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Abstract

Microsatellites (MS) are tandem repeats of short units and have been used for population
genetics, individual identification, and medical genetics. However, studies of MS on awhole
genome level are limited, and genotyping methods for M S have yet to be established. Here, we
analyzed approximately 8.5 million MS regions using a previously developed M S caller
(MI1Vcall method) for three large publicly available human genome sequencing data sets: the
Korean Personal Genome Project (KPGP), Simons Genome Diversity Project (SGDP), and
Human Genome Diversity Project (HGDP). Our analysis identified 253,114 polymorphic MS. A
comparison among different populations suggests that MS in the coding region evolved by
random genetic drift and natural selection. In an analysis of genetic structures, MS clearly
revealed population structures as SNPs and detected clusters that were not found by SNPsin
African and Oceanian populations. Based on the M S polymorphisms, we selected an effective
MS set for individual identification. We also showed that our M S analysis method can be applied
to ancient DNA samples. This study provides a comprehensive picture of MS polymorphisms
and application to human population studies.
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Introduction

Repetitive sequences account for more than two-thirds of the human genome (1). Among them,
seguences consisting of tandem repeats of short units are classified as microsatellites (MS). The
mutation rate of MSis higher than these of other genomic regions, and M S have high diversity
among individuals (1).

Due to their high heterozygosity and multiallelic nature, M S have been widely used as
genetic markers in population studies (2-5). Previous studies analyzed dozens to several
hundreds of M S and reveal ed the genetic structure of modern human populations, the
relationship of genetic and linguistic variations, and the trace of natural selection (3—6). These
studies have made a great contribution to understanding human evolutionary history. However,
conventional PCR-based M 'S genotyping methods are not suitable for high-throughput
genotyping; therefore, MS has largely been replaced with single nucleotide polymorphism (SNP)
in related studies. Indeed, in the past decade, genome-wide SNP analysis had become a standard
method for human population genetics (7,8).

In addition to population studies, M S has been widely used for personal identification in
forensic science and paternity testing (9,10) snce MS are multialelic and have more
discriminative power than SNP (2). Established common M S sets, such as the Globalfiler Kit,
have been used for many years (11). Although these MS marker sets have sufficient power for
most cases, they are not selected from entire genomes and there may be other more efficient MS
in the human genome.

Next generation sequencing technologies (NGS) enable whole genome sequencing
(WGS). In the past decade, applications of NGS and the devel opment of algorithms for the
analysis have successfully identified genetic variations, including single nucleotide variations,
insertions and deletions, copy number variations, and structural variations (12). However, due to
the short read length and the high sequencing error rate in repeat regions, the identification of
mutations and polymorphismsin M S regions have been difficult. Previously, several groups
including ours have developed M S genotyping tools from WGS data (13-15). These methods
identified somatic mutations or germline polymorphisms in MS in the human population and
revealed genome-wide patterns of M S polymorphisms, factors that determine the mutation rate
of MS, and functional roles of M'S on gene expressions (13-17). Although these studies provide
important information on MS, the M S genotyping method is not perfect, and only few studies
have been conducted for M S polymorphisms. Indeed, the patterns of genome-wide MS
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polymorphisms have not been well analyzed in various human populations. Nor has the amount
of genetic variation in MS among different human populations been compared in detail.
Furthermore, clustering based on principal component analysis (PCA) with M S polymorphisms
has presented unclear results compared to that with SNPs (14,18), and the efficiency of genome-
wide M S for analyzing population structures requires more study.

Here, we analyzed approximately nine million M S regions using a previousy developed
MS caller for three large publicly available human genome sequencing data sets. Korean
Personal Genome Project (KPGP), Simons Genome Diversity Project (SGDP), and Human
Genome Diversity Project (HGDP) (13,18,19). We revealed the pattern of M 'S polymorphisms,
analyzed the genetic structure of the populations with several dimensionality reduction methods,
and identified useful candidate M S for individual identification. Additionally, we anayzed MS
of an ancient DNA sample (20). Our analysis provides a comprehensive picture of MS

polymorphisms and their application to human population studies.
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79 Reaults
80  Establishment of MScalling
81 Weidentified genotypes of MS with the M1V call method (13). M1V call outputs the
82  logio(likelihood) and number of reads for each M'S locus, which can be used to evaluate the
83 rdiability of M S genotypes. We examined these parameters using monozygotic twinsin the
84 KPGP (KPGP-00088 and KPGP-00089). Because monozygotic twins have completely same
85  genotypes, we considered all disconcordant genotypes between the twins as errors. We compared
86 thegenotypes of 8,343,174 MSin thetwins and classified them into concordant homozygote,
87  concordant heterozygote, disconcordance of two alleles, and disconcordance of one dlele (S1
88 Table). Based on the result, the cutoff -logio(likelihood) and minimum number of reads for allele
89  detection were set to -4 and 3, respectively, in this study (S1 Table).
90
91 Sdection of samplesand MS
92 We sdlected samples for the analysis. In this study, M S covered by less than 10 reads were
93 considered insufficient depth, and we excluded samples if more than 4% had insufficient depth
94  of MS. Asaresult, 277 samples from the SGDP, 692 samples from the HGDP, and 81 samples
95 from the KPGP (excluding one of the monozygotic twins) were selected.
96 We next selected MSloci for this study using the 81 Korean samples from the KPGP. We
97 sdected MSthat were genotyped (number of reads > 10) in more than 85% of the 81 samples,
98 leaving 8,468,218 M S. We also tested deviation from the Hardy-Weinberg equilibrium (HWE)
99 inthe KPGP, but no M S showed significant deviation.
100 Of the selected 8,468,218 M S, 7,740,569 M S were monomorphic. For each MS, minor allele
101 frequency (MAF) was calculated by 1 — (major allele frequency). Of these, 727,649 M S had
102 variationsin at least one sample, and 253,114 had aMAF > 1% (S1 Fig). Of all MS, 71,040 MS
103  werein coding sequences (CDS), and 8,397,178 MSwere in non-CDS (S2 Table). Among the
104 CDSMS, 893 MShad variationsin at least one sample, and 71 MShad aMAF > 1% (S2
105 Table).
106
107  Genome-wide pattern of MS polymor phisms
108 Thelength of MS was negatively correlated to the number of samples with insufficient depth (p-
109  value < 10 Kruskal-Wallis test) but positively correlated to the number of alleles (p-value <
110 10 Kruskal-Wallistest) (Fig 1A and B). Theincrease in the number of alleles was more
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111  gradua inlonger MS (Fig 1B). The longer MS had fewer reads fully covering them compared to
112  shorter MS and thus alower detection sensitivity. The number and heterozygosity of different
113  repeat units showed that MS with higher AT content had significantly higher heterozygosity

114  (Pearson’s uncorrelated test p-value = 1.47x10®Y), suggesting that the mutability of MSis

115  affected by the base composition (Fig 1 C and D).

116 A comparison between CDS and non-CDS showed that MSin CDS had ahigher GC content
117  (p-vaue = 6.49x10** Wilcoxon rank sum test), shorter length (p-value = 1.25x10% Wilcoxon
118  rank sum test), smaller number of alleles (p-value = 1.80x10™*" Wilcoxon rank sum test), and
119  lower heterozygosity (p-value = 1.42x10® Wilcoxon rank sum test) (Fig 2 A-D). A comparison
120  of distributions of the number M Sin each unit length showed that polymorphic 3n MS (3 and 6
121  bp) were frequent in the CDS region (p-value = 5.22x10** Fisher's exact test) (Fig 2 E-H, S3
122  Table). Inthe CDS, 3n MS had higher heterozygosity than non-3n MS (1, 2, 4, 5 and 7 bp) (p-
123 value=5.23x10"*® Wilcoxon rank sum test), suggesting that non-3n M S was strongly influenced
124 by negative selection (Fig 2I).

125 To compare the genetic variation among human populations, we calculated the distribution of
126  the heterozygosity of all MS, MSin CDS, MSin non-CDS, 3n MSin CDS, and non-3n MSin
127 CDS(Fig 3 A-E and $4 Table). We also calculated the ratio of the mean heterozygosity of non-
128 3n MSto mean heterozygosity of 3n MSin CDS among each region (Fig 3F). Africa had the
129  highest heterozygosity and lowest ratio of mean heterozygosity (Fig 3 and $4 Table).

130 We observed that 689 genes had 724 polymorphic non-3n MS (4 Table, S5 Table). We

131 performed a pathway analysis for these genes but did not find any significantly over-represented
132  pathway (data not shown).

133

134  Analysis of population structure

135 To analyzethe population structure, we conducted five dimensionality reduction methods for MS
136  polymorphisms. PCA, t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold
137  Approximation and Projection (UMAP), PCA-t-SNE, and PCA-UMAP using MS and SNP. For
138 thisanalysis, we used MS and SNP with MAF > 1%. In the M S, 253,114 MS had MAF > 1% in
139  all samples, 340,114 in Africa, 176,214 in America, 229,636 in Central Asiaand Siberia,

140 197,081 in East Asia, 231,706 in Oceania, 220,737 in South Asia, and 209,204 in West Eurasia
141 (Supplementary datal). In the SNPs, 486,579 SNPs had MAF > 1% in all samples, 515,456 in
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142 Africa, 358,538 in America, 416,191 in Central Asiaand Siberia, 403,015 in East Asia, 389,358
143  in Oceania, 437,410 in South Asia, and 432,163 in West Eurasia (S2 Table).

144 To apply dimensionality reduction methods, we converted M S genotypes to numerical values
145  using two methods, multiallelic method and average method (see M ethods), and performed PCA
146  with both methods for all samples. Although the results were not significantly different between
147  thetwo, the average method had a higher contribution rate (PC1 = 5.80%) than the multiallelic
148 method (PC1 = 4.97%) (S2 Fig). Therefore, we selected the average method in this study.

149 PCA was conducted for all regions and each individual region (Fig 4, S3 Fig). Wefound

150 smilar patterns between MS and SNPs for al samples (Fig 4 AB). However, patterns were

151 dightly different in African and Oceanian populations between MS and SNPs (Fig 4 C-F). These
152  results suggest that genome-wide M S has compatible resolution to SNPs for the genetic structure
153  of human populations and that M'S can be used to find new genetic structures. t-SNE, UMAP,
154  PCA-t-SNE, and PCA-UMAP were aso conducted for all samples ($4 Fig). In most of these
155  analyses MSdid not detect novel clusters; however, M S discriminated African populations from
156 theothersinthet-SNE analysis ($4 Fig A).

157

158 MSmarker set for individual identification

159 Wesdected aset of 22 M S and calculated the discriminative power. From M S with 4-bp units,
160 22 MSwith the highest heterozygosity were selected from each chromosome (Table 1).

161 For the selected 22 loci, we calculated the discriminative power using allele frequencies of 255
162  Japanese ICGC datasets (Table 1). The discriminative power for thisM S set was estimated to be
163  1.0x10™".

164

165 MSanalyssfor an ancient DNA sample

166  Although the genome-wide M S analysis of ancient DNA samples has yet to be conducted, an
167 analysis of MSvariation in ancient DNA samples may contribute to clarifying the genetic

168  structure of ancient populations. Since low-quality sequencing data of ancient DNA samples can
169 result inincorrect results, we selected an ancient DNA sample with high sequence depth (sample
170 ID; F23) (20) and analyzed the distribution of the variant allele frequency (VAF) for MS (Fig 5
171  A-D). VAF was calculated by (number of reads with second most frequent pattern)/(total number
172  of reads) for heterozygous M S. The distributions of VAF were quite different between F23 and
173 modern human samplesin MSwith lengths < 3 bp, suggesting that genotypes contained many
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174  erors. However, in MS with lengths> 3 bp, the distributions of VAF were not different (Fig 5
175 A-D). Therefore, we used MSwith lengths > 3 bp and performed PCA with HGDP and SGDP
176  samples (All, East Asia, America, Oceania, Central Asiaand Siberia, and South Asia) (Fig 5
177 E,F). F23 was clustered close to Central Asiaand Siberia and East Asia populationsin the PCA
178 plot.

179

180 Discussion

181 Population genetic studies strongly depend on variant calling. Thus, like other types of variants,
182 MSanalysisis affected by genotyping methods. Since most M S calling methods analyze only
183 predefined M S regions, the numbers of target M S are different among studies (700,000 loci in
184 Gymrek et al., 2017 and Willems et a., 2014, and 1.6 million loci in Jakubosky, Smith, et al.,
185 2020) (15,18). In this study, we analyzed a larger number of M S regions (8,468,218 M S) than
186 previous studies for a comprehensive analysis of human M S polymorphisms. Compared to

187  conventional PCR-based M S studies(17), this study has another advantage: M S were not

188 influenced by ascertainment bias. Most conventional studies have analyzed pre-screened MS
189 marker sets (21), which areinfluenced by the MS marker selection. On the other hand, we did
190 not select MS based on the allele frequency in certain populations and could analyze features of
191 MSand compare the variation among different populations without the influence of

192  ascertainment bias.

193 We first selected parameters for the analysis based on the evaluation of monozygotic twinsin
194  the KPGP. The concordant rate of this parameter set was estimated to be 99.87%, which is

195  sufficiently accurate for population studies (S1 Table). We then selected 8,468,218 M S based on
196 thecall rate and HWE in the KPGP for 81 Korean individuals. Our MS calling identified

197 253,114 MSwith MAF > 1% in the SGDP and HGDP (S1 Fig). Since the SGDP and HGDP
198  datasets represent human genome diversity, these M S polymorphisms can be used for future
199 population studies (S1 data). Previous genome-wide studies reported that M S polymorphisms
200  could influence gene expression patterns and the risk of human diseases (17,22). Therefore

201  applications of our MS set and our M S calling method may contribute to discovering novel

202  disease susceptibility genes. In particular, 696 genes with non-3n M S are good targets for disease
203  studies (S5 Table).

204 The amount of genetic variation reflects the effective population size (N). A comparison of
205 heterozygosities across regions showed Africa with the highest (Fig 3, $4 Table), and America,
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206  which was estimated to have a very small effective population size, showed the lowest (Fig 3, $4
207  Table) (23). Such patterns were observed in other genetic variations and M S in a previous study
208  (14,24), suggesting that the heterozygosity of M S reflects the size of each population.

209  Theoretical population genetics also predicts that the effectiveness of natural selection depends
210 on the selection coefficient (s) of the genetic variation and population size (25). Therefore, a

211  comparison of genetic variations of MSin the CDS may provide additional information about the
212  evolution of MS. Most of the 3n M S should not cause severe damage to protein functions and
213  haveneutral or nearly neutral effects, whereas non-3n M S cause a frameshift and should have
214  deleterious effects. We attempted to evaluate the strength of negative selection among

215  populations. For this purpose, we compared the average heterozygosity of non-3n MSin CDS
216  with the average heterozygosity of 3n MSin CDS among populations (Fig 3F, $4 Table). The
217  African population showed the lowest ratio, and populations with lower heterozygosity tended to
218 haveahigher ratio (Fig 3F, $4 Table). This pattern indicates that the African population has the
219 largest effective population size and that stronger natural selection has acted to remove

220 deeterious non-3n MS. In Central Asia and Siberia, the heterozygosity was not the lowest, but
221  theheterozygosity ratio of non-3n MSto 3n MSin CDS was the highest (Fig 3F, $4 Table). A
222  previous study showed that subdivided populations show a higher effective population size and
223  lower selection coefficient (26). The Central Asiaand Siberia population may be composed of
224 subpopulations, which may affect the selection pressure against MS. These results indicate that
225 MSisevolved by the combination of population history and natural selection.

226 MS has been used to infer genetic structures because of high genetic diversity (27-30). In a
227  previous study, PCA was conducted using 53,002 M S, but the genetic structures by the MS PCA
228  wereless clear than that by SNP PCA (18). In the present study, we used alarger number of MS
229 (253,114 MSwith MAF > 1 %) and obtained highly concordant results with SNPs (Fig 4 A,B).
230  Although the overall patterns were similar between MS and SNP (Fig 4, S3 Fig), small

231  differences were observed in African and Oceanian populations (Fig 4 C-F). In Oceanian

232 populations, NAN-Melanesians (NAN; Non-Austronesian) and Bougainville, who belong to

233 Meéanesians, were clustered in the SNP PCA but not in the MS PCA (Fig 4 EF). In the African
234  populations, Biaka and Mbuti populations showed different patterns between the SNP and MS
235 PCAs(Fig 4 CD), which may be caused by hidden population structures. Although the efficiency
236  of using MSfor genetic structures should be evaluated by a larger number of samples, these
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237  resultsindicate that M S can be an additional marker set and may detect hidden population

238  structures in the human population.

239 In addition to the modern human samples, we analyzed a deep sequenced ancient human

240 sample (F23) (20). In ancient genome sequencing, the DNA fragmentation and library

241  construction process should affect the quality of the sequence reads. To evaluate the quality of
242  the MScall, we compared the distribution of the VAF of this sample with that of modern human
243  samples (Fig5 A-D). The clear skew of the VAF was observed in MS with unit lengths < 2 bp,
244 suggesting that M S with a short unit are strongly affected by the quality of DNA samples.

245  However, the distributions of unit lengths > 3 bp were not different, and therefore we used these
246  MSfor theanaysis. Inthe PCA, F23 was close to East Asians, which is consistent with the SNP
247  PCA in aprevious study (Kanzawa-Kiriyamaet al., 2019) (Fig 5 E,F). Thisresult suggests the
248  applicability of MS to ancient human samples.

249 We found 22 novel highly polymorphic MS for the personal identification. Using the allele
250 frequenciesin a Japanese population, the discriminative power was estimated to be 1x10™",

251 whichissufficient for personal identification. Although the discriminative power of our M S set
252  isdlightly lower than that of the Globalfiler kit, which isastandard M S set, for a Japanese

253  population (5.6x10) (31), the length of our M'S was shorter and can be genotyped by short-read
254 sequencers. Additionally, the PCR success rate of M S isknown to be affected by the length of
255 theMS(32), and our shorter MS may be robust to DNA degradation.

256 This study provides a comprehensive catalog of M S in human populations and shows the

257  applicability of MS to modern and ancient human population studies. Nevertheless, our study has
258 severd limitations. First, the genotyping of M S needs reads that cover M S regions. Therefore,
259 the amount of dataand read length strongly affect the results. For example, we removed 824,459
260 MSand 395 samples from the SGDP and HGDP due to insufficient depth. Deeper sequence data
261  would improve the quality of the MS calling. Second, long M S cannot be analyzed using short-
262 read data. A recent study using along-read sequencer reported high genetic variation in long
263  repeat regions (33). In the future, the application of our algorithm to long-read data should detect
264  alarger number of polymorphic MS.

265 To conclude, here we analyzed M S polymorphisms using large publicly available human

266  genome sequencing datasets. This study revealed a pattern of M S polymorphisms and identified
267  polymorphic MSin the human population. The comparison of the heterozygosity among

268  populations suggests that M S have evolved by random genetic drift and negative selection. PCA
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269  suggeststhat M S detect the genetic structures of human populations. Currently, large-scale

270  seguencing projects are ongoing worldwide, in which the analysis of MS, in addition to SNPs,
271  should provide deeper understanding of human genetic variations and benefit genome medicine.
272

273 Materialsand Methods

274  Data

275  We downloaded the following publicly available sequencing datasets: the Korean Personal

276  Genome Project (KPGP), Simons Genome Diversity Project (SGDP)(18), and Human Genome
277  Diversity Project (HGDP)(19), Japanese samples from the International Cancer Genome

278  Consortium (ICGC)(34), and an ancient DNA sample (20) (S6 Table, S7 Table). The SGDP (n =
279  300) and HGDP (n = 1064) samples were collected from various popul ations throughout the
280  world. The KPGP sequenced 107 Koreans. The ICGC performed WGS of cancer and matched
281 normal samples; in this study, we used the WGS data of normal Japanese samples (n = 255). A
282  deep sequenced ancient genome dataset (F23) was also analyzed (20).

283 KPGP data were used for the M S selection and parameter optimization of the MS calling.
284  The KPGP has data from monozygotic twins (KPGP-00088 and KPGP-00089), which were used
285  for the parameter optimization of the M S calling (S6 Table). One of the monozygotic twins and
286  other Korean samples (in total n = 81) were used for the M S selection. The HGDP and SGDP
287  samples were merged and used as a single dataset (S6 Table). When population names were

288 inconsistent between the SGDP and HGDP, we adopted the population names of the SGDP (S6
289 Table).

290 As aresult of the sample selection (see below), we selected 81 Korean samples from the

291 KPGP and 969 samples from the HGDP and SGDP (138 samples from Africa, 70 from America,
292 48 from Central Asiaand Siberia, 193 from East Asia, 38 from Oceania, 195 from South Asia,
293 and 287 from West Eurasia). The quality of the ICGC sequencing data was not constant among
294  samples; therefore, Japanese samples from the ICGC were used to estimate the allele frequencies
295  of our MS marker set for personal identification (S7 Table).

296 The downloaded bam files were results of the mapping to the GRCh37; therefore, our analysis
297  was based on the GRCh37.

298

299  MSgenotyping using MIVcall method
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300 Target MSregions were selected in our previous study (13) using three software packages:

301 MSDetector, Tandem Repeat Finder, and MISA software (35-37). Regions were filtered based
302  onthe uniqueness of the flanking sequences and the distance to other MS. Insertions and

303 dedetionsin atarget MS were detected using the M1V call method (13); M1V call counts the

304 length of each MSin each read. When multiple lengths are observed in aMS locus in a sample,
305 the most frequent pattern is assumed to be present, and the second most frequent pattern is

306 examined. The likelihood value was calculated based on the number of reads. Genotypes are
307 determined based on the likelihood value, the number of reads that support the pattern, and the
308 VAF.

309

310 Establishing the MS detection method

311 Inour previous study (13), the optima criteria of likelihood and number of reads (the minimum -
312  logio(likelihood) value and minimum number of reads for alele detection) were chosen for

313  analyzing somatic mutations. To obtain the optimal criteria for a polymorphism, we used

314  monozygotic twinsin the KPGP (KPGP-00088 and KPGP-00089). Since all genotypes of

315 monozygotic twins are identical, we tested various parameter sets and compared the concordance
316 rates of genotypes between twins.

317

318 Sample selection and MSfiltering

319 Since MSare susceptible to sequencing errors, selecting high-quality samplesis necessary. Thus,
320 MScovered by less than 10 reads were considered M S with insufficient depth. We excluded
321 samplesif morethan 4% of MS loci had insufficient depth.

322 Next, we selected MS loci from the 9,292,677 M S selected in our previous study (13). Using
323  the 81 Korean samplesin the KPGP, we counted the number of samples with insufficient depth
324  for each MS and removed samplesif the percentage of M S with insufficient depth was > 15%.
325 Additionally, we tested deviations from the HWE with Fisher's exact test for 2 x n contingency
326 table (n; number of genotypes) in the KPGP (o = 0.0001).

327

328 Genome-wide pattern of MS

329 Toreveal thelandscape of MS polymorphisms, we analyzed the features of MS. Thisanalysis
330 was performed usng HGDP and SGDP samples. We analyzed the association of the length of a
331 MSregionin the reference genome with the number of samples with insufficient depth and
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332  heterozygosity. We also examined the number and heterozygosity of MS for repeat units with
333 different sequences (for example, A, G, and AC). In thisanalysis, we merged MS with different
334  unit sequencesif reverse-complement (e.g., GT to CA) or reverse (e.g., TA to AT) generated the
335 same sequences.

336 We then focused on MSin CDS and in non-CDS. We compared GC content, lengths of M'S,
337  number of alleles, and heterozygosity between CDS and non-CDS MS. In CDS, MS were

338 classified into 3n MS (3 and 6 bp) and non-3n MS (1, 2, 4, 5 and 7 bp). We compared

339 heterozygosity among all MS, 3n MS, non-3n MS, MSin CDS, and MSin non-CDS. The ratios
340 of the mean heterozygosity of non-3n M S to the mean heterozygosity of 3n MS were compared
341 among the different populations. We also performed a pathway analysis for genes with multi-
342  allelic non-3n M S using the Reactome database.

343

344  Analysisof population structure with MS

345  We conducted five dimensionality reduction methods: Principal Component Analysis (PCA), t-
346  Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and
347  Projection (UMAP), PCA-t-SNE, and PCA-UMAP. For these analyses, the genotypes of MS and
348 SNPswere converted to numerical values. SNP genotypes were converted to numerical values
349 by counting the number of minor aleles. For MS, we used two methods, the multiallelic method
350 and average method. In the multiallelic method, each allele at aM Slocusistreated as a different
351 marker (if three samples have the following genotypes, [8/8, 13/14, 8/14], we converted them
352 into 3 independent pseudo-loci: [2, 0, 1] (8 or else), [0, 1, 0] (13 or ese), and [0, 1, 1] (14 or
353 dse)) (38). In the average method, we calculated the average length of two allelesin each

354  individual (in the previous example, the average method converts the genotypesto [8, 13.5, 11])
355 (S5 Fig). We performed a PCA with both methods and compared the results.

356 We used the MS and SNP with aMAF > 1% in the SGDP and HGDP samples. MAF was
357 caculated by 1 — (magjor allele frequency). A PCA was conducted for all samples and samplesin
358 eachregion (Africa, America, Central Asiaand Siberia, East Asia, Oceania, South Asia, and
359 West Eurasia). Other dimensionality reduction methods (t-SNE, UMAP, PCA-t-SNE, and PCA-
360 UMAP) were applied to all samples only.

361

362 MSset for personal identification
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Individual identification with MSis an important topic in human genetics. We selected a set of
22 M S and estimated the discriminative power. We calculated the heterozygosity of MS with
repeat unit lengths = 4 and selected 22 M S with the highest heterozygosity in each chromosome.
The allele frequencies of the selected 22 loci were estimated using 255 Japanese samples from
the ICGC data. The discriminative power was calculated as the product of frequencies of the
most frequent genotype in each locus (31).

Analysis of ancient DNA samples

To analyze MS variation in ancient DNA, we analyzed one ancient DNA sample with a higher
depth of coverage from a previous study (Sample ID; F23) (20). To examine the quality of the
variant calling, we calculated the VAF of each MS of F23 and compared it with the average VAF
of 10 randomly selected HGDP samples. We then conducted a PCA for F23 sample with the
SGDP and HGDP samples.

Programming languages
We used Python (https.//www.python.org) for this study. PCA, TSNE, UMAP, and Decision
Tree were conducted with the sklearn package.
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399 FIGURE LEGENDS
400

401  Fig. 1.

402  Features of microsatellites (MS) in the human genome. (A) M S length and number of samples
403  with insufficient depth. The MS length was negatively correlated to the number of samples with
404  insufficient depth (p-value < 10%® Kruskal-Wallis test). (B) MS length and heterozygosity. MS
405  length was positively correlated to the number of alleles (p-value < 10 Kruskal-Wallis test).
406  (C) Proportion of MSunit types. (D) Number of MS and heterozygosity of different units. MS
407  with higher AT content had significantly higher heterozygosity (Pearson’s uncorrelated test p-
408 vaue=1.47x10°%,

409

410 Fig. 2.

411  Featuresof MSin CDS and non-CDS regions. (A) MSin CDS had higher GC content (p-value =
412 6.49x10™* Wilcoxon rank sum test). (B) MS in CDS had shorter length (p-value = 1.25x10°%°
413  Wilcoxon rank sum test). (C) MSin CDS had fewer alleles (p-value = 1.80x10* Wilcoxon rank
414  sum test). (D) MSin CDS had lower heterozygosity (p-value = 1.42x10™ Wilcoxon rank sum
415 test). (E) Total number of MS loci per unit length in non-CDS. (F) Total number of MS loci per
416  unit length in CDS. (G) Number of multiallelic MS of each unit length in CDS. (H) Number of
417  multialelic MS of each unit length in non-CDS. (1) Heterozygosity of MSin non-CDS and CDS.
418  Non-3n MShad lower heterozygosity than 3n MS (p-value = 5.23x10™* Wilcoxon rank sum test).
419

420 Fig. 3.

421  Heterozygosity of MS among demographic regions. (A) Heterozygosity of all MS. (B)

422  Heterozygosity of MSin CDS. (C) Heterozygosity of MSin non-CDS. (D) Heterozygosity of 3n
423 MSin CDS. (E) Heterozygosity of non-3n MSin CDS. In (A)-(E), regions were sorted by their
424  mean heterozygosity. (F) Ratios of mean heterozygosity of non-3n MSto 3n MSin CDS.

425

426  Fig. 4.
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427 PCA using MS and SNPs. (A) PCA for all samples using MS. (B) PCA for all samples using
428  SNPs. (C) PCA for African populationsusing MS. (D) PCA for African populations using SNPs.
429  PC2 values of the Mbuti and Biaka populations were different between MS and SNP. (E) PCA
430 for Oceanian populations using MS. (F) PCA for Oceanian populations using SNPs.
431 NAN_Melanesuans and Bougainville were clustered together in the SNP but separated in the MS.
432

433 Fig. 5.

434  Anaysis of an ancient sample (F23). Distribution of VAF in F23 and HGDP samples for unit
435 lengths> 1 bp (A), =2 bp (B), > 3 bp (C), and > 4 bp (D). The distributions of VAF were quite
436 different between F23 and modern human samples in MS with lengths < 2 bp. (E) PCA using
437 MS for F23 and all modern human samples. (F) PCA using MS for F23 and modern human
438 samplesin South Asia, Oceania, America, East Asia, and Central Asiaand Siberia

439
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Tablel MS set for individual identification

Chromosome  Start position End position Type Max length of MS  Max length of MSin  Number of alledlesin ~ Number of alleles  Match probability Match
in|CGC Japanese ~ HGDP+SGDP (bp) ICGC Japanese inHGDP+SGDP  inICGC Japanese probability in
samples (bp) samples samples HGDP+SGDP
1 105083241 105083272 (TATO)n 48 55 12 20 0.074 0076
2 11032690 11032717 (CTTC)n 44 56 5 10 0.270 0.134
3 76233694 76233746 (AGAT)n 61 62 11 19 0.075 0.107
4 117885601 117885630 (TATC)n 49 53 11 16 0.085 0.054
5 82900377 82900424 (TCTA)Nn 55 55 10 14 0154 0.095
6 49948157 49948210 (ATCT)n 66 70 10 11 0.142 0.091
7 67348144 67348171 (TTTC)n 44 60 7 17 0318 0.150
8 108769208 108769243 (TAAG)n 56 60 7 13 0.247 0165
9 101627740 101627784 (ATCT)n 57 61 7 0.231 0178
10 2918258 2918301 (TAGA)n 52 438 7 0175 0.095
11 114544813 114544850 (AAAC)Nn 47 a7 10 14 0.209 0.149
12 121657632 121657667 (TAGA)Nn 52 52 9 11 0.189 0.116
13 107091029 107091073 (ATGG)n 50 54 5 9 0187 0.148
14 38581137 38581184 (ATAG)n 58 58 12 15 0171 0.122
15 47067031 47067072 (GAAT)n 50 46 7 12 0.202 0.143
16 86386308 86386351 (GATA)Nn 56 60 7 9 0.156 0.155
17 72561544 72561595 (CTAT)n 56 56 5 10 0.204 0.155
18 5249011 5249068 (AGAT)n 70 74 12 21 0180 0.103
19 15754216 15754267 (ATAG)n 60 60 8 15 0.164 0116
20 5596482 5596528 (TATG)n 47 51 7 9 0178 0.126
21 42031280 42031319 (TATC)n 52 52 9 13 0.136 0157
22 36513967 36514013 (TATO)n 57 75 13 31 0194 0114
Product of the 1.0x 10" 6.3x10%

match probability

of all MS
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