of the frustration score for a network will
thus indicate that the network is more likely to be
minimally frustrated.

2. PC1 score— We used RACIPE to determine the
set of steady states a network can exhibit within
our ODE-based modeling framework (see Appendix
Sec. 2). We then carried out principal component
analysis on the set of steady states obtained and de-
termined the principal component that accounts for
the greatest fraction of the variance in the steady
states (i.e., the first principal component, or PC1).
The variance accounted for by this principal com-
ponent was defined as the PC1 score of the network.
A high PC1 score for a network will thus imply that
the network steady-state dynamics are simple and
largely one-dimensional.

Depending on the selection pressure regime chosen, we
defined the top 5% of networks in a generation as the 5%
of networks with either the highest PC1 scores (when se-
lecting for networks with simple, largely one-dimensional
steady-state dynamics; Fig. 2 a-b) or the lowest frus-
tration scores (when selecting for networks with minimal
frustration; Fig. 2 c-f). These top 5% networks were then
used to populate the next generation: we randomly chose
one of the top 5% networks and mutated it with a prob-
ability 0.05; this operation (random choice followed by
mutation with a certain probability) was repeated enough
times to recover the original population size. The muta-
tion step involved randomly choosing a couple of network
edges and switching their targets. While carrying out the
simulations under no selection pressure (black trajectory
in Fig. 2 a-d), the entire population in a generation (in-
stead of the top 5% networks) was used used to populate
the next generation.

Fig. 2 a, c show the average PC1 score of the popu-
lation at different time points (generations). Fig. 2 b, d
show the average frustration score of the population at
different time points (generations).

5. Node and edge deletion

While generating simpler networks via node or edge
deletion, we defined the node and edge sensitivities as
follows:

1. Node sensitivity— Simulating the network dynam-
ics using RACIPE for 25 different parameter sets
and 5 random initial conditions for each parameter
set, the sensitivity for the node j was defined as:

Sensitivity(j) =
1

NSS

NSS∑
k=1

∑
Jij 6=0

∂logxki
∂logλij

(S1)

2. Edge sensitivity— Once again, simulating the net-
work dynamics using RACIPE for 25 different pa-
rameter sets and 5 random initial conditions for

each parameter set, the sensitivity for the edge
i← j was defined as:

Sensitivity(i← j) =
1

NSS

NSS∑
k=1

∂logxki
∂logλij

(S2)

Here, NSS is the number of steady states obtained,
xki is the expression / activity level of ith node in the
kth steady-state, and λij is a network kinetic parameter
associated with the network edge i← j (see Eq. 2).

In Fig. 3 and Fig. S5, the plot line labeled “Remove
nodes / edges in order of sensitivity” was generated by
deleting the node or edge with the lowest sensitivity iden-
tified at each step. The other plot lines in these figures
were generated by deleting a randomly chosen node or
edge at each step.

6. Network coarse graining

To simplify a given network via coarse graining, we
used RACIPE (see Appendix Sec. 2) to obtain the set
of steady states that can be exhibited by the network
(100 parameter sets, 100 random initial conditions for
each parameter set). We then used the MATLAB R© [55]
function linkage [57] to carry out agglomerative hierar-
chical clustering of the network nodes, using the Pearson
pairwise correlation calculated across the steady states as
the distance metric: distance between nodes i and j was
defined as 1 − corr(i, j). The function linkage returns
a hierarchy (i.e., a tree) representing the agglomerative
clustering of the network nodes. Pairs of nodes grouped
at the lowest level of the tree were combined together to
form a single regulator as per the following rules:

1. If any of the nodes being combined into a single
regulator has a self-edge, the new regulator formed
by combining this node with another node will also
have a self-edge.

2. If there is an edge between the nodes being com-
bined into a single regulator, the new regulator
formed by combining the nodes will have a self-
edge.

3. If there is a edge between any of the nodes com-
bined and another network node (one that is not
being combined into the same regulator; an out-
side node), there will be an edge between the new
regulator formed by combining the nodes and the
outside node.

The abovementioned rules could result in multiple
edges between pairs of nodes in the coarse-grained net-
work as well as multiple self-edges for some nodes. If all
edges between a pair (or all self-edges for a given node)
have the same sign (activating or inhibitory), we replace
the multiple edges by a single edge. If the edges have
different signs, we replace the multiple edges by a single
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edge which carries the sign of the majority of the mul-
tiple edges. If there is no such majority, we replace the
multiple edges with a single edge with a randomly chosen
sign.

7. Network inference from gene expression data

To infer from gene expression data a regulatory net-
work that can recapitulate the gene expression patterns
seen in breast tumor samples characterized by Terunuma
et al. [33] and describe the cell-fate choice between
high MYC-activation and low MYC-activation states, we
started with the gene expression profiles of the 61 tu-
mor samples from [33] and a list of 396 MYC activity-
associated genes from a separate study [58]. Next, we
obtained the transcription factors that regulate any of
the MYC activity-associated genes using the TRRUST
database [59]. The expression levels of the MYC activity-
associated genes and those of the transcription factors
involved in their regulation were used as input to the
GRNBoost2 algorithm [34]. The algorithm returned a
list of ordered node pairs with possible regulatory rela-
tionships. GRNBoost2 assigns a score to each ordered
pairwise regulatory relationship and we chose the 500
most important relationships thus scored to obtain a pre-
liminary regulatory network. Since GRNBoost2 does not
assign a sign (activating or inhibitory) to the regulatory
relationships it reports, we used the sign of the pairwise
correlation between node expression levels in the gene
expression dataset to determine the nature of the regu-

latory relationship: the relationship is considered to be
activating if the correlation between node pairs is positive
and inhibitory otherwise. Finally, we removed from the
network any nodes that do not regulate another network
node and those that are not regulated by any other net-
work node. The final regulatory network thus obtained
consisted of 138 nodes and 451 edges.

To obtain the random networks analyzed in Fig. 6, we
used randomly shuffled gene expression profiles as inputs
to the network inference procedure described above. Un-
like the random networks obtained using the procedure
described in Appendix Sec. 1, the random networks ob-
tained here do not necessarily have the same number of
nodes and edges, or the same topological features as the
inferred MYC-activation network.

8. Data availability

The networks analyzed in the present study and
those obtained during the various network simplifica-
tion procedures, i.e., via node deletion, edge deletion,
or coarse graining, are available online at https:
//github.com/st35/frustration-ODEs-modeling/
tree/main/networkfiles as .topo files. In each
tab-separated .topo file, the first column indicates the
source node, the second column indicates the target
node, and the third column indicates the edge type (1
for an activating edge, 2 for an inhibitory edge). In the
.topo files for coarse-grained networks, the names of
regulators combined into a single regulator are separated
by two consecutive colons (::).
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Supplementary Figures
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FIG. S1. Directed Louvain modularity [26] of the different biological networks taken from the literature (red dots) and of
random networks (blue dots) with similar topological features (generated using the approach in Appendix Sec. 1). Clearly, the
random networks generated with either the epithelial-mesenchymal (EMT) network [22] or the small cell lung cancer (SCLC)
network [16] as the starting point can be more or less modular as compared to the corresponding biological network. The
pluripotency network is more modular than the random networks generated. Modularity values shown here were calculated
using the code available at https://github.com/nicolasdugue/DirectedLouvain.
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FIG. S2. Percentage of variance in the steady states explained by different principal components for the epithelial-mesenchymal
transition (EMT) network [22] (a), the small cell lung cancer (SCLC) network [16] (b), and the pluripotency network [15] (c).
Note that the principal components were sorted in decreasing order of the percentage variance explained. Thus, in each case,
the first principal component is the one that explains the greatest percentage of the variance in steady states. The sets of
steady states for biological and random networks were obtained using the approach described in Appendix Sec. 2.
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FIG. S4. Directed Louvain modularity [26] of the networks in the population at different time points (generations), shown for
the evolution simulation in Fig. 2 a-b, i.e., under selection for networks with largely one-dimensional steady-state dynamics.
Each blue dot shows the modularity of a single network in the population at a given time point. The red dots (and curve)
show the modularity averaged over the networks in the population at a given time point. Clearly, while selecting for networks
for which most of the steady-state variance can be explained by a single principal component, there is no automatic selection
for networks with higher (or lower) modularity. Modularity values shown here were calculated using the code available at
https://github.com/nicolasdugue/DirectedLouvain.
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FIG. S5. Same analysis as the one in Fig. 3 a-d, shown here for the small cell lung cancer (SCLC) network [16] (top row) and
for the pluripotency network [15] (bottom row).
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FIG. S6. Same as Fig. 3 c-d, showing quantitative comparison between the first principal component (PC1) distribution
obtained in the case of the 26 node, 100 edge minimally frustrated network (top-left plot in a and b) and the distribution for
networks obtained by deleting different fractions of network nodes and edges (rest of the plots in a and b). KL divergence:
Kullback-Leibler divergence; the KS (Kolmogorov-Smirnov) test p-value indicates the probability that the steady-state PC1
values for the original 26 node, 100 edge network and those for the simpler network (obtained by deleting a certain fraction of
nodes or edges from the original network) are drawn from the same distribution.
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FIG. S7. KS (Kolmogorov-Smirnov) test p-values for the comparison between the distribution of the first principal component
(PC1) obtained after gene knockouts and the PC1 distribution in the control case (no gene knockout). We analyzed the gene
knockout behavior for the 26 node, 100 edge EMT network [22] and for the simpler networks obtained via node deletion (panel
a) or via edge deletion (panel b). These distributions are shown in Fig. 4 b (corresponding to panel a here) and Fig. 4 d
(corresponding to panel b here). In both a and b, the blue dashed line indicates a p-value threshold of 0.05 while the red
dashed line indicates a p-value threshold of 0.001. The KS test p-values here indicate the probabilities that the PC1 values in
the control cases and those in the gene knockout cases are drawn from the same distribution.
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FIG. S8. a Change in the percentage of the steady-state variance explained by the first principal component (PC1) as the 26
node, 100 edge epithelial-mesenchymal (EMT) network [22] is progressively coarse-grained. b The 26 node, 100 edge epithelial-
mesenchymal (EMT) network [22]. c-l Networks obtained at different steps when the coarse-graining procedure (described in
Appendix Sec. 6) is applied to the EMT network. For the networks in panels i-l, the nodes that have been clustered together
into single regulators are also shown. Note that the coarse-graining procedure reduces the large and complex 26 node, 100 edge
EMT network to a simple self-activating toggle switch between two sets of regulators: one consisting of well-known epithelial
state factors (cluster C1 in panel l) and another consisting of well-known mesenchymal state factors (cluster C0 in panel l).
This is consistent with previous analysis showing that a self-activating toggle switch can adequately model cell-fate choice
between epithelial and mesenchymal states [60].
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FIG. S11. (Left) Steady-state expression patterns for the 26 node, 100 edge minimally frustrated network obtained via the
evolution simulation in Fig. 2 c-f (selection for networks with minimal frustration). (Right) Simpler networks obtained via
node deletion (top row), edge deletion (middle row), or coarse graining (bottom row) recapitulate the expression patterns
exhibited by the larger evolved minimally frustrated network. Each heatmap shows the expression levels of the same eight
nodes (randomly designated as nodes of interest) across the different steady states obtained for each network. Expression levels
are indicated by the colors (see the color bar on the left). The simpler networks were obtained by deleting nodes and edges
in random order while retaining the eight nodes of interest at each stage. While applying the coarse-graining procedure, the
eight nodes of interest were not at any stage combined with any other network node. In all heatmaps, different steady states
are shown along the rows while the network nodes are shown along the columns of the heatmaps. The heatmaps on the right
were generated by hierarchically clustering the rows (i.e., the steady states): each heatmap shows the network nodes (i.e., the
columns) in the same order as in the heatmap on the left (which was obtained by hierarchically clustering both the rows and
the columns).
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