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Abstract

Previous host-parasite coevolutionary theory has focused on understanding the determinants
of local adaptation using spatially discrete models. However, these studies fall short of
describing patterns of host-parasite local adaptation across spatial scales. In contrast,
empirical work demonstrates patterns of adaptation depend on the scale at which they are
measured. Here, we propose a model of host-parasite coevolution in continuous space that
naturally leads to a scale-dependent definition of local adaptation and a formal definition
for the spatial scale of coevolution. In agreement with empirical findings, our model implies
patterns of adaptation vary across spatial scales. When measured on spatial scales shorter
than the scale of coevolution, we find the farther dispersing species is locally adapted.
However, when measured at longer spatial scales, the opposite pattern is observed. We
discuss our results in relation to those found using spatially discrete models and to conclusions
drawn from empirical studies, and provide an example of our how our results can be used to
inform the design of empirical studies.

Keywords host-parasite coevolution · local adaptation · continuous space · spatial scale · cross-covariance

Introduction

Interactions between hosts and parasites have shaped patterns of diversity across all scales of biological
organization. For example, coevolution with parasites can alter epidemiological dynamics (Best et al. 2010;
Débarre et al. 2012; Lion and Gandon 2015), promote the evolution of sexual reproduction (Otto and
Nuismer 2004; Lively 2010), yield novel mutualisms (Yamamura 1993), and influence patterns of speciation
across a broad range of taxa (Agrawal and Zhang 2021). In each of these examples, the geography of
the interspecific interactions plays a critical role in determining ecological and evolutionary outcomes. In
particular, patterns of dispersal in each species have important consequences for the evolution of local
adaptation between them (Gandon and Nuismer 2009; Tack et al. 2013). The majority of theoretical studies
investigating the determinants of host-parasite local adaptation focus on models in which dispersal occurs
between spatially discrete locations. However, most species interactions occur in continuous space, and
the dynamics of these spatially continuous systems may be only poorly approximated by discrete space
metapopulation models. Therefore, there is a need for models that help us understand, and make predictions
for, patterns of host-parasite local adaptation in spatially continuous habitats.
Species that evolve in spatially heterogeneous habitats may exhibit adaptation to local environmental
conditions, a phenomenon known as local adaptation. More precisely, local adaptation is the fit between
adaptive genetic or phenotypic variation and environmental variation (Kawecki and Ebert 2004). Although the
environment is often conceptualized as a set of abiotic factors, coevolving species comprise biotic environmental
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factors for one another. In addition, the locally adapted species is often considered to be “ahead” in the
coevolutionary arms race (Kawecki and Ebert 2004; Greischar and Koskella 2007; Lemoine et al. 2012;
Koskella 2014; Pérez-Jvostov et al. 2015; but see Lively 1999; Morran et al. 2014; and Nuismer 2017).
Furthermore, the identity of the locally adapted species will depend on the relative spatial scales of genetic or
phenotypic variation in each species. In turn, these spatial scales of diversity are determined by the interaction
between dispersal and selection (Slatkin 1978). Thus, patterns of host-parasite local adaptation will depend
on the relative dispersal abilities and relative strengths of selection in each species. After decades of research
on this topic, two general insights into the drivers of host-parasite local adaptation have emerged: (1) the
species experiencing stronger selection from the interaction will be locally adapted and (2) for intermediate
levels of gene-flow, the species dispersing at a faster rate will be locally adapted (reviewed in Gandon and
Nuismer 2009). The explanation for (2) is that intermediate levels of gene-flow promote local genetic diversity
without leading to gene-swamping. This increases the rate of adaptation in local populations and gives an
edge in the coevolutionary arms race.
Although this result holds under several model variations (Gandon et al. 1996; Gandon 2002; Gandon and
Michalakis 2002; Nuismer 2006), there are currently no theoretical results on the role of relative dispersal
abilities for local adaptation in continuous space (but see Nuismer et al. 2000; Nuismer et al. 2003 for
continuous space models of host-parasite coevolution). Previous models studying the the role of relative
dispersal abilities of hosts and parasites have made use of metapopulation models, which lack a notion of
geographic distance. Because geographic distance is inherent in continuous space models, we may expect
results to depend on the spatial scale at which they are observed. Previous theory of local adaptation of a
single species in continuous space suggests that local adaptation increases as the spatial scale of environmental
variability increases past that of dispersal (Slatkin 1978; Hadfield 2016). However, because coevolutionary
systems are dynamic, it is unclear whether we would expect this result to hold when a coevolving species is
treated as the other species’ environment. In order to study this question, we require a theoretical model of
coevolution in continuous space.
A theoretical model of host-parasite coevolution in continuous space could also provide quantitative predictions
for patterns of local adaptation measured at different spatial scales. Several empirical studies have concluded
that patterns of adaptation observed in empirical coevolutionary systems depend on the scale at which they
are measured (Burdon and Thrall 2000; Tack et al. 2013). For example, Tack et al. (2013) measured parasite
adaptation at three spatial scales and found parasite local maladaptation was most apparent at larger spatial
scales. We lack a theoretical explanation for why this pattern should emerge, and there is a need to further
integrate theoretical predictions and empirical observations of spatial patterns of coevolution. In this paper,
we aim to close this gap by analyzing the interaction between host-parasite coevolution, random genetic drift,
and gene-flow in a continuous two-dimensional habitat using a quantitative genetic model.
We begin by introducing our model, which is a two-species generalization of Slatkin’s (1978) model of
quantitative trait evolution in continuous space. We then outline our analytical approach, which builds on
the statistics of spatial autocorrelation (summarized in Box 1) and multivariate Gaussian random fields
(summarized in Appendix A). We use this approach to develop a scale-dependent definition of local adaptation
in continuous space. Assuming genetic variance and local population densities are constant in space and time,
and that coevolution is weak relative to abiotic stabilizing selection, we apply our analytical approach to
approximate spatial auto-covariance functions that quantify intraspecific patterns of phenotypic variation.
Our approach yields an interspecific spatial cross-covariance function that measures the covariance of host
and parasite mean traits as a function of the distance between sampled locations for each species. We propose
that the spatial scale of interspecific cross-covariance (described in Box 1) can be understood as the spatial
scale of coevolution. Finally, we combine our analytical approach and definition of local adaptation to make
predictions for patterns of local adaptation measured at different spatial scales.

Box 1: What is Spatial Autocorrelation?

Our work is, in part, motivated by the need to understand the effects of spatial autocorrelation on
measurements of local adaptation. We therefore provide a brief conceptual explanation of spatial
autocorrelation for readers unfamiliar with the concept. Spatial autocorrelation is best summed up
by the First Law of Geography: “everything is related to everything else, but near things are more
related than distant things” (Tobler 1970). We illustrate a spatially autocorrelated process in Figure 1;
note that the colors (denoting values) of nearby locations are more similar than those of more distant
locations. The spatial scale of autocorrelation describes the geographic distance at which similarity
decays, i.e., the geographic distance beyond which values observed at one location are no longer
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predictive of those observed at another. Figure 2 illustrates spatial patterns with autocorrelation that
ranges from weak (top-row) to strong (bottom-row), and over short (top-row) and long (bottom-row)
spatial scales.

Throughout this paper, we consider spatial autocorrelation of host and parasite trait values that
results from interactions between selection, random genetic drift, and limited dispersal in a continuous
geographic landscape. Because coevolutionary patterns involve two spatial patterns (spatial variation
in host mean trait and spatial variation in parasite mean trait), we have the additional notion of spatial
cross-correlation which, loosely speaking, is the autocorrelation between the two spatial patterns. For
example, if the parasite is locally adapted to the host, parasite trait values will correlate positively
with nearby host trait values, but the degree of correlation between host and parasite trait values will
decay with the distance between host and parasite populations. In that example, the host and parasite
trait values would exhibit positive spatial cross-correlation. Using the framework of random fields,
summarized in Appendix A, the magnitude and spatial scale of spatial autocorrelation and spatial
cross-correlation can be quantified using spatial covariance and spatial cross-covariance functions
(illustrated on the right column of Figure 2).

Methods

The Model

Our model tracks the evolution of local mean traits for a pair of species co-distributed across a continuous
two-dimensional geographic landscape. For each species, the genomic architecture of their traits is based
on an infinitesimal approximation such that the trait of an individual can be thought of as the sum of an
infinite number of allelic effects (with no epistasis), each of infinitesimal size (reviewed in Barton et al. 2017).
The primary components of our model (selection, reproduction, and dispersal) can be thought of as different
stages in the life cycle of an individual. We assume the life cycle begins by determining fitness in response to
selective forces, including interspecific interactions, followed by the production of offspring that disperse to
new locations, inherit trait values that are normally distributed around parental trait values, and repeat the
cycle of life. However, instead of explicitly tracking individuals, our model focuses on the dynamics of mean
traits averaged across individuals at each location in geographic space. We assume population densities and
genetic variances are constant in space and time; our model is agnostic about whether each species is asexual
or sexual.
In this section, we begin by outlining our approach to account for biotic and abiotic selection and to obtain
local evolutionary dynamics in response to selection. We then discuss our model of dispersal and random
genetic drift before combining these components into our working model. Model parameters are summarized
in Table 1.
Selection: We assume fitness consequences for interactions between hosts and parasites are mediated by the
difference in quantitative traits zH − zP , where zS is the trait value of an individual in species S = H, P for
host and parasite, respectively, such that the probability of infection increases with increasingly similar trait
values. This model of biotic selection has been referred to as the trait matching-mismatching model because
it leads to evolution of the parasite to match the host trait, while the host evolves to mismatch the parasite
trait. We assume the probability of infection is determined by the Gaussian function

α(zH , zP ) = exp
(

−γ

2 (zH − zP )2
)

, (1)

where γ ≥ 0 captures the sensitivity of infection probability to trait differences. Given a successful infection,
we assume the host incurs a fitness cost sH ≥ 0 and the parasite receives a fitness benefit sP ≥ 0. In addition
to biotic selection, we also account for abiotic selection that is stabilizing around an optimum θS ∈ R with
a strength AS ≥ 0 for species S = H, P . Without abiotic stabilizing selection, there is no evolutionary
force preventing the host trait from diverging towards infinite values. Because our analysis is performed
at equilibrium, we require the host to experience abiotic stabilizing selection to ensure the existence of
an equilibrium. Additionally, our approach to computing spatial covariance functions requires that biotic
selection be weak relative to abiotic stabilizing selection for both species (see section Spatial Covariance
Functions below).
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Using a series of assumptions, we combine these components of selection to obtain population growth rates,
which are then used to obtain expressions for adaptive evolution. First, we assume either that trait values for
interacting pairs are sufficiently similar, or that the sensitivity of infection probability to trait differences is
sufficiently weak, that α(zH , zP ) ≈ 1 − γ(zH − zP )2/2. We also assume differences in growth rates caused
by selection are small relative to intrinsic growth rates, so that selection is effectively soft (i.e., dynamics of
evolution and abundance are approximately decoupled). We assume spatial competition regulates abundance
(as in Bolker and Pacala 1997), such that host and parasite population densities NH , NP are approximately
constant in space and time. In addition, we assume parasites encounter local host individuals at random.
Following classical quantitative genetics, we also assume trait distributions of local populations are normal,
with mean z̄S(xxx), variance vS , and additive genetic variance GS for species S at location xxx ∈ R2. In
general, this assumption may be violated, as dispersal can lead to skewed trait distributions (Débarre et
al. 2015). In Appendix C, we provide an informal argument that our model assumptions imply local trait
distributions can be well approximated by normal distributions (and therefore free of skew). To summarize
our argument, we find the local trait distributions are exactly normal in the absence of random genetic drift.
Our assumptions of weak selection and large local abundance then preserve normality in the stochastic case
by preventing substantial eco-evolutionary feedbacks (such as those studied in epidemiological models) and
ensuring phenotypic diversity occurs at significantly larger spatial scales than dispersal (so migration occurs
between locations with similar trait distributions in each species). As a corollary to this argument, we also
assume that phenotypic and additive genetic variances are constant in space and time. Combining these
assumptions, we obtain the following growth rates:

m̄H = RH − AH

2 (θH − z̄H)2 + BH

2 (z̄P − z̄H)2, (2a)

m̄P = RP − AP

2 (θP − z̄P )2 − BP

2 (z̄H − z̄P )2, (2b)

where BS = sSNSγ/
√

2πι2 ≥ 0 is the strength of biotic selection (with ι ≪ 1 the interaction distance, see
Appendix B) and RS accounts for the intrinsic growth rate (the growth rate when AS = BS = 0) and
the effects of local trait variance on population growth rates. Further details on model assumptions and
calculations made in obtaining these growth rates are provided in Appendix B.
In general, spatially heterogeneous population densities can affect the action of selection (Kirkpatrick and
Barton 1997). However, because we assume population densities are spatially homogeneous, we follow Week
et al. (2021) to obtain expressions for the local dynamics of mean traits in response to selection. We use
∂S

selz̄S to denote the instantaneous rate of change of z̄S in response to selection. Then, because selection
in our model is frequency-independent (in the sense that ∂mS/∂z̄S = 0), we have ∂S

selz̄S = GS∂m̄S/∂z̄S .
Applying the growth rates obtained above provides

∂S
selz̄H = GHAH(θH − z̄H) − GHBH(z̄P − z̄H), (3a)
∂S

selz̄P = GP AP (θP − z̄P ) + GP BP (z̄H − z̄P ). (3b)

Drift: Random genetic drift can lead to variation in evolutionary trajectories across spatial locations. In our
model, drift provides the ultimate source of geographic variation in phenotypes; this geographic variation then
interacts with gene-flow and selection to yield distinct spatial patterns. The classic model for the response
of a quantitative character to random genetic drift is given by Lande (1976). This model states that the
change in mean trait in response to drift between consecutive, non-overlapping generations follows a normal
distribution with variance equal to the ratio of additive genetic variance to effective population size. The
continuous time analog of this model is trait evolution following Brownian motion, which has been widely
applied as a phenomenological model in the field of phylogenetic comparative methods (Felsenstein 1973;
Manceau et al. 2016). Mechanistically, this result has been formalized in continuous time by Week et al.
(2021). Denoting ∂S

driftz̄S(xxx) the instantaneous rate of change of the mean trait z̄S at location xxx in response
to drift, Week et al. (2021) found

∂S
driftz̄S(xxx) =

√
GS

NS
ẆS(xxx), (4)

where GS is the additive genetic variance, NS is the local population density, and ẆS(xxx) can be thought
of informally as an infinitesimal amount of Gaussian noise drawn independently at each spatial location
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xxx ∈ R2. Formally, ẆS is a space-time white noise process that, when integrated across regions of space and
intervals of time, returns a normally distributed variable with mean zero and variance equal to the area of
the space-time region integrated over (Walsh 1986).
Dispersal: We assume displacement between parental and offspring birthplaces follows a bivariate Gaussian
distribution centered on zero with latitudinal and longitudinal components drawn independently. These
assumptions prevent any net directionality in dispersal. For species S, we assume the longitudinal and
latitudinal components are drawn with a standard deviation σS , which we refer to as the dispersal distance
(although the expected distance of dispersal is σS

√
π/2).

Following this model, the movement of a single lineage over large spatio-temporal scales will appear as a
Brownian motion with rate σS . Hence, σS can be considered both a dispersal distance and a dispersal rate.
This aids in comparing our results to previous models of host-parasite local adaptation in discrete space,
which consider the rate of dispersal for one species relative to the rate of the other.
Gaussian dispersal leads to change in z̄S(xxx) towards a local average, where the scale of “local” is determined
by σS . The local mean trait will increase or decrease depending on the concavity of the spatial mean trait
surface. Because the concavity of a surface is quantified by a second spatial derivative, the effect of Gaussian
dispersal on the instantaneous rate of change in local mean trait value is related to the second spatial
derivative. Denoting ∂S

dispz̄S the instantaneous rate of change of z̄S in response to dispersal, we have

∂S
dispz̄S = σ2

S

2

(
∂2z̄S

∂x2
1

+ ∂2z̄S

∂x2
2

)
, (5)

where x1, x2 ∈ R are the longitudinal and latitudinal components of xxx = (x1, x2). For brevity, we often write
∇2 = ∂2/∂x2

1 + ∂2/∂x2
2 so that ∂S

dispz̄S = σ2
S∇2z̄S/2. As a technical note, the spatial derivative ∇2 must be

taken in a weak sense (Evans 2010) because z̄S(xxx) will in general be a non-differentiable function of xxx.
Selection, Dispersal, and Drift: We combine the evolutionary forces modeled in the previous sections so
that the net rate of change in local mean trait of species S is given by ˙̄zS = (∂S

sel + ∂S
disp + ∂S

drift)z̄S . Then,
our working model is

˙̄zH = GHAH(θH − z̄H) − GHBH(z̄P − z̄H) + σ2
H

2 ∇2z̄H +
√

GH

NH
ẆH , (6a)

˙̄zP = GP AP (θP − z̄P ) + GP BP (z̄H − z̄P ) + σ2
P

2 ∇2z̄P +
√

GP

NP
ẆP . (6b)

Symbols involved with our model are summarized in Table 1. The system of equations (6) forms a pair of
stochastic partial differential equations. In the absence of coevolution, these equations have well-studied
Gaussian random fields for equilibrium solutions (Whittle 1954; Whittle 1963; Lindgren et al. 2011). For a
summary of this result, see Theorem 7.9 in Lindgren (2012). Because our model of coevolution implies a
linear interaction between these fields, the methods used by Whittle (1954; 1963) to study the univariate case
can be extended to show that the equilibrium solution of (6) follows an isotropic bivariate Gaussian random
field on R2. To illustrate our model, a single realization of mean trait values across space for the two species
is provided in Figure 1. For the sake of self-containment, we provide a few definitions relevant to Gaussian
random fields in Appendix A.
The definition of an isotropic Gaussian random field, summarized in Appendix A, implies equilibrium
solutions to our model are completely characterized by five quantities: (1) the expected host mean trait at
each location µH , (2) the expected parasite mean trait at each location µP , (3) the covariance between host
mean traits sampled at any displacement CH(xxx), (4) the covariance between parasite mean traits sampled
at any displacement CP (xxx), and (5) the cross-covariance between host and parasite mean traits sampled
at any displacement CHP (xxx). Note, the isotropic property of solutions to our model imply that the global
variance of mean traits for species S (i.e., the variance of an infinitely large sample of mean traits drawn at
infinitely large distances from each other) is equal to the colocated variance VS = CS(000) (which also captures
the uncertainty of local trait values due to different possible realizations of drift).
Because our primary interest is in the spatial covariances of mean traits, we ignore the expected values
µH , µP . In fact, the key aspect of our model that is essential for drawing conclusions on host-parasite local
adaptation is the interspecific cross-covariance between traits CHP (xxx). In the next section, we describe our
analytical approach to approximating this cross-covariance function.

5

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.494937doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.494937


Spatial Scales of Host-Parasite Adaptation - June 8, 2022

Host Mean Trait (zH) Parasite Mean Trait (zP)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Longitude

La
tit

ud
e

−4

−2

0

2

4

Trait
Value

Figure 1: A single realization of our model. Mean trait values for the host (left panel) and parasite (right
panel) are plotted as rasterized geographic maps. Here we have set σH > σP . The colocated interspecific
correlation of mean trait values (ρHP = CHP (000)/

√
VHVP ) is set to 0.2.

Table 1: Model Parameters & Symbols

Symbol Description Class

z̄H(xxx) Host Mean Trait at Location xxx ∈ R2 Variable
z̄P (xxx) Parasite Mean Trait at Location xxx ∈ R2 Variable
vH Local Host Phenotypic Variance Parameter
vP Local Parasite Phenotypic Variance Parameter
GH Local Host Additive Genetic Variance Parameter

GP Local Parasite Additive Genetic Variance Parameter
NH Local Host Population Density Parameter
NP Local Parasite Population Density Parameter
θH Host Abiotic Optimal Phenotype Parameter
θP Parasite Abiotic Optimal Phenotype Parameter

AH Host Abiotic Stabilizing Selection Parameter
AP Parasite Abiotic Stabilizing Selection Parameter
BH Host Biotic Selection Parameter
BP Parasite Biotic Selection Parameter
σH Host Dispersal Distance Parameter

σP Parasite Dispersal Distance Parameter
∇2 Dispersal Operator Mathematical Operation
ẆH(xxx) Space-Time White Noise due to Host Genetic Drift Input/Forcing
ẆP (xxx) Space-Time White Noise due to Parasite Genetic Drift Input/Forcing
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Spatial Covariance Functions

Here we briefly describe our analytical approach to obtaining spatial covariance functions from the system
of equations that defines our model, (6). Because our results on local adaptation are obtained from spatial
covariance functions, this step in our analysis is fundamental for deriving biological insights from our dynamical
model. Essentially, our approach is to compute a spectral representation of our model (i.e., a representation
in terms of spatial frequencies), make some simplifications using our assumption that biotic selection is
weak relative to abiotic stabilizing selection, then take an inverse transform to obtain the spatial covariance
functions. We use the vector kkk = (k1, k2) to denote spatial frequencies in the two directions (called the
wavevector) as opposed to xxx = (x1, x2), which represents geographic location or displacement. One advantage
of this approach is that the spatial derivatives appearing in system (6) become algebraic expressions in
terms of spatial frequencies. Another important advantage is the relationship between the spatial covariance
function associated with a spatial process and the distribution of harmonic content in that process. The
distribution of harmonic content in a spatial process across wavevectors kkk is called the power spectrum and
can be computed from the frequency space representation (i.e., the Fourier transform) of the process. In turn,
the spatial covariance function can then be obtained by taking the inverse Fourier transform of the power
spectrum.

The Fourier transform of a function f(xxx) can be written f̂(kkk) =
∫
R2 f(xxx)ei(k1x1+k2x2)dxxx. Taking (z̄H(xxx), z̄P (xxx))

as the equilibrium solution to system (6), we denote the frequency space representation of our model by
(ẑH(kkk), ẑP (kkk)). The power spectrum for each species is given by SH(kkk) = E[ẑ2

H(kkk)], SP (kkk) = E[ẑ2
P (kkk)], where

E denotes the expected value across all possible realizations. We can also compute the distribution of harmonic
content between species, the cross-spectrum, as SHP (kkk) = E[ẑH(kkk)ẑP (kkk)]. To obtain analytically tractable
results, we assume coevolution is weak relative to abiotic stabilizing selection so that BH ≪ AH , BP ≪ AP .
This implies that the random mean trait surfaces z̄H(xxx), z̄P (xxx) are only weakly coupled. In general, the
spatial covariance and spatial cross-covariance functions are given by

CH = F−1(SH), CP = F−1(SP ), CHP = F−1(SHP ), (7)

where F−1 denotes the inverse of the Fourier transform (this is a corollary of Theorems 7.3 and 7.4 in
Lindgren 2012). In the Results section, we will see the spatial cross-covariance function CHP (xxx) plays a
central role in our definition of host-parasite local adaptation in continuous space.

Local Adaptation in Continuous Space

There are two popular definitions of local adaptation at the population level (Kawecki and Ebert 2004;
Blanquart et al. 2013; but see Nuismer and Gandon 2008 for a third definition). The first, known as home vs.
away, is the mean fitness of a population (where mean fitness of a population is defined as the average fitness
among all individuals in that population) in its local environment minus the average mean fitness of that
population when transplanted to any other location. An alternative definition, known as local vs. foreign,
is the mean fitness of a population in its local environment minus the average mean fitness of populations
transplanted from any other location to that local environment. These definitions are particularly well-suited
for metapopulations, comprised of a finite number K of discrete locations, because a randomly drawn foreign
location (for home vs. away) or population (for local vs. foreign, but from here on we simply write location)
occurs with probability 1/K. To directly extend this definition to continuous space, one can consider sampling
foreign locations uniformly from a disk in geographic space with radius r centered on the focal location, and
then take the limit as r → ∞. Then one can compute the expected distance between the sampled location
and the focal location as a function of r and show that this distance diverges towards ∞ as r → ∞. Such a
definition would therefore lack information about the effects of geographic scale on measurements of local
adaptation. Therefore, we introduce a definition that explicitly accounts for the geographic scale at which
measurements are taken.
To obtain an index of local adaptation for species distributed continuously in space that accounts for
geographic scale, we compute the population growth rate (referred to as a Malthusian growth rate in Crow
and Kimura 1970) for a population in its local environment (say at location xxx ∈ R2) minus the growth rate
for the focal population when transplanted to a different location (say yyy ∈ R2). This definition corresponds
to a home vs. away definition of local adaptation, as described above. Although classical indices of local
adaptation are defined in terms of fitness as expected number of offspring, we chose population growth rate
as it leads to relatively simple mathematical expressions. However, given the close correspondence between
growth rate and fitness, conclusions drawn using either one should be qualitatively similar.
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We denote by mH(z,xxx) the population growth rate of hosts with trait z encountering parasites located at xxx.
Similarly, mP (z,xxx) is the growth rate of parasites with trait z encountering hosts located at xxx. Expressions
for these growth rates are given by equations (41) in Appendix B. Setting φS(z,xxx) as the probability density
of trait value z in species S at location xxx, the population growth rate for individuals of species S transplanted
from location xxx to location yyy is given by

m̄S(xxx,yyy) =
∫ +∞

−∞
mS(z,yyy)φS(z,xxx)dz. (8)

Because our model considers mean traits as random variables, the population growth rates m̄H(xxx,yyy), m̄P (xxx,yyy)
are also random variables. We therefore define local adaptation in terms of expectations of these growth rates.
The measure of local adaptation we propose, ℓS(xxx,yyy), returns the expected difference between population
growth rates for individuals of species S drawn from location xxx reared locally compared to individuals
transplanted to location yyy. Therefore, this definition explicitly accounts for the spatial distance between
locations xxx and yyy. Mathematically, this is expressed as

ℓS(xxx,yyy) = E
[
m̄S(xxx,xxx) − m̄S(xxx,yyy)

]
. (9)

Following this notation, a local vs. foreign definition of local adaptation (as described above) would correspond
to ℓS(xxx,yyy) = E

[
m̄S(xxx,xxx) − m̄S(yyy,xxx)

]
. However, under our model, we find E[m̄S(yyy,xxx)

]
= E[m̄S(xxx,yyy)

]
and

thus the two definitions coincide. This is a consequence of solutions to our model being spatially isotropic,
which is defined in Appendix A.
In the Results section below, we combine this definition of local adaptation with the population growth
rates listed in equation (2) to uncover patterns of local adaptation between hosts and parasites coevolving in
continuous space.

Results

Spatial Covariance Functions

Intraspecific Spatial Covariance: Assuming coevolution is weak relative to abiotic stabilizing selection
(so that BH ≪ AH and BP ≪ AP ), we obtain simplified expressions for the power spectra. Then taking
inverse Fourier transforms of these spectra, we obtain analytic approximations for the (intraspecific) spatial
covariance and (interspecific) spatial cross-covariance functions of host and parasite mean trait values. We
find spatial covariance functions for the host and parasite respectively take the forms

CH(xxx) =
√

2VH
∥xxx∥
λH

K1

(√
2∥xxx∥

λH

)
, (10a)

CP (xxx) =
√

2VP
∥xxx∥
λP

K1

(√
2∥xxx∥

λP

)
, (10b)

where ∥xxx∥ =
√

x2
1 + x2

2 is Euclidean distance, VH , VP are the colocated variances (i.e., CS(000) = VS), λH , λP

are the spatial scales of phenotypic isolation-by-distance in each species, and Kn is the modified Bessel
function of the second kind (Abramowitz and Stegun 1965). These spatial covariance functions belong to the
class of Matérn covariance functions that have been widely employed in the fields of spatial statistics (Stein
1999; Lindgren et al. 2011) and machine learning (Rasmussen and Williams 2006). In Figure 2, we illustrate
the relationship between patterns of phenotypic spatial variation and associated spatial covariance functions
by plotting three random fields next to their associated covariance function for three different spatial scales
λ = 0.01, 0.1, 1 with unit colocated variance V = 1.
Our results also demonstrate that the spatial scales of phenotypic isolation-by-distance in the host and
parasite can be expressed in terms of model parameters respectively as

λH = σH√
GHAH

, (11a)

λP = σP√
GP AP

. (11b)
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Figure 2: Gaussian random fields and associated covariance functions across three different spatial scales of
phenotypic variation λ = 0.01, 0.1, 1, with colocated variance V = 1.

From these expressions, we see that these spatial scales are proportional to the dispersal distances in the
respective species; the farther individuals tend to move, the larger the spatial scales one must observe to find
significant phenotypic variation. We also see that increased additive genetic variance and abiotic stabilizing
selection tend to decrease these spatial scales in each species. Under the assumption of weak abiotic stabilizing
selection (which would imply AH , AP ≪ 1 and is required in our justification of population growth rates, see
Appendix B), our expression for the spatial scale of phenotypic variation coincides with that found by Slatkin
(1978).
The colocated phenotypic variances, VH and VP , represent uncertainty in mean trait value at any particular
location due different possible realizations of drift, and should not be confused with the typical notion of
phenotypic variance as the variance of trait values among individuals in a population. Because solutions to
our model are spatially homogeneous random fields (i.e., they have the same statistical properties at any given
spatial location), mean traits of individuals of species S sampled at locations separated by distances much
greater than λS escape the effects of isolation-by-distance and return essentially independent and identically
distributed random variables with variances equal to the colocated variance VS . Thus, the colocated variances
also provide measures of global diversity of mean traits across space. In terms of our model parameters, the
colocated variances can be expressed as

VH = 1
NHσ2

HAH
, VP = 1

NP σ2
P AP

. (12)

From the expressions for VH and VP , we see population density NS , dispersal distance σS , and strength of
abiotic stabilizing selection AS all decrease the overall diversity of mean traits of species S across space.
Because our model assumes the ultimate source of spatial variation in mean traits is random genetic drift,
this explains why increased population density (which decreases the rate of local genetic drift) erodes spatial
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phenotypic diversity. Similarly, because we assume space extends across the entire plane R2, in the limit
of infinite dispersal distance (or infinite dispersal rate) we arrive at a panmictic population of infinite size,
explaining why increased σS decreases VS . These two results can be summarized using Wright’s neighborhood
size NS = 4πNSσ2

S , which describes the number of reproducing individuals in species S within a disc of radius
2σS (the area within which they are effectively panmictic) (Wright 1946; Shirk and Cushman 2014). Because
the abiotic optima θH , θP are assumed to be spatially homogeneous, stabilizing selection around these optima
erodes spatial variation of mean traits in both species. This explains why VS is inversely proportional to AS .
Interspecific Spatial Cross-Covariance: In contrast to the intraspecific spatial covariance functions above,
the spatial cross-covariance function, which quantifies interspecific trait covariance measured at two potentially
different locations, does not yield a general closed-form solution. Specifically, we find the cross-covariance
function is approximated by

CHP (xxx) =
∫
R2

BP

AP

K0(∥yyy∥/λP )
λ2

P

CH(xxx − yyy) − BH

AH

K0(∥yyy∥/λH)
λ2

H

CP (xxx − yyy)dyyy. (13)

The complexity of this expression creates a challenge for drawing biological conclusions. However, we can
gain intuition for this expression by considering two simplifying cases: (1) the case where the host does not
disperse and (2) the case where the parasite does not disperse. To obtain these cases, we take the limit
σS → 0, where S = H for case (1) and S = P for case (2). For these two cases the cross-covariance function
simplifies to

CσH →0
HP (xxx) ≈ BP

NHAHAP
δ(xxx) − BH

AH
CP (xxx), (14a)

CσP →0
HP (xxx) ≈ BP

AP
CH(xxx) − BH

NP AHAP
δ(xxx), (14b)

where δ is the Dirac delta function (defined such that δ(xxx) = 0 for all xxx ̸= 000 and
∫
R2 δ(xxx)dxxx = 1) and we have

used the superscript σS → 0 to label the corresponding cross-covariance function. From these expressions, we
see that, in both scenarios, two regimes of spatial covariance emerge. Because one of the species does not
disperse, all the effects of coevolution are concentrated at xxx = 0. At greater distances, interspecific correlations
are maintained by intraspecific autocorrelation in the species that does disperse. These observations suggest
the spatial scale of coevolution in each case is zero. However, in general we expect both species to disperse
and thus for the spatial scale coevolution to be non-zero. In the next section, we provide a general definition
for the spatial scale of coevolution and find that it vanishes whenever the dispersal distance of either species
is zero.

Spatial Scale of Coevolution

Because our cross-covariance function CHP (xxx) does not suggest a general candidate for the spatial scale of
coevolution, we take an approach based on the cross-spectrum SHP (kkk). Specifically, we apply a notion called
coherence (Kleiber 2018), which is defined as the linear relationship between two fields at each wavevector kkk.
The coherence function between hosts and parasites in our model is given by

κ(kkk) = SHP (kkk)√
SH(kkk)SP (kkk)

. (15)

Similar to a correlation coefficient, we have |κ(kkk)| ≤ 1 for all kkk ∈ R2, where |κ(kkk)| denotes absolute value (or
modulus when κ is a complex number). Building on this notion, we can consider the wavevector of maximum
absolute coherence, kkkHP = arg maxkkk |κ(kkk)|, which is the wavevector at which the two fields are most linearly
related. The magnitude ∥kkk∥ =

√
k2

1 + k2
2 is inversely proportional to a geographic distance. We therefore

propose λHP =
√

2/∥kkkHP ∥ as a formal measure for the spatial scale of coevolution, where
√

2 appears as a
normalizing constant. Applying this definition to our model, we obtain

λ2
HP = σHσP

σH

√
BHNH + σP

√
BP NP

σHAHGH

√
BP NP + σP AP GP

√
BHNH

. (16)
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Figure 3: An illustration of the spatial scale of coevolution used to define the radius of sample sites and
distance between sample sites. Here, for the sake of illustration, we have arbitrarily set the radius of both
sample sites to be equal to λHP /4 (solid lines within each circle) so that trait values measured for a given
species within this radius will be highly correlated. In contrast, we have set the distance between sample
sites to 3λHP (diagonal dotted line) to ensure statistical independence between sites. Decisions on what
multiple of λHP to use for each distance will depend on the amount of measurement error and statistical
non-independence tolerated. Teal dots correspond to host individuals sampled and purple dots correspond
to parasite individuals. Following this approach, we would average across sampled hosts/parasites within
a defined location to obtain a sample for the host/parasite mean trait at that location. The colocated
covariance CHP (000), which is proportional to parasite local adaptation measured at long distances, can then
be approximated by computing the covariance of mean trait pairs sampled at each location. Because λHP is
not likely known for any system, we describe a heuristical procedure to estimating CHP (000) in Box 2.

The two special cases treated above can be derived from this general definition. Additionally, if we make all
parameters except dispersal distances equal between the two species, we obtain

λHP =
√

σHσP√
GA

, (17)

which, in this case, is the geometric mean of λH and λP (see equations (11a) and (11b)).
If we measure host trait at location xxx and parasite trait at location yyy, this spatial scale of coevolution can
be thought of as the distance between xxx and yyy for which trait values remain statistically dependent. This
suggests that λHP can be used to formalize the radius of a sampling location where trait values for both
species should be measured, i.e., the spatial scale within which phenotypic coevolution will be detectable.
Additionally, λHP determines the minimum distance between sampling locations above which we obtain
approximately statistically independent samples of mean trait pairs. In Figure 3, we illustrate the notions of
λHP as a radius of a sampling location and as a distance between sampling locations.
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Figure 4: Parasite local adaptation ℓP (d) as a function of geographic distance, scaled by biotic selection and
colocated variances as in equation (19), across nine combinations of σH and σP . Our index of parasite local
adaptation under this scaling converges to the colocated interspecific correlation of mean traits asymptotically
in d. The vertical dashed lines denote the spatial scale of coevolution λHP in each case. In the cases where
σH = σP we have ℓH(d) = ℓP (d) = 0 for all d ≥ 0 so that local adaptation does not emerge at any spatial
scale. In the cases where σH ̸= σP , we see the species with shorter dispersal distance is locally adapted across
all distances.

Patterns of Local Adaptation

Analytical Results: Combining our model with our definition of local adaptation in continuous space
(defined above in equation (9)), we find

ℓH(xxx,yyy) = BH (CHP (xxx − yyy) − CHP (000)) , (18a)
ℓP (xxx,yyy) = BP (CHP (000) − CHP (xxx − yyy)) . (18b)

Because all the functions involved with this result depend only on spatial distance d ≥ 0, we simplify our
notation by writing ℓS(d) = ℓS(xxx,yyy) when d = ∥xxx − yyy∥. Similarly, we write CH(d), CP (d), and CHP (d) for
the spatial covariance functions evaluated at a geographic distance d. In Figure 4, we present our index of
parasite local adaptation as a function of geographic distance across nine combinations of σH , σP = 1, 10, 20
with NH = NP = 10, GH = GP = 1, AH = AP = 0.1, and BH = BP = 0.01.
These indices of local adaptation for each species are related by ℓP (d)/BP = −ℓH(d)/BH , which holds
when BP , BH > 0 (i.e., when they coevolve). In addition, because CHP (d) → 0 as d → ∞, we have
limd→∞ ℓP (d)/BP = CHP (0). That is, when parasite local adaptation is measured on large enough distances
d that CHP (d) ≈ 0, and divided by the strength of biotic selection BP , it simplifies to the colocated covariance
CHP (0). Furthermore, the colocated interspecific correlation coefficient (defined at the bottom of Appendix
A) can be obtained as
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Figure 5: The colocated interspecific spatial correlation coefficient ρHP from equation (20), which is
proportional to parasite local adaptation, as a function of σP /σH when all other parameters are made equal
between the two species and abiotic stabilizing selection is made twice as strong as biotic selection. The
x-axis has been rescaled to cover the entire range of σP /σH .

ρHP = lim
d→∞

1
BP

ℓP (d)√
VHVP

= − lim
d→∞

1
BH

ℓH(d)√
VHVP

. (19)

This implies that the species that appears locally adapted when measured at sufficiently large spatial scales
is determined by the colocated interspecific spatial correlation of mean traits. Parasite local adaptation at
large spatial scales coincides with positive colocated correlations ρHP > 0 and host local adaptation coincides
with negative colocated correlations ρHP < 0. To understand the role of relative dispersal abilities on the
signage of ρHP , and thus on which species is locally adapted, we evaluated its expression when all model
parameters except σH , σP were made equal between the two species. This yields

ρHP = 2σHσP
B

A

σ2
H − σ2

P − (σ2
H + σ2

P )(ln σH − ln σP )
(σ2

H − σ2
P )2 . (20)

To illustrate this result, in Figure 5 we plotted ρHP as a function of σP /σH with all other parameters equal
between the two species and A = 2B. From equation (20) and Figure 5, we see that our model predicts the
species with shorter dispersal distance will appear locally adapted at large spatial scales. Additionally, we
also see that the magnitude of the colocated interspecific correlation ρHP , and thus the magnitude of parasite
local adaptation, is maximized at intermediate ratios of dispersal distances. In fact, numerical evaluation
reveals the formula for ρHP given by equation (20) is maximized when σP /σH ≈ 1/5 and minimized when
σP /σH ≈ 5 for any values of A and B.
Spatial Scale Dependency: Although the above cases provide important insights by simplifying otherwise
complex mathematical expressions, they are limiting in biological scope. For example, in natural systems
we might anticipate hosts and parasites to have differing background parameters such as local abundance
densities, additive genetic variances, and strengths of abiotic stabilizing selection. Such asymmetries can
lead to qualitatively different results compared to our analytical predictions above; in Figure 6 we show
two cases that highlight the dependency of the locally adapted species on the spatial scale measured. This
result suggests that, to obtain consistent estimates of local adaptation, measurements need to be taken at
sufficiently large spatial scales to avoid the effects of spatial autocorrelation.

13

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.494937doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.494937


Spatial Scales of Host-Parasite Adaptation - June 8, 2022

0 25 50 75 100

−0.01

0.00

0.01

0.02

−0.01

0.00

0.01

0.02

Geographic Distance

S
ca

le
d 

P
ar

as
ite

 L
oc

al
 A

da
pt

at
io

n

Figure 6: Parasite local adaptation scaled as in Figure 4 and equation (19) for two cases where model
parameters are asymmetric between the two species. The two cases presented exemplify the possibility for
the identity of the locally adapted species to depend on the spatial scale at which measurements are taken.
The vertical dashed lines denote the spatial scale of coevolution, λHP . For each case we see λHP is related to
the distance at which the identity of the locally species alternates.

Discussion

Here, we have extended the study of host-parasite coevolution to populations distributed continuously across a
two-dimensional landscape. We investigated the roles of relative dispersal abilities and spatial autocorrelation
in determining the identity of the locally adapted species and introduced a formal notion for the spatial
scale of coevolution. To conduct this investigation, we developed a model that tracks the evolution of local
mean traits of coevolving species in space. This model accounts for host-parasite interactions mediated by a
trait-matching/mismatching mechanism, abiotic stabilizing selection, Gaussian dispersal, spatial competition,
and random genetic drift. Solutions to this model are Gaussian random fields that are characterized by two
intraspecific spatial auto-covariance functions along with an interspecific spatial cross-covariance function.
By combining our definition of the spatial scale of coevolution and an index of local adaptation in continuous
space with the cross-covariance function obtained from our model, we highlight important considerations for
empirical studies of host-parasite coevolution and generate novel insights into the drivers of host-parasite
local adaptation.
Although there is already a large body of theory on geographically structured host-parasite coevolution
(e.g. Gandon et al. 1996; Nuismer et al. 2000; Gandon 2002; Gandon and Michalakis 2002; Nuismer et
al. 2003; Nuismer 2006; Ridenhour and Nuismer 2007; Gandon and Nuismer 2009; Débarre et al. 2012;
Lion and Gandon 2015), our model is, to our knowledge, the first to study the interactions of selection,
continuous geographic structure, and random genetic drift on the maintenance of phenotypic variation and
local adaptation. Previous theory based on a population genetic model has shown parasite local adaptation
can be written as the product of a biotic selection parameter and a spatial interspecific covariance of allele
frequencies (Nuismer 2017). In analogy to this result, we found parasite local adaptation can be similarly
written using a quantitative genetic model, but with mean trait values in place of allele frequencies. However,
under our continuous space model, this result holds only when local adaptation is measured across large
enough spatial distances to avoid the effects of spatial autocorrelation. As Figure 6 demonstrates, measuring
local adaptation on spatial scales at which the effects of autocorrelation remain significant can result in
a reversal of the species identified as locally adapted (compared to measurements made at larger spatial
scales). This result may explain the spatial scale dependency of parasite adaptation that has been observed
in empirically studied systems (e.g. Burdon and Thrall 2000; Tack et al. 2013). However, future work is
needed to better understand the conditions under which this phenomenon occurs.
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We also found that the relative dispersal abilities of host and parasite can determine which species is locally
adapted. Specifically, using our index of local adaptation at large spatial scales, we found that, when all other
parameters are equal, the species with the shorter dispersal distance tends to be the one that is locally adapted
(see Figure 5). This finding contrasts with previous results that the species with a greater migration rate is the
one that is locally adapted (so long as the rate is not so high that it swamps local adaptation, see Gandon and
Nuismer 2009). The discrepancy between these results can be explained by one of several differences between
our model and previous models. First, our model assumptions imply that genetic variances are constant
in space and time, while previous models (of allele frequencies, e.g., Gandon et al. 1996; Nuismer et al.
2000; Gandon 2002; Gandon and Michalakis 2002; Nuismer et al. 2003; Nuismer 2006; Gandon and Nuismer
2009) predict these variances to vary in space and time. Because the evolutionary response to selection is
mediated by the amount of genetic variation in a population, changes in genetic variation in time and space
can result in qualitatively different evolutionary outcomes compared to when such variation is held constant.
Second, it is possible that continuous versus discrete geographic structure explains this discrepancy. Previous
quantitative genetic models of local adaptation in a single species to an abiotic environment with continuous
spatial structure show local adaptation occurs when the spatial scale of adaptive variation is shorter than the
spatial scale of environmental variation (Slatkin 1978; Hadfield 2016). Extending this intuition to a pair of
interacting species, we might hypothesize that, all else equal, the species with shorter dispersal distance will
tend to be locally adapted. However, to formally show whether our result is a consequence of continuous
versus discrete spatial structure or of evolving versus static genetic variance requires further investigation. The
extension of our model to freely evolving genetic variances is analytically intractable, so such an investigation
would likely be most efficiently conducted using individual-based simulations.
In addition to novel insights into host-parasite local adaptation, our model also suggests a metric for the
spatial scale of coevolution. Using a notion called coherence, which quantifies the linear relationship between
two random fields across spatial frequencies, we defined the spatial scale of coevolution λHP in equation (16)
as the geographic distance associated with the spatial frequency of maximum coherence (because distance
and frequency are inversely related). This definition is sufficiently general to apply to any form of interspecific
interaction, so long as the interacting species are co-distributed across a continuous landscape. Assuming all
model parameters are equal for the two species except the dispersal distances, the expression for λHP simplifies
to the geometric mean of the two intraspecific scales of phenotypic variation (λHP =

√
λHλP ). Because

the spatial scale of coevolution quantifies the distance at which host and parasite traits are statistically
dependent, it is important to consider when measuring local adaptation in empirical studies (see Figure 3).
To demonstrate how this information can inform the design of empirical studies, we describe an example in
Box 2.

Box 2: Implications of λHP for Empirical Work

Here, we summarize the implications of the spatial scale of coevolution λHP , defined by equation
(16), for the design of empirical studies of coevolution, and provide a concrete example for how we
envision the utility of λHP . Because λHP quantifies the distance at which host and parasite traits are
correlated, it can be used to determine the radius of sampling areas and distances between sampling
locations that together maximize the signal of coevolution in the collected data and minimize spurious
signals due to spatial autocorrelation (as illustrated in Figure 3). More specifically, if the spatial scale
of coevolution were known, it could be used to inform two aspects of sampling design:

1. The radius of a sampling location (where both host and parasite traits are measured from
individuals to estimate local mean trait values) should be made sufficiently short relative to
λHP to minimize spatial variation that weakens the signal of coevolution. If the radius of
a sampling location is too large, individual trait values included in estimates of local mean
traits may only be loosely cross-correlated and thereby weaken the signal of coevolution in
the data.

2. The distance between locations (across which a correlation of local mean trait pairs can be
calculated) should be made sufficiently large relative to λHP to minimize spatial autocorrelation
of estimated mean trait values. If the distance between a pair of sampling locations is too
short, local mean traits estimated may be spatially autocorrelated, which can lead to a reversal
of the species identified as locally adapted (see Figure 6).

However, because λHP is not likely known for any given host-parasite system, we propose a heuristic
approach. Suppose individuals have been sampled uniformly from across their ranges for each species.
The question now is how to subset the data into populations such that spatial structure is minimized
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within populations and maximized between populations. With geo-referenced trait data for individuals,
well-established statistical methods, such as the RFfit function from the R package RandomFields,
can be employed to fit intraspecific spatial covariance functions similar to those predicted by our
model (the system of equations (10a) above). Because these data are measured from individuals, the
spatial covariance functions fitted to the data will slightly differ from those predicted. Regardless, this
approach provides a means to obtain rough estimates for the intraspecific spatial scales of phenotypic
variation, λH and λP . In turn, because the spatial scale of coevolution λHP lies somewhere between
the intraspecific spatial scales, λH and λP provide upper and lower bounds on λHP . Therefore,
the shorter of the two can be used to determine the radius of populations and the longer used to
determine the distance between populations. The spatial correlation function for species S, ρS(d),
predicted by our model takes the values ρS(3λS) ≈ 0.04 and ρS(λS/4) ≈ 0.94. Therefore, populations
that are separated by 3λS will be approximately independent, taking λS as the larger of λH , λP .
Similarly, taking λS as the shorter of λH , λP , populations with a radius of λS/4 should have little
spatial structure. With these heuristics in place, we can then subset the trait data for individuals into
populations (as in Figure 3), compute the mean traits for each species at each population, and, finally,
compute a spatial covariance of mean trait pairs across populations that should be approximately
free of the effects of spatial autocorrelation. In turn, under our model, this covariance provides a
consistent estimator for parasite local adaptation (equation 18b). We provide a short tutorial for this
approach at the GitHub repository https://github.com/bobweek/interspecific-cov-est.

By combining coevolutionary theory, stochastic partial differential equations, and spatial statistics, we are
able to generate new theoretical insights into the mechanics of host-parasite coevolution and local adaptation.
However, these results only scratch the surface of possibilities that can be obtained using our novel analytical
approach. For example, heavy-tailed dispersal kernels, which are likely common in nature (Houtan et al.
2007; Bullock et al. 2016; García and Borda-de-Água 2016; Jordano 2016), can be incorporated into our
model by replacing the dispersal operator ∇2 with fractional spatial derivatives (for mathematical details see
Laskin 2000; Bayın 2016). Because fractional derivatives are defined in terms of spectral representations, our
approach, which recovers covariance functions from spectral representations, is particularly well-suited to
this generalization of our model. Another direction this work can be taken is to consider spatial variation
of the abiotic environment by modelling the abiotic optima θH(xxx), θP (xxx) as additional Gaussian random
fields (making for four random fields in total). The degree to which the two species experience the same
environmental variables can be set by specifying the colocated correlation between θH(xxx) and θP (xxx). Hu et
al. (2013) provides further information on the mathematical details involved with both of these extensions.
Lastly, random field models of coevolving species such as ours can be used to extend previous statistical
methods developed to measure coevolution from spatially structured phenotypic data (Nuismer and Week
2019; Week and Nuismer 2019). Because these previous methods relied on models that assume discrete spatial
structure, they ignore geographic distances between locations. By incorporating random field models, future
coevolutionary methods can make use of this information to sharpen inferences on the coevolutionary process.
Our work here provides initial steps towards understanding coevolution and local adaptation in continuous
space using an analytically tractable mathematical model. Although our model is relatively simple (in that it
ignores selection mosaics and feedbacks with abundance dynamics), it makes testable predictions for spatial
patterns of phenotypic diversity and local adaptation resulting from the interplay of coevolution, dispersal,
and random genetic drift. Taken together, this work provides a novel analytical approach to discover new
theoretical results and deepens our understanding of host-parasite local adaptation.
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Appendix

A Gaussian Random Fields and Spatial Covariance Functions

Because our results are obtained from spatial covariance functions associated with Gaussian random fields
(GRFs), we provide some relevant definitions here for the sake of self-containment. Our primary reference is
Rue and Held (2005). We begin by defining univariate GRFs before proceeding to multivariate GRFs.
A univariate GRF F is completely characterized by its mean µ(xxx) = E[F (xxx)] and spatial covariance
C(xxx,yyy) = E[(µ(xxx) − F (xxx))(µ(yyy) − F (yyy))] functions, where xxx,yyy are geographical locations. For any set
of n locations xxx1, . . . ,xxxn, the n-dimensional random vector (F (xxx1), . . . , F (xxxn)) has a multivariate normal
distribution with mean vector (µ(xxx1), . . . , µ(xxxn)) and covariance matrixC(xxx1,xxx1) · · · C(xxx1,xxxn)

... . . . ...
C(xxxn,xxx1) · · · C(xxxn,xxxn)

 . (21)

The GRF F is called homogeneous if its mean is constant across all locations (so that µ(xxx1) = µ(xxx2) for any
locations xxx1,xxx2) and if its covariance function depends only on the difference between its arguments (so that
C(xxx1, yyy1) = C(xxx2, yyy2) whenever xxx1 − yyy1 = xxx2 − yyy2). GRFs that satisfy these two conditions are also referred
to as second-order, wide-sense, or weakly homogeneous/stationary. Just as the name implies, a homogeneous
GRF exhibits equivalent statistical properties at any given location. In addition, F is called isotropic if it
is homogeneous and its covariance function only depends on the distance between its arguments (so that
C(xxx1, yyy1) = C(xxx2, yyy2) whenever ∥xxx1 − yyy1∥ = ∥xxx2 − yyy2∥, where ∥ · ∥ denotes geographic distance). Whereas
a general homogeneous random field allows for the covariance function to depend on the spatial direction
between its arguments, an isotropic random field absent of any such dependency on direction or orientation.
When a GRF is isotropic, we write its mean and covariance functions respectively as µ and C(d), where d is
the distance between two locations (e.g., d = ∥xxx − yyy∥). Because C(0) is the variance of the random variable
F (xxx) (for any xxx), we call V = C(0) the colocated variance of the isotropic GRF F . The spatial correlation
function is given by ρ(d) = C(d)/V . We therefore say the field F exhibits spatial autocorrelation whenever
ρ(d) ̸= 0 for some d > 0.
As an example of a GRF, consider a spatial white noise process W . Heuristically, we can think of W as
an isotropic GRF with mean-zero, infinite colocated variance, and no spatial autocorrelation. Rigorously,
setting W (U) =

∫
U

W (xxx)dxxx, we have that W (U) and W (V ) are normally distributed random variables with
mean-zero, variances equal to the areas of the spatial regions U and V respectively, and covariance equal
to the area of the intersection between U and V . Hence, if U and V do not overlap, W (U) and W (V ) are
independent random variables. The covariance function of a spatial white noise is the Dirac delta function
δ(d) for which δ(d) = 0 and

∫ d

0 δ(s)ds = 1 for all d > 0. In relation to the space-time white noise processes
ẆH(xxx, t), ẆP (xxx, t) that appear in our model, we have

∫ t+1
t

ẆS(xxx, τ)dτ is a spatial white noise for both
S = H, P .
An isotropic k-variate GRF FFF is composed of k isotropic univariate GRFs F1, . . . , Fk. FFF is then completely
characterized by means µ1, . . . , µk and covariance functions C1, . . . , Ck of the respective univariate fields
F1, . . . , Fk along with the cross-covariance functions

Cij(xxx) = E[(µi − Fi(000))(µj − Fj(xxx))], i, j = 1, . . . , d, i ̸= j. (22)

Similar to the colocated variance, we call Cij(0) the colocated covariance of Fi and Fj because it is the
covariance of the random variables Fi(xxx), Fj(xxx) (for any location xxx). Additionally, we call ρij = Cij(0)/

√
ViVj

the colocated correlation of Fi and Fj , where Vi = Ci(0) is the colocated variance of Fi.

B Justification for Population Growth Rates

To begin, one may start with a pair of interacting individual-based branching processes where individuals are
associated with a trait z ∈ R and a geographic location xxx ∈ R2. Assuming semelparous life-cycles, we model
mortality and reproduction simultaneously so that individuals replace themselves with a Poisson number of
offspring between unit intervals of time. The lifetime expected number of offspring (which, because mortality
is equal for all individuals, we refer to as fitness) is determined by the trait of the parent along with the
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traits of other individuals the parent interacts with. This is similar to the starting points taken by Week et
al. (2021) in the derivation of a diffuse-coevolution model and by Week and Nuismer (2021) in the derivation
of the offset-matching coevolution model, except neither of those models have a spatial component.
To model fitness, we first consider the effects of abiotic selection AS and biotic selection BS separately for host
and parasite species (S = H, P ). We decompose the effects of biotic selection into sources due to intraspecific
competition Bc

S and interspecific parasitism B
p
S so that BS = Bc

SB
p
S . We will assume these effects multiply to

produce the net fitness of an individual, wS = ASBS . Set w0,S the maximum fitness possible for species S in
the absence of interspecific interactions and θS the abiotic optima trait value. Then, for either species, the
multiplicative component of fitness due to abiotic stabilizing selection for an individual with trait z at any
location is

AS(z) = w0,S exp
(

−AS

2 (θS − z)2
)

. (23)

We assume competition occurs locally such that individuals that are geographically closer to each other
induce stronger competition on one another than individuals that are farther apart. This induces a form of
local population regulation that prevents run-away population growth. Denoting the distance between two
spatial positions xxx and yyy by ∥xxx − yyy∥, xxxi

S the location of the ith individual in species S, and nS the number of
individuals in species S, we model the effect of intraspecific competition on the jth individual as

Bc
S(xxxj

S ,NS) = exp

−cS

nS∑
i ̸=j

exp
(

−
∥xxxj

S − xxxi
S∥2

2ω2
S

) , (24)

where cS denotes the strength of spatial competition, ωS is the spatial scale of competition, and NS denotes
the abundance measure for species S. Because NS(U, V ) returns the number of individuals in species S with
trait values in U ⊂ R spatially located in the region V ⊂ R2, NS captures the spatial locations and trait
values of individuals and hence the trait distribution and abundance in any region of space for species S.
We model host-parasite interactions by assuming a probability of infection that is a function of trait values
given an encounter has occurred. Assuming a host individual with trait zH encounters a parasite with trait
zP , the probability of infection α(zH , zP ) can be written as

α(zH , zP ) = exp
(

−γ

2 (zH − zP )2
)

, (25)

where γ ≥ 0 determines the sensitivity of this probability to differences in individual trait values. We will
always assume weak sensitivity (ie, γ ≪ 1) so that α(zH , zP ) ≈ 1 − γ(zH − zP )2/2. We model the probability
of encounter ε similarly as a function of the geographical distance between individuals. Denoting ι ≥ 0 the
geographic scale of host-parasite interactions, we model the probability of encounter as

ε(xxxH ,xxxP ) = exp
(

−∥xxxH − xxxP ∥2

2ι2

)
. (26)

We allow ι ≪ 1 so that encounters may strongly depend on distance. Set Eij the Bernoulli random
variable representing whether the ith parasite encounters the jth host and Iij the Bernoulli random variable
representing the ith parasite infecting the jth host given their encounter. Assuming the parasite acquires the
benefit sP ≥ 0 and the host receives the cost sH ≥ 0, the multiplicative effects of this single interaction on the
fitnesses of the respective participants are exp(sP EijIij) and exp(−sHEijIij). Taking expectations provide

E[exp(±sSEijIij)|Eij ] = (1 − α(zj
H , zi

P )) + α(zj
H , zi

P ) exp(±sSEij), (27a)

E[exp(±sSEijIij)] =
(

1 − α(zj
H , zi

P )
)

+ α(zj
H , zi

P )
(

(1 − ε(xxxj
H ,xxxi

P )) + ε(xxxj
H ,xxxi

P ) exp(±sS)
)

= 1 + α(zj
H , zi

P )ε(xxxj
H ,xxxi

P ) (exp(±sS) − 1) ≈ 1 ± sSα(zj
H , zi

P )ε(xxxj
H ,xxxi

P ), (27b)
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where the approximation holds when sH , sP ≪ 1, which we assume from hereon. Then, assuming every
parasite can potentially infect every host, the components of biotic selection due to interspecific interactions
for each species are approximated by

B
p
H(zj

H ,xxxj
H ,NP ) ≈

nP∏
i=1

1 − sHα(zj
H , zi

P )ε(xxxj
H ,xxxi

P ), (28)

B
p
P (zj

P ,xxxj
P ,NH) ≈

nH∏
i=1

1 + sP α(zi
H , zj

P )ε(xxxi
H ,xxxj

P ). (29)

Using our weak biotic selection assumption sH , sP ≪ 1, it will be convenient to rewrite these expressions as

B
p
H(zj

H ,xxxj
H ,NP ) ≈ exp

(∫
R

∫
R2

ln
(

1 − sHα(zj
H , ζ)ε(xxxj

H , yyy)
)
NP (dζ, dyyy)

)
≈ exp

(
−sH

∫
R

∫
R2

α(zj
H , ζ)ε(xxxj

H , yyy)NP (dζ, dyyy)
)

, (30)

B
p
P (zj

P ,xxxj
P ,NH) ≈ exp

(∫
R

∫
R2

ln
(

1 + sP α(ζ, zj
P )ε(yyy,xxxj

P )
)
NH(dζ, dyyy)

)
≈ exp

(
sP

∫
R

∫
R2

α(ζ, zj
P )ε(yyy,xxxj

P )NH(dζ, dyyy)
)

. (31)

To model mutation and spatial movement, we assume offspring trait values are normally distributed around
their parental value (technically, this is done with breeding values, see Week et al. 2021) and offspring
locations are bivariate normal around their parental locations with i.i.d. displacements in the two spatial
dimensions.
To take a diffusion limit of this individual-based process, we follow Week et al. (2021). In particular, for the
kth stage of rescaling, the time interval between generations is divided by k (so it goes to zero as k → ∞), the
number of initial individuals nS(0) in each species S = H, P is multiplied by k (so nS(0) → ∞ as k → ∞),
the variances of mutation and dispersal are divided by k (so both go to zero as k → ∞), fitness for each
individual is taken to the 1/kth power (so individual fitness tends towards unity as k → ∞), and the mass of
each individual is divided by k (so initial population mass remains nS(0) for all k ≥ 1). In particular, this
last part of our rescaling implies

N
(k)
S (U, V ) = 1

k

knS(0)∑
i=1

δzi,xxxi
(U, V ), (32)

where zi is the trait value of the ith individual, xxxi is its geographic location, and δzi,xxxi
(U, V ) = 1 if zi ∈ U and

xxxi ∈ V and zero otherwise. Sufficient conditions under which the rescaled individual-based process (N(k)
H ,N

(k)
P )

converges to a population-level process (NH ,NP ) as k → ∞ are provided by Theorem 1 of Méléard and
Roelly (1993). In particular, their condition (H1) requires the sequence k

(
w

1/k
S (z,xxx,N

(k)
H ,N

(k)
P ) − 1

)
to

converge to the population growth rate mS(z,xxx,NH ,NP ) of the population-level process NS for species S.
That is, population growth rates in the diffusion-limit are given by

mH(z,xxx,NH ,NP ) = lim
k→∞

k
(

w
1/k
H (z,xxx,N

(k)
H ,N

(k)
P ) − 1

)
, (33)

mP (z,xxx,NP ,NH) = lim
k→∞

k
(

w
1/k
P (z,xxx,N

(k)
H ,N

(k)
P ) − 1

)
. (34)

For the host we have
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k
(

w
1/k
H (z,xxx,N

(k)
H ,N

(k)
P ) − 1

)
≈ k

(
w

1/k
0,H exp

(
−AH

2k
(z − θH)2 − cH

k

∫
R2

χH(xxx,yyy)N(k)
H (R, dyyy)

−sH

k

∫
R

∫
R2

α(z, ζ)ε(xxx,yyy)N(k)
P (dζ, dyyy)

)
− 1
)

, (35)

where we have set χS(xxx,yyy) = exp
(
−∥xxx − yyy∥2/2ω2

S

)
. For large k, this is approximated by

k
(

w
1/k
H (z,xxx,N

(k)
H ,N

(k)
P ) − 1

)
≈
(

kw
1/k
0,H − 1 − AH

2 (z − θH)2 − cH

∫
R2

χH(xxx,yyy)N(k)
H (R, dyyy)

−sH

∫
R

∫
R2

α(z, ζ)ε(xxx,yyy)N(k)
P (dζ, dyyy)

)
. (36)

Then, setting rS = ln w0,S (the intrinsic growth rate for species S), we get

mH(z,xxx,NH ,NP ) = rH − AH

2 (z−θH)2−cH

∫
R2

χH(xxx,yyy)NH(R, yyy)−sH

∫
R

∫
R2

α(z, ζ)ε(xxx,yyy)NP (dζ, dyyy). (37)

A similar expression for the parasite is also obtained. We now make the approximation that competition
and selection are sufficiently weak relative to the intrinsic growth rate (i.e., cS , AS , sS ≪ rS) so that spatial
fluctuations in local abundance densities due to selection are small relative to average local abundance density
for each species when the system has reached stationarity. This implies the population growth rates mH , mP

are near zero when the system has reached stationarity. With this approximation, we write NS as the
abundance density for species S so that NS(R, U) ≈ |U |NS , where R is given as the first argument to NS to
include individuals with any trait value and |U | is the area of the geographic region U ⊂ R2. In this case we
have ∫

R2
χS(xxx,yyy)NS(R, dyyy) = 2πω2

SNS . (38)

The term capturing the effects of the host-parasite interaction has an integral across phenotypic space and an
integral across geographic space. To simplify the geographic integral, set

Nι
S(U,xxx) =

∫
R2 ε(xxx,yyy)NS(U, dyyy)∫

R2 ε(xxx,yyy)dyyy
=

√
2πι2

∫
R2

ε(xxx,yyy)NS(U, dyyy). (39)

This notation makes sense because ε is a smooth integrable function and a convolution with such a function
yields another smooth function. Furthermore, when ι ≪ 1,

∫
V
Nι

S(U,xxx)dxxx ≈ NS(U, V ). Using our assumption
that γ ≪ 1, the biotic and abiotic components cumulatively contribute quadratic selection. Given that
stabilizing abiotic selection is sufficiently strong relative to disruptive biotic selection on the host, trait
distributions at any location will be approximately normal with mean and variance z̄S(xxx), vS(xxx) for species S
at location xxx. Then, assuming ι ≪ 1, this implies

∫
R2

∫
R

α(z, ζ)ε(xxx,yyy)NP (dζ, dyyy) = 1√
2πι2

∫
R

α(z, ζ)Nι
P (dζ,xxx) ≈

(
1 − γ

2 (z − z̄P (xxx))2 + vP (xxx)
) NS√

2πι2
. (40)

Because selection is quadratic and abundance is constant, selection and drift decay phenotypic variance at a
constant rate. From our assumption of Gaussian mutations, phenotypic variance also has a constant rate of
input. We can therefore expect phenotypic variance for each species to eventually fluctuate stochastically
around a spatially constant equilibrium. We thus further approximate by setting the phenotypic variances
equal to those constant equilibria. We can therefore approximate the growth rates for each species as

mH(z,xxx) ≈ ρH − AH

2 (θH − z)2 + BH

2 (z̄P (xxx) − z)2, (41a)
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mP (z,xxx) ≈ ρP − AP

2 (θP − z)2 − BP

2 (z̄H(xxx) − z)2, (41b)

where we have dropped the dependencies on NH ,NP for brevity and set BS = sSNSγ/
√

2πι2 and

ρH = rH + BHvP /2 − 2πω2
HcHNH , (42a)

ρP = rP − BP vH/2 − 2πω2
P cP NP . (42b)

C Gaussian Distribution of Local Traits

To show that local trait distributions can be approximated by Gaussian distributions, we start by considering
deterministic dynamics of single species experiencing abiotic stabilizing selection. This leads to a deterministic
partial differential equation describing the dynamics of the trait distribution and involves diffusion in both
trait space and geographic space. The equilibrium solution is spatially homogeneous, allowing us to focus on
characterizing the trait distribution at a single location. After confirming the equilibrium trait distribution is
Gaussian at all locations for a single species, we move on to incorporate interspecific interactions following
our model of host-parasite trait-matching. This leads to a pair of interacting partial differential equations
generalizing the single species equation mentioned above. Again, the equilibrium solution is spatially
homogeneous, so we focus on a single location. After confirming the trait distribution is Gaussian for
interacting species case, we then argue that for sufficiently large population sizes in which the diffusion
approximation holds, random genetic drift should only slightly perturb the trait distribution. Hence, local
trait distributions should be approximately Gaussian and, therefore, approximately free of skew.
We begin the dynamics of the abundance density ν(z,xxx) (where N(xxx) =

∫
R ν(z,xxx)dz is the total abundance

at location xxx). We assume Gaussian descendants so that offspring traits are normally distributed around
parental traits with variance ε2. This provides

ν̇ = ε2

2 ∂2
z ν + σ2

2 ∇2ν + mν. (43)

Following Appendix B, the growth rate for a single species under our model that is not engaged in an
interspecific interaction is given by

m(z,xxx) = r − A

2 (θ − z)2 − cK(ν), (44)

where

K(ν) =
∫
R2

∫
R

ν(z,yyy)dz
e

∥xxx−yyy∥2

2ω2

√
2πω2

dyyy. (45)

One can check that ν(z,xxx) =
(

r − ε
√

A
)

exp
(

− (θ−z)2

2ε2/A

)
/c
√

2πε2/A satisfies equation (43). In particular,
this implies the equilibrium trait distribution is spatially homogeneous and Gaussian with mean z̄(xxx) ≡ θ

and variance v(xxx) ≡ ε2/A along with spatially homogeneous local abundance N(xxx) ≡
(

r − ε
√

A/2
)

/c.
Furthermore, at sufficiently large local abundances for which the diffusion approximation outlined in Appendix
B is valid, demographic stochasticity and random genetic drift will have only small effects on the trait
distribution relative to the effects of diffusive mutation and quadratic stabilizing selection so that the trait
distribution remains approximately Gaussian.
For the case of host-parasite interaction mediated by a trait-matching model, we can rewrite the growth rates
as
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mH(z,xxx) = ρH − 1
2(AHθ2

H − BH z̄2
P (xxx)) + (AHθH − BH z̄P (xxx))2

2(AH − BH)

− AH − BH

2

(
AHθH − BH z̄P (xxx)

AH − BH
− z

)2
− cHKH(νH), (46a)

mP (z,xxx) = ρP − 1
2(AP θ2

P + BP z̄2
H(xxx)) + (AP θP + BP z̄H(xxx))2

2(AP + BP )

− AP + BP

2

(
AP θP + BP z̄H(xxx)

AP + BP
− z

)2
− cP KP (νP ), (46b)

with ρH , ρP given by equations (42). Although these growth rates appear more complicated, they are still
quadratic functions of the focal species’ trait value. Hence, equilibrium trait distributions will be spatially
homogeneous and Gaussian for both species. In particular, these equilibrium trait distributions are free of skew
that appears when geographic structure is discrete and abiotic optima are spatially variable (Débarre et al.
2015). In the stochastic case, our assumptions of weak selection and large local abundance prevent significant
feedbacks between evolutionary and abundance dynamics and imply phenotypic variation occurs at sufficiently
large spatial scales relative to dispersal so that local trait distributions should remain approximately normal.
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