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SUMMARY  21 

Defects in double-strand repair mechanisms - both through germline or somatic inactivation of repair 22 

genes - is a hallmark of basal-like breast cancers. In this genetically-unstable context, a recurrent shift 23 

in cell identity occurs within the mammary epithelium. Basal-like tumors have indeed been proposed 24 

to originate from luminal progenitor (LP) cells yet tumor-initiating events remain poorly understood. 25 

Here, we map state transitions at the onset of basal-like tumorigenesis, using a Brca-1 deficient mouse 26 

model launching tumorigenesis in multiple LP cells. Combining single-cell transcriptomics to spatial 27 

multiplex imaging, we identify a population of cycling p16-expressing cells, emerging from the luminal 28 

progenitor compartment, undergoing partial epithelial-to-mesenchymal transition and losing luminal 29 

identity. Pseudo-temporal analyses position these cells as a transitory pre-tumoral state between 30 

aberrant Brca1-deficient luminal progenitors and growing tumor cells. In patients, the p16 pre-tumoral 31 

signature is found in early stage basal-like tumors, that rarely recur. Concomitant to p16 activation, we 32 

show that LP cells undergo an epigenomic crisis attested by the general re-organization of their 33 

heterochromatin. They accumulate multiple H3K27me3 micro-foci - reminiscent of the formation of 34 

senescence-associated heterochromatin foci (SAHFs) - and lose their inactive X (Xi). Both p16 activation 35 

and heterochromatin reorganization are hallmarks of human basal-like breast tumors; we propose that 36 

these events occur during initial LP transformation and are scars of an initial transitory senescent-like 37 

state.    38 

     39 

      40 
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INTRODUCTION 46 

Triple-negative breast cancer (TNBC) refers to a subgroup of aggressive breast cancers defined by the 47 

lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 48 

receptor 2 (HER2) accounting for 15–20% of all breast tumors (Onitilo et al. 2009). Along with 49 

transcriptional heterogeneity, TNBC is characterized by complex genomes, dictated by high genetic 50 

instability and complex patterns of copy number alterations and chromosomal rearrangements (Gao 51 

et al. 2016; Engebraaten, Vollan, and Børresen-Dale 2013). Defects in double-stranded DNA repair 52 

mechanisms are indeed characteristic of TNBC, as a result of either germline or somatic mutations in 53 

BRCA1/2 and other genes involved in DNA repair (Timms et al. 2014; Stefansson et al. 2011). In this 54 

genetically unstable context, there is a chaotic de-structuration of the mammary gland, with recurrent 55 

loss of proper cell identity. Part of these cancers harbor basal-like phenotypes, expressing an 56 

incomplete set of basal markers but with high intra-tumor heterogeneity (Marra et al. 2020; Bianchini 57 

et al. 2016). Interestingly, BRCA1-deficient tumors are suspected to originate from HDR-deficient 58 

luminal progenitor cells of the gland, implicating a recurrent switch or loss in cell identity during 59 

tumorigenesis (Molyneux et al. 2010; E. Lim et al. 2009). Recent data indicate that Brca1-deficiency in 60 

the mammary gland induces aberrant alveolar differentiation of luminal progenitors, suggesting early 61 

phenotypic defects in the mammary gland of a Brca1-deficient individual (Bach et al. 2021). However, 62 

the tumor-initiating events leading to the emergence of tumor cells per se remain unknown. 63 

Studying early steps of tumorigenesis is not feasible solely based on human tumor samples, which are 64 

complex stacks of molecular alterations acquired over time. Animal models enable the isolation of a 65 

continuum of states from normal to pathologic gland to precisely map the evolution of the 66 

physiological mammary gland towards tumorigenesis. In the case of basal-like breast cancers, models 67 

with Brca1/Trp53 deficiency in luminal progenitors have been shown to mimic formation of human 68 

basal-like breast cancers (Selbert et al. 1998; Molyneux et al. 2010). TP53 mutations remain the most 69 

common genetic alteration in basal-like cancers (85%, (Cancer Genome Atlas Network 2012)). In 70 

BRCA1-germline carriers, TP53 mutation was actually shown to be among the earliest events in tumor 71 
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formation (Martins et al. 2012). In this context, a mouse model with conditional deletion of Trp53 and 72 

Brca1 in the luminal compartment of the mammary gland appears as an apropos model to catch the 73 

rare transforming events leading an HDR-deficient luminal progenitor to tumorigenesis. In contrast to 74 

humans, where these events are extremely rare, the deletion in the mouse of these genes in multiple 75 

cells of the mammary glands greatly enhances our ability to detect the transitioning states from 76 

aberrant luminal progenitor to basal-like breast cancer phenotype. 77 

 78 

Here, using single-cell transcriptomics and multiplex imaging in a Blg-Cre Trp53Fl/Fl and Brca1Fl/Fl mouse 79 

model, we mapped steps of Brca1-tumorigenesis in vivo, with a focus on epithelial cells to catch rare 80 

pre-tumoral epithelial states. We identified an intermediate population of cells, expressing p16, 81 

transitioning from luminal progenitor to tumor phenotype, with highly remodeled genomes. These 82 

cells are partially switching to a mesenchymal phenotype while retaining their epithelial characteristics 83 

and activating angiogenesis. We furthermore discovered that LPs concomitantly undergo a major 84 

epigenomic crisis with a disruption of their heterochromatin through the accumulation of multiple 85 

heterochromatin foci and loss of their Xi, a hallmark of basal-like breast tumors. Using TCGA data, we 86 

further show that the p16-associated pre-tumoral signature is found in basal-like cancers with rare 87 

recurrence. We propose that p16 activation and heterochromatin disruption could be scars of an early 88 

senescence-like transitory state in the basal-like tumorigenesis process. 89 

 90 

  91 
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RESULTS 92 

Monitoring mammary tumorigenesis with scRNA-seq in vivo 93 

Virgin Blg-Cre Trp53fl/fl Brca1fl/fl females develop mammary tumors at a median age of 5.2 months (Fig. 94 

S1A). These tumors display a complete de-structuration of the mammary gland, with high intra-95 

tumoral heterogeneity: 72% of cells express neither the canonical basal marker Krt5 nor the luminal 96 

marker Krt8, 17% are positive for Krt8 only, 0,2% for Krt5 only whereas 11% of cells expressed both 97 

markers, revealed by immunofluorescent staining (Fig. S1B). In order to delineate the steps leading to 98 

such destructuration, we profiled mammary epithelium from animals at various time points (2.7, 3.2 99 

and 5.2 months, n=12), as well as from three tumors (Fig. 1A, n=15 mice in total). To maximize our 100 

chances of identifying tumor-initiating cells, among the n=15 mice, we profiled the mammary 101 

epithelium of 2 mice at 5.2 months of age, with no apparent tumor, but belonging to a litter of an 102 

animal with a tumor. Among these individuals at 5.2 months of age, we observed multiple lesions - less 103 

than 0,5 mm - within the mammary epithelium (Fig. 1A). Part of the collected samples were enriched 104 

for epithelial fraction to further increase our chances of identifying rare phenotypic states within the 105 

Brca1/Trp53 deficient mammary epithelium (see Methods), on which scRNA-seq was performed using 106 

10X technology. 107 

We collected 17,330 high-quality cells in total on which we applied unsupervised graph-based 108 

clustering followed by dimension reduction methods to identify cell populations. We conducted a 109 

coarse-grained cluster annotation using well-established canonical markers and identified four major 110 

cell compartments - immune cells, fibroblasts, endothelial and epithelial cells (see Methods, Fig. S1C-111 

F). As our focus was on epithelial cells, we performed a high-resolution sub-clustering on the epithelial 112 

compartment (n=11,113 cells, Fig. 1B-C). Top expressed genes per cluster were intersected with a set 113 

of known markers of physiological cell populations of the mammary gland (Bach et al. 2021, 2017; 114 

Watson and Khaled 2008) (Fig. 1C and Fig. S1F). In the case of clusters composed with cells from either 115 

tumor or lesional samples, we labeled them by concatenating the top expressed gene per cluster, with 116 

the major sample name which composes the cluster (Fig. 1C and Fig. S1F).  117 
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With the objective to map cells undergoing early steps of Brca1-tumorigenesis, we focused on the 118 

epithelial sub-compartment prior to tumor detection (Fig. 1C-D, n= 1,706 cells). In 2.7-, 3-, and 5.2-119 

month samples, we identified physiological cell populations of the mammary gland: basal cells (Krt5) 120 

and clusters of luminal cells (Krt8) - luminal hormone-sensing (Luminal H-S, Prlr), luminal progenitor 121 

(LP, Aldh1a3) and secretory alveolar cells (Avd, Csn2), with low batch effect within controls (Fig. 1B). 122 

The abnormal presence of secretory alveolar cells in the mammary gland of virgin mice at all timepoints 123 

(Fig. S1G), confirmed the abnormal differentiation of luminal progenitors into alveolar cells in 124 

Brca1/Trp53 deficient mammary glands, which had recently been observed during Brca1 125 

tumorigenesis (Bach et al. 2021).  126 

 127 

Identification of a p16-high cycling population of luminal cells with mesenchymal markers 128 

Apart from these expected cell populations, we identified a cluster of cells, in between normal luminal 129 

compartments (LP & Avd) and tumor cells (Fig. 1C-D), characterized by an unequivocal activation of 130 

Cdkn2a/p16 compared to both LP and Avd (adj. p-value < 2.5e-47, Fig. 1E, Table S1). This partition 131 

originated mainly from pre-tumoral glands with lesions (at 5.2 months of age) (Fig. S1G, adj.p value < 132 

0.05, Fisher’s test), but few cells also belonged to mammary glands of 2.7 and 3 month-old animals. As 133 

opposed to epithelial cells from the healthy virgin mice individuals (2.7 & 3.2 months), cells from p16+ 134 

cluster are cycling just-like tumor cells (Fig. 1F), implying they have by-passed the cell-cycle blockade 135 

imposed by p16. In line with p16 activation - a marker of senescence (Collado and Serrano 2010; 136 

Koppelstaetter et al. 2008; Di Micco et al. 2021; Campisi and d’Adda di Fagagna 2007) - the 137 

transcriptional profile of these cells is significantly enriched for senescence-related hallmark signatures 138 

(REACTOME_Senescence Associated Secretory Phenotype, adj. p-value < 2.0 10-2). In addition, cells 139 

from p16+ cluster express a pro-senescence secreted factor, Igfbp4 (adj. p-value =3.3 10-23), that can 140 

trigger senescence in neighboring cells (Severino et al. 2013). Our data suggest that these cells, now 141 

cycling, may have previously undergone a G1/S blockade and senescence-like state (Buj et al. 2021; 142 

Herranz and Gil 2018). Combined over-expression in these cells of Cdk4 and Ccnd1 (adj. p-value<2.0 143 
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10-5), that together promote G1 to S transition, could for example help the cells bypass cycle arrest 144 

imposed by p16 overexpression (Roupakia, Markopoulos, and Kolettas 2021). 145 

In terms of identity, these cells show a significant down-regulation of genes characteristic of luminal 146 

identity, compared to LP and Avd cells - e.g Krt8, Krt18, Csn2 (Pervolarakis et al. 2020; Bach et al. 2017) 147 

(Fig. 1G). In addition to the repression of epithelial cytokeratins, a series of transcriptional changes 148 

testify of dampened epithelial characteristics and acquisition of mesenchymal features: (i) 149 

upregulation of Vim, Fn1 and Sparc (adj. p-value < 1.5e-17 , Table S1), indicative of changes in 150 

cytoskeleton and extracellular matrix, and (ii) down-regulation of Cdh1 and several Claudin genes 151 

(Cldn4, 3 and 1, adj. p-value < 3.0 10-8, Table S1), indicative of the dissolution of adherens and tight 152 

junctions. Part of the transcriptional changes could be driven by the transcriptional factor Twist1, that 153 

is significantly over-expressed in cells from the p16+ cluster (adj. p-value= 3.0 10-14, log2FC=0.45), and 154 

is a known activator of Fn1 and Sparc, and repressor of Claudins and E-cadherin genes (Lamouille, Xu, 155 

and Derynck 2014), (Fig. 1H, Fig S1H, Table S1). In addition, cells from p16+ cluster display a specific 156 

downregulation of Lmna (Fig. 1H), indicative of diminished nuclear stiffness, potentially increasing 157 

their migration potential (Harada et al. 2014). Altogether, we have identified a population of luminal 158 

cells expressing several mesenchymal markers, thereby potentially undergoing a partial EMT 159 

(Pastushenko et al. 2018), while aberrantly expressing p16, that we define as a ‘p16 pre-tumoral’ state. 160 

The signature of such pre-tumoral state is further kept in tumor cells, as several EMT and senescence-161 

related genes remain over-expressed in tumor cells (see ST sample, Fig. 1G-H and Fig. S1H).  162 

 163 

p16 pre-tumoral state: a transition between luminal progenitor and tumor states 164 

We then sought to reconstitute the timeline of events, and better characterize the transformation 165 

from the luminal to tumor state using our single-cell transcriptomics datasets. In order to investigate 166 

the presence of a potential continual progression in the epithelial compartment (Fig. 1D), we applied 167 

Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE); a non-linear dimension 168 

reduction known to efficiently retrieve high-dimensional trajectory structures without specifying any 169 
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root state (Moon et al. 2019) (Fig. 2A). The non-linear progression between the luminal towards the 170 

tumor cells was apparent in the PHATE two-dimensional space (Fig. 2A). p16 pre-tumoral cells were 171 

the intermediate between the two pools of cells (normal-like and tumoral), and represented a “bridge” 172 

between the two cell populations (Fig. 2A). We further mapped and quantified connections between 173 

cell states by performing unsupervised Partition-based Graph Abstraction (PAGA) (Wolf et al. 2019) 174 

analysis on the same dataset. According to PAGA representation, the topology of the graph showed 175 

that the p16 pre-tumoral node was the most connected, and tumor cell nodes were only reachable 176 

through this central hub (Fig. 2B). The highest connectivity score was between the LP and Avd 177 

partitions (0.8), corroborating the previously described abnormal LP differentiation to Avd (Bach et al. 178 

2021). The second and third most connected nodes were between the LP and p16 pre-tumoral, and 179 

Avd with p16 pre-tumoral partitions respectively, suggesting that the transient p16 pre-tumoral state 180 

may arise from either population (Fig. 2B).  181 

 182 

To decipher the origin of this transient population, semi-supervised pseudotime inference was 183 

conducted using the Slingshot algorithm (Street et al. 2018). We hypothesized that either luminal 184 

progenitors or alveolar cells could be the starting point, and thus iteratively set them as the root of the 185 

tree (Fig. S2A-B). In both scenarios, whatever the root, reaching the ST tumor clusters passes through 186 

the p16 pre-tumoral state (Fig. S2A-B). However, when the Avd was set as the root, the algorithm 187 

suggested a lineage form Avd to LP, and from Avd to Luminal H-S, which were both biologically 188 

irrelevant (Cristea and Polyak 2018; Visvader and Stingl 2014). Therefore, we chose the LP population 189 

as the root of the tree, and selected the longest lineage path to reach the Fgf8+ ST cluster (Fig. 2C). 190 

Altogether, these complementary approaches model that LP cells switch to a p16 pre-tumoral state 191 

prior to tumor formation and growth. 192 

Hereafter, to identify the biological pathways driving this state transition, we studied the top genes 193 

correlated to pseudotime values (Fig. S2C; Methods), on which consecutive MsigDB hallmark (Liberzon 194 

et al. 2015) pathway enrichment and signature quantification were performed (see Methods). In Fig. 195 
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2D-E, we display the most significantly enriched pathways, and transcriptional scores are plotted along 196 

pseudotime. While transitioning from LP to tumor state, p16 pre-tumoral cells activate a 197 

transcriptional signature associated with angiogenesis and EMT, while inhibiting pathways of 198 

apoptosis and estrogen response (Fig. 2D-E). All these four pathway score levels were maintained in 199 

all tumor cells (Fig. S2D). Such signatures endorse the pre-tumoral nature of the p16 pre-tumoral state: 200 

angiogenesis and inhibition of apoptosis are canonical hallmarks of cancer cells (Hanahan and 201 

Weinberg 2016) - meant to enable fast growth of cells, while EMT activation has already been 202 

proposed as a mechanism to escape cell cycle arrest in vitro (Ansieau et al. 2008; Fridman and Tainsky 203 

2008). 204 

 205 

p16 pre-tumoral signature is specific to basal-like human cancers that rarely recur 206 

We next investigated whether we could detect such transcriptional changes in human breast cancers, 207 

and if so which ones. We took advantage of the largest, publicly available, breast pan-cancer bulk 208 

RNAseq cohort in TCGA (Berger et al. 2018), to investigate transcriptional similarities between the p16 209 

pre-tumoral state and human breast cancer subtypes. Normalized CDKN2A/p16 expression level was 210 

the highest in basal-like subtype samples (n=171), as compared to the remaining breast cancer 211 

subtypes (Fig. 3A), shown that p16 activation is specific to the basal-like cancers, not only BRCA1-212 

deficient basal-tumors, and a frequent event in this subtype (n=128, 75% from the total basal-like 213 

samples). Cross-comparison between the top markers of the basal-like subtype in humans and the top 214 

markers of the p16 pre-tumoral cells highlighted the over-expression of EMT-related genes in both 215 

populations (SLPI, COL2A1, SERPINE2 and SPP1) (Fig. S3A). Similarly, CDKN2A was the top 216 

overexpressed gene in both comparisons, whereas CSN2 was the top down-regulated gene (Fig. S3A). 217 

Altogether, these observations endorse the transcriptional similarity between the p16 pre-tumoral 218 

mouse cells and basal-like breast cancers in humans. We further defined a p16 pre-tumoral associated 219 

signature, as the top over-expressed genes (log2FC> 0.8 and adj. p-value < 0.05) in the p16 high cluster 220 

identified above as compared to both LP and Avd compartments (see Methods). We calculated a p16 221 
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pre-tumoral signature score for each sample and observed that basal-like tumors displayed higher 222 

scores than other breast cancer subtypes (Fig. 3B); among basal-like tumors, BRCA1 deficient tumors 223 

displayed slightly higher scores than BRCA1 WT tumors.  224 

In addition, p16 pre-tumoral signature was detected in juxta-tumoral samples, and was also more 225 

pronounced in early-stage (I) than late-stage tumors (III) (Fig. 3C). Finally, patients who displayed high 226 

expression scores of the p16 pre-tumoral signature exhibited longer progression-free survival, (adj. p-227 

value= 0.03), as compared to patients with a low expression score of the p16 pre-tumoral signature 228 

(Fig. 3D, S3B-C).  229 

Overall, using public data, we demonstrate that the p16 pre-tumoral signature of initial luminal 230 

transformation is detected in basal-like breast cancers and we show it is actually characteristic of early-231 

stage basal-like tumors that rarely recur. These results suggest that in humans, as in mice, this p16-232 

high transcriptional signature corresponds to an early stage in tumorigenesis.  233 

 234 

We next investigated pre-tumoral gene signatures prior to tumor formation in humans in a BRCA1-/+ 235 

deficient context, to understand whether we could detect premises of the p16 pre-tumoral state. To 236 

do so, we interrogated gene signatures in the epithelium compartment of patients with germline 237 

BRCA1 heterozygous deficiency (BRCA1+/-) prior to tumor formation. We exploited the publicly 238 

available scRNAseq human dataset harboring normal-like and BRCA1+/- pre-neoplastic mammary 239 

gland samples (GSE161529) (Pal et al. 2021). In this context, in contrast to established human tumors 240 

and the mouse model presented above, only one copy of BRCA1 is deficient and TP53 is initially 241 

functional.  242 

We performed the same semi-manual annotation procedure as in the first part and focused solely on 243 

the mammary epithelial compartment from normal-like and BRCA1+/- pre-neoplastic samples (Fig. 3E, 244 

Fig. S3D-E). We projected each epithelial subtype in an independent Principal Component Analysis 245 

(PCA) space, and showed that LPs are the cell type most affected by BRCA1 deficiency (see Methods): 246 

the informative PCs with the highest explained variance were retrieved from the LP PCA projection 247 
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(Fig. 3F, FigS3F-G). LPs in BRCA1+/- patients display transcriptional defects, they aberrantly activate 248 

genes involved in mammary stem cell signatures and several genes defining a senescence associated 249 

secretory phenotype SASP, including chemokines, IL6 and MMP3 (Fig. 3G-H, Table S2). Such analysis 250 

confirms, as shown by others, that BRCA1 deficiency can lead to senescence-like states (Sedic et al. 251 

2015). However, we could not detect, as in juxta-tumoral tissues or human basal-like tumors above, 252 

key components of the p16 pre-tumoral state, such as EMT actors or p16 activation. We postulate that 253 

such transcriptional changes occur with the onset of tumorigenesis, and probably following TP53 254 

inactivation (Martins et al. 2012).  255 

 256 

Spatial and temporal analysis of the p16 pre-tumoral state  257 

We next sought to validate and spatially resolve the acquisition of the p16 pre-tumoral state in the 258 

mammary gland in situ. We performed multiplex immunohistochemistry on paraffin-embedded 259 

formalin-fixed (FFPE) sections from mice at different stages of tumorigenesis, with either normal-like 260 

epithelium, lesions, or tumors (including both Cre- and Cre+ animals) (Fig. 4A). This technique aimed 261 

to simultaneously monitor, on each section and at the single cell resolution, for over 70,790 cells: i) 262 

cell identity (Krt8, Krt5), ii) cell cycle status (p16, Ki67), and iii) epithelial to mesenchymal plasticity 263 

(EMP) (E-cadherin, N-cadherin, Vim) in addition to hematoxylin staining (Fig 4A, Fig S4, see Methods).  264 

We first quantified the proportion of p16 positive (p16+) cells within the epithelial compartment across 265 

timepoints starting at 3 months. We detected p16+ cells (>5% in average) within lesions and tumors 266 

(Fig. 4A-B), confirming our single-cell transcriptomic analyses (Fig. 1). Importantly, while we did not 267 

observe any p16+ cells in the Cre- animals (Fig. S4C), they were found within normal-like Cre+ ducts as 268 

early as 3 months (upper panel Fig. 4A), as well as within juxta-tumoral tissues in tumor-bearing 269 

animals. At the earliest time point, prior to any lesion or tumor formation, the p16+ cells are isolated 270 

single cells (Fig. 4A, S4B) and located in the inner part of the duct, within the luminal compartment. 271 

Such initial localization, in addition to the correlation of p16 and Krt8 staining (Fig. 4C) confirmed their 272 

luminal origin (89% of the total p16+ cells).  273 
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We next wanted to assess the proliferative capacity of these p16+ cells using Ki67 staining. In both 274 

duct and lesional samples, more than 32% of p16+ cells are Ki67+, supporting their capacity to escape 275 

p16-mediated cell cycle arrest at very early time-points. The proliferative index of p16+ cells is 276 

significantly higher in duct and lesions, compared to p16+ cells in tumors (15% Ki67+) and control 277 

mammary epithelial cells (6% Ki67+), suggesting that p16+ cells at the onset of Brca1 tumorigenesis 278 

are particularly proliferative (Fig. 4D). 279 

Finally, we interrogated the extent of EMP within the epithelial compartment using Ecad, Ncad and 280 

vimentin stainings (Fig. 4E-F). In control Cre- mice at 5 months, luminal cells mostly display expected 281 

E-cadherin junctions and no vimentin-based filaments (Fig. 4F left donut). In contrast, p16+ cells within 282 

the luminal compartment of Cre+ animals were significantly enriched for vimentin and displayed 283 

enrichment for N-cadherin - together (40%) or not with E-cadherin (48%) (Fig.4E 2nd donut). In 284 

addition, they frequently displayed both Krt8 and Krt5 staining. Dual enrichments for E-cadherin and 285 

N-cadherin were not observed in lesions but in rare cases in tumors, underlying the metastable nature 286 

of EMP. In tumors, p16+ cells were grouped into spans of neighboring cells with high N-cadherin and 287 

vimentin expression (Fig. 4A, bottom panel, Large Tumor), confirming our observations by scRNAseq 288 

that only a fraction of tumor cells remain p16+ and harbor strong expression of mesenchymal features 289 

(Fig. 1G-H).   290 

 291 

Complementary to our initial single cell transcriptomics analyses, multiplex imaging enabled the 292 

extensive search for p16 rare pre-tumoral states in whole tissue slides at various time points. It allowed 293 

to detect p16+ individual isolated cells within the inner part of the mammary duct with mesenchymal 294 

markers at early time points, before any lesion or tumor formation, suggesting EMP is an early event 295 

in basal-like tumorigenesis. Losing epithelial characteristics could be essential for the rupture of the 296 

duct structure and formation of the initial tumor bud.  297 

 298 

 299 
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p16 pre-tumoral state occurs post genomic crisis 300 

Loss of BRCA1 impairs homologous repair (HR) mechanisms, and leads to a major genomic crisis, with 301 

the accumulation of multiple genomic alterations (Scully and Livingston 2000; Polak et al. 2017). In 302 

such a context, we thought it was critical to understand when such a genomic crisis was occurring, and 303 

how it related to the phenotypic switches we were observing. We used our scRNAseq epithelial dataset 304 

to quantify genomic rearrangements and to investigate clonal evolution across cells and time points. 305 

Copy Number Variation (CNV) were first inferred from the scRNAseq data using inferCNV (Patel et al. 306 

2014), taking the basal cells as reference, as the Cre is not expressed in these cells (Molyneux et al. 307 

2010). For each cell, we calculated the percentage of their genome displaying genetic alterations (Fig. 308 

5A-B, Fig. S5A). All tumor cells display similar percentages of rearranged genomes (Fig. 5B, median= 309 

35.4%), whatever their size, suggesting that the genomic crisis probably occurred prior to tumor 310 

expansion. LP cells of tumor-free & lesion-free animals already display a high percentage of CNVs 311 

(median 23 %) compared to the basal cells (median 5.3%), even at 2.7 months (median 22.4%). Such 312 

observations imply that the LP compartment can tolerate numerous CNVs following Brca1/Trp53 313 

deletion, without any rapid phenotypic consequence. Rates of genome rearrangement in p16 pre-314 

tumoral cells are among the highest of the LP compartment (median % alteration = 25%), yet their 315 

maximum rate does not exceed what is observed in the LP population (Fig. 5B). Altogether, we show 316 

that the major outburst of CNVs occurs in the LP compartment prior to any tumor formation, in 317 

agreement with previous studies which showed that copy number alterations were acquired in short 318 

punctuated bursts at early stages of tumor formation (Gao et al. 2016). These results suggest that the 319 

genomic crisis triggered by Brca1/Trp53 deletion is not sufficient to launch tumorigenesis, and 320 

precedes the partial EMT processes identified above. 321 

 322 

p16 pre-tumoral state is multi-clonal 323 

To understand how p16 pre-tumoral cells emerged from the LP compartment - through clonal 324 

expansion or a few cells or state transitions in multiple LP cells - we next investigated clonal dynamics 325 
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within the LP compartment, p16 pre-tumoral population and the small tumor. We performed 326 

integrative consensus hierarchical clustering to identify genetic clones within each cell population (see 327 

Methods); and samples with no stable partition were considered as highly multi-clonal (Fig. S5B). In 328 

addition, we evaluated correlation scores between single-cell CNV profiles across clusters, to further 329 

confirm the absence or existence of sub-clones; considering that genetic clones will show high intra-330 

correlations scores by definition.  331 

As expected, we could not partition the population of reference basal cells into clones, further 332 

confirmed by a random distribution of cell-to-cell correlation scores (Fig. 5C). In the LP compartment, 333 

we could not identify any stable partition (Fig. 5D and Fig. S5B-C) into clones, further supported by low 334 

cell-to-cell correlation scores (Fig. 5C). In the p16 pre-tumoral cells, 47% of cells remained highly multi-335 

clonal, with cell-to-cell correlation scores similar to those of the LP compartment, but we could also 336 

identify 3 clones accounting for 53% of cells (Fig. 5C-D, Fig. S5B,D). In contrast, the small tumor was 337 

organized into 3 major clones (Fig. 5C and Fig. S5E) accounting for 93% of the cells (Clones 1, 2 & 3), 338 

with high intra-clone correlations scores (median 0.56) (Fig. 5C-D). These results suggest that the 339 

transition from the LP to p16 pre-tumoral state can be achieved by a multitude of cells, and not only 340 

by isolated clones that are being selected for. This strongly suggests the contribution of non-genetic 341 

mechanisms to this transition state, potentially dedifferentiation or partial EMT mechanisms, 342 

identified above.   343 

 344 

Disruption of heterochromatin at the onset of tumorigenesis 345 

To further characterize the p16 pre-tumoral state, we next investigated canonical markers of 346 

senescence associated to p16 upregulation (Collado and Serrano 2010): presence of B-galactosidase 347 

(Bgal) and senescence-associated heterochromatin foci (SAHF) within tissues. We could not quantify 348 

any Bgal within juxta-tumoral or tumor sections (Fig. S6A), however we identified SAHF-like structure 349 

in lesions by immunofluorescence (Fig. 6A). Regarding SAHF, they were initially defined as main cores 350 

enriched in H3K9me3 mark, coated by enriched rings in H3K27me3 (Aird and Zhang 2013; Paluvai, Di 351 
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Giorgio, and Brancolini 2020). As H3K9me3 mark is already organized in foci in non-senescence cells in 352 

mice -chromocenters (Probst and Almouzni 2008), we chose H3K27me3 staining to study changes in 353 

heterochromatin organization during Brca1 tumorigenesis.  354 

As expected, in mammary gland controls from Cre- mice, H3K27me3 staining revealed one single foci 355 

per cell (Fig.6A-B), corresponding to the inactive X (Xi), whereas the remaining staining is 356 

homogeneously diffused in the nucleus (Fig. 6A, Fig. S6B top panel). In lesions and tumors, we observed 357 

the accumulation of multiple H3K27me3-enriched chromatin forming small aggregates, that we 358 

termed micro-heterochromatin-foci (µ-HF) (Fig. 6A, Fig. S6B). In addition, H3K27me3-enriched 359 

chromatin tended to accumulate in ring-like structures, surrounding nuclear regions devoid of DNA as 360 

attested by negative DAPI staining- possibly corresponding to nucleoli (Cmarko et al. 2008).  361 

We further investigated the special case of the heterochromatin of the Xi, as the loss of the Barr Body 362 

is a hallmark of basal-like breast cancers, whether through a genetic loss of the inactive X chromosome 363 

(Ganesan et al. 2004; Vincent-Salomon et al. 2007) or following epigenomic reprogramming and 364 

reactivation of the inactive X (Chaligné et al. 2015). Using both H3K4me3 and H3K27me3 tumor derived 365 

datasets, we actually show that H3K27me3 signal from the X-chromosome is lost in tumor cells, 366 

indicating that the Xi is either genetically lost or it has lost its repressive chromatin enrichment, in both 367 

cases attesting disruption of this heterochromatin structure (Fig. S6D). The absence of H3K4me3 368 

enrichment anywhere on the X chromosome in these same cells, demonstrates the absence of partial 369 

or total reactivation of the Xi, and favors the genetic loss of the Barr Body in the cells (Fig. S6D-E). 370 

We hypothesized (Fig. 6C) that the accumulation of µ-HF could either be the result of (i) the nuclear 371 

reorganization of regions of heterochromatin, leading to co-localization of multiple heterochromatic 372 

regions, or (ii) the expansion of H3K27me3 enrichment on large genomic regions - similar to Xi-373 

enrichment. We used H3K27me3 genome-wide maps to test both hypotheses as only the latter would 374 

lead to genomic redistribution of H3K27me3 marks. We generated H3K27me3 ChIPseq datasets for 375 

n=5 tumors and compared them to published datasets for normal mammary cells (Pal et al. 2013). 376 

When comparing H3K27me3 peak breadth genome-wide, tumors did not show largest H3K27me3 377 
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peaks on autosomes (Fig. 6D). These results demonstrate the absence of large heterochromatinization 378 

phenomena on autosomes (>Mb), and suggest that formation of µ-HF rather corresponds to spatial 379 

reorganization of existing chromatin regions. 380 

We next investigated whether this major nuclear reorganization was associated with focal H3K27me3 381 

changes during tumorigenesis, undetectable at the microscopic scale but at the genomic scale. We 382 

included in our analysis H3K27me3 profiles of published FACS-sorted mammary gland luminal and 383 

basal cell populations, along with our tumor samples to seek for recurrent epigenomic differences 384 

between normal and malignant samples. Principal component analysis (PCA) showed that tumors have 385 

heterogeneous repressive epigenomes, yet 34% of variance is driven by common tumor-specific 386 

epigenomic features (PC1) (Fig. S6C). When comparing tumors versus cells of the physiological gland, 387 

we show that several cell cycle genes (Cdkn2a, Cdk12, Cdk6) display a recurrent loss of repressive 388 

H3K27me3 enrichment in tumors (Fig. 6E), both inhibitors and promoters, suggesting that local 389 

epigenomic remodeling could participate both in the entry and exit of cell cycle during tumorigenesis. 390 

Loss of H3K27me3 had already been shown to enable Cdkn2a transcriptional activation in early 391 

senescence (Ito et al. 2018). 392 

Altogether we show that disruption of heterochromatin - with a drastic spatial reorganization in the 393 

nuclei and rare local rearrangements - occurs early in tumorigenesis, potentially as a consequence of 394 

a senescent-like state.  395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 
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DISCUSSION 403 

Our study provides a detailed mapping of the transcriptional, genetic and epigenetic evolution of 404 

epithelial cells during early stages of basal-like breast tumorigenesis in vivo. Thanks to a mouse model 405 

launching tumorigenesis in multiple luminal progenitor cells, we have been able to detect rare state 406 

transitions occurring in epithelial cells prior to tumor formation - that cannot be studied in humans. 407 

Our in vivo results partially bridge the gap between observations from pre-tumoral tissues and 408 

established basal-like tumors in humans (Figure 7). We show the occurrence of epithelial to 409 

mesenchymal plasticity (EMP) in the luminal compartment of mammary glands at the onset of 410 

tumorigenesis. Our data demonstrate that luminal progenitor cells can switch to a p16+ cycling state, 411 

with an activation of partial EMT and angiogenesis-related pathways while shutting down apoptosis 412 

and estrogen-related signaling. We propose that these cells have previously undergone a transient cell 413 

cycle arrest, supported by two features of the senescent state: (i) Cdkn2a/p16 demethylation and 414 

subsequent expression and (ii) the drastic reorganization of heterochromatin with the formation of 415 

multiple heterochromatin foci. It has previously been shown that loss of Brca1 is followed by 416 

senescence-like processes, whether in mammary epithelial cells or even in embryos (Cao et al. 2003; 417 

Sedic et al. 2015). It is often triggered by teliomerism or after activation of oncogenes expression and 418 

mediated by Trp53. Senescence has also been frequently shown to occur in breast cancer cells 419 

following irreversible damage or cancer treatments, preventing the cells from proliferating and 420 

thereby stopping the tumor growth (Ewald et al. 2010; Fitsiou, Soto-Gamez, and Demaria 2021). Yet 421 

little was known about how and whether these tumor cells escaped such senescence-like phenomena.  422 

EMP occurs both in normal and pathological contexts, e.g embryonic development, wound healing, 423 

fibrosis, or cancer metastasis, where it enables cells to adopt a migratory and invasive behavior  (Nieto 424 

et al. 2016). In the mammary gland, it is involved both in organogenesis and cancer metastasis 425 

(Chakrabarti et al. 2012). During tumor progression, EMT is known to participate in cancer 426 

dissemination, as it enables cells of the primary tumor to leave the tissue of origin through partial 427 

dissociation of the primary carcinoma. Our results are one of the first examples in vivo of the 428 
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occurrence of partial EMT at the onset of tumorigenesis. The transition from an epithelial to 429 

mesenchymal state is often incomplete and metastable (Pastushenko et al. 2018), with cells in 430 

intermediate states combining epithelial and mesenchymal features as we do observe here. Combining 431 

single-cell transcriptomics and multiplex imaging in tissues, we have identified several characteristics 432 

of EMP (Yang et al. 2020) in luminal progenitor cells as they leave the luminal compartment to form 433 

lesions: (i) remodeling of the cytoskeleton, with a decrease in cytokeratins (Krt8, Krt19 and Krt18) and 434 

a switch to vimentin-based filaments, (ii) reduced cell-cell adhesive properties with the decrease in E-435 

cadherin expression and apparition of N-cadherin, (iii) the expression of the transcription factor 436 

Twist1, and (iv) modifications of the extracellular matrix with the expression of Fibronectin. For the 437 

latter, we have also observed a specific expression of type XI Collagen from pre-tumoral cells (Col11a1, 438 

Col2a1 a.k.a Col11a3). Type XI collagen is characteristic of deregulated matrisome of the most 439 

aggressive tumors across cancer types (Nallanthighal, Heiserman, and Cheon 2021; S. B. Lim et al. 440 

2017; Pearce et al. 2018) - whether expressed by tumor or stromal cells, high COL11A1 is associated 441 

with cancer invasiveness and metastasis. 442 

What exactly launches EMP in early tumorigenesis remains to be determined. Here, we show that the 443 

transcription factor Twist1 is transcribed in the pre-tumoral population; it could orchestrate part of 444 

the EMP phenotype that we observe. We have indeed found in pre-tumoral cells signs of Twist1 activity 445 

with the activation of its target genes, Fibronectin, N-Cadherin and Sparc, and repression of its known 446 

epithelial target genes E-cadherin and Claudin genes (Cldn4, 3 and 1) (Lamouille, Xu, and Derynck 447 

2014). Yet it remains to be determined what exactly triggers its activation. BRCA1 itself has recently 448 

been identified as a guardian of the epithelial states (Zhang et al. 2022) - inactivation of BRCA1 by 449 

CRISPR leads to increased EMP in mammary cells. Another trigger of EMT could also be senescence - 450 

itself induced by extensive genomic rearrangements following Trp53 and Brca1 deletion. It has been 451 

proposed in vitro that EMT, driven by Twist1 and 2, could help override Ras-induced senescence in 452 

mouse fibroblasts (Ansieau et al. 2008). Recently, it was shown that senescence actually bridges RAS 453 

activation and EMT over the course of malignant transformation in human mammary epithelial cells 454 
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(De Blander et al. under consideration). In a therapy-induced senescence phenotype, it was also shown 455 

that senescence promotes reprogramming and cancer stemness (Milanovic et al. 2018), suggesting 456 

that non-genetic mechanisms could be tightly associated to the entry and exit of the senescent state 457 

in various contexts. Here, based on our in vivo results, we propose that during early basal-like breast 458 

tumorigenesis, luminal progenitor cells undergo a cell-cycle arrest characterized by p16 activation, and 459 

that subsequently cells bypass this arrest through non-genetic mechanisms, potentially with partial 460 

EMT, as demonstrated by the existence of a p16+ cycling population harboring both epithelial and 461 

mesenchymal markers.  462 

In the earliest step of tumorigenesis, we have also observed the occurrence of a major 463 

heterochromatin crisis, with the total reorganization of H3K27me3-enriched chromatin in the nucleus 464 

in vivo: a loss of the inactive X (Xi) together with the accumulation of H3K27 foci. The foci resemble 465 

senescence-associated heterochromatin foci (SAHFs), hallmarks cellular senescence (Stone, McCabe, 466 

and Ashworth 2003; Kristiansen et al. 2005; Sirchia et al. 2005). The destabilization and loss of the Xi 467 

could be a consequence of a global 3D reorganization of H3K27me3-enriched heterochromatin in the 468 

nucleus. Recruitment of heterochromatin to nucleoli structures - as observed in pre-tumoral and 469 

tumoral cells - could for example lead to the destabilization of the Xi (Bizhanova and Kaufman 2021). 470 

Such observations - together with the demethylation and subsequent activation of p16 - suggest that 471 

these pre-tumoral cells might have entered at some point a senescence-like state. Such epigenomic 472 

abnormalities are recurrently observed in full grown basal-like tumors, notably the loss of the Xi 473 

through genetic or epigenetic events (Ganesan et al. 2004; Chaligné et al. 2015; Vincent-Salomon et 474 

al. 2007). We propose that heterochromatin abnormalities, together with p16 upregulation, in human 475 

tumors might be scars of such initial heterochromatin crisis and associated senescence-like state. 476 

Finally, our work opens up several translational perspectives for the early interception of BRCA1 477 

tumorigenesis and potential patient stratification. Detecting single tumor-initiating events in humans 478 

is close to impossible, and we have used a mouse model as a magnifying glass to detail early state 479 

transitions in Brca1/Trp53 deficient epithelium. As mentioned in the introduction, in BRCA1-germline 480 
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carriers, TP53 mutation was actually shown to be among the earliest events in tumor formation 481 

(Martins et al. 2012). Using our mouse datasets, we were able to define a p16 pre-tumoral signature, 482 

characteristic of the epithelial changes occurring at the onset of basal-like tumorigenesis and kept on 483 

during tumor formation. In human tumors, we show that this signature is specific to basal-like cancers, 484 

just like p16 overexpression. In addition, we show that it has prognostic potential: with basal-like 485 

tumors, patients with high pre-tumoral signature score have a significantly longer disease-free survival. 486 

Our results suggest that basal-like tumors with a high pre-tumoral signature score might have been at 487 

an earlier stage, hence with a better outcome. Our pre-tumoral gene signatures could constitute 488 

candidate biomarkers to detect early epithelial transformation and be favorable prognostic markers. 489 

Among the earliest events to detect, we show the advent of dual expression of basal and luminal 490 

markers - supported by multiplex imaging data of isolated p16+ cells detaching from the luminal 491 

compartment. A recent study actually shows that alveolar cells with dual basal/luminal markers, and 492 

a gene-signature associated with basal-like cancers, accumulate with age in human breast (Gray et al. 493 

2022), further highlighting the potential interest of cells with poor lineage definition. 494 

In terms of therapeutic targets, preventing the early state transitions occurring in the luminal 495 

progenitor compartment switch from luminal to a pre-tumoral p16+ cycling state for example, could 496 

be a relevant therapeutic avenue that we need to investigate. One strategy would be to target EMP, 497 

by hampering the listed characteristics above to destabilize this plastic state, with for example 498 

COL11A1 inhibitors (Nallanthighal, Heiserman, and Cheon 2021), or by launching Twist1 degradation 499 

with harmine (Yochum et al. 2017). Another Achilles heel of the pre-tumoral state could be the 500 

mechanisms used to re-entry cell cyclepost cell cycle arrest upon p16 activation. We have shown that 501 

pre-tumoral cells over-express both Cdk4 and Ccnd1, that together promote the switch from G1 to S 502 

phase, and are antagonized by p16. Such combined over-expression might be a mechanism for these 503 

cells to escape p16 overexpression. In this line, p16+ cycling pre-tumoral cells might be particularly 504 

sensitive to CDK4/6 inhibitors.  505 

 506 
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Figure 1: Identification of p16-high cycling cells within lesions of the mammary gland. (A) Schematic representation of the timeframe 
and histological classification of the in vivo processed samples using scRNAseq 10X technology. (B) UMAP representation of the epithelial cells; 
each dot represents a cell, and is colored according to the sample of origin. (C) UMAP, colored according to cluster-based annotation. (D) Zoom in 
on the corresponding UMAP embeddings to the transitional cell clusters (see material and methods). Cells were colored according to cluster-based 
annotation. (E) Volcano plot representation of the DEGs in p16+ cycling cells compared to LP and Avd, highlighted are top DEG, with an absolute 
log2_FC > 1.2 and a significant adjusted p-value (<0.05). Xaxis represents the log2 FC and the y-axis represents the -log10(adjusted p-value). 
(F) Barplot representation of the fraction of cell cycle phases (G1,S or G2/M) inferred for each Major-type annotation; including: Basal, Luminal 
Hormone-Sensing (H-S), Luminal Progenitors (LP), Alveolar-differentiated (Avd), P16+lesional cells, and grouped cells per tumor size: Small 
Tumor (ST), Medium tumor (MT) and late tumor (LT). asterisks above LP indicate significance of p16+ versus LP; asterisks above ST indicate 
significance of p16+ versus ST. *P < 0.05, **P <0.01, ***P < 0.001, n.s:not significant. (G) UMAPs displaying the expression levels of top 
down-regulated (Krt8, Krt8 and Csn2,Lmna) and up-regulated (Cdkn2a, Fn1, Lgals1 and Vim) genes in p16+ cycling cells compared to LP and 
Avd. log10 expression levels are color-coded.
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Figure 2: p16-high cycling state is a transitory state between LP and tumor cells. (A) Potential of Heat-diffusion for Affinity-based 
Trajectory Embedding (PHATE) dimension reduction applied on the zoomed epithelial cells displayed in Fig1C. (B) Partition-based graph 
abstraction (PAGA) graphical representation of the transitioning clusters, previously represented on UMAP embeddings (Fig1E); nodes are the cell 
groups and the edge thickness quantifies the connectivity scores between the graph-partitions, highlighted on the graph. (C ) UMAP 
representation with cells colored according to inferred pseudotime values, using the Slingshot algorithm. Transition path is shown by the 
passing-by line on the cells of interest. (D) Scatter plot representation of transcriptional signatures, based on the gene sets correlated to 
pseudotime; cells are rankedc by increasing pseudotime values and colored according to their cluster ID. Scores for transcriptional signatures 
were calculated using UCell (see Material & Methods). (E) UMAP representation with cells colored according to UCell scores.
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Figure 3: Pre-tumoral signatures in human breast cancers. (A) Boxplot distribution of log10 normalized expression levels 
of CDKN2A for Breast Pan Cancer TCGA Cohort according to tumor type. (B) Boxplot representation of scores for the p16 pre-
tumoral signature according to tumor type. (C) Boxplot representation of scores for the p16 pre-tumoral signature according to 
tumor stage.(D) Kaplan-Meier disease free survival curve for basal-like tumors, according to score of expression of the p16 pre-
tumoral signature. (E) UMAP representation of the epithelial compartment from healthy (N=6) and BRCA1 +/- pre-neoplastic 
(N=2) human samples, including luminal progenitors (LP), mature luminal (ML) and basal cells; cells were colored according to 
the sample type of origin. (F) Barplot representation of the top most informative principal components (PC) separating pre-
neoplastic from normal-like epithelial cell types. PCs were ranked according to explained variance in each epithelial compartment. 
(G) Barplot representation of activated pathways (using Hallmark and C2 MsigDB terms) in BRCA1+/- versus BRCA1+/- luminal 
progenitor compartment, y-axis represent -log10 adjusted p-values. (H) Violin plot representation of expression levels of genes 
discriminating BRCA1+/- from BRCA1+/+ LP cells.
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Figure 5: Clonal evolution from LP, to p16-high cycling populations and tumors. (A) UMAP representation of the transcriptomes of cells 

from the epithelial compartment with cells colored according to the percentage of their genome with CNV. (B) Violin plot distribution of the 

percentage of altered genome per cell, grouped by cluster ID; horizontal lines represent the median values. Asterisks represent the significance 

levels of mean comparison with basal cells. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Upper panel: violin plot distribution of the pairwise 

intra-cluster correlation scores between single-cell CNV profiles. Cluster partition (i.e clone separation) was achieved with Consensus Clustering 

(Fig. S3). For LP and Basal clusters, intra-cluster correlation scores were computed on all cells of each compartment due to the absence of any 

consensual optimal number of clusters; Lower panel: Donut plot representation of the number of cells per clone for p16+ cycling cells and ST 

cells. (D) Heatmap representation of log-transformed residuals from inferCNV, with basal cells as a reference, for LP, p16+ cycling cells and cells 

from ST sample; blue and red values refer to deletions and gains respectively. Horizontal dotted lines separate chromosomes.
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Figure 6: Heterochromatin disruption. (A) Representative sections for mammary gland from 3 months-old Cre- mouse, 5 months old Cre+ 
mouse with lesion, and tumor. All are stained by immunofluorescence for basal marker Krt5 (in green), luminal marker Krt8 (in red), histone 
mark H3K27me3 (in orange), Dapi (in blue) (left image in each panel), scale bars represent 20μm. For zooms scale bars represent 
10μm. (B) Jitter plot representation of the number of μFoci per nucleus in the studied samples in (A). Asterisks represent the significance levels 
of median comparison with the Cre -/- control sample. ns: non-significant, *P < 0.05, **P < 0.01, ***P < 0.001. (C) Scheme showing the two 
hypotheses that could explain the observations of H3K27me3 μfoci. (D) Violin plot of the H3K27me3 peak breadth on autosomes in tumor 
samples compared to normal-like mammary glands. (E) Cumulative coverage plot for H3K27me3 signal in Cdkn2a/b,Cdk12,promoter genes in 
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Figure 7: Understanding early steps of BRCA1 tumorigenesis in mouse and human
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STAR Methods 513 

Animal models. The generation of Brca1fl/fl and Trp53fl/fl mice has been previously described (Jonkers 514 

et al. 2001; Liu et al. 2007). Blg-Cre transgenic mice were purchased from The Jackson Laboratory. Mice 515 

strains were crossed to obtain Blg-Cre Trp53fl/fl Brca1fl/fl animals. Genotypes were determined by PCR 516 

(primers Cre: 3’ CGAGTGATGAGGTTCGCAAG 5’ - 3’ TGAGTGAACGAACCTGGTCG 5’; primer Brca1 : 517 

3’TATCACCACTGAATCTCTACC 5’ - 3’ GACCTCAAACTCTGAGATCCAC 5’; Trp53:  3’ 518 

AAGGGGTATGAGGGACAAGG 5’ - 3’ GAAGACAGAAAAGGGGAGGG 5’). Mice were sacrificed by cervical 519 

dislocation. For each sample (gland or tumor), one piece was fixed in 4% paraformaldehyde (15710, 520 

Euromedex) for histological analysis, one piece was snap frozen in dry ice and stored at -80°C and one 521 

piece was kept fresh for the desired experimentation.  522 

 523 

Ethics statement. All procedures used in the animal experimentations are in accordance with the 524 

European Community Directive (2010/63/EU) for the protection of vertebrate animals. The project has 525 

been approved by the ethics committee n°02265.02. We followed the international recommendations 526 

on containment, replacement and reduction proposed by the Guide for the Care and Use of Laboratory 527 

Animals (NRC 2011). We used as few animals as possible and minimized their suffering, no painful 528 

procedures were performed. The breeding, care and maintenance of the animals were performed by 529 

the Institut Curie animal facility (facility license #C75-05-18). 530 

 531 

Immunostaining. Glands and tumors were fixed in 4%PFA/PBS at 4°C overnight, then washed with PBS 532 

(Gibco, 10010023) a first time for 1h and a second time at 4°C overnight. The samples were then passed 533 

through consecutive (50%, 60%, 70%) ethanol baths for 30 min each at room temperature. Paraffin 534 

embedding and sectioning (5µm) was performed by the experimental pathology department of Institut 535 

Curie. At the staining time, the slides are dewaxed by heating at 65°C for 1h and wash 2 times in Xylene 536 

10min, then rehydrated via consecutive bath: 2x Ethanol 100% (VWR 20821,31) 10min, 1x Ethanol 90% 537 

5min, 1x Ethanol 80% 5min, 1x Ethanol 70% 5min, 1x Ethanol 50% 5min, 2x Water 5min. Retrieval 538 
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treatment was performed by incubation in citrate buffer (C9999) for 20min at 95°C. After a 1h room 539 

temperature cooling, the slides are cleaned in PBS and permeabilized in permeabilization buffer (BSA 540 

2%, FBS 5%, Triton 0,3% in PBS) for 2h at room temperature. Primary Antibody incubation was done 541 

on blocking buffer (BSA 2%, FBS 5%, PBS) at 4°C overnight with Chicken Krt5 antibody 1:500 (905901), 542 

Rat Krt8 antibody 1:500 (MABT329), Rabbit H3K27me3 antibody 1:20 (C36B11), Rabbit p16 antibody 543 

1:100 (Abcam, ab211542). After 3 washes in PBS for 10 min each, incubation of the antibodies was 544 

performed for 2h at room temperature with: goat anti-rabbit Cy3 1:1000 (A10520), goat anti-rat Cy5 545 

1:1000 (A10525), goat anti-chicken Alexa Fluor 488 (A11039) 1:500, DAPI 0,5µg/ml. After 3 wash in 546 

PBS 10min, sections were mounted in Aquapoly mount media. 547 

 548 

LacZ staining. Glands and tumors were directly fixed in PFA 4% for 2h and incubated in PBS, 30% 549 

Sucrose at least 24h. Samples were included in optimal cutting temperature OCT medium (23-730-751) 550 

in moulds and cooled on a metal support previously cooled on dry ice. The samples were stored at -551 

80°C before being cut in a cryostat at -20°C in a 6µm section. Slides were stored at -80°C before use. 552 

For the staining, the slides were equilibrated at room temperature for 10-20 min and washed 3 times 553 

for 5 min at room temperature in the washing buffer: PBS, 2mM MgCl2, 1x Na-DOC, 0,02% NP40. After 554 

that, slides were incubated in the LacZ Stain: Washing solution, 10mM K3Fe, 10mM K4FE, 1,5 mg/ml 555 

X-Gal in a humidified chamber in the dark at 37°C for 4h to overnight. Slides were washed in a 556 

consecutive bath of: PBS for 1 min then for 15 min at room temperature, water for 15 min at room 557 

temperature and (optionally) Nuclear fast red for 5 min and 2 times in water for 5 min each. Sections 558 

were mounted in Aquapoly mount media. 559 

 560 

Microscopy, image acquisition and analysis. Image acquisition of stained sections were done using a 561 

laser scanning confocal microscope (LSM780, Carl Zeiss) with a LD LCI PLAN-APO x40 or x65/08 NA oil 562 

objective. The acquisition parameters were: zoom 0.6; pixel size xy 554 nm; spectral emission filters 563 

(bandwidth): 414-485 nm, 490-508 nm, 588-615 nm, 641-735 nm; laser wavelengths: 405, 488, 561 564 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.08.494710doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.494710
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

and 633 nm. Images were captured using Metamorph. Image processing was performed using Fiji 565 

Software, version 1.0. The counting of µ-HF was done in Fiji with a custom macro, for each nucleus, we 566 

selected the most representative Z, then the counting was done automatically with the AutoThreshold 567 

MaxEntropy. 568 

 569 

Multiplex histological staining. Multiplexed IHC was performed according to the protocol developed 570 

by (Remark et al. 2016), with some adjustment. Tissues were baked at 60°C for 1h, deparaffinized in 571 

Xylene (Fisher Scientific, 10467270) and rehydrated. The heat-induced epitope retrieval was done with 572 

pH6.1 citrate buffer (Dako, S169984-2) or pH9 EDTA buffer (Dako, S236784-2) in a 95°C water bath for 573 

30 minutes for the first staining (otherwise 15min) followed by incubation in REAL peroxydase blocking 574 

solution (Agilent Dako, S202386-2) for 10 minutes. If the primary antibody was the same species as 575 

any antibody used in prior stains, another blocking step was added with Fab Fragment, only for anti-576 

rabbit (Jackson ImmunoResearch Europe Ltd, 711-007-003) during 20 minutes. Protein block serum 577 

free (Agilent Dako, X090930-2) was added for 10 minutes. Primary antibody was incubated for 1 or 2 578 

hours at room temperature or overnight at 4°C. The primary antibody was detected using a secondary 579 

antibody directed against the first one, conjugated with horseradish peroxydase (Anti-rabbit: Agilent 580 

Dako, K400311-2) (Anti-rat: BioTechne, VC005-050) followed by chromogenic revelation with 3-amino-581 

9-ethylcarabazole (AEC) (Agilent Dako, K3468). Slides were counterstained with hematoxylin (Thermo 582 

Scientific, 6765001) and mounted with Glycergel aqueous mounting medium (Dako, C056330-2). After 583 

scanning (Philips Ultra Fast Scanner 1.6 RA), tissues were bleached with ethanol baths and another 584 

cycle was performed starting with the heat induced epitope retrieval.  585 

 586 

Overlay of multiplex histological stainings. Histological analysis was performed using the open-source 587 

image analysis QuPath software (QuPath-0.3.2, http://qupath.github.io/) (Bankhead et al., n.d.) and 588 

ImageJ/Fiji. We created a new QuPath project containing all scans of each slide which allow us to crop 589 

and export (BioFormats plugin) and then overlay the images using Fiji script following these different 590 
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steps: 1. Color deconvolution (separation of hematoxylin and AEC signal); 2. Alignment on hematoxylin 591 

images; 3. Creation of transformation matrix on AEC images; 4. For a part of the staining (Edac, Vim, 592 

Ki67) an automatic threshold using MaxEntropy was done to remove background, for the rest of the 593 

stainings (p16, Krt5, Krt8, Ncad) different threshold was determined using control cell signal (cf. 594 

Computational part). Each staining was colored as desired. To further analysis, the composite image 595 

was transferred back to QuPath. By hand, the different structures of the gland/tumors were annotated 596 

(duct, stroma, juxta-lesion or juxta-tumoral duct, lesion, tumor). To identify all the cells, we used the 597 

‘cell detection’ function based on hematoxylin nucleus staining. We then used the ‘show detection 598 

measurement’ function to export the annotation and the intensity signal for all staining for each cell 599 

and analyzed it in R. 600 

 601 

Multiplex histological data analysis strategy. The resulting measurements were exported and 602 

analyzed in R (4.1.1). Briefly, high signal channels, corresponding to Ki67, Vim were thresholded by the 603 

Maximum Entropy algorithm, whereas the remaining channel markers were subjected to a custom 604 

thresholding approach. To identify true positive cells for each marker, mean “Cell” signal values were 605 

binarized as follows: - non-zero values of the Max Entropy thresholded markers were set to 1, whereas 606 

zero values were set to 0. To determine positive cells for p16, Ncad and Krt5, the local minimum after 607 

the highest peak was fitted on the density distribution of the merged cells from all the samples 608 

corresponding to each marker. Different thresholds were defined for each sample for the following 609 

markers: Krt8 and Ecad. Briefly, the “approxfunc” r interpolation function was applied on the density 610 

distribution of each marker on each sample, followed by an optimization step using the “optimize” r 611 

function to retrieve the local minimum within the interval of the density function. Higher values as 612 

compared to each threshold were set to 1, whereas smaller values were set to 0. basic r functions were 613 

used to calculate the percentages of positive cells for each or double positive for many markers, and 614 

the ggplot package was used for graphical representations. Stromal cells were excluded in the 615 

analyses. 616 
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 617 

Mammary gland / tumor dissociation and flow cytometry. Samples were cut roughly with dissecting 618 

scissors and then with 2 scalpels for approximative 10 min. Then single cell dissociation was done by 619 

enzymatic digestion with 3mg/ml collagenase I (Roche, 11088793001) and 100U/ml hyaluronidase 620 

(Sigma-Aldrich, H3506) in complete media (HBSS (24020117), 5% SVF) during 1h30 under agitation at 621 

170 rpm at 37°C. Cells were then dissociated in PBS 0,25% Trypsin-Versen (Thermo Fisher Scientific, 622 

15040-033) prewarmed at 37°C for 1min30s with pipetting for 45s. The cell suspension was then 623 

treated with dispase 5 mg/ml (Sigma-Aldrich, D4693) and DNase 0,1 mg/ml (Roche, 11284932001) in 624 

complete media for 5 min at 37°C. A treatment with Red Blood cell lysis buffer (Thermo Fisher 625 

Scientific, 00-4333-57) was carried out then the suspension was filtered at 40µM before counting and 626 

FACS staining. Cell suspensions were stained 20 min in dark at 4°C with anti-CD45-APC 1:100 627 

(BioLegend, 103112), anti-CD31-APC 1:100 (BioLegend, 102510), anti-CD24-BV421 1:50 (BioLegend, 628 

101826), anti-CD49f-PE 1:50 (BioLegend, 313622). Cells were resuspended in cytometry media (PBS, 629 

BSA, EDTA). For the mammary gland samples, we either recovered the total epithelium or the luminal 630 

and basal cells populations separately.  631 

 632 

Single-cell RNA-seq. In accordance with the protocol of 10X Chromium manufacture, the cells were 633 

resuspended in PBS 0,04% BSA. Depending on the samples, approximately 3000 or 4000 cells were 634 

loaded on the Chromium Single Cell Controller Instrument (Chromium single cell 3’ v3 or 3’ NextGem, 635 

10X Genomics, PN-1000075) in accordance with the manufacturer's protocol. Libraries were prepared 636 

according to the same protocol. 637 

 638 

Bulk and single-cell ChIP-seq. ChIP experiments were performed as previously described (Marsolier et 639 

al. 2022) using an anti-H3K27me3 antibody (Cell Signaling Technology, 9733 - C36B11). Bulk 640 

sequencing libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit (NEB, E7645S) 641 

according to the manufacturer’s instructions. For single-cell experiments, cells were encapsulated on 642 
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a custom microfluidic device as described before (Grosselin et al. 2019). Cells were stained with DAPI 643 

3µM or with 1µM CFSE during 15 min (CellTrace CFSE, ThermoFisher Scientific, Ref: C34554).  644 

 645 

COMPUTATIONAL ANALYSIS 646 

Code related to the following sections will be deposited on Github (https://github.com/vallotlab). 647 

 648 

Chromium 10X scRNAseq data pre-processing. scRNAseq data acquisition was performed using the 649 

10X toolkit. Briefly, the CellRanger Software Suite (version 3.0.1) was used for demultiplexing, cell 650 

barcode assignment and further UMI (Unique molecular Identifier) quantification. The pre-built mm10 651 

reference genome proposed by 10X Genomics ((https://support.10xgenomics.com/single-cell-gene-652 

expression/software/downloads/latest) was used to align the reads. All the in vivo mouse datasets 653 

were analyzed together, without performing any batch correction. Doublet removal step was included 654 

in the 10X workflow, and was performed by the “emptyDrops” function from DropletUtils at an FDR of 655 

0.01.   656 

 657 

Quality Control (QC) for scRNAseq data analysis. Low quality cells were defined as having aberrant 658 

values for the type and number of genes/UMIs detected. We evaluated the distribution of the total 659 

number of genes, molecules (UMIs) and the fraction of UMIs mapped to mitochondrial (MT) genes and 660 

set up thresholds to filter out those cells. Three upper cutoffs of 30% UMIs mapped to MT genes, 661 

10,000 genes and 100,000 nUMIs were fixed to get rid of outliers. Additionally, cells with less than 662 

1000 detected genes were excluded. This resulted in a total of  17,330 high quality cells, which were 663 

used for further analysis. 664 

 665 
 666 
scRNAseq data Normalization. Normalization and variance stabilization were performed using the 667 

SCTransform method, implemented in the “SCTransform'' function from the Seurat Suit. SCTransform 668 

omits the need for heuristic steps comprising log-transformation and pseudo-count addition, and 669 
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results in improved downstream analytical steps. More recently, SCTransform also supports using the 670 

glmGamPoi package. Briefly, this method fits a “Gamma-Poisson Generalized Linear Model” to the 671 

overdispersed count matrices due to the high sparsity of the scRNAseq data, and results in a substantial 672 

improvement of the variance stabilization. 673 

 674 

scRNAseq data dimension reduction and clustering. Principal Component Analysis (PCA) was 675 

performed on the top 3000 Highly variable genes of the SCT assay from the SCTransform step, to 676 

reduce the data dimensionality. The top 60 PCs were further used to perform graph-based clustering 677 

and community (cell cluster) detection. 678 

All the Uniform Manifold Approximation and Projection (UMAP) plots were computed using the 679 

“RunUMAP” Seurat function with default parameters (“uwot” as umap.method, n.neighbours=30, 680 

distance metric= “cosine”, min.dist=0.3) and “random.state=42”. The two-dimensional UMAP 681 

coordinates were calculated using the top 60 PCs previously computed on the SCT assay. For the sake 682 

of clarity, once the epithelial compartment is sub clustered, the same UMAP embeddings were used 683 

to represent the “transitioning cell clusters”. Further “zoom ins” were performed using the 684 

corresponding umap coordinates of the cells of interest. 685 

 686 

Graph-based clustering and cell cluster identification. Cell clustering was performed using a two-step 687 

wise approach, using the “FIndNeighbours'' and “FindClusters'' respectively. Briefly, a k-Nearest 688 

Neighbours (kNN) graph is built on the dissimilarity matrix based on the pairwise euclidean distance 689 

between cells in the PCA space (using the previously computed 60 PCs). Edges are drawn between 690 

nodes (cells) with similar expression patterns (Jaccard Similarity). Edge weights are refined based on 691 

their shared overlap in their neighborhood.  692 

“FindClusters” function was used to cluster the cells, using the Louvain algorithm as default, setting 693 

the resolution parameter to 1.2 to ensure an optimal granularity and stability of the cell clusters. 694 

 695 
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scRNAseq cluster annotation. Manual annotation of the cell clusters was performed on the merged 696 

samples on a two-steps basis. First, the cell clusters were annotated according to the major cell 697 

compartments, using well-established canonical markers. The latter included: Immune (Ptprc+, Cd68+, 698 

Cd52+), Epithelial (Epcam, Krt5, Krt8, Elf5), Endothelial (Pecam1, Fabp4, Apold1) and Fibroblasts (Mgp, 699 

Dpep1, Col3a1). Briefly, we computed the mean expression of each gene across the cells belonging to 700 

each cluster, to obtain a pseudo-bulked matrix containing only the genes of interest. A classical 701 

hierarchical clustering was performed on the clusters based on their correlation distance matrix to 702 

determine the cell cluster groups “Metaclusters” which displayed similar expression levels for each 703 

canonical gene signature. According to the dendrogram length, computed using the “ward.D” method, 704 

5 meta-clusters were identified. Each meta-cluster was assigned the cell type name for which the 705 

canonical genes were mostly expressed, as compared to the remaining genes. For instance, COl3a1 706 

displayed the highest expression level in the meta-cluster “1”. Therefore, all cell clusters previously 707 

defined (see Graph-based clustering and cell cluster identification section above) belonging to 708 

metacluster “1” are labelled as “Fibroblasts”. 709 

 710 

Refined Epithelial clusters annotation. The epithelial compartment was further sub clustered to better 711 

explore the cell subtype/state heterogeneity between the control and the tumor samples. 712 

SCTrasnform, PCA dimension reduction and clustering steps were run on the subsetted clusters of 713 

interest. To achieve a high-resolutive cell subtype annotation, DIfferential expression (DE) was 714 

performed using the “FindAllMarkers” function. Briefly, a non-parametric Wilcoxon-Sum rank test was 715 

performed on a “1 cluster vs all” basis, setting a log2 Fold Change (FC) threshold at 0.5, and keeping 716 

only genes expressed in at least 30% of the cell clusters (to ensure expression homogeneity within the 717 

cluster). Associated p-values were corrected using the “Bonferroni” correction method, with a set 718 

threshold at 5%. 719 

An automated function was designed to annotate the clusters. It takes as input the top 10 logFC ranked 720 

geneset for each cluster, and initially computes the contribution percentage of each tumor size feature 721 
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of our dataset (control, control with primary lesions, small tumor (ST), medium tumor (MT) and large 722 

tumor (LT)) to each cell cluster. For a given cluster, if the major contributor is the control dataset, the 723 

function intersects the corresponding top genes with a knowledge-driven gene list of the known 724 

epithelial cell types (including basal, luminal progenitor, alveolar-differentiated, hormone-sensing ...) 725 

and labels the cluster with the corresponding cell type. If most of the cells (> 60%) were from tumor 726 

samples, the subtype name would be the concatenation of the top gene name with the tumor size 727 

symbol (ST, MT or LT). 728 

 729 

Differential expression. Differential gene expression (DGE) analysis was performed using 730 

“FindMarkers” function. Non parametric Wilcoxon sum rank test was used to identify genes with an 731 

abs(FC)> 0.5 at an FDR of 0.05. To ensure cell cluster homogeneity, we set a lower cutoff of 30% of 732 

cells expressing a given gene. 733 

 734 
Pathway Enrichment Analysis (PEA). Pathway Enrichment Analysis was performed on the significantly 735 

differentially expressed gene lists using the Hallmark collection from the Molecular Signature Database 736 

(MSigDB). The latter was loaded into the R session using the “msigdbr” package available on 737 

Bioconductor. Gene Set Enrichment Analysis was performed using the “enricher” function from the 738 

“msigdbr” package. Only significantly enriched pathways (adjusted P-values < 0.05) were considered. 739 

 740 

Signature construction. Transcriptional signatures were constructed from the gene lists contributing 741 

to each corresponding enriched pathway, using the “AUCell” package available on Github ( ). Briefly, 742 

the genes of a given  cell vs.gene data matrix are ranked based on their expression levels in each cell. 743 

UCell computes then a Mann-Whitney U statistic (which is similar to AUC Area Under Curve), which is 744 

further used to evaluate gene signatures on the gene expression ranks of individual cells. We 745 

computed the gene signatures using the wrapper function “AddModuleScore_UCell”, giving as input a 746 

list of features, along with the seurat object. 747 

 748 
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Trajectory inference - Slingshot. Pseudotime ordering of cells was conducted using Slingshot (Github 749 

link), with default parameters, giving as input the UMAP coordinates and setting the starting cluster as 750 

the luminal progenitors “LP”, with stretch=2. 751 

To ease the interpretation of the trajectory, we performed SLingshot only on the transitioning 752 

compartment, including (“LP”, Alveolar differentiated “Avd”, Luminal differentiated hormone-sensing 753 

“Luminal H-S”, and the annotated clusters of the small tumor. Downstream analytical steps were 754 

performed only on the longest branch starting from the “LP” and ending in the “Fgf8+ ST” cluster. 755 

 756 

Contribution of genes to a branch tree. The aim of this section was to identify the most contributing 757 

genes to the transition observed from the Slingshot trajectory inference. To do so, a cell vs.gene 758 

expression matrix was created including the contributing cells to the longest branch, and the top 2000 759 

highly variable genes.  We then applied a random forest regression model using 500 trees to predict 760 

the genes which contribute the most to predict pseudotime values (the response variable). The 761 

features (genes) were sorted according to their “variable.importance”parameter after the model was 762 

fit. 763 

 764 

Associated pathways to pseudotime values prediction. We computed the mean expression values of 765 

the selected top 200 most important predictive genes to get pseudo-bulked matrices for the 766 

transitioning cells. To cluster the genes according to their profile correlation with pseudotime values, 767 

a pairwise-correlation matrix, followed by a hierarchical clustering were performed. 5 gene groups 768 

were obtained, each having a distinct profile along pseudotime. PEA (see below) was performed on 769 

each gene set, followed by a signature construction step and ultimately visualized on the UMAP 770 

embeddings. 771 

 772 

Partition-based graph abstraction (PAGA). PAGA was performed using “scanpy” Python library loaded 773 

on RStudio using “reticulate” R package. Default parameters were used to construct the graph 774 
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partition, and a threshold of 0.1 was set to preserve the highly connected nodes. Connectivity scores 775 

were extracted from the PAGA output, along with the nodes and edges connections. Centrality scores 776 

(number of edges) were computed by counting the number of edges that passed the cutoff (0.15) for 777 

each cell cluster. 778 

 779 

Potential of Heat-diffusion for Affinity-based Transition Embedding (PHATE). PHATE was used as a 780 

visualization method to investigate continual progressions, branches and clusters in our data. Briefly, 781 

PHATE uses an information-geometric distance between cells (data points) to capture both local and 782 

global nonlinear structures, setting knn = 20, t (diffusion parameter) =40 as input parameters.   783 

 784 
Copy Number Variation (CNV) inference from scRNAseq data. CNVs were inferred using inferCNV 785 

(https://github.com/broadinstitute/infercnv) with default parameters, taking as reference the basal 786 

cells. We extracted residual cell matrices, binarized the values using the 10th as lower and 90th 787 

percentile as higher thresholds, to get -1 (if the value < 10th percentile); +1 (if the value is higher than 788 

the 90th percentile) and 0 if the value is in between the two thresholds. To estimate the percentage 789 

of altered genome, we calculated the absolute value of binarized matrices, and counted the number 790 

of 0s and 1s aggregated by chromosome. These values were added to the metadata of the scRNAseq 791 

Seurat object. 792 

 793 

TCGA_Breast cancer dataset. To compare the expression levels of CDKN2A, P16-signature, EMT and 794 

apoptosis pathway signatures, between non-diseased healthy tissues, tumor-adjacent normal tissue 795 

and tumor breast tissues, we harnessed breast tissues datasets from TCGA and GTEx consortia from 796 

normalized transcriptomic data available from Github 797 

(https://github.com/mskcc/RNAseqDB/tree/master/data/normalized). We constructed the gene 798 

signatures using the UCell package, and compared the tissue types using Wilcoxon T tests. 799 

 800 
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scRNAseq data analysis of normal, preneoplastic and tumorigenic states in the human breast. We 801 

downloaded the dataset from GEO, using the accession number: GSE161529. Briefly, we selected only 802 

the normal epithelium samples from pre-menopausal women (n=6), tumor samples (labeled as Triple 803 

Negative tumor, and Triple negative (Brca) tumor) (ntotal=8), and the nulliparous, pre-menopausal 804 

pre-neoplastic Brca1 samples (n=2). After sample merging, SCT normalization, dimension reduction 805 

and graph-based clustering, we selected the cell clusters expressing epithelial markers (Epcam, Krt8, 806 

Krt5) for further analysis. The same procedure was conducted on the epithelial compartment, followed 807 

by a finer annotation of the cell clusters using canonical markers of epithelial sub-populations. To point 808 

out the epithelial population which underwent major transcriptional modifications upon Brca1 809 

deficiency as compared to the normal population, we subset the luminal progenitor (LP), Basal and 810 

mature luminal (ML) clusters. For each subpopulation, principal component analysis (PCA) was 811 

performed, and the top 20 variable PCs were kept. To identify the main PC drivers of a 812 

normal/preneoplastic gradient, we tested whether the cell distributions along each PC coordinate 813 

were the same, using a Kosmogorov Smirnov nonparametric test. We selected the PCs with a 814 

significant p-value (<0.05) and a D-value > quantile(D-value,0.8). Alternatively, a linear regression 815 

method was tested to select the top predictive PCs to separate cells labeled as preneoplastic from 816 

normal ones. Both methods indicated similar PCs. Next, to identify the epithelial sub-population for 817 

which the PCs were the most discriminant, we ranked the top “informative” PCs according to their 818 

percentage of variance explained. Pathway enrichment analysis was performed on the top genes 819 

(ranked by eigenvalues) which contributed most to the PC part corresponding to preneoplastic cells. 820 

 821 

DATA AVAILABILITY 822 

The datasets described in this study have been deposited in the prive GEO repository GSE200444, 823 

accessible with the token gtotisgiftopnqr. 824 
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