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Abstract

The mutations introduced into the ancestors of modern humans from interbreeding with

Neanderthals have been suggested to contribute an unexpected extent to complex human

traits. However, testing this hypothesis has been challenging due to the idiosyncratic population

genetic properties of introgressed mutations. We developed rigorous methods to assess the

contribution of introgressed Neanderthal mutations to heritable trait variation relative to that of

modern human variants. We applied these methods to analyze 235,592 introgressed

Neanderthal mutations and 96 distinct phenotypes measured in about 300,000 unrelated white

British individuals in the UK Biobank. Introgressed Neanderthal mutations have a significant

contribution to trait variation consistent with the polygenic architecture of complex phenotypes

(contributing 0.1% of heritable variation averaged across phenotypes; p = 9.59 10-9). However,×

the contribution of introgressed mutations tends to be significantly depleted relative to modern

human mutations matched for allele frequency and linkage disequilibrium (about 57% depletion

on average), consistent with purifying selection on introgressed mutations. Different from

previous studies (McArthur 2021), we find no evidence for elevated heritability across the

phenotypes examined. We identified 348 independent significant associations of introgressed

Neanderthal mutations with 64 phenotypes (p < 1 10-10). Previous work (Skov 2021) has×

suggested that a majority of such associations are likely driven by statistical association with

nearby modern human variants that are the true causal variants. We therefore developed a

customized statistical fine-mapping methodology for introgressed mutations that led us to

identify 112 regions (at a false discovery proportion of 16%) across 47 phenotypes containing

4,303 unique genetic variants where introgressed mutations are highly likely to have a

phenotypic effect. Examination of these mutations reveal their substantial impact on genes that

are important for the immune system, development, and metabolism. Our results provide the

first rigorous basis for understanding how Neanderthal introgression modulates complex trait

variation in present-day humans.

2

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495223doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495223
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

Genomic analyses have revealed that present-day non-African human populations inherit 1-4%

of their genetic ancestry from introgression with Neanderthals (Green 2010, Prufer 2014). This

introgression event introduced uniquely Neanderthal variants into the ancestral out-of-Africa

human gene pool, which may have helped this bottleneck population survive the new

environments they encountered (Mendez 2012, Abi-Rached 2011, Sankararaman 2014, Vernot

2014, Racimo 2015, Gittelman 2016). On the other hand, the bulk of Neanderthal variants

appear to have been deleterious in the modern human genetic background leading to a

reduction in Neanderthal ancestry in conserved genomic regions (Sankararaman 2014, Vernot

2014, Harris 2016, Juric 2016, Petr 2019). Systematically studying these variants can provide

insights into the biological differences between Neanderthals and modern humans and the

evolution of human phenotypes in the 50,000 years since introgression.

In principle, studying Neanderthal-derived mutations in large cohorts of individuals measured for

diverse phenotypes can help understand the biological impact of Neanderthal introgression.

Previously, Dannemann and Kelso (Dannemann 2017) showed that some Neanderthal

introgressed variants are significantly associated with traits such as skin tone, hair color, and

height based on Genome-Wide Association Studies (GWAS) in British samples. However, using

data from Iceland, Skov et al. (Skov 2020) found that most of the significantly associated

Neanderthal introgressed SNPs are in the proximity of strongly associated non-archaic variants.

They suggested that these associations at Neanderthal introgressed SNPs were driven by the

associations at linked non-archaic variants, indicating a limited contribution to modern human

phenotypes from Neanderthal introgression. In contrast to these attempts to associate individual

introgressed variants with a trait, studies have attempted to measure the aggregate contribution

of introgressed Neanderthal SNPs to trait variation (Simonti 2016, McArthur 2021). A recent

study by McArthur and colleagues (McArthur 2021) estimated the proportion of heritable

variation that can be attributed to introgressed variants though their approach is restricted to

common variants (minor allele frequency > 5%)  that represent a minority of introgressed

variants. Despite these attempts, assessing the contribution of introgressed Neanderthal

variants towards specific phenotypes remains challenging. The first challenge is that variants

introgressed from Neanderthals are rare on average (due to the low proportion of Neanderthal
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ancestry in present-day genomes). The second challenge arises from the unique evolutionary

history of introgressed Neanderthal variants resulting in distinct population genetic properties at

these variants which can, in turn, confound attempts to characterize their effects. As a result,

attempts to characterize the systematic impact of introgressed variants on complex phenotypes

need to be rigorously assessed.

To enable analyses of genome-wide introgressed Neanderthal variants in large sample sizes,

we selected and added Single Nucleotide Polymorphism (SNPs) that tag introgressed

Neanderthal variants to the UKBiobank Axiom Array that was used to genotype the great

majority of the approximately 500,000 individuals in the UK Biobank (UKBB) (Bycroft 2018) . We

used a previously compiled map of Neanderthal haplotypes in the 1000 Genomes European

populations (Sankararaman 2014) to identify introgressed SNPs that tag these haplotypes. After

removing SNPs that are well-tagged by those previously present on the UK Biobank (UKBB)

array, we used a greedy algorithm to select 6,027 SNPs that tag the remaining set of

introgressed SNPs at which were then added to the UKBB genotyping array to better𝑟2 > 0. 8

tag Neanderthal ancestry. These SNPs allow variants of Neanderthal ancestry to be confidently

imputed and allow us to identify a list of 235,592 mutations that are likely to be

Neanderthal-derived (termed Neanderthal Informative Mutations or NIMs) out of a total of

7,774,235 QC-ed SNPs in UKBB (see Methods; Note S1).

The goals of our study are threefold: 1) to estimate the contribution of NIMs to phenotypic

variation in modern humans, 2) to test the null hypothesis that a NIM has the same contribution

to phenotypic variation as a non-introgressed modern human SNP, and 3) to pinpoint regions of

the genome at which NIMs are highly likely to modulate phenotypic variation. We develop

rigorous methodology for each of these goals which we validate in simulations. We then applied

these methods to 96 distinct phenotypes measured in about 300,000 unrelated white British

individuals in UKBB.
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Results

The contribution of Neanderthal introgressed variants to trait
heritability
To understand the contribution of Neanderthal introgressed variants to trait variation, we aim to

estimate the proportion of phenotypic variance attributed to NIMs (NIM heritability) and to test

the null hypothesis that per-NIM heritability is the same as the heritability of a non-introgressed

modern human (MH) SNP. We first annotated each of the 7,774,235 QC-ed SNPs in UKBB as

either a NIM or a MH SNP (see Methods). NIMs include SNPs created by mutations which

likely originated in the Neanderthal lineage after the human-Neanderthal split. SNPs that are not

defined as NIMs are annotated as MH SNPs which likely originated in the modern human

lineage or the human-Neanderthal common ancestor.

To estimate NIM heritability, we used a recently proposed method (RHE-mc) that can partition

the heritability of a phenotype measured in large samples across various genomic annotations

(Pazokitoroudi 2020). We applied RHE-mc with genomic annotations that correspond to the

ancestry of each SNP (NIM vs MH) to estimate NIM heritability ( ). We also attempted toℎ2
𝑁𝐼𝑀

estimate whether per-NIM heritability is the same as the per-SNP heritability of MH SNPs ( ).∆
ℎ2

A positive (negative) value of indicates that, on average, a NIM makes a larger (smaller)∆
ℎ2

contribution to phenotypic variation relative to a MH SNP.

To assess the accuracy of this approach, we performed simulations where NIMs are neither

enriched nor depleted in heritability (true ). Following previous studies of the genetic∆
ℎ2 = 0

architecture of complex traits (Evans 2018, Gazal 2018), we simulated phenotypes (across

291,273 unrelated white British individuals and 7,774,235 SNPs) with different architectures

where we varied heritability, polygenicity, and how the effect size at a SNP is coupled to its

population genetic properties (the minor allele frequency or MAF at the SNP and the linkage

disequilibrium or LD around a SNP). We explored different forms of MAF-LD coupling where

BASELINE assumes that SNPs with phenotypic effects are chosen randomly, RARE

(COMMON) assumes that rare (common) variants are enriched for phenotypic effects, and
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HIGH (LOW) assumes that SNPs with high (low) levels of LD (as measured by the LD score

(Finucane 2015)) are enriched for phenotypic effects (see Methods). Estimates of andℎ
𝑁𝐼𝑀
2 ∆

ℎ2

tend to be miscalibrated (Fig. 1ab). The miscalibration is particularly severe when testing so∆
ℎ2

that a test of the null hypothesis has a false positive rate of 0.55 across all simulations (at a

p-value threshold of 0.05).

To understand these observations, we compared the Minor Allele Frequencies (MAF) and LD

scores at NIMs to MH SNPs. We observe that NIMs tend to have lower MAF (Fig.2a) and higher

LD scores compared to MH SNPs (Fig. 2b) (the average MAF of NIMs and MH SNPs are 3.9%

and 9.9%, respectively while their average LD scores are 170.6 and 64.9). Among the QC-ed

SNPs, 76.9% of NIMs have MAF > 1%, and 27.7% have MAF > 5%, in contrast to 61.6% and

41.6% of MH SNPs. Distinct from MH SNPs, the MAF and LD score of NIMs tend not to

increase with each other (Fig. 2cd).

To account for the differences in the MAF and LD scores across NIMs and MH SNPs, we

applied RHE-mc with annotations corresponding to the MAF and the LD score at each SNP (in

addition to the ancestry annotation that classifies SNPs as NIM vs. MH) to estimate NIM

heritability ( ) and to test whether per-NIM heritability is the same as the per-SNP heritabilityℎ2
𝑁𝐼𝑀

of MH SNPs i.e., (see Methods, Note S4). Our simulations show that RHE-mc with∆
ℎ2 = 0

SNPs assigned to annotations that account for both MAF and LD (in addition to the ancestry

annotation that classifies SNPs as NIM vs. MH) is accurate both in the estimates of (Fig.ℎ
𝑁𝐼𝑀
2

1a) and in testing the null hypothesis that (the false positive rate of a test of = 0  is∆
ℎ2 = 0 ∆

ℎ2

0.017 at a p-value threshold of 0.05; Fig. 1b). On the other hand, not accounting for either MAF

or LD leads to poor calibration (Fig. 1; we observe qualitatively similar results when estimating

genome-wide SNP heritability; Fig S1).

We then applied RHE-mc with ancestry+MAF+LD annotations to analyze a total of 96 UKBB

phenotypes that span 14 broad categories (Data S2). In all our analyses, we include the top five

PCs estimated from NIMs (NIM PCs) as covariates in addition to the top twenty genetic PCs
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estimated from common SNPs, sex, and age (see Methods). The inclusion of NIM PCs is

intended to account for stratification at NIMs that may not be adequately corrected by including

genotypic PCs estimated from common SNPs (we also report concordant results from our

analyses when excluding NIM PCs; Note S3 and Fig. S3-S4).

We first examined NIM heritability to find six phenotypes with significant NIM heritability (Z-score

): body fat percentage, trunk fat percentage, whole body fat mass, overall(ℎ2
𝑁𝐼𝑀

= 0) > 3

health rating, gamma glutamyltransferase (a measure of liver function), and forced vital capacity

(FVC) (Fig. 3ac). Meta-analyzing within nine categories that contain at least four phenotypes,

we find that is significantly larger than zero for anthropometry, blood biochemistry,𝑚𝑒𝑡𝑎 − ℎ2
𝑁𝐼𝑀

bone densitometry, kidney, liver, and lung but not for blood pressure, eye, lipid metabolism (p <

0.05 accounting for the number of hypotheses tested).  Meta-analyzing across all phenotypes

with low correlation, we obtain overall NIM heritability estimates ( ) = 0.1%𝑚𝑒𝑡𝑎 − ℎ2
𝑁𝐼𝑀

(one-sided p= 9.59 10-9). The estimates of NIM heritability are modest as would be expected×

from traits that are highly polygenic and given that NIMs account for a small percentage of all

SNPs in the genome (see Methods).

We next tested whether the average heritability at a NIM is larger or smaller compared to a MH

SNP ( ). We find seventeen phenotypes with significant evidence of depleted NIM∆
ℎ2 = 0

heritability that include standing height, body mass index, and HDL cholesterol (Z-score < -3;

Fig. 3bd). Five phenotypic categories show significant NIM heritability depletion (anthropometry,

blood biochemistry, blood pressure, lipid metabolism, lung) in meta-analysis. Meta-analyzing

across phenotypes, we find a significant depletion in NIM heritability ( = -1.4 10-3,𝑚𝑒𝑡𝑎 − ∆
ℎ2 ×

p= 2.55 10-11). On average, we find that heritability at NIMs is reduced by about 57% relative to×

a modern human variant with matched MAF and LD characteristics. In contrast to the evidence

for depletion in NIM heritability, we find no evidence for traits with elevated NIM heritability

across the phenotypes analyzed. Despite the observation that NIMs have been primarily under

purifying selection for thousands of generations (Harris and Nielsen 2016, Petr 2019), they still

make a substantial contribution to phenotypic variation in present-day humans.
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Finally, we investigated the impact of controlling for MAF and LD on our findings in UKBB.

Analyses that do not control for MAF and LD tend to broadly correlate with our results that

control for both (Pearson’s r = 0.96, 0.68, and 0.65 and p < 10-12 among , , and ).ℎ2 ℎ2
𝑁𝐼𝑀

∆
ℎ2

However, these analyses underestimate both heritability (Fig. 4a) and NIM heritability (Fig. 4b),

resulting in apparent NIM heritability depletion (Z-score < -3) in 83 of the 96 phenotypes (Fig.
4c). While yielding qualitatively similar conclusions about the depletion in heritability at NIMs

relative to MH SNPs, prior knowledge that per SNP heritability of complex traits can be MAF and

LD dependent (Evans 2018) coupled with our extensive simulations lead us to conclude that

controlling for MAF and LD lead to more accurate results.

Identifying genomic regions at which introgressed variants influence

phenotypes

Having documented an overall contribution of NIMs to phenotypic variation, we focus on

identifying individual introgressed variants that modulate variation in complex traits. We first

tested individual NIMs for association with each of 96 phenotypes (controlling for age, sex,

twenty genetic PCs (estimated from common SNPs), and five NIM PCs (that account for

potential stratification that is unique to NIMs). We obtained a total of 13,075 significant

NIM-phenotype associations in 64 phenotypes with 8,018 unique NIMs (p < 10-10 that accounts

for the number of SNPs and phenotypes tested)  from which we obtain 348 significant

NIM-phenotype associations with 294 unique NIMs after clumping associated NIMs by LD (see

Methods).

A limitation of the association testing approach is the possibility that a NIM might appear to be

associated with a phenotype simply due to being in LD with a non-introgressed variant (Skov

2020). We formally assessed this approach in simulations of phenotypes with diverse genetic

architectures described previously where the identities of causal SNPs are known. A NIM that

was found to be associated with a phenotype (p < 10-10) was declared a true positive if the 200

kb region surrounding the associated NIM contains any NIM with a non-zero effect on the

phenotype and a false positive otherwise. Averaging across all genetic architectures, the False

Discovery Proportion (FDP; the fraction of false positives among the significant NIMs) of the

association testing approach is around 30% (Fig. 5b). Hence, finding NIMs that are significantly
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associated with a phenotype does not confidently localize regions at which introgressed variants

affect phenotypes.

To improve our ability to identify NIMs that truly modulate phenotype, we designed a customized

pipeline that combines association testing with a fine-mapping approach that integrates over the

uncertainty in the identities of causal SNPs to identify sets of NIMs that plausibly explain the

association signals at a region (Fig. 5a). Our pipeline starts with a subset of significantly

associated NIMs that are relatively independent (p < 10-10) followed by the application of a

statistical fine-mapping method (SuSiE) within the 200kb window around each NIM signal

(Wang 2020) and additional post-processing to obtain a set of NIMs that have an increased

probability of being causal for a trait. We term the NIMs within this set credible NIMs while the

shortest region that contains all credible NIMs in a credible set is termed the credible NIM
region (see Methods; Fig. 5a).

We employed the same simulations as previously described to evaluate our fine-mapping

approach. The fine mapping approach yields a reduction in the FDP relative to association

mapping (FDP of 15.6% on average; Fig. 5b) while attributing the causal effect to a few dozen

NIMs within the credible NIM set (mean: 79, median: 54 NIMs across all simulations). Applying

our pipeline to the set of 96 UKBB phenotypes, we identified a total of 112 credible NIM regions

containing 4,303 unique credible NIMs across 47 phenotypes (Fig. 6a). The median length of

credible NIM regions, 65.7kb (95% CI: [4.41kb, 469.3 kb]) is close to the expected length of

Neanderthal introgressed segments (Skov 2020) suggesting that the resolution of our approach

is that of an introgressed LD block (Fig. 5c). While fine mapping generally attributes the causal

signal to a subset of the tested NIMs (mean: 55.8, median: 37 NIMs across phenotypes), the

degree of this reduction varies across regions likely reflecting differences in the LD among NIMs

(Fig. 5d). We do not detect any credible NIM in 49 out of 96 phenotypes potentially due to the

limited power of our procedure that aims to control the FDR (Fig. 5e). The sensitivity of our

method is affected by both total heritability (Fig. 5f, Pearson’s r = 0.49 , p = 3.3 10-7)  and NIM×

heritability (Fig. 5g, Pearson’s r = 0.36, p = 3.3 10-4). A linear model that uses both total×

heritability and NIM heritability to predict the number of credible sets yields r2 = 0.29, p = 1.3×

10-5 and 0.015, respectively), while linear models with only total heritability or only NIM

heritability result in statistically lower r2 (0.24 and 0.13, respectively).
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Examination of the functional impact of credible NIMs

We annotated all 4,303 unique credible NIMs using SnpEff (Cingolani 2012) to identify a total of

26 NIMs with high (e.g., start codon loss, stop codon gain) or moderate impact (nonsynonymous

variants) on genes (Fig. 6b, SI Data S7). We identified two credible NIMs, rs9427397

(1:161,476,204 C>T) and rs60542959 (12:56,660,905 G>T), that have a high impact on protein

sequences. The 1:161,476,204 C>T mutation, a NIM that is associated with increased gamma

glutamyltransferase and aspartate aminotransferase (enzymes associated with liver function)

and decreased total protein levels in blood, introduces a premature stop codon in the FCGR2A

gene (Fig. S7). FCGR2A codes for a receptor in many immune cells, such as macrophages and

neutrophils, and is involved in the process of phagocytosis and clearing of immune complexes.

This NIM is in a region that contains SNPs shown in several GWAS  linked to rheumatoid

arthritis (Okada 2014, Laufer 2019). The other high impact mutation, 12:56,660,905 G>T

(rs60542959), results in the loss of the start codon in COQ10A, and this SNP is a credible NIM

for both mean platelet volume and standing height (Fig. 6c) . COQ10 genes (A and B) are

important in respiratory chain reactions. Deficiencies of CoQ10 (MIM 607426) have been

associated with encephalomyopathy, infantile multisystemic disease; cerebellar ataxia, and pure

myopathy (Quinzii 2009). The start codon in COQ10A is conserved among mammals with its

loss having a potentially significant effect on COQ10A expression in immune cells (Kubota

2020).

In addition, we detect 24 credible NIMs that function as missense mutations in 19 genes. Seven

out of the 19 genes are known to have immune related functions (FCGR2A, PCDHG (A8, A9,

B7, C4), STAT2, and IKZF3).  The NIM in STAT2 (rs2066807, 12:56,740,682 C>G) was the first

adaptive introgression locus to be identified (Mendez 2012). The STAT2 introgressed variant

segregates at 0.066 frequency in the UKBB white British and leads to an I594M amino acid

change in the corresponding protein. STAT2 gene and COQ10A are neighboring genes thereby

providing an example of an introgressed region that potentially impacts function at multiple

genes (Fig. 6c).

At least seven of the 12 genes not known to be immune related have other important functions

documented in the literature, such as DNA replication/damage (FANCA, CCDC8), transition in

meiosis (FBXO34), detoxification/metabolism (AKR1C4), and neurological/developmental

(ZNF778, ANKRD11, TBC1D32) functions. rs17134592 (10:5260682 C>G) is a

non-synonymous mutation in AKR1C4, a gene that is involved in the metabolism of
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ketone-containing steroids in the liver. The NIM is associated with increased serum bilirubin

levels (p = 3 10-11) (Fig. S7a) while also being associated with increased levels of alkaline×

phosphatase, insulin-like growth factor 1 (IGF1) and decreased apolipoprotein A, sex hormone

binding globulin (SHBG) and triglyceride levels.  rs17134592 has been identified to be a splicing

QTL that is active in the liver and testis in the GTeX data (Fig. S7b). This NIM alters Leucine to

Valine (L311V) which, in combination with the tightly-linked non-synonymous variant rs3829125

(S145C) in the same gene, have been shown to confer a three-to-five-fold reduction in catalytic

activity of the corresponding enzyme (3-alpha hydroxysteroid dehydrogenase) in human liver

(Kume 1999). Interestingly, the single amino acid change S145C did not significantly alter

enzyme activity suggesting the importance of the amino acid residue at position 311 for the

substrate binding of the enzyme.

Discussion

Our analysis demonstrates the complex influence of Neanderthal introgression on complex

human phenotypes. The assessment of the overall contribution of introgressed Neanderthal

alleles to phenotypic variation indicates a pattern where, taken as a group, these alleles tend to

be depleted in their impact on phenotypic variation (with about a third of the studied phenotypes

showing evidence of depletion). This pattern is consistent with these alleles having entered the

modern human population roughly 50,000 years ago and being subject to purifying selection.

Selection to purify deleterious introgressed variants, coupled with stabilizing selection on human

complex traits, could result in introgressed heritability depletion such that the remaining

introgressed variants in present-day humans tend to have smaller phenotypic effects compared

to other modern human variants.

Nevertheless, we document a modest but significant contribution of introgressed alleles to

variation in a number of phenotypes. In contrast to the previous heritability analyses by

McArthur et al. (McArthur 2020), we did not find any NIM heritability enrichment in the 96

phenotypes. This discrepancy could be due to the different methods and NIMs used in the two

studies. McArthur et al. estimate the heritability associated with common NIMs (NIMs with MAF

> 5%) using stratified LD Score Regression (S-LDSR) with LD scores computed from 1KG (see

Note S2). Because more than 70% of NIMs have MAF < 5%, this approach may not extrapolate

to understand the heritability from all NIMs. An additional potential concern with analyses of

NIMs is the possibility of confounding due to population structure among these introgressed
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variants. Typical approaches to account for population stratification based on the inclusion of

principal components (PCs) may not be adequate as these PCs are computed from common

SNPs on the UK Biobank genotyping array and may not account for stratification at the NIMs

that tend to be rare on average (Mathieson 2012). Since our analyses work directly on individual

genotype data, we are able to control for stratification specific to NIMs by including PCs

estimated from NIMs in addition to PCs estimated from common SNPs. Our analyses are

broadly consistent when including NIM PCs than without (see Note S3).

Beyond characterizing aggregate effects of NIMs, we also attempted to identify individual NIMs

that modulate phenotypic variation. A challenge in identifying such variants comes from the fact

that NIMs tend to have lower MAF and higher LD compared to MH SNPs. Lower MAF tends to

limit the power to detect a genetic effect while higher LD makes it harder to identify the causal

variant. These challenges led us to design a fine mapping strategy for prioritizing causal NIMs

that enables the identification of sets of NIMs that can credibly exert influence on specific

phenotypes. Using this approach, we identified credible NIMs in a number of functionally

important genes, including a premature stop codon in the FCGR2A gene, and a start codon loss

in COQ10A. In addition, mutations in STAT2 are found to be highly pleiotropic. As many of the

genes are relevant to immune, metabolic, and developmental disorders, with functions relevant

to the transition to new environments, the credible NIMs reported in our study offer a starting

point for detailed investigation of the biological effects of introgressed variants. Greenbaum et

al. hypothesized that introgression-based transmission of alleles related to the immune system

could have helped human out-of-Africa expansion in the presence of new pathogens

(Greenbaum 2019). While our results do not directly support this hypothesis, they pinpoint

introgressed alleles in immune-related genes that could have and continue to modulate human

phenotypes. Although we identified a number of likely causal NIMs in fine mapping, our strategy

likely only picks up a small fraction of the functional NIMs suggesting that additional NIMs that

are causal for specific traits remain to be discovered.

Our study has several limitations due to the current availability of data and statistical methods.

First, all of our analyses focus on the white British individuals in the UKBB due to the large

sample size that permits the interrogation of low-frequency NIMs and our choice of NIMs based

on introgressed mutations segregating in European populations. Whole-genome sequencing

data in diverse populations can potentially elucidate the impact of Neanderthal introgression in

other out-of-African populations that harbor substantial Neanderthal ancestry. Alternatively,
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designing arrays that have SNPs informative of archaic ancestry followed by genotype

imputation could be a fruitful strategy to leverage large Biobanks to systematically explore the

contribution of archaic introgression. Second, while our approach to localize credible NIMs

yields a list of NIMs that are highly likely to modulate variation in a trait, our method only

identifies a subset of causal variants. The design of fine mapping methods to study introgressed

mutations while taking into account the ancestry (as well as better incorporating other measures

such as posterior inclusion probabilities) is an important direction for future work. More broadly,

the unique evolutionary history of introgressed variants motivate the development of methods

tailored to their population genetic properties. While our results suggest potential evolutionary

models that explain our observations of depleted heritability at introgressed alleles, evolutionary

models that can comprehensively explain our observations are lacking. A major challenge is the

large space of potential models that need to be explored. Nevertheless, proposing and

validating such models will be an important direction for future work.
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Figures

Figure 1. Benchmarking approaches for estimating the heritability components of
Neanderthal introgression. We group simulations by relationships between minor allele

frequency (MAF) and local linkage disequilibrium at a SNP on effect size (MAF-LD coupling):

BASELINE, COMMON, RARE, HIGH, LOW. In each group, we perform 12 simulations with

varying polygenicity and heritability (see Methods). Additionally, we combine results from all

simulations together as ALL. We plot the distributions of two Z-scores (y-axis), one on each row:

(a) Z-score ( = ) tests whether the estimated and true NIM heritability are equal, andℎ2
𝑁𝐼𝑀

  ℎ
𝑁𝐼𝑀
2

(b) Z-score ( ) tests whether the estimated per-NIM heritability is the same as the∆
ℎ2 = 0

per-SNP heritability of MH SNPs (see Methods). In each panel, we present results from a

variance components analysis method (RHE-mc) using four different input annotations: ancestry

only where ancestry is either NIM or MH, ancestry + MAF, ancestry + LD, ancestry + MAF + LD.

A calibrated method is expected to have Z-scores distributed around zero and within 2±

(shaded region). Among all tested approaches, only RHE-mc with ancestry + MAF + LD

annotations is calibrated across simulations.
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Figure 2. Distributions of minor allele frequency (MAF) and LD-score in NIMs and MH
SNPs. Empirical cumulative distribution functions of (a) MAF and (b) LD scores of NIMs (in solid

green line) and MH SNPs (in pink dashed line) estimated in the UK Biobank (UKBB). (c)
Boxplots of MAFs of NIMs (on the left filled in green) and MH SNPs (on the right side filled in

pink) while controlling for LD score (UKBB). (d) Boxplots of LD score (UKBB) of NIMs and MH

SNPs while controlling for MAF. NIMs and MH SNPs are divided by the 20, 40, 60, 80, 100 (c)
LD score (UKBB) percentile or MAF percentile (d) based on all QC-ed SNPs (7,774,235

imputed SNPs with MAF > 0.001). The lower and upper edges of a box represent the first and

third quartile (qu1 and qu3), respectively; the horizontal red line inside the box indicates median

(md); the whiskers extend to the most extreme values inside inner fences, md ± 1.5 (qu3–qu1).
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Figure 3. NIM heritability in UKBB phenotypes. (a) Estimates of NIM heritability ( ) andℎ2
𝑁𝐼𝑀

(c) the Z-score of (testing the hypothesis that NIM heritability is positive) for each UKBBℎ2
𝑁𝐼𝑀

phenotype. Analogously, (b) estimates of and Z-score (d) of (testing the hypothesis that∆
ℎ2 ∆

ℎ2

per-NIM heritability is equal to per-SNP heritability at MH SNPs after controlling for MAF and

LD).  Phenotypic categories are shown in alphabetical order and listed on the top of panel (a) in

the same color and alphabetical order (from top to bottom, and left to right) as they are in the
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figure. The estimate for each phenotype is shown as one colored dot, on the x-axis based on its

phenotypic category, and on the y-axes based on its Z-score ( ) and Z-score ( ),ℎ2
𝑁𝐼𝑀

= 0 ∆
ℎ2 = 0

for panels (c) and (d) respectively. For each phenotypic category with at least four phenotypes,

their Z-scores from random effect meta-analysis are plotted with the flat colored lines (see

Methods). The color shades cover Z-scores around zero and within 2.±
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Figure 4. Comparing heritability analyses with and without controlling for MAF and LD in
UKBB phenotypes. Each phenotype is shown with one dot colored by the phenotypic category

it belongs to, on the y-axis based on its point estimate and standard error (estimated by

RHE-mc with Ancestry annotation) and on the x-axis based on its point estimate and standard

error (estimated by RHE-mc with ancestry + MAF + LD annotation). Estimates shown are (a)

total heritability , (b) NIM heritability , and (c) the difference between per-NIM heritabilityℎ2 ℎ2
𝑁𝐼𝑀

and matched MH SNPs heritability . Not controlling for MAF and LD leads to underestimation∆
ℎ2

of NIM heritability, which leads to false positives when testing whether heritability at a NIM is

elevated or depleted relative to a MH SNP.
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Figure 5. Fine mapping of NIMs in simulations and the UKBB. (a) Fine mapping pipeline to

identify NIMs that aims to identify genomic regions at which NIMs are likely to modulate

phenotypic variation (credible NIM regions). (b) Comparison of approaches for identifying

credible NIM regions. For each simulation, False Discovery Proportion (FDP) is computed for

association testing compared to our pipeline (combining association testing and fine-mapping).

The distributions of the FDP are shown across genetic architectures (summarized across

groupings of coupling of effect size, MAF and LD) and summarized across architectures (ALL).

Our approach to identifying credible NIMs decreases FDP in all studied architectures (the LOW

LD setting has a median and quartiles of zero across replicates). (c) The distribution of the
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length of credible NIM regions across 96 UKBB phenotypes. (d) Distribution of the ratio between

the number of credible NIMs and number of tested NIMs (in the example of panel (a), the

number of tested NIMs is the union of NIMs in input to the fine-mapping software (SuSiE) 1 and

2). This figure shows that our fine mapping approach is effective in prioritizing NIMs that affect

phenotype. (e) The distribution of the number of credible NIM regions among phenotypes. The

number of credible NIM regions is positively correlated with (f) heritability (g) NIM heritability.
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Figure 6. Analysis of credible NIMs. (a) Distribution of credible NIMs across the genome (b)
High and moderate impact credible NIMs annotated by SnpEff software (Cingolani 2012). A total

of 26 credible NIMs have high (marked in bold) or moderate impact effects on nearby genes

(chromosome number and hg19 coordinates). The effect of the SNP and the gene name are

displayed. This plot shows significant associations of these NIMs with specific phenotypes (color

denotes the phenotype category). (c) Plot of 300kb region surrounding rs60542959 (marked in

black diamond; hg19 coordinates), a credible NIM for standing height that results in loss of the

start codon in COQ10A.  The plot displays other significantly associated NIMs in the region

along with their LD (r2) to rs60542969 in 1000 Genomes Europeans (Boughton 2021).
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Methods

Identification and design of SNPs that tag Neanderthal ancestry on the UK Biobank
Axiom array
We chose a subset of SNPs to add to the UKBiobank Axiom array that would tag introgressed

Neanderthal alleles segregating in present-day European populations.

We began with a list of 95,462 SNPs that are likely to be Neanderthal-derived from

Sankararaman et al. 2014. These SNPs were identified to tag confidently inferred Neanderthal

haplotypes in the European individuals identified in the 1000 Genomes Phase 1 data (Note S1).

We winnowed down this list to 43,026 SNPs after removing ones already tagged at by𝑟2 > 0. 8

SNPs on the UKBiLEVE array. We then designed a greedy algorithm to capture the remaining

untagged SNPs that could still be accommodated on the array (we determined the number of

oligonucleotide features that would be needed to genotype each SNP as well as the total

number of features available on the array through discussions with UKBiobank Axiom array

design team).

Specifically, we computed LD between all pairs of Neanderthal-derived SNPs and then

iteratively picked SNPs with the highest score to add to the array where the score was

computed as:

𝑆𝑐𝑜𝑟𝑒
𝑆𝑁𝑃 𝑗

 =  𝑖=1

𝑛

∑  [δ
𝑟2>0.80

 (𝑖,𝑗) ][𝐷𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑆𝑁𝑃 𝑖

 ]

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑆𝑁𝑃 𝑗

Here, is an indicator variable that is 1 if the squared correlation coefficient betweenδ
𝑟2>0.80

 (𝑖, 𝑗)

SNPs and is >0.80 and zero otherwise. Thus, SNP j is scored higher if it tags other untagged𝑖 𝑗

SNPs on the array. The other two terms upweight SNPs that tag other Neanderthal-derived

SNPs with high derived allele frequency in Europeans and downweight SNPs by the number of

oligonucleotide features required to genotype the SNP.
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We iteratively chose SNPs until we obtained 6,027 SNPs (requiring 16,674 features) that fully

tagged the remaining set of Neanderthal-derived SNPs. These 6,027 SNPs were then added to

the UKBiobank Axiom array.

UK Biobank (UKBB) genotype QC
We restricted all our analyses to a set of high-quality imputed SNPs (with a hard call threshold

of 0.2 and an info score greater than or equal to 0.8), which, among the 291,273 imputed

genotypes of UKBB unrelated white British individuals, 1) have MAF higher than 0.001, 2) are

under Hardy-Weinberg equilibrium (p > 10-7), and 3) are confidently imputed in more than 99%

of the genomes. Additionally, we excluded SNPs in the MHC region, resulting in a total of

7,774,235 SNP which we refer to as QC-ed SNPs.

Identification of Neanderthal Informative Mutations
We intersected the 95,462 Neanderthal-derived SNPs identified in the 1000 Genomes European

individuals with UKBB QC-ed SNPs, resulting in 70,374 mutations that we term confident

Neanderthal Informative Mutations (NIM). SNPs in high Linkage Disequilibrium (LD) with this set

are likely introduced through Neanderthal introgression. We expanded this set by including all

QC-ed SNPs, which 1) have an r2 of 0.99 or higher with any confident NIM, and 2) are located in

the proximal neighborhood of any confident NIM (within 200kb). We term this set of SNPs as

expanded NIMs. On average, 80.58% of expanded NIMs match the corresponding Altai

Neanderthal allele, in contrast to 2.18% of the remaining SNPs, suggesting that these SNPs are

also highly informative about Neanderthal ancestry. This treatment expands the number of NIMs

in the UKBB QC-ed SNPs from 70,374 (confident NIMs) to 235,592 (expanded NIMs). We

primarily use this more inclusive set of SNPs in our analyses, and refer to them as NIMs in the

main results. SNPs that were not part of the expanded NIMs are termed modern human (MH)

SNPs.

Annotating QC-ed SNPs by MAF and LD
In addition to ancestry (Neanderthal vs MH), we annotate each QC-ed SNP by its minor allele

frequency (MAF) and LD. We define five MAF-based annotations by dividing all QC-ed SNPs

into five equal-sized bins by their MAFs. We similarly define five LD-based annotations by

dividing all QC-ed SNPs into five equal-sized bins based on their LD-score computed from

291,273 imputed unrelated white British genotypes. In-sample LD-score is computed on QC-ed
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genotypes using GCTA (https://cnsgenomics.com/software/gcta/#Overview)  with flags

“--ld-score --ld-wind 10000”.

After each QC-ed SNP is annotated with three properties -- ancestry (NIMs vs MH), MAF, and

LD, we use them to construct three additional sets of annotations: ancestry + MAF, ancestry +

LD, and ancestry + MAF + LD annotations, by intersecting MAF annotation with ancestry

annotation, LD annotation with ancestry annotation, and all three annotations, respectively. For

example, for ancestry + MAF annotation, we intersect the previously defined MAF annotation

with the ancestry annotation and divide SNPs into ten non-overlapping bins -- from low to high

MAF with Neanderthal ancestry (five bins) and from low to high MAF with modern human

ancestry (five bins). Similarly, when SNPs are annotated with LD + ancestry, we have five LD

bins with Neanderthal ancestry corresponding to five LD groups with modern human ancestry.

Because NIMs tend to have low MAF and high LD-score (Fig. 2), the sizes of the annotation

bins are highly uneven. To enable reliable downstream heritability analyses, we remove the

annotation bins in their entirety if they include fewer than 30 SNPs. Such exceptions only occur

when SNPs are annotated based on all three annotations, i.e., ancestry + MAF + LD.

Whole-genome simulations
We simulated phenotypes based on QC-ed UKBB genotypes with the same sample size

(291,273) and number of SNPs (7,774,235). In each simulation, either 10,000 variants

(mimicking moderate polygenicity) or 100,000 (mimicking high polygenicity) are sampled from

the QC-ed SNPs to have causal phenotypic effects while the rest of the variants have zero

effect. Causal effects and phenotypes are simulated with GCTA assuming either a high SNP

heritability of 0.5 or a moderate SNP heritability of 0.2.

With the simulated causal NIM variants, true NIM heritability can be computed asℎ
𝑁𝐼𝑀
2

=ℎ
𝑁𝐼𝑀
2

𝑖
∑ β

𝑁𝐼𝑀,𝑖
2 /𝑉𝑎𝑟(𝑦)

where phenotypes y are simulated based on a set of standardized genotype data with a simple

additive genetic model

𝑦
𝑗

=
𝑖

∑ 𝑤
𝑖𝑗

β
𝑖

+ ε
𝑗
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and

𝑤
𝑖𝑗

= (𝑥
𝑖𝑗

− 2𝑝
𝑖
)/ 2𝑝

𝑖
(1 −  𝑝

𝑖
)

with being the number of reference alleles for the ith causal variant of the jth individual and𝑥
𝑖𝑗

𝑝
𝑖

being the frequency of the ith causal variant, is the allelic effect of the ith causal variant and isβ
𝑖

ε
𝑗

the residual effect generated from a normal distribution with mean 0 and variance

.𝑉𝑎𝑟(
𝑖

∑ 𝑤
𝑖𝑗

β
𝑖
)/(1/ℎ2 − 1)

Following previous work (Evans 2018), we chose causal variants according to five different MAF

and LD-dependent genetic architecture : 1) BASELINE: baseline architecture, where SNPs are

randomly selected to be causal variants, 2) COMMON: common SNPs are enriched for

phenotypic effects so that SNPs with MAF > 0.05 contribute 90% of causal variants while rare

SNPs contribute 10%, 3) RARE: rare variants are enriched for phenotypic effects such that

SNPs with MAF <= 0.05 contribute to 90% of causal variants while the rest contribute 10%, 4)

LOW: low LD SNPs are enriched for phenotypic effects, realized as SNPs whose LD-score <=

10 contribute 90% of causal variants, and the rest contribute 10%, and 5) HIGH: high LD SNPs

are enriched for phenotypic effects, such that SNPs with LD-score > 10 contribute 90% causal

variants while the rest contribute 10%. We simulated three replicates, for each genetic

architecture with two different values of SNP heritability (0.2 and 0.5) and two different levels of

polygenicity (10,000 and 100,000 causal variants). Thus, we simulated a total of 60 genetic

architectures.

Estimating NIM heritability with RHE-mc
We are interested in estimating the proportion of phenotypic variance attributed to NIMs (true

NIM heritability ) and evaluating if the heritability at a NIM (per-NIM heritability) is larger orℎ
𝑁𝐼𝑀
2

smaller than that of a background MH SNP. To this end, we used a variance components model

that partitions phenotypic variance across genomic annotations that include ancestry (NIM vs

MH) as one of the input annotations.

We use RHE-mc, a method that can partition genetic variance across large sample sizes, to

estimate NIM heritability (Pazokitoroudi 2020). For each phenotype, we run RHE-mc, in turn,

with four types of input annotations: ancestry alone, ancestry + MAF, ancestry + LD, and
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ancestry + MAF + LD as described above. The ancestry+ MAF, ancestry + LD, and ancestry +

MAF + LD annotations are intended to account for the differences in the MAF and LD properties

of NIMs compared to MH SNPs.

To estimate NIM heritability, , we combine the heritability of each bin corresponding toℎ2
𝑁𝐼𝑀

Neanderthal ancestry:

=ℎ2
𝑁𝐼𝑀

𝑖
∑ ℎ2

𝑁𝐼𝑀, 𝑖

and the heritability estimates for any bins with modern human ancestry are used to compute the

total heritability from MH. Thus, when we estimate NIM heritability from RHE-mc run with

ancestry + MAF annotations, we add the heritability estimates from five bins of low to high MAF

NIMs.

To compare the average heritability at a NIM to the heritability of a background MH SNP that is

chosen to match the NIM in terms of MAF and LD profiles, we compute the following statistic:

∆
ℎ2 = ℎ2

𝑁𝐼𝑀
− ℎ2

𝑀𝐻
 

where = is the heritability of the background set matched for the MAF andℎ2
𝑀𝐻

 
𝑖

∑  
𝑀

𝑁𝐼𝑀,𝑖

𝑀
𝑀𝐻,𝑖

 ℎ2
𝑀𝐻, 𝑖

LD profile of the set of NIMs. Here denotes the number of MH SNPs in bin i (defined𝑀
𝑀𝐻,𝑖

 

according to MAF and/or LD of the MH SNPs) while denotes the number of NIMs in the𝑀
𝑁𝐼𝑀,𝑖

corresponding bin. A more detailed justification of this statistic is provided in Note S4.

The standard errors (s.e.) of these statistics are computed using 100 jackknife blocks using an

extension of RHE-mc that takes into account the covariance among different annotations. This

new version of the RHE-mc is now available at https://github.com/alipazokit/RHEmc-coeff.

NIM heritability and META-analysis using UKBB phenotypes
We applied RHE-mc to a total of 96 UKBBphenotypes. These phenotypes fall into 14 broader

phenotypic categories (Data S1): anthropometry, autoimmune disorders, blood biochemistry,

blood pressure, bone densitometry, environmental factors, eye, general medical information,

glucose metabolism, kidney, lipid metabolism, liver, lung, and skin and hair. For each phenotype,
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we use RHE-mc to estimate the NIM heritability and the difference between per-NIMℎ2
𝑁𝐼𝑀

heritability and the per-SNP heritability of MH SNPs while controlling for age, sex, the first 20∆
ℎ2

genetic Principal Components (PCs) estimated from common SNPs, and the first five PCs

estimated from NIMs (NIM PCs). The five NIM PCs are computed using all NIMs in unrelated

white British samples with ProPCA (Agrawal 2020).

To improve power to detect patterns that are shared across groups of phenotypes, we combined

analyses across groups of phenotypes and across all phenotypes analyzed. We performed

random effect meta-analysis on each phenotypic category containing at least four phenotypes.

We assume that the phenotypes within each category i have their drawn from the sameℎ2
𝑁𝐼𝑀

distribution so that we can estimate the mean ( ) and variance of distribution i,𝑚𝑒𝑡𝑎 − ℎ
𝑁𝐼𝑀
2

based on the sampled and the s.e.( ). From there, we computed the meta analysisℎ2
𝑁𝐼𝑀

ℎ2
𝑁𝐼𝑀

Z-score to test if the is equal to zero. Similarly, we assume the phenotypes within𝑚𝑒𝑡𝑎 − ℎ
𝑁𝐼𝑀
2

each category i have their drawn from the same distribution, and compute the Z-score to test∆
ℎ2

if the is equal to zero. In addition to the meta-analysis within the phenotypic𝑚𝑒𝑡𝑎 − ∆
ℎ

2

category, we also performed meta-analysis across all phenotypes where we used a subset of 32

phenotypes that were chosen to have low correlation (Pearson’s ).𝑟2  ≤  0. 25 

Identifying individual NIMs associated with phenotype
To identify individual NIMs associated with a phenotype, we fit a linear regression model using

plink 2.0 --glm and included covariates controlling for age, sex and the first 20 genotypic PCs,

and first five NIM PCs. We used  a stringent p-value threshold of 10-10 to correct for the number

of NIMs and phenotypes tested. For each phenotype, we clumped all significant NIMs that lie

within 250 kb and with an LD threshold ( ) of 0.5 using a significance threshold for the index 𝑟2

SNP of 10-10.

Identifying NIMs that modulate phenotype
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To assess our ability to identify introgressed variants that truly modulate a phenotype, we first

tested each NIM for association with the simulated phenotype. A challenge with such an

approach is the possibility that a NIM can be found to be associated with a phenotype due to

being in LD with a non-introgressed variant. To exclude settings where the association signal at

a NIM might be driven by LD with a non-introgressed variant, we applied a Bayesian statistical

fine-mapping method (SuSiE, https://stephenslab.github.io/susie-paper/index.html) that

analyzes both NIM and MH SNPs in the region surrounding an associated NIM to output a set of

SNPs that can explain the association signal at the region. Furthermore, we processed these

credible sets to obtain a set of credible NIMs.

We performed simulations to test the accuracy of such an approach in identifying truly causal

NIMs. In particular, we first ran an association test with plink

(https://www.cog-genomics.org/plink/) to identify significant NIMs (p-value < 10-10). We then

LD-pruned significant NIMs to get a subset of NIMs which are approximately uncorrelated with

each other (using the plink flag “--indep-pairwise 100kb 1 0.99”). For each LD-pruned significant

NIM, we considered all the QC-ed SNPs in its 200kb neighborhood as input to fine mapping. We

ran SuSiE with ⍴ = 0.95 and L = 10, such that it returns credible sets that have at least 0.95

probability to contain one causal variant and outputs at most ten credible sets for each tested

region. If there are more than one credible set for a tested region, we merge them into one set.

We then removed the credible sets which have 50% or more MH SNPs in their credible set. The

remaining credible sets all have majority NIMs (i.e. positive results), and they are further merged

together with other such regions it overlaps with, resulting in distinct regions with evidence of

NIM causal effects. We termed the set of all resulting NIMs as the credible NIM set and all

NIMs that lie in the credible set as credible NIMs. The region containing the credible NIM set is

termed credible NIM region. If there is at least one true causal NIM within the set of credible

NIMs, this credible NIM region is counted as a True Positive (TP). If there is no causal NIM in

the credible NIMs, this credible NIM region is counted as a False Positive (FP).

We adopted the same approach when analyzing UKBB phenotypes while incorporating

covariates. Because the SuSiE package does not directly incorporate covariates, we used

regression residuals from linear regression between each UKBB phenotype and UKBB

covariates (age, sex, 20 regular PCs, 5 NIM PCs), as the input phenotype to SuSiE.

Annotating NIMs
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We annotated all unique credible NIMs using SnpEff (Cingolani 2012) which uses Sequence

Ontology (http://www.sequenceontology.org/) to assign standardized terminology for assessing

sequence change and impact. We primarily focused on examining the high (e.g., start codon

loss, stop codon gain) and moderate impact SNPs (nonsynonymous variants) which are coding

variants that alter protein sequences.
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Supplementary Figures

Include Supplementary Figure S1-S7

Supplementary Figure S1. Benchmarking different methods for estimating the total SNP
heritability. We grouped the simulations by the five different MAF-LD coupling: BASELINE,

COMMON, RARE, HIGH, LOW, as labeled on top of each column. In each group, there are 12

simulations with different levels of polygenicity and heritability (see Methods). Additionally, we

combined simulations from all five architectures together as ALL for the sixth column. On the

y-axis, Z-score ( ) tests whether the estimated and simulated total heritability are equal. Inℎ2 =ℎ2

each panel, the results from RHE-mc with four different annotations, ancestry only, ancestry +

MAF, ancestry + LD, ancestry + MAF + LD are shown on the x-axis. A calibrated method is

expected to have all Z-scores distributed around zero and within 2 (shaded region). Among all±

tested methods, only RHE-mc with annotation ancestry + MAF + LD satisfies this criterion.
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Supplementary Figure S2. Population structure within white British samples. PC-1 from

the whole genome genotypes (released by UKBB) is shown on the left, and NIM PC-1 is shown

on the right. We used a 20-by-20 grid along the latitude and longitude, dividing the map into 400

colonies. We then computed the average PC projection as well as the median longitude and

latitude among the individuals belonging to each colony, if there are at least 10 individuals in a

colony. Each color-filled circle with a 5 kilometer radius represents one colony on the map. To

maximize the visible differences, we sorted the colonies by their PC values and used the rank to

determine the color of the colony. Compared to NIM PC-1, PC-1 shows a much stronger

correlation with geographical location.
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Supplementary Figure S3. NIM heritability in the 96 UKBB phenotypes without controlling
for NIM PCs. This figure is plotted in the same way as Fig. 3. Heritability estimates are largely

similar, but fewer phenotypes are significant. Three phenotypes have significant positive NIM

heritability (Z-score ( ) > 3): overall health rating, waist-hip-ratio, and gammaℎ2
𝑁𝐼𝑀

= 0

glutamyltransferase. Fourteen phenotypes (standing height, sitting height, weight, body fat

percentage, whole body fat-free mass, whole body water mass, trunk fat-free mass, trunk

predicted mass, basal metabolic rate, RBC count, apolipoprotein A, HDL cholesterol,

triglycerides) are significantly depleted for NIM heritability (Z-score < -3).
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Supplementary Figure S4. Comparing heritability estimates from RHE-mc without
controlling for NIM PCs with Ancestry+MAF+LD annotation and RHE-mc with Ancestry
annotation in UKBB phenotypes. This figure is plotted in the same way as Fig. 4. The trend

that not controlling for MAF and LD lead to underestimation of (a) total heritability , (b) NIMℎ2

heritability , and stronger NIM heritability depletion (c) is also apparent when NIM PCsℎ2
𝑁𝐼𝑀

∆
ℎ2

are not controlled for.
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Supplementary Figure S5. Benchmark stratified LDSC regression (S-LDSR) with
in-sample and out-of-sample LD scores. We group the simulations by the MAF-LD coupling:

BASELINE, COMMON, RARE, HIGH, LOW, and ALL, as labeled on the x-axis. We plot the

distributions of three Z-scores (y-axis), one on each panel: (a) Z-score ( ) tests whether∆
ℎ2 = 0

the estimated NIM heritability is different from the matched MH heritability, (b) Z-score ( =ℎ2
𝑁𝐼𝑀

) tests whether the estimated and expected NIM heritability are equal, and (c) Z-score (ℎ
𝑁𝐼𝑀
2 ℎ2 =

) tests whether the estimated and simulated total heritability are equal. In each panel, S-LDSRℎ2

with the out-of-sample LD score from 1000 Genomes (1KG) is shown in green and S-LDSR with

in-sample LD score from UKBB in pink. In S-LDSR, only ancestry annotation is used. The

Z-scores within 2 are color shaded. S-LDSR (1KG) is not calibrated even for BASELINE±

architecture.
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Supplementary Figure S6. Credible NIM in the FCGR2A gene associated with
gamma-glutamyl transferase levels. Plot of 200kb region surrounding rs9427397 (marked in

black diamond; hg19 coordinates), a credible NIM in FCGR2A that introduces a premature stop

codon and is associated with increased levels of gamma glutamyltransferase (while also

associated with increased levels of aspartate aminotransferase and decreased total protein).

The plot displays other NIMs in the region along with their LD (r2) to rs9427397 computed in

1000 Genomes Europeans.
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Supplementary Figure S7. Credible NIM in the AKR1C4 gene is associated with bilirubin
levels. (a) Plot of 300kb region surrounding rs17134592 (marked in black diamond; hg19

coordinates), a non-synonymous NIM in AKR1C4, that is associated with increased serum

bilirubin levels. The plot displays other NIMs in the region along with their LD (r2) to rs17134592.

(b) rs17134592 is a splicing QTL in liver (AKR1C8P) and testis (AKR1C4) identified in GTEx v8.
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Supplementary data

Supplementary data include 10 items, Data S1-S10 are available at

https://github.com/AprilWei001/NIM

1. Data S1. UKBB phenotype annotation.

2. Data S2: RHE-mc results in simulated data.

3. Data S3: RHE-mc results with Ancestry+MAF+LD annotations and NIM PCs included in

covariates applied to 96 UKBB phenotypes

4. Data S4: RHE-mc results with Ancestry only annotation and NIM PCs included in

covariates applied to 96 UKBB phenotypes

5. Data S5: RHE-mc results with Ancestry+MAF+LD annotation without NIM PC in

covariates applied to 96 UKBB phenotypes

6. Data S6: Fine mapping FDP in simulated data.

7. Data S7: 112 credible NIM sets and credible NIMs

8. Data S8: SnpEff annotation of all unique credible NIMs

9. Data S9. Stratified LD score regression results in simulated data using LD score from

1KG

10. Data S10. Stratified LD score regression results in simulated data using LD score from

UKBB

42

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495223doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495223
http://creativecommons.org/licenses/by-nc/4.0/


43

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495223doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495223
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Notes
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Supplementary Note S1: Identification of SNPs that tag Neanderthal
ancestry on the UK Biobank Axiom array

Starting with the confidently inferred Neanderthal haplotypes identified in Sankararaman et al.

2014, we identified whether a SNP segregating in a target modern human population owes its

origin to the Neanderthal gene flow event as follows:

1. We identified sets of haplotypes that are confidently labeled as Neanderthal, N by the

Conditional Random Field (CRF) method proposed in Sankararaman et al. 2014

scanning for runs of consecutive SNPs with marginal probability of Neanderthal ancestry

≥0.90. We also identified sets of haplotypes that are confidently labeled as

non-Neanderthal, MH by scanning for SNPs with marginal probability ≤0.1). We also

required the Neanderthal haplotype to be at least 0.02 cM long.

2. For each SNP called in the 1000 Genomes dataset, we required that none of the

derived alleles at this SNP falls on one of the modern human haplotypes in the set MH

and all of the haplotypes in N carry the derived allele. This procedure allows for some

false negatives in the predictions of the CRF.

3. We ran this procedure on the combined calls from the European ancestry populations

(CEU, GBR, FIN, IBS and TSI) in the 1000 Genomes Project.

This procedure yielded a total of 95,462 SNPs that are likely to be Neanderthal-derived. We

winnowed down this list to 43,026 SNPs after removing ones already tagged at by𝑟2 > 0. 8

SNPs on the UKBiLEVE array. We then designed a greedy algorithm to capture the remaining

untagged SNPs that could still be accommodated on the array (we determined the number of

oligonucleotide features that would be needed to genotype each SNP as well as the total

number of features available on the array through discussions with UKBiobank Axiom array

design team).

Specifically, we computed LD between all pairs of Neanderthal-derived SNPs and then

iteratively picked SNPs with the highest score to add to the array where the score was

computed as:

𝑆𝑐𝑜𝑟𝑒
𝑆𝑁𝑃 𝑗

 =  𝑖=1

𝑛

∑  [δ
𝑟2>0.80

 (𝑖,𝑗) ][𝐷𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑆𝑁𝑃 𝑖

 ]

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑆𝑁𝑃 𝑗
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Here is an indicator variable that is 1 if the squared correlation coefficient betweenδ
𝑟2>0.80

 (𝑖, 𝑗)

SNPs and is >0.80 and zero otherwise. Thus, SNP j is scored higher if it tags other untagged𝑖 𝑗

SNPs on the array. The other two terms upweight SNPs that tag other SNPs with high derived

allele frequency in Europeans and downweight SNPs by the number of oligonucleotide features

required to genotype it.

We iteratively chose SNPs until we obtained 6,027 SNPs (requiring 16,674 features) that fully

tagged the remaining set of Neanderthal-derived SNPs. These 6,027 SNPs were then added to

the UKBiobank Axiom array.
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Supplementary Note S2: Estimating NIM heritability with partitioned
LD-score regression

We considered two candidate methods for estimating the NIM heritability in large datasets and

testing the related hypotheses to NIM heritability, S-LDSR (Finucane 2015) and RHE-mc (see

Main text) (Pazokitoroudi 2020). S-LDSR can speedily estimate partitioned heritability given

GWAS statistics and LD scores without any individual-level data. S-LDSR can be used with

either in-sample LD scores (i.e., computed from the same data as for GWAS) or out-of sample

LD scores (i.e., computed from an external and often much smaller data set). Out-of-sample LD

scores from 1000 Genomes (1KG) is often used in S-LDSR (McArthur 2021, Koller 2021 )

because 1) it is computationally much cheaper to compute than using the GWAS cohorts, and

2) individual-level data from GWAS cohorts are not always accessible; despite that, S-LDSR

with in-sample LD scores is more accurate in theory.

Previous studies by Koller et al and McArthur et al used S-LDSR to estimate the heritability from

archaic ancestries. They computed the stratified LD scores using the 1000 Genomes (1KG)

EUR and EAS samples and performed LD score regression against the GWAS statistics from a

different cohort. If the ancestry from 1KG samples does not match well with the GWAS cohort, it

could lead to biased heritability estimates. Additionally, the LD score distribution and MAF

distributions of NIMs are very different from the distributions of MH SNPs (Fig. 1), which might

also affect the heritability estimates if not taken into account. Finally, LD score regression is

restricted to a subset of SNPs (typically with MAF > 5%) which substantially reduces the number

of NIMs analyzed. Here, we benchmarked S-LDSR on the simulated data with both

out-of-sample LD scores from 1KG and the in-sample LD scores from all UKBB QC-ed data,

stratified by ancestry (NIM vs MH).

First, we used the aforementioned simulations to evaluate the partitioned LD score regression in

estimating NIM heritability. We downloaded the 1KG EUR data (from

https://storage.googleapis.com/broad-alkesgroup-public/LDSCORE/1000G_Phase3_plinkfiles.tg

z) that is typically used for LD score regression. There are 9,997,231 SNPs in the data, and

5,789,471 of them are shared with the UKBB QC-ed SNPs. Out of the 235,592 expanded NIMs

defined in UKBB QC-ed data, 210,962 are present in 1KG EUR, and we refer to these SNPs as

the 1KG NIMs. We defined the 9,786,269 SNPs in 1KG EUR that are not expanded NIMs as

1KG MH SNPs. We then computed the stratified LD score using GCTA software with flags
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--ld-score --ld-wind 10000 for all the 1KG SNPs, all the 1KG NIMs, and all the 1KG MH SNPs.

From here, we computed the stratified LD score with , such that𝑙𝑑𝑠𝑐
𝑆𝑁𝑃

=  𝑙𝑑𝑠𝑐
𝑁𝐼𝑀

+ 𝑙𝑑𝑠𝑐
𝑀𝐻

each SNP has two stratified LD scores, one due to its LD with NIMs and another due to its LD

with MH SNPs. We then intersected the 1KG SNPs with UKBB QC-ed SNPs, and used the

shared 5,789,471 SNPs to perform stratified LD score regression. The S-LDSR is then

performed with all SNPs that overlap between 1KG and UKBB. For each simulation, we ran

S-LDSR to estimate , , , and their standard errors from 200 jackknife blocks. Weℎ
𝑁𝐼𝑀
2 ℎ

𝑀𝐻
2 Δ

ℎ2

found that the results from using out-of-sample LD are biased even when heritability does not

depend on  MAF and LD (i.e., BASELINE) (Figure S5).

As a comparison, we computed the in-sample stratified LD score using the UKBB QC-ed data

and applied S-LDSR with these in-sample LD scores. In contrast to the previous results, the

results are well calibrated for BASELINE, suggesting that the previous biases observed with

BASELINE are due to the disagreement between the out-of-sample LD score and the in-sample

LD score (Figure S5). Not surprisingly, the results for MAF and LD-dependent architectures are

still biased, as these factors are not taken into account. We caution that our simulations are

based on UKBB QC-ed SNPs, where non QC-ed SNPs do not have an impact on the simulated

phenotypes. This setting will favor S-LDSR based on UKBB QC-ed SNPs more than in actual

settings, and disfavor S-LDSR 1KG more than in actual settings. It is possible that in reality, the

biases with in-sample LD score will become larger, and the biases with out-of-sample LD score

will become smaller. Nonetheless, because it is often expensive to compute in-sample LD

scores, the accuracy will largely depend on how well the external panel resembles the GWAS

cohort.

The out-of-sample LD score could be particularly biased for low MAF SNPs, hence S-LDSR

recommends not using annotations with fewer than 5% of SNPs as best practice. This practice

will necessarily exclude more than 70% of NIMs and about half of the MH SNPs, and the

heritability estimates from high MAF SNPs may not extrapolate to low MAF SNPs. Therefore,

S-LDSR, under the best practice, is not suitable for studying Neanderthal introgressed variants.
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Supplementary Note S3: The impact of inclusion of NIM PCs on NIM
heritability estimates

We computed the first five NIM PCs using all NIMs in unrelated white British samples with

ProPCA (Agrawal 2020). Compared to the regular genetic PCs (estimated from common SNPs),

NIM PCs are only weakly correlated with birth GPS locations (Fig. S2), consistent with the fact

that Neanderthal introgression occurred soon after the out-of-African migration before

population expansion.

When NIM PCs were not being controlled for (with remaining regular covariates still used), we

found three phenotypes with significant NIM heritability (Z-score ( ) > 3): overall healthℎ2
𝑁𝐼𝑀

= 0

rating, waist-hip-ratio (WHR), and gamma glutamyltransferase (a measure of liver function). We

also combined phenotypes into broader phenotypic categories and performed random effect

meta-analysis on the nine categories that contain at least four phenotypes (see Methods). We

found that is significantly larger than zero  (Z-score > 2.53 for one-tail p = 0.05𝑚𝑒𝑡𝑎 − ℎ2
𝑁𝐼𝑀

level) for all but two categories (eye, lipid metabolism), meaning that NIMs heritability is

generally nonzero (Fig. S3ac). We then tested whether NIM heritability is larger or smaller

compared to MH SNPs  ( ). Fourteen phenotypes (standing height, sitting height, weight,∆
ℎ2 = 0

body fat percentage, whole body fat-free mass, whole body water mass, trunk fat-free mass,

trunk predicted mass, basal metabolic rate, RBC count, apolipoprotein A, HDL cholesterol,

triglycerides) remain significantly depleted (Z-score < -3), among which eight are anthropometric

phenotypes, and three are related to lipid metabolism. This is in contrast to seventeen

phenotypes when NIM PCs are controlled for (body mass index, hip circumference, waist

circumference, standing height, sitting height, weight, whole body fat-free mass, whole body

water mass, whole body impedance, trunk fat mass, trunk fat-free mass, trunk predicted mass,

basal metabolic rate, RBC count, apolipoprotein A, HDL cholesterol, triglycerides).

Four phenotypic categories show significant NIM heritability depletion (anthropometry, blood

biochemistry, blood pressure, lipid metabolism), and five are not significantly different with meta

analysis (Fig. S3bd). In contrast to the evidence for depletion in NIM heritability, we found no

evidence for traits with elevated NIM heritability even when excluding NIM PCs (Fig S4c).
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Supplementary Note S4: Statistic to compare per-NIM heritability to
per-SNP heritability at a set of background MH SNPs

In this note, we provide additional intuition behind our statistic to compare difference between

the heritability at a NIM (per-NIM heritability) and the per-SNP heritability of a background set of

MH SNPs:

∆
ℎ2 = ℎ2

𝑁𝐼𝑀
− ℎ2

𝑀𝐻
 

Let where denotes one of the annotations (MAF,LD),σ2
𝑎,𝑖

=
ℎ2

𝑎,𝑖

𝑁
𝑎,𝑖

 𝑎 ∈ {𝑁𝐼𝑀,  𝑀𝐻},  𝑖 ℎ2
𝑎,𝑖

denotes the heritability attributed to annotation , and denotes the number of SNPs in(𝑎, 𝑖) 𝑀
𝑎,𝑖

annotation . Thus denotes the per-SNP heritability associated with annotation .(𝑎, 𝑖) σ2
𝑎,𝑖

 (𝑎, 𝑖)

The per-SNP heritability associated with NIMs is given by:

σ2
𝑁𝐼𝑀

 =  
𝑖

∑  
σ2

𝑁𝐼𝑀,𝑖
 𝑀

𝑁𝐼𝑀,𝑖

𝑀
𝑁𝐼𝑀

=  
𝑖

∑
ℎ2

𝑁𝐼𝑀,𝑖

𝑀
𝑁𝐼𝑀

= 1
𝑀

𝑁𝐼𝑀 𝑖
∑ ℎ2

𝑁𝐼𝑀,𝑖
 

where denotes the total number of NIMs.𝑀
𝑁𝐼𝑀

To choose a background set of MH SNPs that match the NIMs in terms of their MAF and LD

distribution, we would pick a given bin with probability . The per-SNP heritability𝑖
𝑀

𝑁𝐼𝑀,𝑖

𝑀
𝑁𝐼𝑀

associated with this background set of MH SNPs is then given by:

σ2
𝑀𝐻

 =  
𝑖

∑  
σ2

𝑀𝐻,𝑖
 𝑀

𝑁𝐼𝑀,𝑖

𝑀
𝑁𝐼𝑀

= 1
𝑀

𝑁𝐼𝑀 𝑖
∑ ℎ2

𝑀𝐻,𝑖

𝑀
𝑁𝐼𝑀,𝑖

𝑀
𝑀𝐻,𝑖

Thus, we are interested in testing the null hypothesis that the per-NIM heritability is equal to the

per-SNP heritability of the background set of MH SNPs.

σ2
𝑁𝐼𝑀

 −  σ2
𝑀𝐻

 = 0 

⇒ 1
𝑀

𝑁𝐼𝑀 𝑖
∑ ℎ2

𝑁𝐼𝑀,𝑖
 − 1

𝑀
𝑁𝐼𝑀 𝑖

∑ ℎ2
𝑀𝐻,𝑖

𝑀
𝑁𝐼𝑀,𝑖

𝑀
𝑀𝐻,𝑖

 =  0

⇒
𝑖

∑ ℎ2
𝑁𝐼𝑀,𝑖

 −
𝑖

∑
𝑀

𝑁𝐼𝑀,𝑖

𝑀
𝑀𝐻,𝑖

 ℎ2
𝑀𝐻,𝑖

 =  0
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Defining our parameter of interest , our null  hypothesis is that∆
ℎ2 =

𝑖
∑ ℎ2

𝑁𝐼𝑀,𝑖
 −

𝑖
∑

𝑀
𝑁𝐼𝑀,𝑖

𝑀
𝑀𝐻,𝑖

 ℎ2
𝑀𝐻,𝑖

 

0.∆
ℎ2 =

We estimate the relative reduction in NIM heritability as:

δ
ℎ2 =  

σ2
𝑁𝐼𝑀

−σ2
𝑀𝐻

σ2
𝑀𝐻

   

=  𝑖
∑ℎ2

𝑁𝐼𝑀,𝑖
 −

𝑖
∑

𝑀
𝑁𝐼𝑀,𝑖

𝑀
𝑀𝐻,𝑖

 ℎ2
𝑀𝐻,𝑖

𝑖
∑

𝑀
𝑁𝐼𝑀,𝑖

𝑀
𝑀𝐻,𝑖

 ℎ2
𝑀𝐻,𝑖
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