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ABSTRACT

Gain-of-function (GOF) variants give rise to increased or novel  protein  functions whereas

loss-of-function (LOF) variants lead to diminished protein function. GOF and LOF variants can

result  in markedly varying phenotypes, even when occurring in the same gene. However,

experimental approaches for identifying GOF and LOF are generally slow and costly, whilst

currently available computational methods have not been optimized to discriminate between

GOF  and  LOF variants.  We have  developed  LoGoFunc,  an  ensemble  machine  learning

method  for  predicting  pathogenic  GOF,  pathogenic  LOF,  and  neutral  genetic  variants.

LoGoFunc  was  trained  on  a  broad  range  of  gene-,  protein-,  and  variant-level  features

describing diverse biological  characteristics,  as well  as network features summarizing the

protein-protein  interactome  and  structural  features  calculated  from  AlphaFold2  protein

models. We analyzed GOF, LOF, and neutral variants in terms of local protein structure and

function,  splicing  disruption,  and  phenotypic  associations,  thereby  revealing  previously

unreported  relationships  between  various  biological  phenomena  and  variant  functional

outcomes. For example, GOF and LOF variants exhibit  contrasting enrichments in protein

structural  and functional  regions,  whilst LOF variants are more likely  to  disrupt  canonical

splicing  as  indicated  by  splicing-related  features  employed  by  the  model.  Further,  by

performing phenome-wide association studies (PheWAS), we  identified strong associations

between  relevant  phenotypes  and  high-confidence  predicted  GOF  and  LOF  variants.

LoGoFunc outperforms other tools trained solely to predict pathogenicity or general variant

impact for the identification of pathogenic GOF and LOF variants.

MAIN

Genetic variations exert diverse functional effects on gene products and can impact protein 

stability, interactions with binding partners, catalytic activity, among many other properties1. It 

is essential to investigate the functional consequences of genetic variations to understand 

their impact on the diverse array of observed human disease phenotypes. In particular, the 

functional consequences of genetic variations include two broad categories: gain-of-function 

(GOF) variants, characterized by enhanced or novel protein activity, and loss-of-function 

(LOF) variants which result in partial or complete knockdown of protein activity. GOF and LOF
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variants are of particular interest because they can give rise to distinct phenotypes in the 

same gene via contrasting molecular mechanisms2. For example, GOF mutations in the 

STAT1 gene cause Chronic mucocutaneous candidiasis (CMC) - a susceptibility to candida 

infection of the skin, nails, and mucous membranes2. By contrast, LOF variants in STAT1 

result in Mendelian Susceptibility to Mycobacterial Disease (MSMD) - an immunodeficiency 

characterized by vulnerability to weakly virulent mycobacteria2. Given the established 

heterogeneity in phenotypic outcomes and their diverse modes of action, it is necessary to 

distinguish between GOF and LOF variants to develop a greater understanding of the genetic 

mechanisms of human disease, estimate individual genetic disease risk, identify candidate 

drug targets, and construct effective treatment regimens. 

To date, effective, practical methods for distinguishing GOF and LOF variants are lacking. 

Experimental techniques are capable of accurately detecting GOF and LOF variants, but 

these methods are constrained by their significant cost and low throughput3. Rapid 

computational methods for assessing various aspects of variants such as pathogenicity or 

impact on protein structure/function have been developed4–8. Thus, for example, CADD4 

leverages a range of functional annotations and conservation metrics to rank the relative 

deleteriousness of variants. PolyPhen-25 and SIFT6 combine the physical characteristics of 

proteins with evolutionary features such as sequence conservation to predict whether a 

variant will impact protein structure or function. Tools such as REVEL7 and BayesDel8 

combine the outputs of other predictors to generate a meta-score indicating variant 

pathogenicity. Yet, none of these tools have been designed for GOF and LOF classification.

Here we present LoGoFunc - the first effective predictor of variant functional impact - and 

generate predictions of functional outcomes for missense variants genome-wide. LoGoFunc 

is a machine learning model comprising an ensemble of LightGBM9 classifiers trained on 

pathogenic GOF and LOF variants identified in the literature. We collected 474 descriptors for

use in the model including features derived from AlphaFold210 (AF2) predicted protein 

structures, graph-based learning-derived network features representing interactions within the

human protein interactome, measures of evolutionary constraint and conservation, and many 

others. We analyze the distributions of these features across GOF, LOF, and neutral variants,

highlighting structural and functional features of proteins as well as features related to disease

mechanisms such as splice disruption. Next, we assess LoGoFunc’s performance and 
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demonstrate that LoGoFunc generates state-of-the-art predictions of GOF, LOF, and neutral 

variants and identifies pathogenic GOF and LOF variants more often than tools trained solely 

to predict pathogenicity or general variant impact. Then, we investigate which features most 

influence LoGoFunc’s predictions, and identify relationships between high confidence, 

predicted GOF and LOF variants and patient phenotypes. We provide precomputed GOF, 

LOF, and neutral predictions for all canonical missense variants in the human genome, which 

are freely available for rapid retrieval and analysis at https://itanlab.shinyapps.io/goflof/.

RESULTS

Labeled GOF, LOF, and neutral variant dataset curation

LoGoFunc was trained on a dataset of pathogenic GOF and LOF variants, collected from the 

literature via a natural language processing (NLP) pipeline11. In brief, the NLP pipeline parses 

abstracts associated with high-confidence, disease-causing variants derived from the Human 

Gene Mutation Database12 (HGMD) Professional version 2021.3, searching for terminology 

denoting GOF and LOF (Figure 1a). In total, 1,492 GOF and 13,524 LOF mutations were 

collected and labeled. In addition, 13,361 putatively neutral variants were randomly selected 

from the genes in which the labeled GOF and LOF variants occur, from gnomAD v2.113 

exome sequences (Figure 1b). We used Ensembl’s Variant Effect Predictor14 (VEP) to map 

the genomic coordinates of each variant to impacted genes and proteins where applicable 

and to retrieve molecular positioning information (residue position, transcript position, etc.) for 

each variant in the dataset. Leveraging this positional information, we further annotated each 

variant with 474 different features (Supplementary Table 1). These include protein structural 

features such as residue solvent accessibility and total residue contacts calculated from AF210

predicted protein structures, gene-level features such as gene haploinsufficiency, variant-level

features including splicing effects and inheritance patterns, and network features 

encapsulating the STRING15 protein-protein interaction network (Figure 1b). The annotated 

variants were split into label-stratified, gene-disjoint training and testing sets comprising 90% 

and 10% of the full dataset, respectively (Figure 1b).

GOF, LOF, and neutral variants stratified by protein features
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We postulated that structural and functional features of proteins predicted or derived from 

protein sequences and AlphaFold210 structural models may help to stratify GOF, LOF, and 

neutral variants. To investigate the varying impact on protein structure and function as well as 

potential differential localization within distinct protein regions, we examined protein features 

by calculating enrichments for each variant class, determined via Fisher’s exact test (Figure 

2a). In total, GOF, LOF, and/or neutral variants demonstrated significant enrichments or 

depletions across 17 features derived from AF210 predicted protein structures and across 20 

protein features derived from protein sequences or otherwise describing the proteins (Figure 

2a). For example, LOF variants were significantly more likely to be predicted by DDGun16 to 

have a destabilizing effect on proteins and to occur in highly conserved residues as 

determined by multiple sequence alignments generated by MMSeqs217 (Figure 2a). GOF 

variants were found to be significantly more likely to occur in homomultimeric proteins and α-

helices among other features (Figure 2a). Interestingly, both GOF and LOF variants were 

significantly more likely to have a high number of pathogenic HGMD12 variants in their spatial 

proximity, whereas neutral variants were significantly more likely to have a high number of 

gnomAD13 variants in their immediate vicinity. This phenomenon is exemplified by the 

Vasopressin V2 receptor protein in which pathogenic and putatively neutral variants can be 

qualitatively observed to localize to distinct regions of the 3D AlphaFold210 protein structure 

(Figure 2b). Finally, neutral variants were significantly enriched for several features including 

occurrence in disordered proteins regions, and significant depletion in Pfam18 or InterPro19 

domains among other features (Figure 2a). We additionally performed Fisher’s exact test with

neutral variants excluded so as to compare only pathogenic GOF and LOF variants, and 

noted significant differences between GOF and LOF variants for seven structure-associated 

features and seven sequence- or otherwise associated features (Supplementary Figure 1). 

Interestingly, GOF variants were enriched and LOF variants were depleted in Pfam18 or 

InterPro19 domains, in α-helices, in homomultimer-forming proteins, and for residues not 

affecting protein stability based on sequence-based and structural evidence (Supplementary 

Figure 1). Conversely, we found that LOF variants were enriched for destabilizing amino acid 

substitutions, for highly conserved residues and radical Grantham20 PSSM substitutions, for 

high AF210 predicted local distance difference test scoring (pLDDT) residues, and in β-strands

(Supplementary Figure 1).

 

GOF, LOF, and neutral variant effects on splicing
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Splice-disrupting variants have been reported to constitute the second largest class of known 

disease-causing mutations, and have been found to yield both GOF and LOF phenotypes21,22. 

Given the importance of splice disruption as a general causal disease mechanism, we 

investigated the distribution of splicing-related features among the classes. Notably, LOF 

variants were located most closely to splice sites followed by GOF and neutral variants, 

respectively (p-values 2.3613E-09, 1.1287E-08) (Figure 3a, 3d). Further, LOF variants were 

significantly enriched for the loss of cryptic splice acceptor and donor sites (p-values 9.2849E-

04, 2.5229E-07) - potentially important mechanisms of alternative splicing – and significantly 

depleted for the gain of cryptic splice acceptor and donor sites (p-values 2.7425E-08, 

1.5519E-15) (Figure 3a). By contrast, neutral variants were enriched for the gain of splice 

acceptor and donor sites. The enrichment of neutral variants for the gain of cryptic splice sites

(CSS) is potentially explicable in terms of the ability of canonical splice sites to suppress CSS 

activation23. Thus, these CSSs acquired via neutral mutations may not have a significant 

impact on transcript expression. After removing variants not predicted to impact splicing, LOF 

variants were predicted to lead to a greater decrease in the proportion of spliced-in (Ψ) than 

GOF or neutral variants based on estimates from the MMSplice21 exon, donor, and acceptor 

predictors (Figure 3c). LOF variants were similarly predicted to lead to a greater decrease in 

Ψ than neutral variants based on the donor-intron and acceptor-intron MMSplice21 predictions.

GOF variants lead to a greater decrease in Ψ than neutral variants based on the exon and 

donor predictions (Figure 3c). These results indicate that LOF variants in particular, and to a 

lesser extent GOF variants, may exert their pathogenic effects via the disruption of canonical 

splicing patterns.

Training, architecture, and performance of LoGoFunc

The LoGoFunc model is composed of 27 LightGBM9 classifiers, and learned signal 

discriminating GOF, LOF, and neutral variants. Variants are represented as an array of 474 

features that are encoded, imputed, and scaled before being input to the model which outputs

three values corresponding to the predicted probability that the input variant results in a GOF, 

LOF, or neutral phenotype, respectively (Figure 1c).   

LoGoFunc achieved notable success in classifying GOF, LOF, and neutral variants.  

Considering the class imbalance in the dataset, we calculated the average precision scores 
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on the held-out testing data for each class (AP). As expected, predicting GOF variants proved

to be the most challenging task as GOF variants were the least represented in the training 

dataset. However, LoGoFunc still performed well with AP values of .52, .93, and .96 for GOF, 

LOF, and neutral variants respectively (Supplementary Figure 2a). We also calculated the F1-

score and Matthew’s Correlation Coefficient for LoGoFunc’s predictions of variants from each 

class. LoGoFunc realized F1-scores of .56, .87, and .89 and Matthew’s Correlation 

Coefficients of .54, .75, and .80 for GOF, LOF, and neutral variants respectively. To aid in the 

interpretation of LoGoFunc’s predictions, we calculated 95% confidence intervals for 

determining cutoffs for each class, as well as 95% confidence intervals for determining GOF, 

LOF, and neutral prediction cutoffs per gene (Supplementary Table 2). 

Benchmark against variant assessment algorithms

Currently, there are no high-throughput computational predictors trained to classify 

pathogenic GOF and LOF variants11. We therefore compared LoGoFunc to ten established 

predictors of pathogenicity/deleteriousness: CADD4, SIFT6, PolyPhen25, DANN24, BayesDel8, 

ClinPred25, GenoCanyon26, MetaSVM27, PrimateAI28, and REVEL7. To equitably assess each 

method’s ability to discriminate GOF and LOF, we selected the subset of 1,092 GOF, LOF, 

and neutral variants from the test set for which all predictors provided a score. Of these 

variants, 136 were GOF, 545 were LOF, and 411 were neutral. Importantly, these variants 

were all missense, as the majority of compared methods provide predictions only for 

missense variants. We tested each method’s performance in separating LOF from neutral, 

GOF from neutral, GOF from LOF variants, and both GOF and LOF combined from neutral. 

LoGoFunc achieved an AP of .87 for LOF vs. neutral (Figure 4a) and .82 for GOF vs. neutral 

(Figure 4b). The next best tool, REVEL7, achieved AP values of .87 and .55 for LOF and GOF

vs. neutral respectively (Figure 4a,b). We also compared the model’s ability to separate GOF 

from LOF variants. LoGoFunc achieved an AP of .63 followed by GenoCanyon26 with a score 

of .25 (Figure 4c). We calculated the one-vs.-all AP for the neutral variants against the GOF 

and LOF variants. Once again, LoGoFunc scored highest with an AP of .91, followed by 

REVEL7 with an AP of .88 (Figure 4d). LoGoFunc performed as well as or outperformed the 

other models for each comparison, particularly for the separation of GOF variants from neutral

variants and GOF and LOF variants from each other, indicating that training on labeled GOF 
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and LOF variants may yield a model better suited for identifying protein gain- and loss-of-

function as a result of genetic variation. 

LoGoFunc leverages diverse biological signals for prediction

To gain further insight into the model’s performance, we estimate the impact of each included 

feature on LoGoFunc’s predictions with SHAP29 – a game theoretic approach for the 

derivation of explanations for machine learning models (Figure 5a). We observed that 

LoGoFunc learned from a diverse array of features describing the genes and proteins 

containing variants, and the variant impact upon these elements. These included functional, 

conservation, structural, and systems-based/network features, among others (Supplementary 

Table 3, Figure 5a). For example, the top feature across classes was the consequence score 

collected from the CADD4 database of variant annotations which describes the severity of a 

variant according to sequence ontology30 consequence terms (Figure 5a). Other important 

variant features include predictions indicating pathogenicity from CADD4, VEST431, M-CAP32, 

and MVP33, the MOI-pred34 mode of inheritance prediction of variants underlying autosomal 

dominant (AD) and autosomal recessive (AR) disease, and various measures of conservation

from tools such as GERP35, PhyloP36, and PhastCons36 (Figure 5a). Several gene-level 

features were important for the model including the number of gene paralogs, the de novo 

excess rate37, the mutation significance cutoff38 95% confidence interval, and the 

indispensability score39 – all of which have previously been implicated in the stratification of 

pathogenic GOF and LOF variants and neutral variants11 (Figure 5a). In addition, LoGoFunc’s

predictions were influenced by features indicating variant effects on protein structure and 

function such as the predicted variant impact on protein stability, the number of HGMD12 

pathogenic or gnomAD13 variants proximal to variant impacted residues in 3D space, 

AlphaFold210 pLDDT scores which indicate AF2’s10 per-residue prediction confidence, and 

overlapping Pfam18 or InterPro19 domains (Figure 5a). Notably, protein-protein interaction 

(PPI) network features also had a significant impact on the model. We processed the 

STRING15 protein-protein interaction (PPI) network using node2vec40 resulting in 64 tabular 

features summarizing the human protein interactome weighted by the probability of interaction

between each pair of putatively interacting proteins. Several dimensions of the transformed 

PPI network appeared in the list of top features as determined by SHAP29 (Figure 5a).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.06.08.495288doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495288
http://creativecommons.org/licenses/by-nc-nd/4.0/


To further investigate the model’s predictions within genes, we examined the 22 variants 

included in our test set from sodium voltage-gated channel alpha subunit 2 (SCN2A) - an 

important transmembrane protein implicated in seizure disorders41 and autism spectrum 

disorders42. Of these 22 variants, VEP14 indicated twelve to be missense, four to be stop-

gains, two to be splice donor site variants, three to be synonymous, and one to be intronic. 

Twelve of the coding variant positions are included in the experimentally determined structure

(PDB identifier 6J8E43) (Figure 5c). Because the other ten variants are located in regions not 

covered by the structure, we analyzed the structural model generated by AF210 (Figure 5d), 

which includes the full-length protein. Remarkably, LoGoFunc successfully classified all seven

SCN2A pathogenic GOF variants, all seven SCN2A neutral variants, and six of eight 

pathogenic LOF variants, misclassifying two LOF variants as GOF. We then examined the top

ten features indicated by SHAP29 to be contributing to the model’s predictions for the GOF, 

LOF, and neutral variants separately (Figure 5b). Again, we found a mixture of gene, protein, 

variant, and network features influenced the model’s predictions. Specifically, a range of MOI-

pred34 mode of inheritance prediction of variants pathogenic for AD inheritance, mid-range 

and higher DDGun16 predictions indicating less protein destabilization, and high VEST431 

scores among others influenced the model to predict the SCN2A GOF variants as GOF. 

Similarly, several features prompted the model to predict the LOF variants to be LOF, 

including high consequence scores indicating higher impact on transcripts and downstream 

products, high VEST431 and CADD4 scores, low DDGun16 scores indicating a greater 

destabilizing effect on proteins, and high vertebrate PhyloP36 scores indicating higher 

conservation. Notably, high MaxEntScan44 difference scores contributed to the model’s LOF 

predictions, consistent with VEP’s characterization of two of the LOF variants as splice donor 

site variants. The model’s predictions were most influenced towards neutrality by lower 

consequence scores, lower VEST431 scores, lower GERP-S45, and vertebrate and mammalian

PhyloP36 scores, and lower MOI-pred34 scores among other features.

PheWAS corroborates LoGoFunc predictions 

We performed phenome-wide association study (PheWAS) analyses on a subset of predicted

GOF and LOF missense variants which were either absent from, or indicated as variants of 

uncertain significance (VUS) in, ClinVar46 (Supplementary Table 4). In brief, PheWAS 

evaluates the association between a genetic variant and a set of phenotypes. Although our 
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analysis was insufficiently powered for phenome-wide significance, as expected due to the 

low frequency of our variants, we nevertheless uncovered meaningful associations between 

our variants and relevant phenotypes (Figure 5a). For example, we observed that the 

predicted LOF variant c.1648G>A (rs563131364) in the SLC12A3 gene, that encodes a 

sodium-chloride co-transporter, is strongly associated with increased risk for several 

phenotypes including severe chronic kidney disease (p=0.001, LO=1.723, ICD=N184), 

abnormal blood chemistry (p=0.003, LO=1.189, ICD=R7989), and retinal edema (p=0.006, 

LO=2.377, ICD=H3581), among several other conditions. Conversely, the mutation was found

to be protective with respect to pure hypercholesterolemia (p=.0396, LO=-1.512, 

ICD=E7800). The c.1648G>A variant has a CADD4 PHRED score of 29.3 and an MSC38 95 CI

of 13.89, indicating that the variant may be pathogenic taking into consideration the genic 

context of SLC12A3 (Figure 5b). c.7471C>T (rs201746476) is a predicted GOF variant in the 

PIEZO1 gene, which encodes a mechanosensitive ion channel and has previously been 

linked to arrhythmia when overexpressed47. c.7471C>T was associated with risk for 

palpitations (p=0.009, LO=2.912, ICD=R002), abdominal pain (p=0.028, LO=1.842, 

ICD=R109), and viral hepatitis C susceptibility (p=0.039, 0.043, LO=2.438, 2.389, ICD=B182, 

B1920). Notably, GOF mutations in PIEZO1 have been shown to impair hepatic iron 

metabolism48, a mechanism of viral hepatitis C infection49. Similar to c.1648G>A, c.7471C>T 

had a CADD PHRED score of 25.4, well over the MSC38 95 CI of 2.185 for the PIEZO1 gene.

DISCUSSION

Describing the functional consequences of genetic variations is critical for the development of

a better understanding of disease mechanisms. We have developed LoGoFunc, a rapid and

accurate predictor of GOF, LOF, and neutral variants, and used it to analyze various features

associated  with  these  variant  types.  Four  key  findings  emerge  from  this  work.  

First, we observe that pathogenic GOF, LOF, and neutral variants inhabit varying structural 

and functional regions of proteins, exert differing effects on protein structure, and inhabit 

proteins with different protein-protein interaction characteristics (Figure 2, Supplementary 

Figure 1). Specifically, LOF variants consistently demonstrate a greater propensity for the 

disruption of protein structure and/or function. Particularly, as predicted by DDGun16 
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leveraging both sequence-based and structural evidence, LOF variants are significantly more 

likely to have a destabilizing effect on protein structure and significantly less likely to stabilize 

or result in a negligible effect on protein structure. LOF variants are enriched for highly 

conserved residues as identified by multiple sequence alignments from MMSeqs217 and for 

more radical amino acid substitutions as calculated from the Grantham20 position-specific 

scoring matrix. Similarly, LOF variants are enriched for known post-translationally modified 

residues (PTMs) and are more likely to be buried in protein structures as evidenced by 

residue relative solvent accessibility (RSA) predictions from NetSurfP50 and RSA calculated 

by DSSP51 using AF210 structures. GOF variants compared to LOF, while enriched in 

potentially functionally important Pfam18 domains, appear to impact protein structure less 

radically. Indeed, compared to LOF variants, GOF variants were depleted for predicted 

protein destabilizing substitutions, highly conserved residues based on MSAs, and radical 

Grantham20 substitutions. Interestingly, when considering both sequence-based predictions 

and evidence derived from AF210 structures, we found GOF variants to be enriched in α-

helices, and LOF variants to be enriched in β-strands. Previous studies have demonstrated 

mutations in α-helices to be less structurally impactful than mutations occurring in β-strands52,

consistent with the characterization of GOF and LOF variants established by other features. 

GOF variants were also enriched in proteins capable of forming homomultimers suggesting a 

potential dominant negative pattern of gain of function for some of the variants and further 

emphasizing the necessity to investigate protein interactions when assessing variant 

functional impact. Together, these observations indicate significant divergence between GOF 

and LOF variants in their mode of pathogenicity at the protein level and suggest several 

mechanisms that may guide and inform the investigation of individual variants. Further, these 

results demonstrate that AF210 predicted protein structures may provide significant biological 

signal in variant assessment tasks and can facilitate the extraction of protein structural 

features proteome-wide.

Second, LoGoFunc demonstrates strong performance on an independent test set of GOF, 

LOF, and neutral variants and, by considering functional outcomes during training, is better 

able to predict the functional impact of genetic variants than tools trained under a binary 

benign/pathogenic paradigm (Figure 4). Interestingly, the benchmarked tools in our analysis 

performed better on LOF variants than GOF. It has previously been demonstrated that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.06.08.495288doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495288
http://creativecommons.org/licenses/by-nc-nd/4.0/


several pathogenicity predictors such as CADD4 and REVEL7 tend to predict LOF variants as 

pathogenic or deleterious more often than GOF variants, whereas GOF variants are more 

often predicted to be benign11. This may be due in part to the underrepresentation of GOF 

variants in the training data used by these tools where applicable or may arise because GOF 

variants may be difficult to separate from neutral variants using the features or methods 

employed by these tools. Importantly, these results suggest that LoGoFunc may be 

particularly useful for predicting GOF variants, as it may be capable of identifying pathogenic 

GOF variants that other pathogenicity predictors would tend to misclassify. 

Third, our analysis identified previously undocumented associations between various 

biological features and the functional outcomes of genetic variants. We assessed the 

importance of the features used to train LoGoFunc and found that the model learns from a 

diverse array of gene-, protein-, and variant-level features including functional, conservation, 

structural, and network information (Figure 5). For example, we processed the STRING15 

protein-protein interaction (PPI) network using node2vec40 to summarize the human protein 

interactome. Whereas some models have included binary indications of the involvement of a 

protein in any protein interaction53, to our knowledge, such PPI network features are rarely 

used in popular pathogenicity prediction methods. Yet, many dimensions of the output are 

highly impactful for the LoGoFunc model, suggesting protein function at the pathway- and/or 

systems-level may have a bearing on variant pathogenicity and functional effect. 

Concordantly, PPI features are accompanied by several other protein sequence- and 

structure-based features from which the model also learns, including top features such as 

DDGun16 stability impact predictions, residue proximal pathogenic variants, and the AF2 

structure pLDDT values which have been shown to correlate significantly with protein 

structural disorder10. Genic context also has a substantial impact on the model’s output as 

evidenced by the inclusion of several gene-level features such as the gene damage index54, 

and the number of gene paralogs. Other important features, such as the per variant 

predictions of pathogenicity for autosomal dominant or recessive disease, align with previous 

characterizations of GOF and LOF variants, thereby supporting the biological plausibility of 

LoGoFunc’s predictions and lending credence to the novel associations we identified between

various features employed by the model and GOF, LOF, and neutral variants.
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Finally, we illustrate LoGoFunc’s potential utility for characterizing variants of uncertain 

significance (VUS) and uncharacterized variants, a major challenge in human genomics. We 

performed PheWAS on predicted GOF and LOF variants, which were either marked as VUS 

in or were absent from ClinVar46, using patient records from the Mount Sinai BioMe Biobank 

(Figure 6). We uncovered strong associations between the tested variants and relevant 

phenotypes. For example, the predicted LOF variant c.1648G>A (rs563131364) in SLC12A3 

was associated with severe chronic kidney disease and abnormal blood chemistry among 

other phenotypes. Notably, over 140 putative LOF SLC12A3 variants have previously been 

identified in patients with Gitelman syndrome55, a disorder characterized by impaired salt 

reabsorption in the kidneys, including four neighboring variants in the same transmembrane 

helical region. Analysis of specific features also suggested that c.1648G>A may be a 

pathogenic, loss-of-function variant. For example, the variant has a CADD4 PHRED score of 

29.3 and an MSC38 95 CI of 13.89, indicating that the variant may be pathogenic taking into 

consideration the genic context of SLC12A3. Similarly, the variant is predicted to manifest 

autosomal recessive inheritance, consistent with the inheritance pattern of Gitelman 

syndrome55. Together, these results provide preliminary evidence that LoGoFunc may provide

utility in the assessment of VUS and uncharacterized variants in addition to providing 

predictions of functional effect.  

In summary, we have developed LoGoFunc, a predictor of GOF, LOF, and neutral variants.

Our model performs favorably compared to commonly used computational tools designed for

the assessment of genetic variation and demonstrates strong predictive power across metrics

on our test set of GOF, LOF, and neutral variants. We assessed the contribution of various

features  to  the  model’s  output  and found that  LoGoFunc learns  from a  diverse  array  of

structural,  functional, sequence-based, and systems-level information, indicating that these

features  have  a  bearing  on  the  functional  outcome  of  genetic  variants.  Further,  we

demonstrated significant localization of GOF, LOF, and neutral variants in 3D structural and

functional  sites  in  proteins,  and  demonstrated  LoGoFunc’s  ability  to  assess  previously

uncharacterized  variants.  Our  findings  corroborated  previously  reported  molecular

mechanisms resulting in the gain or loss of function and also suggest novel mechanisms that

may  shed  light  on  disease  etiology.  We  applied  our  method  to  82,468,698  canonical

missense  mutations  in  the  human  genome,  and  provide  our  predictions  at

https://itanlab.shinyapps.io/goflof/. 
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METHODS

Dataset assembly

We obtained 11,370 labeled pathogenic GOF and LOF variants from Bayrak et al11. To 

supplement this dataset, we collated the 65,075 variants that were deposited in the HGMD12 

Professional version 2021.3 database specifically in 2020 and 2021 and assigned labels 

using the same strategy that Bayrak et al11 employed. From these variants, we first selected 

32,911 disease-causing class (DM) variants. We then used the Spacy 3.0.6 natural language 

processing (NLP) library to search for GOF- and LOF-related nomenclature in associated 

publications for each DM variant. Using the phrase-based matching algorithm PhraseMatcher,

we iteratively searched the paper titles and abstracts from all associated publications for the 

patterns “gain of function(s)”, “gain-of-function(s)”, “GOF”, “loss of function(s)”, “loss-of-

function(s)”, and “LOF” with text converted to lowercase to allow for case sensitivity. When at 

least one of the publications indicated GOF or LOF, we labeled the corresponding variant 

accordingly. When there was a disagreement, i.e. a variant was found as GOF in one abstract

and LOF in another abstract, the variant was excluded from the dataset. 

Putatively neutral variants were selected from the gnomAD v2.113 exome sequencing data. 

gnomAD13 variants were selected from genes represented by the labeled GOF and LOF 

variants after filtering HGMD12 pathogenic variants from the gnomAD13 dataset. A minimum of 

two gnomAD13 variants and up to the number of GOF or LOF variants, whichever was the 

lower, were selected from each gene represented by the labeled GOF and LOF variants for a 

total of 13,361 putatively neutral variants. The complete labeled dataset comprising 1,492 

GOF, 13,524 LOF, and 13,361 neutral variants was split into training and testing sets such 

that the ratio of GOF to LOF to neutral variants in the training and testing sets reflected the 

ratio in the complete dataset, and such that there was no overlap of represented genes 

between the training and testing sets. The training set and testing sets comprise 90% and 

10% of the complete dataset, respectively. 

Variant annotations
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Ensembl’s VEP14 version 106 was employed to annotate all variants according to their 

GRCh38 genomic coordinates. VEP14 provided affected transcripts, genes, and proteins, and 

the position of variants within these elements where applicable. VEP14 plugins provided 

pathogenicity predictions from CADD4, SIFT6, PolyPhen25, and CONDEL56. Additional 

pathogenicity predictions were collected using the VEP14 dbNSFP57 plugin version 4.1a, along

with variant allele frequencies, and conservation scores from PhastCons36, PhyloP36, SiPhy58, 

and GERP++45. VEP14 plugins were also used to retrieve BLOSUM6259 scores, GERP35 

scores, distances from variants to the nearest exon junction boundary and the nearest 

transcription start site, MaxEntScan44 predictions, dbscSNV60 splice variants, and predictions 

of variants allowing for transcript escape from nonsense-mediated decay. AlphaFold210 (AF2) 

structural models were downloaded from 

https://ftp.ebi.ac.uk/pub/databases/alphafold/latest/UP000005640_9606_HUMAN_v3.tar61. 

The Biopython PDB module was used to load PDB62 formatted AF210 models and to calculate 

various geometric properties of proteins and residues. Specifically, residue contacts were 

inferred when the α-carbons of a given pair of residues resided within 12 Angstroms of each 

other in 3D space. Similarly, the distance of each residue from the protein center of mass was

defined as the 3D distance in Angstroms from the residue’s α-carbon to the protein center of 

mass as calculated by the Biopython PDB module. To calculate the number of proximal 

HGMD12 pathogenic and gnomAD13 variants in a residues 3D environment, we first mapped 

protein coordinates to genomic positions for the 18,901 canonical human proteins for which 

UniProt63 provides such a mapping. The number of pathogenic or gnomAD13 variants 

occurring in the nine closest residues in 3D space based on the structural models was then 

summed for each residue in each protein. The Biopython PDB and DSSP51 modules were 

used to extract secondary structure characterizations and relative solvent accessibility for the 

model residues. Putative protein-ligand binding sites were predicted using ConCavity64 v0.1 

with the protein structural models as input (default parameters). DDGun16 and GraphBind65 

were similarly employed to predict variant impacts on protein stability and ligand binding 

residues respectively using the default parameters and the structural models. All other 

features were collected from their respective web servers or calculated via standalone tools 

(Supplementary Methods, Supplementary Table 1). 

Feature analysis and feature importance
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Feature enrichments were calculated via Fisher’s exact test. Continuous features obtained 

from the DescribePROT66 database were categorized according to the cutoffs derived from 

proteome-wide metrics described in Zhao et. al66. Residues were classified as buried if their 

RSA was less than 20%; otherwise, they were regarded as exposed. Grantham20 scores for 

amino acid substitutions were considered to be conservative if lower than 100 and radical if 

greater than or equal to 100. The numbers of residue contacts were binned into categories 

“high” and “low” based on the median number of residue contacts across the 20,504 proteins 

included in the AF210 Homo sapiens reference proteome dataset. Similarly, the number of 

residue proximal pathogenic variants from HGMD12 and residue proximal gnomAD13 variants 

were categorized as “high” or “low” based on the median value of each of these features 

across the 18,901 proteins for which UniProt63 provided a mapping between genomic 

coordinates and residue position. Other continuous features were categorized by assigning a 

cutoff according to the value recommended by the authors of the tools from which the 

features were derived. When no such cutoff was reported, a cutoff of 0.5 was selected for 

probabilistic features. Distance from exon-intron junction boundaries and MMSplice21 

predictions were compared via one-sided two-sample T-tests. The Benjamini-Hochberg 

correction67 was applied at an alpha level of 0.05 to control for false positives as a result of 

multiple testing. Feature importance was assessed via the SHAP29 Python package version 

0.41.0. Specifically, the mean SHAP29 values across the ensembled LightGBM9 models were 

generated via the SHAP29 tree explainer model. 

Preprocessing of input data

Preprocessing steps were applied to prepare sample variants for prediction. An ordinal 

encoder was fitted to the categorical features in the training set and used to encode the 

categorical features in the training and test sets. Missing values were imputed either with a 

constant (-1) or with the median value of the feature in the training set. Zero variance features

in the training set were dropped from both the training and test sets. Finally, random 

oversampling was performed on the GOF and neutral variants to bring their total count in the 

training set equal to the majority class, LOF. 

Model selection
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We performed 5-fold outer, 5-fold inner, nested cross-validation in which folds did not contain 

variants from the same sets of genes on the training dataset to assess the variance 

associated with our preprocessing pipeline, model hyperparameters, and model architecture 

(Supplementary Figure 3). Specifically, we evaluated the performance and generalizability of 

four models: RandomForest68, LightGBM9, XGBoost69, and Neural Networks. For each 

algorithm, the data preprocessing procedure and relevant hyperparameters were tuned for 

200 rounds in each iteration of the inner cross-validation loop with the Optuna70 optimization 

library to maximize the macro-averaged F1-score (F1) (for hyperparameter search spaces 

see Supplementary Information). The F1-score is a function of the precision and recall, 

defined as follows, where y is the set of predicted sample, label pairs, and y’ is the set of true 

sample, label pairs: 

To extend the F1-score to multiclass classification, we calculated the macro-averaged F1-

score, defined as follows where L is the set of labels:

The preprocessing pipeline and hyperparameters which performed best for each model in the

inner cross-validation iteration were then used to assess each model on the held-out set of

the outer cross-validation loop. After all rounds of outer and inner cross-validation, the median

Matthew’s correlation coefficient (MCC) and F1 were compared to determine which model

performed best for the dataset. The MCC is defined as follows where  k  is the number of

classes and kl refers to an element of the confusion matrix:  
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LightGBM9 obtained the best MCC and F1 scores across outer folds (Supplementary Figure 

4). We subsequently performed the same nested cross-validation procedure described above 

with ensembles of 5 to 31 LightGBM9 models with individual model hyperparameters and the 

number of ensemble estimators tuned simultaneously. The ensembled LightGBM9 models 

achieved the highest MCC and F1 scores across outer folds and were selected as the final 

model. Subsequently, we performed the inner cross-validation procedure with all of the 

training data to determine the final number of ensemble estimators and model 

hyperparameters.

LoGoFunc performance

LoGoFunc’s performance was assessed via average precision (AP),  F1-score, and 

Matthew’s correlation coefficient calculated using scikit-learn version 1.1.1. AP is defined as 

follows, where n is the nth threshold:

For each class, we computed these metrics as one vs. rest tasks where the class in question 

was relabeled as one and the other classes were relabeled as zero.

Gene 95% confidence intervals

For each variant class, GOF, LOF, and neutral, we selected predictions from the training and 

testing sets for variants of that class. We applied the Kolmogorov-Smirnov71 test for goodness

of fit to predictions for these variants with continuous distributions implemented in scipy72 

version 1.0.1. For each distribution, we first estimated the distribution parameters that best 

modeled the predictions using scipy72, and then selected the parametrized distribution with 

the highest p-value from the Kolmogorov-Smirnov test71. 95% confidence intervals were then 

calculated using the best fitting, parameterized distribution for predictions from each class 

respectively and clipped between zero and one where applicable. When five or more variants 

were available from a given class for a given gene, we repeated the above process to 

calculate gene-specific 95% confidence intervals. When fewer than five variants were 

available for a class in a gene, we defaulted to the 95% confidence intervals calculated for 

predictions from the entire dataset. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.06.08.495288doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495288
http://creativecommons.org/licenses/by-nc-nd/4.0/


Method comparison

LoGoFunc was compared to other computational methods by assessing the AP. All GOF (n. 

136) and LOF (n. 545) variants from the test set for which all compared tools provided a 

prediction were collected. APs were calculated, treating GOF as the positive class. To assess

the performance separating neutral variants from GOF and LOF, we added all neutral (n. 411)

variants from the test set for which each tool provided a prediction. APs were again 

calculated, this time with GOF and LOF variants as the positive classes respectively, and 

neutral as the negative class. Finally, we calculated the one-vs.-all APs with GOF and LOF 

variants as the positive class and neutral variants as the negative class. Most of the 

compared tools provide predictions in which higher scores correspond to a greater likelihood 

that a given variant will be damaging. However, SIFT outputs predictions between zero and 

one in which lower scores correspond to a greater likelihood of a damaging effect. 

LoGoFunc’s neutral prediction is a value between zero and one, where higher scores indicate

a greater likelihood of neutrality. Thus, to ensure consistency between all compared tools 

when treating neutral as the negative class and GOF and LOF as the positive class, SIFT and

LoGoFunc neutral predictions were transformed by subtracting each prediction from one 

before assessing AP. 

PheWAS of predicted GOF and LOF variants. 

We analyzed 1,650 phenotypes for which there were at least 20 cases in the Mount Sinai 

BioMe BioBank. For each phenotype, controls were randomly sampled from non-cases to fix 

the ratio of cases to controls at 1:5. Overlapping individuals, i.e. those sharing phenotypes 

other than the phenotype of interest, were removed from the control set. We implemented 

principal component analysis (PCA) on 3,800 whole-exome sequencing samples in BioMe 

using independent variants before the PheWAS analysis and used the first five components 

to adjust for potential population stratification in both cases and controls. We reduced linkage 

disequilibrium (LD) between markers by removing all markers with r2>0.2 (window size 50, 

step size 5), as well as markers in known high LD regions. Furthermore, we retained variants 

with minor allele frequency (MAF) greater than 0.02 and genotyping rate greater than 95% 
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across the dataset (excluding A/T, C/G mutations). PCA was conducted using Plink 1.973. 

PheWAS was conducted using the R “PheWAS” package74.
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FIGURE LEGENDS

Figure 1: LoGoFunc workflow and model architecture. a. Pipeline for the collection of labeled 
pathogenic GOF and LOF variants. Related abstracts for high confidence pathogenic variants from the
HGMD12 were searched for nomenclature denoting gain or loss of function. b. Dataset preparation and
annotation. 1,492 GOF, 13,524 LOF, and 13,361 neutral variants were obtained from the GOF/LOF 
database11, HGMD12, and gnomAD13. Using VEP14 and other tools, variants were annotated with 
protein structural and functional features derived from AlphaFold210 models or from sequence, with 
gene- and genomic-level features, variant-level features, and network-derived protein interaction 
features. The annotated data were split into training and test sets comprising 90% and 10% of the 
dataset respectively, stratified by variant label. c. Model architecture and output. Variants are input to 
the model represented as an array of the 474 collected features. These features are encoded, 
imputed, and scaled prior to prediction. The model consists of an ensemble of 27 LightGBM9 
classifiers. A probability is output for each class, GOF, LOF, and neutral. Created with 
BioRender.com. 

Figure 2: Structure- and sequence-based protein feature analysis. a. Enrichments and depletions 
for protein structural and functional features used by the LoGoFunc model. GOF (blue), LOF (orange),
and neutral (green) log odds ratios are displayed for each feature. Significant enrichments and 
depletions are denoted by asterisks. Significance was calculated with Fisher's exact test, Benjamini-
Hochberg corrected67 to allow for multiple comparisons. (Left) Features derived from protein 
sequences or protein interaction data. (Right) Features derived from AlphaFold210 protein structures. 
b. AlphaFold210 predicted structure of the Vasopressin V2 receptor protein. (Left) Residues colored by 
the number of HGMD12 pathogenic variants occurring in the nine closest neighboring residues in 
space. (Right) Residues colored by the number of gnomAD13 variants occurring in the nine closest 
neighboring residues in space.

Figure 3: Association between variant type and impact on splicing. a. (Top) Density of GOF, LOF
and neutral variants within 20 base-pairs of a splice junction. (Bottom) Proportion of GOF, LOF, and 
neutral variants predicted to yield a gain of splice acceptor or donor or a loss of splice acceptor or 
donor. b. Percentage of GOF, LOF, and Neutral variants in proximity (20 base-pairs) to acceptor and 
donor splice sites. c. MMSplice21 sub-model alternate minus reference logit percent-spliced-in 
predictions for variants predicted to impact splicing. d. Distance to the nearest exon junction boundary 
in nucleotides by variant class. Boxes denote quartiles, whilst whiskers extend to the limits of the 
distribution with outliers not shown when greater than 1.5 times the interquartile range from the low 
and high quartiles respectively. Created with BioRender.com.

Figure 4: Benchmarking LoGoFunc. Precision-recall curves comparing the discriminatory power of
various pathogenicity prediction methods and LoGoFunc on a set of variants from the test set for
which predictions were available from all compared tools. a. LOF (n. 545) vs. neutral (n. 411). b. GOF
(n. 136)  vs. neutral (n. 411).  c. GOF (n. 136)  vs. LOF (n. 545). d.  GOF (n. 136)  and LOF (n. 545)
combined vs. neutral (n. 411).

Figure 5: Explanation of LoGoFunc predictions. a. SHAP values by class for features with 
combined SHAP values in the 90th percentile and above. b. (Top) The SHAP values for the top ten 
features for the seven GOF variants found in the ion channel SCN2A in the test set. (Middle) The 
SHAP values for the top ten features for the eight LOF SCN2A variants in the test set. (Bottom) The 
SHAP values for the top ten features for the seven neutral SCN2A variants in the test set. c. The 
experimentally determined structure of SCN2A43 with the represented GOF (red), LOF (blue), and 
neutral (yellow) SCN2A variants from the test set. d. The SCN2A model from the AlphaFold2 
prediction database annotated with the represented GOF (red), LOF (blue), and neutral (yellow) 
SCN2A variants from the test set.
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Figure 6: Relationship between variant type and phenotypes.  a. Associations between high-
confidence, predicted GOF (c.7471C>T) and LOF (c.1648G>A) variants and phenotypes as 
determined by PheWAS analysis of patients in the BioMe biobank. b. Distribution of CADD4 PHRED 
scores in the dataset (green). CADD4 PHRED scores and MSC38 95% CI cutoffs for c.7471C>T (solid 
and dashed blue lines) and c.1648G>A (solid and dashed red lines).
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FIGURES

Figure 1

Figure 1: LoGoFunc workflow and model architecture. a. Pipeline for the collection of labeled 
pathogenic GOF and LOF variants. Related abstracts for high confidence pathogenic variants from the
HGMD12 were searched for nomenclature denoting gain or loss of function. b. Dataset preparation and
annotation. 1,492 GOF, 13,524 LOF, and 13,361 neutral variants were obtained from the GOF/LOF 
database11, HGMD12, and gnomAD13. Using VEP14 and other tools, variants were annotated with 
protein structural and functional features derived from AlphaFold210 models or from sequence, with 
gene- and genomic-level features, variant-level features, and network-derived protein interaction 
features. The annotated data were split into training and test sets comprising 90% and 10% of the 
dataset respectively, stratified by variant label. c. Model architecture and output. Variants input to the 
model are represented as an array of the 474 collected features. These features are encoded, 
imputed, and scaled prior to prediction. The model consists of an ensemble of 27 LightGBM9 
classifiers. A probability is output for each class, GOF, LOF, and neutral. Created with 
BioRender.com. 
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Figure 2

Figure 2: Structure- and sequence-based protein feature analysis. a. Enrichments and depletions 
for protein structural and functional features used by the LoGoFunc model. GOF (blue), LOF (orange),
and neutral (green) log odds ratios are displayed for each feature. Significant enrichments and 
depletions are denoted by asterisks. Significance was calculated with Fisher's exact test, Benjamini-
Hochberg corrected53 to allow for multiple comparisons. (Left) Features derived from protein 
sequences or protein interaction data. (Right) Features derived from AlphaFold2 protein structures. b. 
AlphaFold2 predicted structure of the Vasopressin V2 receptor protein. (Left) Residues colored by the 
number of HGMD pathogenic variants occurring in the nine closest neighboring residues in space. 
(Right) Residues colored by the number of gnomAD variants occurring in the nine closest neighboring 
residues in space.
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Figure 3
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Figure 3: Association between variant type and impact on splicing. a. (Top) Density of GOF, LOF
and neutral variants within 20 base-pairs of a splice junction. (Bottom) Proportion of GOF, LOF, and 
neutral variants predicted to yield a gain of splice acceptor or donor or a loss of splice acceptor or 
donor. b. Percentage of GOF, LOF, and Neutral variants in proximity (20 base-pairs) to acceptor and 
donor splice sites. c. MMSplice21 sub-model alternate minus reference logit percent-spliced-in 
predictions for variants predicted to impact splicing. d. Distance to the nearest exon junction boundary 
in nucleotides by variant class. Boxes denote quartiles, whilst whiskers extend to the limits of the 
distribution with outliers not shown when greater than 1.5 times the interquartile range from the low 
and high quartiles respectively. Created with BioRender.com.
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Figure 4

Figure 4: Benchmarking LoGoFunc. Precision-recall curves comparing the discriminatory power of 
various pathogenicity prediction methods and LoGoFunc on a set of variants from the test set for 
which predictions were available from all compared tools. a. LOF (n. 545) vs. neutral (n. 411). b. GOF 
(n. 136) vs. neutral (n. 411). c. GOF (n. 136) vs. LOF (n. 545). d. GOF (n. 136) and LOF (n. 545) 
combined vs. neutral (n. 411). 
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Figure 5
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Figure 5: Explanation of LoGoFunc predictions. a. SHAP values by class for features with 
combined SHAP values in the 90th percentile and above. b. (Top) The SHAP values for the top ten 
features for the seven GOF variants found in the ion channel SCN2A in the test set. (Middle) The 
SHAP values for the top ten features for the eight LOF SCN2A variants in the test set. (Bottom) The 
SHAP values for the top ten features for the seven neutral SCN2A variants in the test set. c. The 
experimentally determined structure of SCN2A43 with the represented GOF (red), LOF (blue), and 
neutral (yellow) SCN2A variants from the test set. d. The SCN2A model from the AlphaFold2 
prediction database annotated with the represented GOF (red), LOF (blue), and neutral (yellow) 
SCN2A variants from the test set. 
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Figure 6

Figure 6: Relationship between variant type and phenotypes. a. Associations between high-
confidence, predicted GOF (c.7471C>T) and LOF (c.1648G>A) variants and phenotypes as 
determined by PheWAS analysis of patients in the BioMe biobank. b. Distribution of CADD4 PHRED 
scores in the dataset (green). CADD4 PHRED scores and MSC38 95% CI cutoffs for c.7471C>T (solid 
and dashed blue lines) and c.1648G>A (solid and dashed red lines).
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