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Abstract: 

Intestinal fibrosis is a common complication of several enteropathies with inflammatory bowel disease 

being the major cause. The progression of intestinal fibrosis may lead to intestinal stenosis and 

obstruction. Even with an increased understanding of tissue fibrogenesis, there are no approved 

treatments for intestinal fibrosis. Historically, drug discovery for diseases like intestinal fibrosis has been 

impeded by a lack of screenable cellular phenotypes. Here we applied Cell Painting, a scalable image-

based morphology assay, augmented with machine learning algorithms to identify small molecules that 

were able to morphologically reverse the activated fibrotic phenotype of intestinal myofibroblasts under 

pro-fibrotic TNFα stimulus. In combination with measuring CXCL10, a common pro-inflammatory 

cytokine in intestinal fibrosis, we carried out a high-throughput small molecule chemogenomics screen 

of approximately 5000 compounds with known targets or mechanisms, which have achieved clinical 

stage or approval by the FDA. Through the use of two divergent analytical methods, we identified 

several compounds and target classes that are potentially able to treat intestinal fibrosis. The 

phenotypic screening platform described here represents significant improvements in identifying a wide 

range of drug targets over conventional methods by integrating morphological analyses and artificial 

intelligence using pathologically-relevant cells and disease-relevant stimuli. 

Keywords: intestinal fibrosis, chemogenomic library screen, Cell Painting, high content imaging, target 

identification, artificial intelligence 

Introduction: 

Intestinal fibrosis is a pathophysiological mechanism of intestinal tissue repair that leads to the 

deposition of desmoplastic connective tissue after injury. This process can be triggered by noxious 

agents, including infections, autoimmune reactions, physical, chemical, and mechanical injuries. Under 
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normal physiological conditions, intestinal immune components can help to clear foreign pathogens and 

facilitate tissue repair through canonical wound healing processes. However, fibrogenesis may occur 

when the immune response is uncontrolled and persistent, or when injuries repeat, resulting in chronic 

damage2, 3. Intestinal fibrosis is one of the most common complications of patients who suffer from 

inflammatory bowel disease (IBD), occurring in approximately 5% of ulcerative colitis (UC) patients and 

more than 30% of Crohn’s disease patients. The prevalence for IBD increased from 0.5% in 2010 to 

0.75% in 2022 in western countries and is projected to reach 1% in 20304, 5. Fibrostenotic complications, 

including stricture formation and subsequent intestinal obstruction, significantly increase morbidity and 

hospitalization, surgical intervention, and health care costs2. Despite advances in the development of 

therapeutics for treating IBD, including small molecular weight immunomodulators (prednisone, 5-

aminosalycylic acid, Tofacitanib, Ozanimod), DNA/RNA replication inhibitors (azathioprine, 

methotrexate, 6-mercaptopurine), and large molecular weight anti-inflammatory biologics (anti-TNFα, 

anti-integrins and anti-IL-12/IL-23), the high incidence of intestinal strictures and requirement for 

surgical interventions remain6. The lack of effective drug therapies for fibrostenotic IBD represents an 

increasing and significant unmet medical need. 

At a molecular basis, intestinal fibrosis in IBD is a dynamic and multifactorial process. It is a consequence 

of local chronic inflammation and subsequent activation of fibroblasts. Mucosal inflammation occurs 

when the mucosal integrity is compromised resulting in the influx of micro-organisms from the gut 

lumen. Myeloid cells, such as macrophages and dendritic cells, recognize these pathogen-associated 

molecular patterns via Toll-like and NOD-like pattern recognition receptors and propagate the immune 

signaling by recruiting other immune cells to clear the offending pathogens by releasing cytokines and 

chemokines, such as TNFα, IL-1β, IL-36 and OSM7. Tissue repair and wound healing occurs in the 

resolution of the inflammation process after initial inflammatory responses. However, in the context of 

chronic inflammation, cytokines and chemokines drive differentiation and activation of fibroblasts and 

their subsequent production of ECM proteins. When the balance between production and enzymatic 

degradation of ECM proteins is lost, intestinal fibrosis occurs6.  

Due to the failure rate of translational efficacy for many clinical candidates for IBD8, there is an 

increased interest in the exploratory phase of drug discovery, to utilize disease-relevant phenotypic 

screening to provide more confidence to identify drug targets or small molecules9-11. However, lead 

molecules derived from phenotypic screening campaigns are historically difficult to follow up due to 

intrinsic complexities of generating useful structure-activity relationships, and lack of structure-based 

drug design input, coupled to the difficulties in predicting and successfully navigating mechanism-

associated toxicities. Chemogenomic screening utilizes a library of selective small molecules with 

annotated targets. The benefit of phenotypically profiling compounds with known targets and 

mechanisms is to assist generation of mechanistic hypotheses that can initiate ensuing target validation 

studies. Furthermore, hit molecules identified from such screens can also suggest that their targets are 

amenable to functional pharmacological modulation, thus providing evidence of the druggability of the 

targets11.  

Due to practicality and affordability, drug discovery campaigns typically employ one or a few readily 

interpretable biomarkers, such as secretory or intracellular markers or gene-of-interest-driven reporters, 

that reflect known biology. Recently, significant interest has arisen in the drug discovery industry to 

capture high-dimensional cellular morphological changes to stimuli and drug treatments by using image-

based profiling with automated microscopy12. This unbiased, inexpensive and scalable image-based 
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method, most often using the Cell Painting assay, combines multiple organelle stains in a robust assay 

yielding single-cell profiles composed of thousands of features12. Combined with machine learning and 

data mining, Cell Painting offers the potential to accelerate therapeutic discovery by identifying drug-

induced cellular phenotypes, elucidating modes of action, and characterizing drug toxicities12.   

In this study, we describe a chemogenomic library screen in human intestinal fibroblasts using both 

disease-relevant biomarker and Cell Painting readouts to interrogate targeted small molecules that can 

alleviate the fibrotic phenotype. We identified clinically relevant hits from both assay readouts, though 

the mechanisms-of-action of hits from each assay represent distinct fibrotic biology. We identified 

inflammatory response regulators with the biomarker assay, and tissue plasticity, remodeling, fibrosis 

and angiogenesis signaling modulators with the Cell Painting assay. The hits were further confirmed and 

validated in colonic fibroblasts treated with other pro-fibrotic stimuli. With this integrated approach 

using both high throughput biomarker analysis and artificial intelligence-enabled morphological 

profiling, we were able to discover a wide spectrum of physiologically and clinically relevant small 

molecules and targets for intestinal fibrosis.  

Results: 

Development of an in vitro cellular disease model that mimics human intestinal fibrosis pathogenic cell 

population 

The CCD-18co human colon fibroblast cell line was identified as a physiologically relevant model for 

human intestinal fibroblasts13. In order to identify culture conditions that yielded the most clinically 

relevant response to disease-associated stimuli, we performed single cell transcriptomic analysis of CCD-

18co cells that were treated with various pro-fibrotic stimuli, including TNFα, IL-1β, TGFβ, TL1a, OSM 

and IL-36, for 16 hours. We combined data from each treatment in an integrated UMAP (Figure 1A) and 

compared their single-cell RNA sequencing profiles side-by-side (Figure 1B). We identified seven distinct 

clusters of cells in total, of which several common clusters were shared among all treatments, as well as 

unique clusters corresponding to particular treatment groups (Figure 1B).  

Within these clusters we performed functional characterization by mapping the enriched canonical 

pathways and upstream regulators. Clusters 2 and 6 were predominant in TNFα and IL-1β treatment 

groups (Figure 1C). Genes upregulated in these clusters represented IL-17 signaling, wound healing, 

TREM1 signaling, cytokine mediated fibroblast crosstalk, leukocyte migration and tumor 

microenvironment pathways, as well as genes involved in mediating inflammatory pathways associated 

with cancer (Figure 1D). Cluster 3 and cluster 5 were mainly found in TGFβ and OSM treatments, 

respectively (Figure 1C). Genes upregulated in cluster 5 represented IL-6 signaling and acute phase 

response signaling, while genes upregulated in cluster 3 represented tissue fibrosis activities (Figure 1D). 

IL-36 and TL1A treatment profiles were similar to control, suggesting neither stimulus exerted significant 

effect on the cells (Figure 1B).  Upstream regulator detection analysis corroborated that the clusters 2,6 

are modulated by TNFα and IL-1β, while cluster 3 from TGFβ and cluster 5 from OSM. 

To identify which CCD-18co population exhibited the most disease-mimetic gene expression profile, we 

mapped activated CCD-18co clusters (cluster 2, 6, 3 and 5) to cell populations from primary human colon 

stromal biopsies from healthy and ulcerative colitis patients1 (Figure 1E). We found that cluster 2 and 6, 

most prevalent in TNFα and IL-1β treatments, and cluster 4, unique to OSM treatment, had signatures 

that closely overlapped with those of inflammation-associated fibroblasts (IAFs) in diseased human 
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colon biopsies. Cluster 3, specific to TGFβ treatment, corresponded to both IAFs and myofibroblasts in 
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Figure 1. Bioinformatic analysis of transcriptome profile of CCD-18co cells and comparison with human colon biopsies. (A) and (B) UMAP 

embedding of 16,750 single-cell RNA sequencing (scRNA-Seq) profiles from CCD-18co fibroblast cell cultures with different stimuli, 

including TNFα, IL-1β, TGFβ, TL1a, OSM and IL-36, for 16 hours. Seven identified single-cell clusters are indicated by colors. (C) Stacked bar 

graph showed cluster cell composition, with cluster 3 corresponding to cells activated by TGFβ, cluster 5 corresponding to cells stimulated 

by OSM, while clusters 2 and 6 captured cellular responses upon TNFα and IL-1β treatments. The remaining clusters were not 

overrepresented in any of the conditions and were considered baseline state. (D) Ingenuity Pathway Analysis (IPA)Canonical Pathways 

associated with the upregulated genes in clusters 2 and 6 (TNFα and IL-1β stimuli), cluster 5 (OSM) and cluster 3 (TGFβ). Cluster 1, not 

shown in Figure 1D, exhibited high expression of cell cycle phase genes. Grayscale represents p-score = − log10 (p-value). (E) Top 15 

markers from CCD-18co fibroblast cell clusters 2, 3, 5, and 6 were analyzed in human colon fibroblasts from UC and healthy patients, 

retrieved from the published stromal single cell atlas 1. Highly expressed genes in CCD-18co cluster 2, 5, 6 (TNFα, OSM, IL-1β treatments) 

were enriched in Inflammatory Fibroblasts, and highly expressed genes in CCD-18co cluster 3 (TGFβ cellular treatment) were elevated in 

Myofibroblasts from colonic biopsies. 
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human colon biopsies. Because IAFs are the immunological hub of multiple signaling pathways that play 

important roles during the onset of intestinal inflammation and fibrosis14, and IAFs are associated with 

anti-TNFα drug resistance in inflammatory bowel disease patients1, we sought to address this key unmet 

medical need for intestinal fibrosis and perform the primary screen with TNFα as stimulus, as it was 

found to induce an IAF phenotype.  

To quantify the effects of TNFα signaling on morphological fibrosis in CCD-18co cells, we knocked out 

TNFRSF1A and TNFRSF1B genes, which encode TNFR1 and TNFR2, respectively, individually or together 

using CRISPR/Cas9 gene editing (S. Figure 1A), then evaluated the response of the cells to TNFα. Upon 

activation of NF-kB by TNFα signaling, p65, a subunit of NF-kB also known as RELA, was observed to 

translocate from the cytoplasm to the nucleus (S. Figure 1B). However, cells transfected with individual 

or pooled TNFRSF1A guide RNAs (gRNAs) showed that p65 remained, at least partially, in the cytoplasm 

(S. Figure 1C), indicating reduced NF-kB signaling.  Further, CCD-18co cells transfected with individual or 

pooled TNFRSF1A gRNAs showed diminished CXCL10 expression compared to control cells (S. Figure 1D). 

The effect of dual TNFRSF1A and TNFRSF1B knockout was similar to TNFRSF1A knockout alone indicating 

TNFα signaling was mediated, at least partially, through TNFR1 instead of TNFR2 in CCD-18co cells. 

In high-throughput screening, it is important to use clinically proximal readouts whenever possible to 

ensure the observed phenotype is a robust surrogate for disease pathology. To that end, we assessed 

protein and mRNA expression levels of a panel of inflammation-related biomarkers in CCD-18co cells 

that were treated with disease-relevant pro-fibrotic stimuli. We identified CXCL10 as a significantly 

upregulated biomarker at both protein and mRNA levels by multiple stimuli, including TNFα, IL-1β and 

IL-36 (S. Figure 2). Because modulation of CXCL10 and its receptor CXCR3 has been reported to be 

associated with inflammatory signaling-driven fibrogenesis15, 16, we chose it as a readout for efficacy in 

the ensuing screen. Though we did profile more conventional biomarkers of fibrosis, including ACTA2 

and COL1A1, neither of them was induced by pro-fibrotic stimuli at either protein or mRNA level to yield 

an acceptable assay window for a high throughput screen (S. Figure 3).  

In addition to CXCL10 protein as a readout for efficacy we also used the Cell Painting assay to serve as a 

morphological readout of cellular fibrosis. Morphologies of CCD-18co cells treated with different pro-

fibrotic stimuli were visually distinct (S. Figure 4A) and this translated to cellular features that yielded 

equally distinct principal component analysis (PCA) plots (S. Figure 4B). Interestingly, the Cell Painting 

PCA plot strongly resembled the transcriptomic PCA plot (S. Figure 4C), suggesting CCD-18co cellular 

morphology might be tightly correlated to gene expression and subsequent biological activities.    

Automated high throughput chemogenomic library screen to identify targeted perturbagens of intestinal 

fibrosis  

To comprehensively profile diverse biological and functional space (Figure 2A), we sourced two small 

molecule libraries totaling 4871 compounds annotated with either their reported targets and/or 

mechanisms of action and have been either tested in clinical trials or approved by the FDA (Selleckchem; 

S. Figure 5A). The molecular weight and ALogP of these compounds were within the standard range for 

“drug-like” molecules (S. Figure 5B)17.  

For the primary high throughput screening assay, 1,200 CCD-18co cells/well were plated on the first day, 

followed by compounds and controls after 24 hours (S. Figure 5C). Each compound was tested at 3 μM 

in biological triplicate. 1 ng/mL anti-TNFα antibody Adalimumab was used as the positive control, 
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because Adalimumab was able to effectively suppress TNFα signaling in the CXCL10 assay (as well as in 
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Figure 2. Chemogenomic library screen workflow. (A) The screen was conducted through a process including primary screening, hit 

confirmation and other orthogonal validation assays. For the primary screen, colonic fibroblasts CCD-18co cells were plated on Day 1, 

followed by small molecule transfer on Day 2, and 10 ng/mL TNFα stimulation on Day 3. The supernatant samples were collected for the 

CXCL10 reduction assay and cells were stained with the Cell Painting dyes for the high content imaging assay. Hits from both assays were 

called and analyzed individually and collectively (B) CCD-18co cells that were stained with Cell Painting dyes including Hoechst 33342 

(nuclei), Concanavalin A-Alexa 488 (ER), SYTOTM 14 (nucleic acid), WGA-Alexa 555 (Golgi), phalloidin-Alexa 568 (cytoskeleton) and 

MitoTracker Deep Red (mitochondria), and imaged with Operetta CLS. The image on the far left was merged image of all channels. (C) 

Workflow of cellular compartment segmentation of high content images using Perkin Elmer Harmony software. Nuclei were identified by 

Hoechst 33342 stain. Cytoplasm was then identified by Concanavalin A-Alexa 488 stain. The border objects were excluded from analysis. 

Different morphology and intensity properties of each channel were calculated and 860 features were extracted at the well-level. The 

profiling dataset was then analyzed with a dimensionality reduction method, such as PCA.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


7 
 

the Cell Painting assay, as discussed later, S. Figure 6). Cells were then treated with 10 ng/mL TNFα on 

the third day for 48 hours, after which time the cell culture supernatant were collected for CXCL10 

protein quantitation using a Homogeneous Time Resolved Fluorescence (HTRF) assay.    

For the Cell Painting assay, the cells from the exact same samples were stained with Cell Painting dyes 

followed by high content image acquisition and analysis. The assay includes six fluorescent dyes to 

highlight different organelles of CCD-18co cells, including MitoTrackerTM Deep Red FM for mitochondria, 

Concanavalin A-Alexa 488 for endoplasmic reticulum, SYTOTM 14 for nucleoli and cytoplasmic RNA, 

WGA-Alexa 555 and phalloidin-Alexa 568 for F-actin cytoskeleton, Golgi and plasma membrane, Hoechst 

33342 for nucleus18 (Figure 2B). High content images were captured and cellular morphological features 

were extracted, then analyzed using a dimensionality reduction method. Compounds that clustered 

around the positive controls were categorized as Cell Painting hits (Figure 2C). For dimensionality 

reduction, we used either a supervised PCA or a linear predictive model. For both methods, the medians 

of positive controls and negative controls were normalized to 0 and 1, respectively. Compounds were 

then binned into positive or negative bins depending on the projection scores (Materials and methods, 

Figure 3A, left). Compounds positive for >2 out of 3 replicates in the positive bins and projection scores 

within the range of Average(pos ctrl) ± 3 x S.D. (standard deviations) were picked as preliminary hits. 

Compounds exhibiting cytotoxic profiles were then further filtered based on cell count.  

In total, 160 and 152 compounds were picked as hits from supervised PCA and linear predictive models 

of the Cell Painting data, respectively (Figure 3A, right). There were 100 hits that overlapped between 

both models for Cell Painting analysis (Figure 3A, right), suggesting the two analytical methods yielded 

mainly convergent results. In addition, we assessed three other metrics for picking Cell Painting hits; 

namely using the top 50 features, top 5 features, or top 3 features per channel that separate positive 

and negative controls, though the hits and targets that were identified were mostly similar (S. Figure 7). 

To determine whether these cellular features correlate with their biological functions, we projected the 

cellular features of the targets that were most distinct from the negative controls onto a two-

dimensional t-SNE map (Figure 3B). This map showed that some co-annotated compounds form 

coherent clusters (e.g. MEK and HSP) in phenotypic space whereas other do not (e.g. Bcl-2, FAK, CRM1, 

DNA-PK).  

For the CXCL10 assay, luminescence intensities of positive and negative controls of each plate were fit 

on a 0 to 1 scale, and were then normalized for their percent inhibition, with the mean of positive 

control being 100% and the mean of negative control being 0% (Figure 3C). The strictly standardized 

mean difference (SSMD) was used to measure the effect size and gauge the assay quality19. Plates with 

SSMD>1.28 (the SSMD quality cutoff) then proceeded to hit selection. Compounds positive for >2 out of 

3 replicates with CXCL10 inhibition > 70% were identified as preliminary hits, then filtered by eliminating 

cytotoxic compounds (dependent on cell count). After applying this gating strategy, 109 compounds 

were identified, resulting in a 2.2% hit rate for the CXCL10 screen (Figure 3D).  

Surprisingly, there were only 8 hits that overlapped between the Cell Painting linear predictive model 

and the CXCL10 assay, and only 9 hits that overlapped between the Cell Painting supervised PCA model 

and the CXCL10 assay. Only 5 hits overlapped among all three methods. In the end, after removing 

duplicate compounds, 275 unique hits from either Cell Painting or CXCL10 assay were advanced for 

further confirmation and validation (Figure 3E). 
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Target discovery through the integration of cytokine biomarker and morphological profiles 

It was intriguing that the CXCL10 assay and the Cell Painting assay identified vastly different pools of hit 

compounds.  For hit compounds that were unique to Cell Painting, the top targets included VEGFR, HSP, 
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Figure 3. Primary screen hit picking strategies for the CXCL10 reduction assay and Cell Painting assay. (A) The Cell Painting dataset was 

analyzed with both supervised PCA and linear predictive model methods. Projection scores of Cell Painting controls and samples help to 

determine the similarities between compounds and controls. Compounds in positive bins in the range between Average(projection score) 

± 3 x S.D. were picked as hits. There were 160 hits from supervised PCA and 152 hits from linear predictive model analysis with 100 

overlapping hits. (B) t-SNE plot shows the phenotypic space of top compound target categories that are farthest from the negative 

controls.  (C) Pos and neg ctrl data points of CXCL10 HTRF assay. X-axis shows the plate barcode, y-axis shows the normalized CXCL10 level. 

Solid yellow line shows 0% inhibition representing the median of the neg ctrl (vehicle), and solid red line shows 100% inhibition 

representing the median of pos ctrl (1 nM adalimumab). Dotted orange line shows 70% cut off for hit picking. (D) The CXCL10 HTRF assay 

screened 4,871 compounds in total. The plates passed through QC criteria of SSMD>1.28. Hits were selected if 2 or 3 out of the triplicates 

exhibit percent inhibition of CXCL10 ≥ 70%. The cytotoxic compounds were further filtered out if cell count ≤ 50% of neg ctrl from the 

imaging data. The final hit list included 109 compounds representing 2.2% hit rate. (E) Overview of hit numbers from each assay/analysis: 

Cell Painting linear predictive model, Cell Painting supervised PCA, and CXCL10 reduction assay. 
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c-Met and PDGFR, MEK, c-Kit, FLT3 and FGFR (Figure 4A); while hits that were unique to the CXCL10 

assay included the targets mTOR, PI3K, glucocorticoid receptor and several components of the 

autophagy and microtubule pathways (Figure 4B).  For the hits that were shared between the two 

assays, the top targets included PI3K, autophagy and JAK (Figure 4C). 

In several contexts, image-based profiles have proven to have predictive ability for other assays20. We 

wondered whether any particular cellular morphology features from the Cell Painting assay can be used 

to predict CCD-18co cells’ response to TNFα, in terms of secreting CXCL10. We studied the statistical 

dependence between CXCL10 levels and each of the 860 individual cellular features. We found that a 

few subcategories of cellular features including Axial Small Length (the length of the cell’s shorter axis in 

pixel units) and Radial Mean (the mean object radius based on the intensity values weighted by the 

distance from the mass center) from the ER, mitochondria and F-actin, Golgi and PM channels had 

strong relationship with CXCL10, as F statistic values which capture the linear dependency between 

features and the CXCL10 outcome were 0.73 on average (Figure 5A), and the mutual information (MI) 

values which capture any type of dependency were 0.76 on average (Figure 5B). To zoom in the 

subcategories and examine which particular features had the strongest statistical dependency with 

CXCL10 level, we identified a few Radial Mean features, including Edge, Ridge, and Spot of the SER 

texture analysis in the F-actin, Golgi, plasma membrane channel have nearly perfect statistical 

dependency with CXCL10 level (e.g., Radial Mean SER-Spot has F-statistic of 1.0 and Radial Mean SER-

Edge has MI of 1.0) (Figure 5C), indicating that these features have strong dependency with CXCL10  and 

can be used to predict CXCL10 level.  

 

Figure 4. Hit category analysis of Cell Painting and CXCL10 reduction assays. (A) Hit number of target categories for linear predictive model 

and supervised PCA analysis of Cell Painting. Bar chart shows the target categories with ≥5 compounds in each. (B) Hit number of target 

categories for CXCL10 reduction assay.  Bar chart shows the target categories with ≥5 compounds in each. (C) Hit number of target 

categories for the overlapping hits between CXCL10 reduction assay and Cell Painting assays. Table shows target categories with ≥3 

compounds in each assay. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


10 
 

Target validation using pro-fibrotic stimuli-treated cell models 

To further characterize hit compounds according to their ability to ameliorate fibrosis from pro-fibrotic 

stimuli other than TNFα, we profiled the 275 unique hit compounds at three doses (3 μM, 0.6 μM and 

0.125 μM) in assays with different stimuli (IL-1β, IL-36 or OSM) in addition to TNFα (Figure 6A). The 

CXCL10 assay was used for TNFα-, IL-1β- and IL-36-treated cells, while a CCL2 assay conducted 2 hours 

post OSM treatment was used for OSM-treated cells, because CCL2 (S. Figure 8) but not CXCL10 (S. 

Figure 2) is a functional biomarker for OSM stimulation. The Cell Painting assay was only used for TNFα 

and IL-1β stimulation, as there were not viable assay windows for cells treated with either IL-36 or OSM 

(S. Figure 4B), leaving four cytokine assay and two Cell Painting assay results available for analysis.   

The TNFα-stimulated reconfirmation screen of 275 unique hit compounds yielded a 51% reconfirmation 

rate for reducing CXCL10 expression/secretion and a 47% reconfirmation rate for Cell Painting, 

suggesting robustness of the primary screening assays. Using a combinatory approach to examine the 

target categories, we pooled the four cytokine stimulation results and identified glucocorticoid receptor 

as the top target with 16 hits. This was followed by autophagy, inflammatory-related mechanisms, JAK, 

PDGFR and SYK (Figure 6B). The two Cell Painting reconfirmation assays (TNFα and IL-1β) similarly 

showed glucocorticoid receptor to be the top target, followed by MEK, PDGFR, VEGFR and 

inflammatory-related mechanisms (Figure 6C).  

When considering all six compound lists, the hits were binned into three buckets depending on the 

number of assays they were identified as hits. Bucket one included compounds that were picked as hits 

in six out of six assays. All hits in this bucket were glucocorticoid receptor modulators (steroids). Bucket 

two included compounds that were picked as hits in five out of six assays and similarly, all hits in bucket 

 

A

B

C

Figure 5. Correlation analysis of morphological features with CXCL10 level. (A and B) F statistic (which shows the linear dependency), and 

mutual information (which shows any type of dependency, including linear dependency), between cellular feature subcategories and the 

CXCL10 level. (C) Heat map of top highly correlated features of each subcategory with CXCL10. 
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two were mainly glucocorticoid receptor modulators. Bucket three included compounds that were 

identified as hits in three or four out of six assays and this bucket represented the largest variety of 

biological functions with different mechanisms of action (Figure 6D).  

To understand these targets in the context of signaling pathways, we mined the literature and identified 

any associations between targets in bucket three and intestinal fibrosis. Overall, three main pathways 

were identified: ER stress response, fibrosis/angiogenesis and inflammation (Figure 7). All three 

pathways were shown to play a role in tissue fibrosis14, 21-28. Interestingly, we identified and confirmed 

both Nintedanib (targets PDGFR, VEGFR and FGFR) and Pirfenidone (targets NF-kB), which were 

approved drugs for treating idiopathic pulmonary fibrosis (IPF)28, 29, as potent antagonists of 

myofibroblast activation30 (Figure 7). These data suggest that the small molecules, targets and signaling 

pathways identified through our multi-parametric biomarker and cellular feature profiling approach 

  

Small molecules 

(275 primary hits) 

TNFα, IL-1β, 

IL-36, or OSM 

  

Intestinal 

fibroblasts 

Supernatant 

Confirmed and validated hits 

Cells 

Cell painting CXCL10 

reduction*  

A 

B 

C 

D 

*CCL2 reduction assay for OSM treatment 

Figure 6. Hit confirmation and validation assay workflow and hit categories. (A) Hit confirmation and validation experimental workflow. 

Intestinal myofibroblasts CCD-18co cells were seeded in 384 well plates. After overnight incubation, 275 small molecule hits from the 

primary screen, positive, or negative controls were dispensed into the wells. After 24-hour incubation, cells were treated with TNFα, IL-1β, 

IL-36 or OSM. After 48-hour stimulation, the cell culture supernatants were collected to assess CXCL10 levels for TNFα, IL-1β, IL-36 treated 

samples and CCL2 levels for OSM treated samples. The cells were stained with Cell Painting dyes for morphological profiling. There was an 

insufficient assay window between positive and negative controls for Cell Painting results from IL-36 and OSM treated samples, so Cell 

Painting results were not produced for these stimuli. (B) The top target categories across the four cytokine reduction assays. Table shows 

target categories with ≥3 compounds for each assay. (C) The top target categories for the Cell Painting results of TNFα and IL-1β 

stimulation. (D) The top target categories for all six assay results. The results were further bucketed into three categories. Bucket 1 

includes compounds that had effect in all 6 assays. Bucket 2 includes compounds that had effect in 5 out of 6 assays. Bucket 3 includes 

compounds that had effect in 3 or 4 out of 6 assays. Table only shows target categories with ≥3 compounds in each. 
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were physiologically- and clinically-relevant. Further, this screening platform was able to identify 

molecules from a wide spectrum of mechanisms of action. 

 

Discussion: 

IBD-associated intestinal fibrosis represents a highly invasive and deleterious disease that currently has 

no approved pharmacological intervention. In order to address this as well as the gap in clinically reliable 

rodent preclinical models (ref for this statement) we developed a clinically relevant humanized intestinal 

fibrosis model composed of TNFα-activated colon fibroblasts. In order to leverage large collections of 

small molecules for therapeutic profiling efforts, we miniaturized the human IBD fibrosis model to 

accommodate a scalable phenotypic screening platform for fully-automated drug discovery. Employing 

transcriptomics as a surrogate characteristic for comparing our CCD-18co in vitro model to IBD patient 

biopsies, we identified several distinct transcriptional clusters corresponding to different pro-

inflammatory cytokine stimuli. Although TGFβ treatment of CCD-18co cells produced a canonical gene 

expression profile that overlapped with myofibroblast components of patient biopsies, TNFα stimulation 

yielded a fibrotic phenotype most consistent with the IAF population of IBD patient samples.   

As intestinal fibrosis is a result of a complex interplay of immune-mediated inflammatory processes as 

well as modulation of pro-inflammatory cytokine-mediated signaling pathways, our screening platform 

required a sophisticated series of assay readouts to account for these polyetiological causes. We first 

chose to use CXCL10 (IP10) as a robust biomarker for fibrosis due to its well-characterized association 

 

Figure 7. Major pathways of the bucket 3 compound targets. Three major pathways, including ER stress response, fibrosis/angiogenesis 

pathway, and inflammatory pathway were identified by analyzing the targets of bucket 3 compounds. Pink bubbles show the targets that 

were identified in the bucket 3 compounds. Gray bubbles show other intermediate targets in the pathway. Nintedanib, a marketed drug 

for idiopathic pulmonary fibrosis, was identified as a hit in the screen. The screen also identified inflammatory pathway targets through 

which pirfenidone, another marketed drug for idiopathic pulmonary fibrosis, exerts its effect.  
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with intestinal fibrotic pathology and because compared to other biomarkers both its mRNA and protein 

levels were significantly promoted by multiple pro-fibrotic stimuli (S. Figure 2). However, to fully assess 

changes in the fibrotic morphological phenotype, we developed an unbiased image-based profiling 

technique called Cell Painting. Although Cell Painting has not been widely adapted in the drug discovery 

industry as a phenotypic readout for efficacy, its scalable ease of use as well as its ability to quantitate 

changes in thousands of cellular features make it an ideal method for studying complex biology such as 

intestinal fibrosis. Cell Painting produces vast morphological information as a collection of extracted 

cellular features, but by integrating artificial intelligence analytical methods, such as machine learning, 

we can mine these data to reveal important biological activities of potentially therapeutic small 

molecules12. For example, we found that the relative positions of pro-fibrotic stimuli-treated clusters to 

vehicle controls in Cell Painting PCA plots were similar to those from RNA-seq PCA plots, suggesting 

transcriptome profiles and related biological activities strongly correlate with cellular morphological 

profiles. We also examined whether any specific cellular features were highly correlated with CXCL10 

level, because these features may potentially be used as sentinel readouts for CXCL10 in future studies. 

We identified several subcategories of features, such as Axial Small Length and Radial Mean in ER, 

mitochondria and F-actin, Golgi and plasma membrane channels that had high correlations with CXCL10 

level (Figure 5). 

Surprisingly, we observed divergent hit distribution profiles between the CXCL10 and Cell Painting assay 

readouts. While the CXCL10 readout identified well-characterized regulators of fibrosis such as mTOR 

and glucocorticoid receptor, the targets identified through the Cell Painting readout were 

mechanistically more diverse (e.g. VEGFR, PDGFR, FGFR, c-Met, c-Kit and MEK) and included such 

cellular processes as fibrosis, tissue plasticity and remodeling, and angiogenesis. In short, the CXCL10 

assay conferred a confidence metric to the biological relevance of our assay platform by identifying 

several steroid molecules as alleviators of the fibrotic phenotype but the Cell Painting assay was able to 

reveal a wider range of potentially-actionable (and novel) mediators of intestinal fibrosis pathology.  

As our collective understanding of the causes and mediators of disease biology increase, so must our 

ability to interrogate those causes to discover the next generation of small molecule therapeutics. A 

complex image-based profiling technique like Cell Painting integrated with state-of-the-art machine 

learning algorithms to translate thousands of cellular features into disease-relevant targets and 

pathways may represent a giant leap forward in industrialized drug discovery. Although it may be 

unlikely that image-based profiling will completely replace conventional biochemical, transcriptional or 

proteomic profiling methods, when incorporated into exploratory phases of the drug discovery pipeline, 

Cell Painting may accelerate identification of novel therapeutics and expand the targeting space of 

polyetiological and poorly-understood diseases like intestinal fibrosis. 

 

Materials and methods: 

Single Cell RNA-seq 

CCD-18co cells were cultured as previously described, and were treated with vehicle, 10 ng/mL OSM, 10 

ng/mL TNFα, 10 ng/mL IL-1β, 100 ng/mL TL1A, 200 ng/mL IL-36 or 10 ng/mL TGFβ for 16 hours. Cells 

were detached from plastic culture media using Trypsin EDTA and manually counted. 10,000 cells of 

each sample were loaded in individual lanes of a 10X Genomics Next-GEM chip (10X Genomics, cat #: 
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1000127). Libraries were prepared using the 10X Genomics Next-GEM 3’ GEM kit (10X Genomics, cat #: 

1000121). Library quality control was performed using the Agilent Tapestation D1000 and D5000 tapes 

(Agilent, part #: 5592 and 5584). Sequencing was performed externally at a vendor (Novogene Inc.) at a 

depth of 50,000 reads per cell. 

Analysis of CCD18Co scRNA-Seq data 

Cell Ranger mkfastq was used to demultiplex raw sequencing reads, and Cell Ranger count was used to 

align reads to Human GRCh38 transcriptome, and generate gene-cell expression count matrices. 

Expression matrices were filtered to remove low quality cells with less than 200 genes detected or more 

than 0.25% mitochondrial mRNAs. Cell filtering resulted on an average of ~2,400 cells per condition and 

a total number of 16,750 cells in the integrated dataset.  Seurat v3[Butler et al., 2018] workflow was 

employed to perform normalization, detection of variable genes, dimensionality reduction, and graph-

based clustering with Louvain algorithm. Upon log-normalization and scaling of gene expression, 

variable genes were identified using the vst method and then subjected to principal component analysis 

(PCA). The number of principal components (PCs) used for nonlinear dimensional reduction analysis 

(UMAP) was chosen according to the PCElbowPlot function and JackStrawPlot function. For cell 

clustering, FindClusters method was parameterized with different resolutions to optimize cluster 

granularity. Sample integration was performed with the IntegrateData function using anchors set by 

FindIntegrationAnchors. Cells with high mitochondrial RNA expression (greater than 5% of total cell 

reads) were excluded from downstream analysis. FindAllMarkers function in Seurat was utilized to 

detect top gene markers per cluster with the default Wilcoxon rank-sum test setting. The results of 

FindAllMarkers were subjected to functional pathway analysis. Upregulated gene markers per cluster 

with logFC>0.4 and adjusted p-value <0.05 were subjected to functional enrichment with Ingenuity 

Pathway Analysis (IPA) (Qiagen Inc.). IPA canonical pathways and upstream transcriptional regulators 

were predicted per cluster and then integrated via the Comparison Analysis function.  

CCD-18co cell culture and screening assay 

A large batch of CCD-18co cells were purchased from ATCC (Cat #: CRL-1459), and were cultured with 

ATCC-formulated Eagle’s Minimum Essential Medium (Cat #: 30-2003) with 10% fetal bovine serum 

(FBS) as recommended by ATCC. The cells earlier than passage-6 were used in experiments. The 

chemogenomic screen library was assembled with two screening libraries from Selleckchem (cat #: 

L1100 and L3800). The high throughput screen was conducted with an automation platform consisting 

of multiple instruments (S. table 1), which were operated by Green Button Go software (Biosero). For 

pro-fibrotic stimuli treatments, if not specified otherwise, the concentrations of stimuli used to treat 

CCD-18co cells were as follow: 10 ng/mL OSM, 10 ng/mL TNFα, 10 ng/mL IL-1β, 100 ng/mL TL1A, 200 

ng/mL IL-36 and 10 ng/mL TGFβ. 

For the primary screen, 1,200 cells/16 μL/well of CCD-18co cells were seeded in CellCarrier-384 Ultra 

microplates (Perkin Elmer, Cat #: 6057302) with an EL406 combination microplate washer dispenser 

(EL406, Biotek). After overnight incubation at 37 °C, 37.5 nL/well (for 2 mM stock) or 7.5 nL/well (for 10 

mM stock) small molecules were dispensed by ATS GEN5 (EDC Biosystems). The wells were then 

backfilled with 10 μL/well cell culture medium with an EL406 (except for column 12). Column 12 was 

filled with 10 μL/well adalimumab (final concentration 1 nM) for positive control wells or 10 μL/well 

medium for negative controls. After overnight incubation, each well was then filled with 25 μL/well 

recombinant human TNFα (R&D systems, cat #: 210-TA-100) diluted in cell culture medium (final 
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concentration 10 ng/mL) with an EL406. After 48-hour stimulation, 4 μL/well of cell culture supernatant 

was taken out and dispensed into OptiPlate-384 microplates (PerkinElmer, cat #: 6007290) that was pre-

filled by 12 μL/well PBS by an EL406. CXCL10 HTRF assay antibodies were prepared according to the 

manufacturer’s recommendation (Cisbio, cat #: 62HCX10PEH). 4 μL of the mixture of equal part of 

diluted CXCL10 Eu Cryptate antibody and CXCL10 d2 antibody was added to PBS diluted supernatant in 

OptiPlate-384 microplates by a Bravo liquid handler. The OptiPlate-384 microplate was then sealed by a 

PlateLoc thermal microplate sealer (Agilent) and shaken at 1000 rpm for 30 seconds on a BioShake 5000 

elm shaker (QInstrument) followed by centrifugation at 500xg for 30 seconds on a Microplate centrifuge 

(Agilent). The OptiPlate-384 plate was incubated at room temperature in a Biosolutions AmbiStore™ D 

(HighRes) for 2 hours before the HTRF signal was measured on an EnVision® HTS plate reader 

(PerkinElmer). For OSM-induced CCL2 assay in hit validation step, the cell supernatant was collected 

after 2-hour treatment with OSM. The experimental procedure was similar to CXCL10 assay, except the 

signal was detected using a CCL2 kit (Cisbio, Cat #: 62HCCL2PEG). The OSM treated cells were then 

returned back to the incubator, and the Cell Painting assay was carried out after 48 hours post OSM 

treatment. After supernatant being transferred to the OptiPlate-384 microplates, the cells in CellCarrier-

384 Ultra microplates were treated with 25 μ L of 0.71 μM MitoTracker™ Deep Red FM (ThermoFisher, 

cat #: M22426) that was prepared in cell culture medium from 1 mM DMSO stock (final concentration of 

MitoTracker™ Deep Red FM is 0.25 μM). MitoTracker™ Deep Red FM was dispensed by an EL406. After 

incubation with MitoTracker™ Deep Red FM for 30 minutes at 37 °C, the cells were then fixed with 4% 

paraformaldehyde for 10 minutes. Paraformaldehyde was dispensed by an EL406. The CellCarrier-384 

Ultra microplates were then washed with PBS twice on a Blue®Washer, and further stained with a 

cocktail of 15 μL/well including 2 μg/mL Hoechst 33342 (Invitrogen, cat #: H3570), 100 μg/mL 

Concanavalin A-Alexa 488 (Invitrogen, cat #: C11252), 3 μM SYTOTM 14 (Invitrogen, cat #: S7576), 5 

μg/mL WGA-Alexa 555 (Invitrogen, cat #: W32464), 2.5 u/mL phalloidin-Alexa 568 (Invitrogen, cat #: 

A12380) for 30 minutes at room temperature. The dye cocktail was dispensed by a Blue®Washer. After 

incubation, the plates were washed with 1X PBS three times. The cells were then imaged with an 

Operetta CLS High Content Analysis System (PerkinElmer).   

MitoTracker™ Deep Red FM was reconstituted with DMSO and was always prepared fresh from 

lyophilized stock. Concanavalin A-Alexa 488 was diluted with 0.1 M sodium bicarbonate and WGA-Alexa 

555 was diluted with ddH2O, and unused stock of both could be frozen in -20 °C up to 1 month. 

Phalloidin-Alexa 568 was reconstituted with DMSO. Both phalloidin-Alexa 568 and SYTOTM 14 could be 

frozen in -20 °C up to 1 year. Hoechst 33342 was stored at 4 °C.  

Cell Painting high content imaging, feature extraction and high dimensionality data analysis  

Cells stained with Cell Painting dyes on CellCarrier-384 Ultra microplates were imaged with an Operetta 

CLS High Content Analysis System. The details of the Operetta CLS channels and stains imaged in the Cell 

Painting assay are shown below. 

Dye Filter (Excitation) Filter (Emission) Organelle or cellular component 

Hoechst 33342 355-385 nm 430-500 nm Nucleus 

Concanavalin A-Alexa 488 460-490 nm 500-550 nm Endoplasmic reticulum 

SYTOTM 14 490-515 nm 525-580 nm Nucleoli, cytoplasmic RNA 

WGA-Alexa 555 and phalloidin-Alexa 
568 

530-560 nm 600-640 nm F-actin cytoskeleton, Golgi, plasma 
membrane 

MitoTracker™ Deep Red FM 615-645 nm 685-760 nm Mitochondria 
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20x water objective with non-confocal mode was used. Binning value of 2 was chosen to boost camera 

frame rate and dynamic range. The middle 9 fields of view were imaged for each well. The exposure 

time and power were adjusted to ensure the max of signal level under auto contrast for each channel 

was between the range of 8,000 – 15,000. 

For Cell Painting feature extraction, Harmony® PhenoLOGIC™ software was used. The basic flatfield 

correction and brightfield correction were applied to the images. Hoechst 33342 channel was used to 

identify nuclei, followed by using concanavalin A-Alexa 488 channel to find cytoplasm. Border objects of 

each image were removed to ensure the cells with complete image were used for feature extraction. 

Properties of ell features were then quantified, including fluorescnece intensities within different cell 

regions, basic morphological features (cell area, roundness, length, width and width/length ratio), 

advanced morphological features (Symmetry, Threshold compactness, Axial, Radial and profile, or STAR 

properties), cell texture features (Spot, Hole, Edge, Ridge, Valley, Saddle, Bright and Dark, or SER 

properties)31. In total, there were 860 cellular features being extracted. 

The data including all extracted cellular features was imported to TIBCO® SpotFire® Signals VitroVivo 

(PerkinElmer) for analysis. Within the software, Editable Data Grid application was used to associate 

cellular feature data file with the compound transfer log file to annotate compounds. Grid Plate Editor 

application was used to designate the plate layout. High Content Profiler was then used to perform 

advanced feature normalization, selection, classification, profiling and hits selection. The compounds 

with score in the range of Average(neg ctrl) ± 3 S.D. were selected. If they appear 2 times among the 

tested triplicates, they were picked as hits. 

In parallel, the Cell Painting data was analyzed with a linear predictive model. Briefly, the positive and 

negative controls were used as a training set to train a predictive model. Top features were ranked using 

area under the ROC curve. Multiple testing adjusted p-values were also calculated for each feature using 

a random permutation method. The top features that were highly predictive and could separate positive 

and negative controls were used to rank compounds. The compounds with scores in the range of 

Average(neg ctrl) ± 1 S.D. and appeared at least 2 times were picked as hits. 

Cell Painting data projection score calculation 

Projection score is a mathematical formalization of a heuristic, which predict sample’s positivity 

depending on whether the feature values are closer to the positive controls and the negative controls. 

Projection score is calculated as 

𝑃𝑆 =
𝑞 × cos(𝜃)

𝑝
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Where p is the distance between the center of positive and negative controls, q is the distance between 

sample and the center of negative controls, and 𝜃 is the angel between side q and side p. 

CCD-18co cell hit confirmation and validation hit picking strategy 

For cytokine (CXCL10 and CCL2) assay hit picking, the assay plates first passed SSMD>1.28 QC criteria. 

Compounds’ cytotoxicity effects were assessed by cell count from the imaging assay. If three or more 

cell count data points out of the six data points (three doses in replicates) of a compound show < 50% 

cell viability compared to the negative control, this compound was then considered toxic and filtered 

out. The area under the curve (AUC) of six normalized CXCL10 percent inhibition data points of each 

compound was then calculated for each stimulus. The compounds were ranked according to the values 

of AUC. For Cell Painting assay hit picking, after elimination of the cytotoxic compounds, the projection 

scores of Average(pos ctrl) ± 3 x S.D. were selected. If a compound had three or more data points out of 

the six data points that met this criterion, it was confirmed as a hit. 

Visualization of primary screen Cell Painting dataset with t-SNE 

To generate t-SNE projection of Cell Painting morphological feature profiles, compounds that have 

target annotations were selected and per-compound feature profiles were aggregated by calculating the 

mean of each feature across compound replicates. Per-target feature profiles were then aggregated by 

calculating the mean of each feature across all compounds annotated with this target.  Per-target 

feature profiles were then rank-ordered by decreasing Euclidean distance from the mean feature profile 

of negative controls. Finally, the top-20 most distinct targets were selected and the targets that were 

associated with 3 or less compounds were filtered out, obtaining the final set of 13 targets.  

The two-dimensional t-SNE embedding was generated using the scikit-learn Python library with random 

initialization32, perplexity of 20, early exaggeration of 30, automatic learning rate and squared cosine 

distance as a metric. Targets that formed coherent clusters were highlighted using kernel density 

estimation with empirically chosen thresholds. It should be noted that cluster sizes and inter-cluster 

distances should be interpreted with care when using t-SNE33. The t-SNE visualization was built using 

matplotlib34 and seaborn35 Python libraries. 

CXCL10 and cellular feature statistical dependence analysis 

To assess the correlation between CXCL10 level and cellular features extracted from Cell Painting 

imaging data, we first filtered out those compounds that demonstrated cytotoxic effects. We then 

selected those compounds that were present in both CXCL10 and imaging assays and aggregated per-

compound imaging feature profiles by calculating the mean of each feature across compound replicates. 

Then, for each cellular morphological feature, we computed two metrics of relatedness to CXCL10 level: 

F-test statistic and Mutual information (MI). The method based on the F-test statistic estimates the 

degree of linear dependency between the feature and the outcome, while the mutual information 

method can capture any kind of statistical dependency. We plotted obtained results either as individual 

data points (Figure 5B) or as a bar plot that aggregates features by their type (Figure 5A), with error bars 

showing a bootstrap-estimated 95% confidence interval.  

Computations of the F-test statistic and mutual information were performed using the scikit-learn32 and 

pandas36 Python libraries. Visualizations were built using matplotlib34 and seaborn35 Python libraries. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


18 
 

CRISPR/Cas9, mismatch detection and T7E1 assays 

Lentiviral particles of inducible Cas9 nuclease with hEF1a promoter (Horizon discovery, cat #: 

VCAS11227) were transduced into CCD-18co cells with MOI=0.5 according to manufacturer’s instruction. 

The Cas9 expressing cells were selected under 2 μg/mL blastcidin. The cells were added 10 ng/mL 

doxycycline to induce Cas9 expression. The Cas9 expression could be readily detected by Western blot 

after 24 hours. CRISPR gene knockout kits or individual gRNA for targeting TNFRSF1A or TNFRSF1B were 

ordered from Synthego. For gRNA transfection, 0.05 μL Lipofectamine™ RNAiMAX (ThermoFisher, cat#: 

13778075) mixed with 5 μL opti-MEM was dispensed into each well of CellCarrier-384 Ultra microplates, 

followed by dispensing 2 pmol gRNA diluted in 5 μL opti-MEM. The RNAiMax and gRNA were then mixed 

by shaking the plate on a microplate shaker for 1 minute at 800 rpm. The plate was then centrifuged 1 

minute at 500xg and incubated at room temperature for 20 minutes. After incubation, 1,200 cells/well 

with 10 ng/mL doxycycline were seeded in CellCarrier-384 Ultra microplates with RNAiMax and gRNA 

mixture. After 72 hours, the cells were collected for T7E1 assay.  

For mismatch detection and T7E1 assay, the cells were lysed in 20 μL of 1x Phusion high-fidelity buffer 

(Thermofisher, cat #: F-518L) with 1 mg/mL proteinase K (Thermofisher, cat #: EO0492) and 0.5 mg/mL 

RNase A (cat #: EN0531). The plate was then incubated for 15 – 30 minutes at 56 °C, followed by 

deactivation for 5 minutes at 96 °C. Briefly centrifuge plate to collect liquid at bottom of wells. A 50 μL 

PCR reaction with the following condition was set up: 1X Phusion High-Fidelity buffer (cat #: F-549S), 500 

nM forward primer, 500 nM reward primer, 200 μM each dNTPs, 0.04 U/μL Phusion hot start II high-

fidelity DNA polymerase (cat #: F-549S), and 5 μL cell lysate. The thermal cycling condition is as shown 

below: 

Cycle step Temperature (°C) Time Cycle(s) 

Initial denaturation 98 3 min 1 

Denature 98 10 s 10 

Touchdown annealing 72 – 1/cycle 15 s 

Extension 72 30 s 

Denature 98 10 s 25 

Annealing 62 15 s 

Extension 72 30 s 

Final extension 72 10 min 1 

PCR samples were heated to 95 °C for 10 minutes and then slowly (>15 minutes) cool to room 

temperature. 15 μL mismatch detection assay using T7E1 was then set up. The reaction includes PCR 

from gDNA (300 – 500 ng/reaction), 1X NEBuffer 2 (NEB, cat #: B7002S), and 0.33 U/μL T7 endonuclease 

I (NEB, Cat#: M0302S). The mixture was then incubated for 25 minutes at 37 °C. The entire reaction was 

then loaded on 2% agarose gel to determine gRNA cleavage.  

Olink Target 96 Inflammation assay  

CCD-18co cells were treated with vehicle, 10 ng/mL OSM, 10 ng/mL TNFα, 10 ng/mL IL-1β, 100 ng/mL 

TL1A, 200 ng/mL IL-36 or 10 ng/mL TGFβ for 16 or 48 hours. The cell culture supernatant samples (n=5 

for each treatment) were collected and sent to Olink for the Olink Target 96 Inflammation assay. The 

samples were tested in neat or in 1:10 dilution. In total, 92 immune-related secretory biomarker protein 

levels were assessed. The results were presented in Normalized Protein Expression (NPX) value, which is 

an arbitrary unit on a Log2 scale. The linear portion of the NPX vs. concentration plot was used for 

calculation. The NPX values were further normalized to the vehicle treated control group. The heat map 
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shows the average of the protein concentration of n=5. In parallel, the mRNA samples of the cells that 

were treated with various stimuli for 16 hours were sequenced. The matching gene expression levels of 

the 92 proteins that were assessed in the Olink assay were analyzed. The FPKM levels for each 

treatment was normalized to the vehicle control group. The heat map shows the average of the gene 

expression level of n=3. 

RNA-seq 

CCD-18co cells were treated with various stimuli for 16 hours in the same way as described above in 

Olink Target 96 Inflammation assay section. For mRNA-seq, the raw reads were aligned to the 

transcriptome using STAR (version 2.6.0)/RSEM (version 1.2.25) with default parameters, with a custom 

human GRCh38 transcriptome reference containing all protein coding and long noncoding RNA genes 

(based on human GENCODE version 32 annotation; downloaded from http://www.gencodegenes.org). 

The expression counts for each gene (i.e., transcripts per million) in all samples were normalized based 

on the sequencing depth. Differential expression genes (DEG) were identified using DESeq2 

Bioconductor package at a minimum 2 fold change and false discovery rate <0.05 with Benjamini-

Hochberg Procedure.  The pathway enrichment analysis was performed using a hypergeometric test 

with Benjamini-Hochberg correction in Ingenuity pathway analysis (Qiagen). False discovery rate <0.05 

was used as cutoff to identify significant signaling pathways after treatment.   

Pro-fibrotic biomarker detection with Luminex®  

6000 cells/100 μL/well of CCD-18co cells were seeded in 96 well plate. After overnight culture, they 

were treated with vehicle, 10 ng/mL OSM, 10 ng/mL TNFα, 10 ng/mL IL-1β, 100 ng/mL TL1A, 200 ng/mL 

IL-36 or 10 ng/mL TGFβ for 16 or 48 hours. After 16 hours, the cell culture supernatant was harvested. 

After 48 hours, upon collection of cell culture supernatant, the cells were washed once with PBS, and 

add 35 μL 0.1% tritonx100 in PBS to lyse cells. A customed kit for pro-fibrotic biomarker detection was 

ordered from R&D systems. The experiment was performed according to the manufacturer’s instruction. 

Briefly, the supernatant and lysate samples were diluted 1:1 with the diluent provided in the Luminex 

kit. 50 μL of standard or sample was added to each well. Then 50 μL of diluted microparticle cocktail was 

added to each well, followed by incubation for 2 hours at room temperature on a shaker at 800 rpm. 

The plate was then washed by removing the liquid for each well when the plate was set on a magnetic 

plate separator to allow the magnetic beads to be sequestered, and filling with 100 μL wash buffer, and 

removing the liquid again. The wash was repeated 3 times. 50 μL of diluted biotin- antibody cocktail was 

added to each well, followed by covering and incubating for 1 hour at room temperature on a shaker at 

800 rpm. Then the plate was washed 3 times. 50 μL of diluted streptavidin-PE was added to each well 

and incubated for 30 minutes at room temperature on a shaker at 800 rpm. Then the plate was washed 

3 times. Then add 100 μL of wash buffer to each well and incubate for 2 minutes at room temperature 

on a shaker at 80 rpm. The fluorescence signal was read within 90 minutes using a Luminex 200 system. 

Immunofluorescence detection for ACTA2 and COL1A1 

1,500 cells/well CCD-18co cells were seeded in CellCarrier-384 Ultra microplates. After overnight 

culture, cells were treated with a range of concentrations of stimuli, including IL-11, OSM, TNFα, IL-1β, 

TL1A, IL-36 and TGFβ for 48 hours. Cells were then fixed with 2% paraformaldehyde for 10 minutes. 

After washing, the cells were permeabilized with 0.25% Triton X-100 in PBS for 10 minutes, following by 

washing with PBS for 3 times. The cells were blocked with 1% BSA in PBST (0.1% Tween 20 diluted in 
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PBS) for 30 minutes, and then incubated with anti-ACTA2 antibody (Abcam, cat #: ab7817) and anti-

COL1A1 antibody (Abcam, cat #: ab34710). Both antibodies were used 1:1000 dilution in 1% BSA in 

PBST. After overnight incubation at 4 °C, the cells were washed 3 times with PBS, followed by incubation 

with goat anti-mouse Alexa 594 (ThermoFisher, cat #: A-11032) and goat anti-rabbit Alexa 488 

(ThermoFisher, cat #: A-11008) secondary antibodies for 30 minutes. The cells were then washed with 

PBS 3 times and stained with Hoechst 33342, before being imaged on an Operetta CLS High Content 

Analysis System. 

Statistics and calculations 

Strictly standardized mean difference (SSMD) was used to assess plate quality. It is estimated as  

𝛽 =
Χ𝑃   −  Χ𝑁

√2
Κ (

(𝑛𝑃 − 1)𝑆𝑃
2 + (𝑛𝑁 − 1)𝑆𝑁

2)

 

Where Χ𝑃 and Χ𝑁 are means, 𝑆𝑃
2 and 𝑆𝑁

2  are variances, and 𝑛𝑃 and 𝑛𝑁 are sample sizes of positive and 

negative controls, respectively. Κ ≈ 𝑛𝑃 + 𝑛𝑁 − 3.48.  

For all experiments, statistical analysis was conducted using T-test or one-way ANOVA with Tukey’s post 

hoc test on Graphpad Prism software with significance of * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001. Results are presented as means ± SD or means ± SEM, which is specified in the figure 

descriptions. 

Acknowledgement: 

We would like to thank our Takeda Development Center of Americas’ colleagues Darren Ruane and 

Christopher Haines for suggesting the pro-fibrotic stimuli to be used for this study, and Tony Li for CCD-

18co cell culture for RNA-seq experiment. 

Author contributions: 

S.Y., S.R.H. and D.N. concepted and designed the project; S.Y., A.K., M.P., M.M., S.R.H. contributed to the 

result interpretation and drafted the manuscript; S.Y. performed assay development and high 

throughput screen experiments; Y.L. participated in high throughput screen experiments; S.Y., Y.L. and 

Q.W. performed CRISPR/Cas9 experiment; M.M. designed, performed and analyzed scRNA-seq 

experiment; M.P. performed transcriptomic analysis of CCD-18co datasets and public human colon 

biopsies datasets; I.I. performed PCA on pro-fibrotic stimuli treated CCD-18co Cell Painting data; J.T. 

performed PCA on CCD-18co RNA-seq data; J.C. performed Cell Painting primary hit picking with linear 

predictive model; D.S. and J.H. assisted with laboratory automation and compound management; S.S. 

and A.E.C. provided input on morphological profiling analysis and its result interpretation, and edited 

the manuscript.  

Competing interests:  

We declare competing interests. The authors who were affiliated with Takeda Development Center 

Americas were employees of Takeda Pharmaceuticals during the course of this work, and have real or 

potential ownership interest in Takeda. AEC serves on the Scientific Advisory Board of, and has 

ownership interest in, Recursion, a pharmaceutical company using image-based profiling for drug 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


21 
 

discovery. Authors from the Broad Institute of Harvard and MIT were funded by a grant from Takeda for 

part of this work. 

 

 

Target Literature 

Glucocorticoid Receptor  37-39 

c-Met 40-42 

VEGFR 24, 29, 43  

PI3K 44-48 

TAM Receptor 49-51 

mTOR 45, 46, 48 

Src 52-54 

EGFR 27, 55, 56 

CDK 57-59 

MEK 44, 60, 61 

ALK 62, 63 

c-Kit 64, 65 

Akt 66, 67 

LPA Receptor 68, 69 

Dehydrogenase 70, 71 

PDGFR 72, 73 

FGFR 25, 26, 74 

 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


22 
 

References: 

[1] Smillie, C. S., Biton, M., Ordovas-Montanes, J., Sullivan, K. M., Burgin, G., Graham, D. B., Herbst, R. H., 
Rogel, N., Slyper, M., Waldman, J., Sud, M., Andrews, E., Velonias, G., Haber, A. L., Jagadeesh, K., 
Vickovic, S., Yao, J., Stevens, C., Dionne, D., Nguyen, L. T., Villani, A. C., Hofree, M., Creasey, E. A., 
Huang, H., Rozenblatt-Rosen, O., Garber, J. J., Khalili, H., Desch, A. N., Daly, M. J., 
Ananthakrishnan, A. N., Shalek, A. K., Xavier, R. J., and Regev, A. (2019) Intra- and Inter-cellular 
Rewiring of the Human Colon during Ulcerative Colitis, Cell 178, 714-730 e722. 

[2] Lenti, M. V., and Di Sabatino, A. (2019) Intestinal fibrosis, Mol Aspects Med 65, 100-109. 
[3] Pariente, B., Cosnes, J., Danese, S., Sandborn, W. J., Lewin, M., Fletcher, J. G., Chowers, Y., D'Haens, 

G., Feagan, B. G., Hibi, T., Hommes, D. W., Irvine, E. J., Kamm, M. A., Loftus, E. V., Jr., Louis, E., 
Michetti, P., Munkholm, P., Oresland, T., Panes, J., Peyrin-Biroulet, L., Reinisch, W., Sands, B. E., 
Schoelmerich, J., Schreiber, S., Tilg, H., Travis, S., van Assche, G., Vecchi, M., Mary, J. Y., 
Colombel, J. F., and Lemann, M. (2011) Development of the Crohn's disease digestive damage 
score, the Lemann score, Inflamm Bowel Dis 17, 1415-1422. 

[4] Rieder, F., and Fiocchi, C. (2009) Intestinal fibrosis in IBD--a dynamic, multifactorial process, Nat Rev 
Gastroenterol Hepatol 6, 228-235. 

[5] Kaplan, G. G., and Windsor, J. W. (2021) The four epidemiological stages in the global evolution of 
inflammatory bowel disease, Nat Rev Gastroenterol Hepatol 18, 56-66. 

[6] Abdulla, M., and Chew, T. S. (2021) Molecular targets and the use of biologics in the management of 
small bowel fibrosis in inflammatory bowel disease, Curr Opin Gastroenterol 37, 275-283. 

[7] Friedrich, M., Pohin, M., and Powrie, F. (2019) Cytokine Networks in the Pathophysiology of 
Inflammatory Bowel Disease, Immunity 50, 992-1006. 

[8] Yamaguchi, S., Kaneko, M., and Narukawa, M. (2021) Approval success rates of drug candidates 
based on target, action, modality, application, and their combinations, Clin Transl Sci 14, 1113-
1122. 

[9] Bunnage, M. E. (2011) Getting pharmaceutical R&D back on target, Nat Chem Biol 7, 335-339. 
[10] Cong, F., Cheung, A. K., and Huang, S. M. (2012) Chemical genetics-based target identification in 

drug discovery, Annu Rev Pharmacol Toxicol 52, 57-78. 
[11] Jones, L. H., and Bunnage, M. E. (2017) Applications of chemogenomic library screening in drug 

discovery, Nat Rev Drug Discov 16, 285-296. 
[12] Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D., and Carpenter, A. E. (2021) Image-based profiling 

for drug discovery: due for a machine-learning upgrade?, Nat Rev Drug Discov 20, 145-159. 
[13] Hinterleitner, T. A., Saada, J. I., Berschneider, H. M., Powell, D. W., and Valentich, J. D. (1996) IL-1 

stimulates intestinal myofibroblast COX gene expression and augments activation of Cl- 
secretion in T84 cells, Am J Physiol 271, C1262-1268. 

[14] Hayashi, Y., and Nakase, H. (2022) The Molecular Mechanisms of Intestinal Inflammation and 
Fibrosis in Crohn's Disease, Front Physiol 13, 845078. 

[15] Groover, M. K., and Richmond, J. M. (2020) Potential therapeutic manipulations of the CXCR3 
chemokine axis for the treatment of inflammatory fibrosing diseases, F1000Res 9, 1197. 

[16] Julian, D. R., Kazakoff, M. A., Patel, A., Jaynes, J., Willis, M. S., and Yates, C. C. (2021) Chemokine-
Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in 
COVID-19, Curr Pathobiol Rep 9, 93-105. 

[17] Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., and Hopkins, A. L. (2012) Quantifying the 
chemical beauty of drugs, Nat Chem 4, 90-98. 

[18] Bray, M. A., Singh, S., Han, H., Davis, C. T., Borgeson, B., Hartland, C., Kost-Alimova, M., 
Gustafsdottir, S. M., Gibson, C. C., and Carpenter, A. E. (2016) Cell Painting, a high-content 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


23 
 

image-based assay for morphological profiling using multiplexed fluorescent dyes, Nat Protoc 
11, 1757-1774. 

[19] Zhang, X. D. (2011) Illustration of SSMD, z score, SSMD*, z* score, and t statistic for hit selection in 
RNAi high-throughput screens, J Biomol Screen 16, 775-785. 

[20] Simm, J., Klambauer, G., Arany, A., Steijaert, M., Wegner, J. K., Gustin, E., Chupakhin, V., Chong, Y. 
T., Vialard, J., Buijnsters, P., Velter, I., Vapirev, A., Singh, S., Carpenter, A. E., Wuyts, R., 
Hochreiter, S., Moreau, Y., and Ceulemans, H. (2018) Repurposing High-Throughput Image 
Assays Enables Biological Activity Prediction for Drug Discovery, Cell Chem Biol 25, 611-618 
e613. 

[21] Tanjore, H., Blackwell, T. S., and Lawson, W. E. (2012) Emerging evidence for endoplasmic reticulum 
stress in the pathogenesis of idiopathic pulmonary fibrosis, Am J Physiol Lung Cell Mol Physiol 
302, L721-729. 

[22] Kropski, J. A., and Blackwell, T. S. (2018) Endoplasmic reticulum stress in the pathogenesis of fibrotic 
disease, J Clin Invest 128, 64-73. 

[23] Santacroce, G., Lenti, M. V., and Di Sabatino, A. (2022) Therapeutic Targeting of Intestinal Fibrosis in 
Crohn's Disease, Cells 11. 

[24] Amano, H., Matsui, Y., Hatanaka, K., Hosono, K., and Ito, Y. (2021) VEGFR1-tyrosine kinase signaling 
in pulmonary fibrosis, Inflamm Regen 41, 16. 

[25] Yang, L., Zhou, F., Zheng, D., Wang, D., Li, X., Zhao, C., and Huang, X. (2021) FGF/FGFR signaling: 
From lung development to respiratory diseases, Cytokine Growth Factor Rev 62, 94-104. 

[26] Kim, M. H., Jung, S. Y., Song, K. H., Park, J. I., Ahn, J., Kim, E. H., Park, J. K., Hwang, S. G., Woo, H. J., 
and Song, J. Y. (2020) A new FGFR inhibitor disrupts the TGF-beta1-induced fibrotic process, J 
Cell Mol Med 24, 830-840. 

[27] Liang, D., Chen, H., Zhao, L., Zhang, W., Hu, J., Liu, Z., Zhong, P., Wang, W., Wang, J., and Liang, G. 
(2018) Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of 
nonalcoholic fatty liver disease, Biochim Biophys Acta Mol Basis Dis 1864, 133-142. 

[28] Flaherty, K. R., Wells, A. U., Cottin, V., Devaraj, A., Walsh, S. L. F., Inoue, Y., Richeldi, L., Kolb, M., 
Tetzlaff, K., Stowasser, S., Coeck, C., Clerisme-Beaty, E., Rosenstock, B., Quaresma, M., Haeufel, 
T., Goeldner, R. G., Schlenker-Herceg, R., Brown, K. K., and Investigators, I. T. (2019) Nintedanib 
in Progressive Fibrosing Interstitial Lung Diseases, N Engl J Med 381, 1718-1727. 

[29] Hostettler, K. E., Zhong, J., Papakonstantinou, E., Karakiulakis, G., Tamm, M., Seidel, P., Sun, Q., 
Mandal, J., Lardinois, D., Lambers, C., and Roth, M. (2014) Anti-fibrotic effects of nintedanib in 
lung fibroblasts derived from patients with idiopathic pulmonary fibrosis, Respir Res 15, 157. 

[30] Kurita, Y., Araya, J., Minagawa, S., Hara, H., Ichikawa, A., Saito, N., Kadota, T., Tsubouchi, K., Sato, 
N., Yoshida, M., Kobayashi, K., Ito, S., Fujita, Y., Utsumi, H., Yanagisawa, H., Hashimoto, M., 
Wakui, H., Yoshii, Y., Ishikawa, T., Numata, T., Kaneko, Y., Asano, H., Yamashita, M., Odaka, M., 
Morikawa, T., Nakayama, K., and Kuwano, K. (2017) Pirfenidone inhibits myofibroblast 
differentiation and lung fibrosis development during insufficient mitophagy, Respir Res 18, 114. 

[31] Wali, G., Berkovsky, S., Whiten, D. R., Mackay-Sim, A., and Sue, C. M. (2021) Single cell morphology 
distinguishes genotype and drug effect in Hereditary Spastic Paraplegia, Sci Rep 11, 16635. 

[32] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., and Thirion, B. (2011) Scikit-learn: Machine 
Learning in Python, Journal of Machine Learning Research 12, 2825-2830. 

[33] Martin Wattenberg, F. V., Ian Johnson. (2016) How to Use t-SNE Effectively, Distill 1. 
[34] Hunter, J. D. (2007) Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering 9, 

90-95. 
[35] Waskom, M. L. (2021) seaborn: statistical data visualization, The Journal of Open Source Software 6, 

3021. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


24 
 

[36] McKinney, W., & others. (2010) Data structures for statistical computing in python, Proceedings of 
the 9th Python in Science Conference 445, 51-56. 

[37] van Bommel, E. F., Siemes, C., Hak, L. E., van der Veer, S. J., and Hendriksz, T. R. (2007) Long-term 
renal and patient outcome in idiopathic retroperitoneal fibrosis treated with prednisone, Am J 
Kidney Dis 49, 615-625. 

[38] Vaglio, A., Palmisano, A., Alberici, F., Maggiore, U., Ferretti, S., Cobelli, R., Ferrozzi, F., Corradi, D., 
Salvarani, C., and Buzio, C. (2011) Prednisone versus tamoxifen in patients with idiopathic 
retroperitoneal fibrosis: an open-label randomised controlled trial, Lancet 378, 338-346. 

[39] Rebeyrol, C., Saint-Criq, V., Guillot, L., Riffault, L., Corvol, H., Chadelat, K., Ray, D. W., Clement, A., 
Tabary, O., and Le Rouzic, P. (2012) Glucocorticoids reduce inflammation in cystic fibrosis 
bronchial epithelial cells, Cell Signal 24, 1093-1099. 

[40] Kawaguchi, Y., Harigai, M., Hara, M., Fukasawa, C., Takagi, K., Tanaka, M., Tanaka, E., Nishimagi, E., 
and Kamatani, N. (2002) Expression of hepatocyte growth factor and its receptor (c-met) in skin 
fibroblasts from patients with systemic sclerosis, J Rheumatol 29, 1877-1883. 

[41] Giebeler, A., Boekschoten, M. V., Klein, C., Borowiak, M., Birchmeier, C., Gassler, N., Wasmuth, H. 
E., Muller, M., Trautwein, C., and Streetz, K. L. (2009) c-Met confers protection against chronic 
liver tissue damage and fibrosis progression after bile duct ligation in mice, Gastroenterology 
137, 297-308, 308 e291-294. 

[42] Zbodakova, O., Chalupsky, K., Sarnova, L., Kasparek, P., Jirouskova, M., Gregor, M., and Sedlacek, R. 
(2021) ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration 
and fibrosis, Sci Rep 11, 11414. 

[43] Qu, K., Huang, Z., Lin, T., Liu, S., Chang, H., Yan, Z., Zhang, H., and Liu, C. (2015) New Insight into the 
Anti-liver Fibrosis Effect of Multitargeted Tyrosine Kinase Inhibitors: From Molecular Target to 
Clinical Trials, Front Pharmacol 6, 300. 

[44] Madala, S. K., Edukulla, R., Phatak, M., Schmidt, S., Davidson, C., Acciani, T. H., Korfhagen, T. R., 
Medvedovic, M., Lecras, T. D., Wagner, K., and Hardie, W. D. (2014) Dual targeting of MEK and 
PI3K pathways attenuates established and progressive pulmonary fibrosis, PLoS One 9, e86536. 

[45] Lukey, P. T., Harrison, S. A., Yang, S., Man, Y., Holman, B. F., Rashidnasab, A., Azzopardi, G., Grayer, 
M., Simpson, J. K., Bareille, P., Paul, L., Woodcock, H. V., Toshner, R., Saunders, P., Molyneaux, P. 
L., Thielemans, K., Wilson, F. J., Mercer, P. F., Chambers, R. C., Groves, A. M., Fahy, W. A., 
Marshall, R. P., and Maher, T. M. (2019) A randomised, placebo-controlled study of omipalisib 
(PI3K/mTOR) in idiopathic pulmonary fibrosis, Eur Respir J 53. 

[46] Qin, W., Cao, L., and Massey, I. Y. (2021) Role of PI3K/Akt signaling pathway in cardiac fibrosis, Mol 
Cell Biochem 476, 4045-4059. 

[47] Cully, M. (2020) Targeted PI3K inhibitors reduce lung fibrosis in mice, Nat Rev Drug Discov 19, 838. 
[48] Wang, J., Hu, K., Cai, X., Yang, B., He, Q., Wang, J., and Weng, Q. (2022) Targeting PI3K/AKT signaling 

for treatment of idiopathic pulmonary fibrosis, Acta Pharm Sin B 12, 18-32. 
[49] Barcena, C., Stefanovic, M., Tutusaus, A., Joannas, L., Menendez, A., Garcia-Ruiz, C., Sancho-Bru, P., 

Mari, M., Caballeria, J., Rothlin, C. V., Fernandez-Checa, J. C., de Frutos, P. G., and Morales, A. 
(2015) Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis 
via hepatic stellate cell inactivation, J Hepatol 63, 670-678. 

[50] Mukherjee, S. K., Wilhelm, A., and Antoniades, C. G. (2016) TAM receptor tyrosine kinase function 
and the immunopathology of liver disease, Am J Physiol Gastrointest Liver Physiol 310, G899-
905. 

[51] Espindola, M. S., Habiel, D. M., Narayanan, R., Jones, I., Coelho, A. L., Murray, L. A., Jiang, D., Noble, 
P. W., and Hogaboam, C. M. (2018) Targeting of TAM Receptors Ameliorates Fibrotic 
Mechanisms in Idiopathic Pulmonary Fibrosis, Am J Respir Crit Care Med 197, 1443-1456. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


25 
 

[52] Hu, M., Che, P., Han, X., Cai, G. Q., Liu, G., Antony, V., Luckhardt, T., Siegal, G. P., Zhou, Y., Liu, R. M., 
Desai, L. P., O'Reilly, P. J., Thannickal, V. J., and Ding, Q. (2014) Therapeutic targeting of SRC 
kinase in myofibroblast differentiation and pulmonary fibrosis, J Pharmacol Exp Ther 351, 87-95. 

[53] Lu, Y. Y., Zhao, X. K., Yu, L., Qi, F., Zhai, B., Gao, C. Q., and Ding, Q. (2017) Interaction of Src and 
Alpha-V Integrin Regulates Fibroblast Migration and Modulates Lung Fibrosis in A Preclinical 
Model of Lung Fibrosis, Sci Rep 7, 46357. 

[54] Li, H., Zhao, C., Tian, Y., Lu, J., Zhang, G., Liang, S., Chen, D., Liu, X., Kuang, W., and Zhu, M. (2020) 
Src family kinases and pulmonary fibrosis: A review, Biomed Pharmacother 127, 110183. 

[55] Chen, J., Chen, J. K., Nagai, K., Plieth, D., Tan, M., Lee, T. C., Threadgill, D. W., Neilson, E. G., and 
Harris, R. C. (2012) EGFR signaling promotes TGFbeta-dependent renal fibrosis, J Am Soc Nephrol 
23, 215-224. 

[56] Vallath, S., Hynds, R. E., Succony, L., Janes, S. M., and Giangreco, A. (2014) Targeting EGFR signalling 
in chronic lung disease: therapeutic challenges and opportunities, Eur Respir J 44, 513-522. 

[57] Inoshima, I., Kuwano, K., Hamada, N., Yoshimi, M., Maeyama, T., Hagimoto, N., Nakanishi, Y., and 
Hara, N. (2004) Induction of CDK inhibitor p21 gene as a new therapeutic strategy against 
pulmonary fibrosis, Am J Physiol Lung Cell Mol Physiol 286, L727-733. 

[58] Liu, Y., Li, J., Liao, L., Huang, H., Fan, S., Fu, R., Huang, J., Shi, C., Yu, L., Chen, K. X., Zhang, Y. Y., Luo, 
C., and Li, G. M. (2021) Cyclin-dependent kinase inhibitor roscovitine attenuates liver 
inflammation and fibrosis by influencing initiating steps of liver injury, Clin Sci (Lond) 135, 925-
941. 

[59] Kim, S. K., Jung, S. M., Park, K. S., and Kim, K. J. (2021) Integrative analysis of lung molecular 
signatures reveals key drivers of idiopathic pulmonary fibrosis, BMC Pulm Med 21, 404. 

[60] Madala, S. K., Schmidt, S., Davidson, C., Ikegami, M., Wert, S., and Hardie, W. D. (2012) MEK-ERK 
pathway modulation ameliorates pulmonary fibrosis associated with epidermal growth factor 
receptor activation, Am J Respir Cell Mol Biol 46, 380-388. 

[61] Andrikopoulos, P., Kieswich, J., Pacheco, S., Nadarajah, L., Harwood, S. M., O'Riordan, C. E., 
Thiemermann, C., and Yaqoob, M. M. (2019) The MEK Inhibitor Trametinib Ameliorates Kidney 
Fibrosis by Suppressing ERK1/2 and mTORC1 Signaling, J Am Soc Nephrol 30, 33-49. 

[62] Walton, K. L., Johnson, K. E., and Harrison, C. A. (2017) Targeting TGF-beta Mediated SMAD 
Signaling for the Prevention of Fibrosis, Front Pharmacol 8, 461. 

[63] Terashima, H., Aonuma, M., Tsuchida, H., Sugimoto, K., Yokoyama, M., and Kato, M. (2019) 
Attenuation of pulmonary fibrosis in type I collagen-targeted reporter mice with ALK-5 
inhibitors, Pulm Pharmacol Ther 54, 31-38. 

[64] Mansuroglu, T., Ramadori, P., Dudas, J., Malik, I., Hammerich, K., Fuzesi, L., and Ramadori, G. (2009) 
Expression of stem cell factor and its receptor c-Kit during the development of intrahepatic 
cholangiocarcinoma, Lab Invest 89, 562-574. 

[65] Beyer, C., and Distler, J. H. (2013) Tyrosine kinase signaling in fibrotic disorders: Translation of basic 
research to human disease, Biochim Biophys Acta 1832, 897-904. 

[66] Zhu, L., Mou, Q., Wang, Y., Zhu, Z., and Cheng, M. (2020) Resveratrol contributes to the inhibition of 
liver fibrosis by inducing autophagy via the microRNA20amediated activation of the 
PTEN/PI3K/AKT signaling pathway, Int J Mol Med 46, 2035-2046. 

[67] Ji, Zhao, Q., Qin, Y., Tong, H., Wang, Q., Yu, M., Mao, C., Lu, T., Qiu, J., and Jiang, C. (2021) 
Germacrone improves liver fibrosis by regulating the PI3K/AKT/mTOR signalling pathway, Cell 
Biol Int 45, 1866-1875. 

[68] Huang, L. S., Fu, P., Patel, P., Harijith, A., Sun, T., Zhao, Y., Garcia, J. G., Chun, J., and Natarajan, V. 
(2013) Lysophosphatidic acid receptor-2 deficiency confers protection against bleomycin-
induced lung injury and fibrosis in mice, Am J Respir Cell Mol Biol 49, 912-922. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/


26 
 

[69] Sakai, N., Chun, J., Duffield, J. S., Lagares, D., Wada, T., Luster, A. D., and Tager, A. M. (2017) 
Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast 
communication mediated by epithelial cell derived connective tissue growth factor, Kidney Int 
91, 628-641. 

[70] Hamanaka, R. B., Nigdelioglu, R., Meliton, A. Y., Tian, Y., Witt, L. J., O'Leary, E., Sun, K. A., Woods, P. 
S., Wu, D., Ansbro, B., Ard, S., Rohde, J. M., Dulin, N. O., Guzy, R. D., and Mutlu, G. M. (2018) 
Inhibition of Phosphoglycerate Dehydrogenase Attenuates Bleomycin-induced Pulmonary 
Fibrosis, Am J Respir Cell Mol Biol 58, 585-593. 

[71] Goodwin, J., Choi, H., Hsieh, M. H., Neugent, M. L., Ahn, J. M., Hayenga, H. N., Singh, P. K., 
Shackelford, D. B., Lee, I. K., Shulaev, V., Dhar, S., Takeda, N., and Kim, J. W. (2018) Targeting 
Hypoxia-Inducible Factor-1alpha/Pyruvate Dehydrogenase Kinase 1 Axis by Dichloroacetate 
Suppresses Bleomycin-induced Pulmonary Fibrosis, Am J Respir Cell Mol Biol 58, 216-231. 

[72] Abdollahi, A., Li, M., Ping, G., Plathow, C., Domhan, S., Kiessling, F., Lee, L. B., McMahon, G., Grone, 
H. J., Lipson, K. E., and Huber, P. E. (2005) Inhibition of platelet-derived growth factor signaling 
attenuates pulmonary fibrosis, J Exp Med 201, 925-935. 

[73] Buhl, E. M., Djudjaj, S., Klinkhammer, B. M., Ermert, K., Puelles, V. G., Lindenmeyer, M. T., Cohen, C. 
D., He, C., Borkham-Kamphorst, E., Weiskirchen, R., Denecke, B., Trairatphisan, P., Saez-
Rodriguez, J., Huber, T. B., Olson, L. E., Floege, J., and Boor, P. (2020) Dysregulated mesenchymal 
PDGFR-beta drives kidney fibrosis, EMBO Mol Med 12, e11021. 

[74] Xie, Y., Su, N., Yang, J., Tan, Q., Huang, S., Jin, M., Ni, Z., Zhang, B., Zhang, D., Luo, F., Chen, H., Sun, 
X., Feng, J. Q., Qi, H., and Chen, L. (2020) FGF/FGFR signaling in health and disease, Signal 
Transduct Target Ther 5, 181. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495258
http://creativecommons.org/licenses/by/4.0/

