
DRAFT

Bayesian Phylogenetic Inference of HIV Latent
Lineage Ages Using Serial Sequences
Anna Nagela,1 and Bruce Rannalaa

aDepartment of Evolution and Ecology, University of California, Davis, CA 95616

This manuscript was compiled on June 8, 2022

HIV evolves rapidly within individuals, allowing phylogenetic stud-
ies to infer the history of viral lineages on short time scales. La-
tent HIV sequences are an exception to this rapid evolution, as their
transcriptional inactivity leads to negligible mutation rates in com-
parison to non-latent HIV lineages. Latent sequences are of keen
interest as they provide insight into the formation, persistence, and
decay of the latent reservoir. Different mutation rates in latent versus
active HIV lineages generate potential information about the times at
which sequences entered the latent reservoir. A Bayesian phyloge-
netic method is developed to infer integration times of latent HIV se-
quences. The method uses informative priors to incorporate biolog-
ically sensible bounds on inferences (such as requiring sequences
to become latent before being sampled) that many existing methods
lack. A new simulation method is also developed, based on widely-
used epidemiological models of within-host viral dynamics, and ap-
plied to evaluate the new method, showing that point estimates and
credible intervals are often more accurate by comparison with ex-
isting methods. Accurate estimates of latent integration dates are
crucial in dating the formation of the latent reservoir relative to key
events during HIV infection, such as the initiation of antiretroviral
treatment. The method is applied to analyze publicly-available se-
quence data from 4 HIV patients, providing new insights regarding
the temporal pattern of latent HIV integration events.
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A major obstacle to the development of a cure for HIV1

has been the presence of latently infected cells. HIV2

is a retrovirus that integrates its genome into the host cell3

genome. During latent infection, the integrated provirus is in a4

reversible state of transcriptional inactivity. Latently infected5

cells are not targeted by current treatment methods, namely6

antiretroviral therapy (ART). Consequently, treatment must7

be continued for life or the reactivation of latent cells will lead8

to a rapid rebound in viral load and disease progression (1).9

A detailed understanding of the dynamic processes of seeding,10

reseeding, and decay of the latent reservoir through the infer-11

ence of latent integration dates for individual proviruses will12

allow researchers to have a better understanding of the nature13

of the reservoir as they work toward a cure for HIV.14

HIV infects immune cells, specifically CD4+ cells, such as15

helper T cells and macrophages. Most infected cells die quickly16

(2, 3). In contrast, memory T cells have a long half-life of 4.417

years and can thus establish a latent reservoir for HIV (4).18

Memory T cells may be infected directly or an activated T cell19

may revert back to a quiescent state (5). Latently infected20

memory T cells can be activated by antigens, leading to the21

activation of the HIV provirus (6). Effective ART prevents22

infections of new host cells but does not prevent infected cells23

from producing virions. HIV can persist hidden in memory24

cells for decades, even with effective ART (4).25

The latent reservoir is initially formed within days of infec- 26

tion and continues to be reseeded over time (7–9). However, 27

the extent to which the composition of the reservoir changes 28

over time is unclear. Some studies concluded that the latent 29

reservoir that exists during ART is mostly seeded shortly before 30

treatment initiation (10–12), while others have concluded that 31

the reservoir is continuously seeded until treatment initiation 32

(13). However, some of these results are difficult to interpret as 33

a variety of mechanisms could account for these patterns. The 34

timing of the formation of the latent reservoir is ultimately an 35

empirical question that can be studied in multiple ways. In 36

addition to further experimental work, reconstructing the ages 37

of latent lineages can in principle be done by analyzing the 38

patterns of variation observed among sampled sequences and 39

applying phylogenetic methods designed to estimate sequence 40

divergence times with serial sequence samples (11–16). The 41

focus of this paper will be the development of new statistical 42

and computational methods to accurately date the integration 43

times of sampled latent sequences. 44

A variety of heuristic methods have been developed to esti- 45

mate integration times using a combination of RNA sequences 46

from serial sampled actively replicating sequences and RNA 47

or DNA from putative latent sequences. All methods rely on a 48

fixed estimate of the gene tree topology for the HIV sequences 49

and some require branch lengths. Jones et al. developed a dis- 50

tance method that used linear regression (LR) to estimate the 51

mutation rate from root-to-tip distances and sampling dates 52

for non-latent sequences. This mutation rate is then used 53
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to estimate the latent integration dates (13). This method54

relies on a molecular clock, and is not used if the clock is55

rejected. Jones and Poon developed a related method, esti-56

mating mutation rate in the same way but estimated internal57

node ages and unknown tip ages using a maximum likelihood58

(ML) approach using a specified mutation rate (15, 16). To59

et al. developed a distance method using a least squares (LS)60

approach to estimate mutation rates and date internal nodes61

and tips with unknown ages (17). Their method requires the62

sequence length for estimating confidence intervals, but not63

the alignment. It was designed for extremely large phylogenies,64

but is applicable to HIV latency datasets as well. Abrahams65

et al. used multiple heuristic methods to date latent sequences.66

In one method, the distance from the closest sequence to the67

latent sequence, d, is determined, and the age of the latent68

sequence is assigned based on the sample time of the majority69

of sequences within 2d of the latent sequence (11). A similar70

method traverses the tree from the latent sequence toward71

the root of the tree until a node with 90% bootstrap support72

is found with at least one pre-treatment sequence. Then a73

latency time is assigned based on the most common sampling74

time of the pre-treatment sequences descendant from the well75

supported node (11). The two methods used by Abrahams et76

al. may be very sensitive to the number of sequences sampled77

and the sampling times. Simulation studies suggest that LS78

may out-perform all of these methods (15, 17). An alternative79

to these existing methods could be developed based on estab-80

lished parametric phylogenetic models that use tip dating for81

estimating and calibrating phylogenies of viral data, and are82

potentially more accurate (18, 19).83

It has been difficult to evaluate the statistical performance84

of current methods for inferring integration times of latent HIV85

since existing simulation methods are biologically unrealistic.86

During the acute phase of infection, viral load grows exponen-87

tially shortly after infection, peaking within several weeks (20).88

Then the viral load falls one to two orders of magnitude before89

reaching a quasi-steady state. During this chronic phase of90

infection, the viral load remains relatively unchanged or rises91

only slowly until the onset of AIDS. In contrast, simulation92

methods that have been used to evaluate methods for dating93

integration events largely ignore the underlying population94

dynamics of HIV. Some assume a constant rate birth-death95

process while other use a compartmental model with logistic96

growth (13, 15). Epidemiologists use more complex models,97

typically ordinary differential equations (ODEs), to describe98

HIV viral dynamics (21–23). These models produce population99

trajectories that more closely match empirical observations,100

especially during acute infection, but the models have yet to be101

used in simulations to generate within-host HIV sequence data.102

The time period of acute infection is known to be important103

in establishing the latent reservoir (7), and this peak dynamic104

should be incorporated into simulation methods used to test105

inference methods aimed at estimating latency times.106

We propose a Bayesian inference method to infer the latent107

integration date of HIV sequences. This is a full likelihood108

method, conditional on the phylogenetic tree topology. Ad-109

ditionally, we develop a simulation method based on existing110

viral dynamic models of HIV to test the performance of the111

inference method. The simulation model is parameterized112

using estimates from empirical datasets that produce realistic113

viral population dynamics (See SI section 4) (24).114

Model 115

A new program, HIVtree, was developed by modifying an 116

existing program, MCMCtree, to infer latent integration dates 117

(18). MCMCtree is a Bayesian phylogenetic inference program 118

which estimates a time calibrated tree using viral sequences 119

with serial samples given a fixed tree topology. It uses Markov 120

chain Monte Carlo (MCMC) to estimate the model parame- 121

ters. HIVtree incorporates additional parameters, the latent 122

integration times, into the model. The program also estimates 123

the originally defined parameters in MCMCtree, including sub- 124

stitution model parameters, substitution rate, and the internal 125

node ages. 126

HIVtree assumes a priori that some sequences are known to 127

be latent while others are not. Every sequence must also have 128

a known sample date. In addition, every latent sequence has 129

an unknown latent integration date. The youngest possible 130

latent integration date is the sample time, and internal nodes 131

cannot be latent. There is an optional bound on the oldest 132

possible latent integration time, which could correspond to the 133

oldest possible infection time. The model assumes that latent 134

lineages have a mutation rate of zero, and all other lineages 135

follow strict molecular clock. For calculating the likelihood, 136

the latency time is treated as if it were the sample date for a 137

non-latent lineage. This acts to reduce the tip age to be the 138

time the sequence became latent (Fig. S4). 139

Markov Chain Monte Carlo (MCMC). HIVtree adds an addi- 140

tional step to the MCMC to estimate the latent times. In 141

MCMCtree, proposals to non-root internal node ages are 142

bounded above by the age of the parent node and below 143

by the age of the oldest daughter node. A new time for each 144

internal node is proposed within these bounds, the acceptance 145

ratio is calculated, and the move is either accepted or rejected 146

(18). In HIVtree, in addition to bounds on nodes, latent times 147

are bounded above by the age of the parent node and below 148

by the sample time. This ensures that the sequence becomes 149

latent before it is sampled and that internal nodes cannot be 150

latent. If the optional bound on latent integration times is 151

used, the younger of the parent node age and the bound is 152

used as the bound. Similar to MCMCtree, for each latent time, 153

a move is proposed within these bounds, the acceptance ratio 154

is calculated, and the move is either accepted or rejected (Fig. 155

S4). Other than the difference in bounds, the proposal moves 156

for the internal nodes and the latency times are identical. For 157

the mixing step, the latency time is treated as equivalent to 158

the sample date. The mixing step was not modified from 159

MCMCtree (18). 160

Prior Model. Two new root age priors were implemented in 161

HIVtree. HIVtree and MCMCtree both require the user to 162

specify the priors in backward time. The time of the last 163

sample is considered to be time zero, and earlier times are 164

positive. The programs also require a specification of a time 165

unit transformation. For example, consider HIV data with the 166

sample times specified in days. A time unit of 1000 days means 167

that 0.365 is equivalent to a year in the prior specification. A 168

shifted gamma prior, Γ(α, β), is implemented as the root age 169

prior. The distribution is shifted by adding the first sample 170

time to the distribution. This ensures there is no density after 171

sequences are sampled. The gamma distribution parameters 172

must also be chosen with the time unit transformation going 173
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backward in time. An option for a more informative prior is a174

uniform prior with narrow hard bounds (zero tail probability),175

U(a, b). There is no explicit prior on the internal nodes ages176

which is equivalent to a uniform prior on the possible node177

ages given the constraints from the sampling dates and the178

root age. Since the sampling prior is not explicit and the179

rank order of the nodes and the constraints jointly determine180

the prior, the MCMC must be run without data in order to181

recover the prior for the internal nodes, latency times, and root182

age. The distribution of the root age when the MCMC is run183

without data will not be equivalent to the user specified prior184

(Fig. S5). This effect is similar to constraints imposed by fossil185

calibrations (25). The mean root age will be older than the186

expectation of the prior distribution. The parameters of the187

gamma distribution can be modified to achieve a desired mean188

and variance for the root age. Using a uniform prior with189

a wide interval is discouraged due to this effect (an induced190

prior age of the root that is very old).191

Combining Inferences Across Genes. HIVtree only allows sin-192

gle locus inferences. However, the entire HIV genome is incor-193

porated in the host cell genome at the same time, meaning194

different genes share the same latent integration times. Let195

X = {xi} be sequence data for n loci, where xi are sequence196

data at locus i. Let T be a latency time that is shared across197

loci. The remaining parameters of the gene tree may be differ-198

ent due to recombination. The posterior density of T is199

f(T |X) = P (X|T )f(T )∫
P (X|T )f(T )dT

.200

If we ignore the correlation between gene trees due to limited201

recombination and treat the loci as independent the posterior202

density can be written as203

f(T |X) =
∏n

i=1 P (xi|T )f(T )
CA

,204

where CA is the marginal probability of the data (which is a205

constant),206

CA =
∫ n∏

i=1

P (xi|T )f(T )dT.207

We want to calculate the posterior probability of T for each208

locus separately using MCMC and subsequently combine them209

to obtain a posterior density for all the loci. To do this we210

formulate the above equation as a product of the marginal211

posterior of T for each locus,212

f(T |X) =
n∏

i=1

[
f(T |xi)
fi(T )

]
× f(T )×

∏n

i=1 Ci

CA
, [1]213

where fi(T ) is the prior on T for the ith locus and f(T ) is214

the desired prior for the combined posterior. The last term is215

a proportionality constant that insures the posterior density216

integrates to 1. A simple example illustrating this general217

approach to combine posteriors using a normal distribution is218

provided in SI section 8.219

In our analyses, n independent MCMC analyses are run220

(with and without using the likelihood) and kernel density es-221

timation is used to estimate P (T |Xi) and fi(T ), respectively,222

for i = 1, . . . , n. The estimated kernel functions are then223

used to evaluate equation 1 up to an unspecified proportion-224

ality constant (see supplemental material). Simulations were225
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Fig. 1. For all 30 alignments simulated for C1V2 on a fixed tree, the inferred integration
dates are shown for each method. If the methods performed perfectly, all points would
fall on the line, which is has an intercept of 0 and slope of 1. The units are years after
infection.

used to evaluate the performance of this approach to combine 226

posteriors. 227

Results 228

Simulation Analysis. Here we compare the statistical perfor- 229

mance of HIVtree and several other existing methods when 230

analyzing simulated datasets with known latency times. 231

Comparisons on a Fixed Tree Topology. HIVtree was compared 232

with three existing methods, least squares dating (LS) (17), 233

linear regression (LR) (13), and pseudo maximum likelihood 234

(ML) (16) using simulated datasets. The effect of variation 235

among the independently simulated sequences on point esti- 236

mates of latent tip ages can be seen by comparing the estimates 237

for a given latent tip in a fixed tree. Even with C1V2, the most 238

informative gene simulated, there is considerable variation in 239

the estimated latency time for a given latent tip (Fig. 1). The 240

variation is even larger for the other genes (Fig. S6). The 241

estimated times for a single latent tip sometimes differs from 242

the true value by a decade or more for both the LR and ML 243

methods. The LS method has fewer extreme estimates, which 244

are prevented by bounds on the integration times. LS allows 245

for upper and lower bounds for each individual latent sequence 246

while ML has the same upper bound on all latent sequences, 247

which is the last sample time. The LR has no bounds on the 248

inferred integration time, potentially allowing the latent se- 249

quences to be formed either after the sequence was sampled or 250

before an individual was infected. Both outcomes are logically 251

impossible. 252

Inferences Across Genes. The posterior distribution for each 253

latent time is inferred separately for each gene when using 254

HIVtree. When the marginal densities are combined across 255

the genes, the posterior densities become narrower and closer 256

to the true value (Fig. 2). The other methods do not allow 257

such information sharing. 258

Summary of Method Performance. Mean square error (MSE) is a 259

useful measure of method performance that includes both bias 260
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Fig. 2. Joint posterior density for a single latency time across all genes. Each solid
colored line shows the marginal posterior density for a single latency time for different
genes. The dashed colored lines show the marginal prior densities, which result from
running the MCMC without data. The solid black line shows the estimate with the
genes combined. The vertical line is the true latent integration time. The MCMC was
run for 500,000 iterations, sampling every other iteration. This results in smoother
curves than the shorter MCMCs run used in the larger analysis of simulated data, but
results are very similar.

and variance and is directly comparable across methods. MSE261

is lowest for C1V2 and highest for tat for all analyses (Fig.262

3a). All of the methods are the least biased for C1V2 and263

the most biased for tat (Fig. 3b). The average bias for the264

ML and LS methods are more negative for the shorter, slower265

evolving genes, while the Bayesian and LR method have a266

positive bias on average.267

In the simulation analysis, the probability that the true268

value falls in the 95% confidence interval (or 95% highest269

posterior density for Bayesian analysis) is considered (Fig. 3d).270

The Bayesian method has comparable coverage probabilities271

for C1V2 and nef of 92% and 93%, respectively, with the272

lowest coverage probability for tat (90%). The average size of273

the 95% credible set for the longest and shortest sequences,274

C1V2 and tat, is 2.1 years and 5.8 years, respectively. The275

LR has the highest coverage, with a coverage probability of276

97% for C1V2 and 96% for tat. However, LR has very large277

confidence intervals (Fig. 3c). The mean size of the 95%278

confidence interval is 4 years and 15 years for C1V2 and tat,279

respectively. In contrast, the LS method shows lower coverage280

probabilities but smaller confidence intervals. The LS method281

has its highest average coverage probability for nef (87%), but282

drops to 77% for tat (Fig. 3d). For the longest gene, C1V2,283

the average coverage probability is only 81%. This is likely284

due to the much smaller confidence interval size. The size of285

the 95% confidence interval is much larger for the LR method286

than either the LS or Bayesian methods (Fig. 3c). The LS and287

Bayesian methods have similar size confidence intervals, but288

the Bayesian method is more likely to contain the true value289

in the 95% confidence interval (has higher average coverage290

probability). The ML method has the largest MSE and bias291

on average for all regions and does not provide confidence292

intervals.293

When the inferences are combined across all four genes, the294

average size 95% credible set is 110 days smaller on average.295

The average probability the true integration time is in the296
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Fig. 3. For each of fixed tree topologies, the mean square error (MSE), bias, and
size of the 95% confidence/credibility interval was averaged across all 900 latent
times for each gene analysis combination. Each violin plot is made using 300 data
points, corresponding to the average from each of the 300 fixed tree toplogies. For
the Bayesian combined analysis of either all of the genes or only p17/tat, only a third
of the fixed tree toplogies were analyzed.
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95% credible set is very similar to the results for the longest297

gene. When the two shortest genes, p17 and tat, are combined,298

the average size of the 95% credible set is very similar to p17299

alone, but the probability the true value is in the 95% credible300

set increases from 92% with p17 alone to 95% in the combined301

analysis (Fig. 3c,d).302

Empirical Analysis. We applied each of the four methods to303

HIV data sets from two studies of serial sampled HIV se-304

quences. The first data set (Jones et al.) is comprised of nef305

sequences for two patients (13). For each patient, plasma HIV306

RNA was sequenced multiple times over a period of almost a307

decade either pre-treatment or during incompletely suppressive308

dual ART. After the initiation of combination ART (cART),309

samples from the putative reservoir were taken from at least310

two time points. Samples consisted of HIV RNA sequences311

sampled during viral blips and proviral DNA collected from312

whole blood and peripheral blood mononuclear cells (PBMC).313

The second data set (Abrahams et al.) has three regions of env314

for both the patients analyzed (217 and 257) and gag and nef315

sequences for one patient (257) (11). For both patients, virus316

was sequenced from the plasma multiple times over several317

years prior to ART initiation. After ART initiation, viral318

RNA was isolated from the supernatant of quantitative viral319

outgrowth assays.320

The inferred latent integration times for the patients in the321

Jones et al. dataset obtained using HIVtree span over a decade322

(Fig. 4), similar to estimates obtained using other methods323

(Fig. S7). However, ML and LR infer integration times that324

occur after the sampling time in some cases (Fig. S9). For325

the Abrahams et al. dataset, the point estimates, especially326

for the early sample times (11.1 for patient 1 and 17.9 for327

patient 2), tend to be concentrated near the time of ART328

initiation. The combined point estimates for the latency times329

inferred using HIVtree appear loosely clustered around the330

time ART began for patient 257, with narrower credible sets331

than the analyses on individual genes (Fig. 5). These patterns332

for patient 217 are less clear, possible due to fewer genomic333

regions and fewer latent sequences (Fig. S8). Sometimes LS334

gives very large confidence intervals, covering the entire area335

between the bounds for a sequence (Fig. S10, S13), while in336

other cases the confidence intervals are smaller than LR.337

Discussion338

Here, we have described both a phylogenetic method to in-339

fer latent integration times and a new method to simulate340

sequence data based on within-host viral dynamics. HIVtree341

performs better than existing methods by a variety of met-342

rics. The method has smaller confidence intervals on average343

than alternative methods, while still containing the true value,344

resulting in more precise interval estimates of the integra-345

tion dates. Moreover, the MSE is comparable to the best346

alternative method when the data are informative.347

HIVtree has several improvements over existing methods.348

It allows for biologically relevant bounds on latent integration349

times, such as requiring the latent times be older than the350

sample times with an option to bound the integration times351

at the time of infection. Among the alternative methods, only352

the LS method allows for such bounds. Bayesian inference353

also provides a sensible way to combine estimates across genes,354

while allowing for potentially different gene tree topologies.355
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Fig. 4. Panels (a) and (b) show the inferred latent integration times, in units of years
after diagnosis, for patients 1 and 2, respectively, inferred using HIVtree to analyse
sequence data for the nef gene locus. A dot indicates the posterior mean and bars
represent the 95% credible interval. The solid vertical lines indicate the positive test
date (left) and time of cART initiation (right) for each patient. The colored dashed
vertical lines indicate the sample times.

C1C2 C2C3 C4C5 p17 nef combined

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9
inferred integration time (years)

se
qu

en
ce

Fig. 5. The five panels to the left each show the integration times inferred using
HIVtree for a single gene locus. The panel to the right shows the inferred integration
times when posterior distributions for the five loci are combined. A dot indicates the
posterior mean and bars represent the 95% credible interval, in units of years after
diagnosis. The results are from patient 257 (11). 10 non-latent sequence were used
as each available timepoint and sites with more than 75% gaps were removed from
the alignment prior to analysis, as described in SI section 10. The dashed line shows
the infection time, the solid line shows the start of ART, and the dotted line shows the
sample time.
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This results in more precise estimates, especially when the356

sequences available are short. There is currently no alternative357

to the HIVtree method for jointly inferring latency times358

using multiple loci, nor is there a clear way to do so. Lastly,359

Bayesian methods have the advantage of well known statistical360

properties, such as statistical efficiency and consistency. By361

treating an alignment as data, HIVtree allows for full use of362

the available sequence data in the inference, whereas the other363

methods only use an inferred phylogenetic tree which may not364

be a sufficient statistic.365

There are several avenues for improvement of HIVtree. In366

the current paper, to use data from multiple loci in HIVtree367

the marginal distributions for the latent integration times368

were combined. A more formal method to combine data across369

loci would be to jointly analyze the loci in a single model,370

allowing the MCMC to integrate over the node ages in each of371

gene trees separately while constraining the latent integration372

times to be the same for sequences derived from an individual373

infected cell. This would be most sensible to implement in374

a program that accommodates multilocus data, such as bpp375

(26), rather than the parent program of HIVtree, mcmctree.376

Further, despite desiring a diffuse prior on the node ages377

and latent times, the prior model in HIVtree seems to be too378

informative in some cases. The rank order of the nodes and the379

serial sampling cause average the root age of the phylogeny in380

the prior to be older than the user input prior. If the root age is381

constrained, such as by using a uniform prior, the latent times382

are pushed closer to time present, which introduces a bias to383

the latent inferences (unpublished preliminary analysis). This384

means that constraining the root age to be close to the true age385

can produce worse estimates of the latent times. Similar effects386

driven by constraints among node ages have been previously387

noted for fossil calibrations and serially sampled data (18, 27).388

However, the effects appear to be more pronounced when the389

root ages are close to the the serially sampled sequences, as390

can result from within-host viral data. While there may be391

quite informative outside knowledge on the age of the root392

for HIV, such as the time of infection, we currently caution393

against forcing the root age to match the infection time when394

using HIVtree because this may induce bias in estimates of395

latent virus integration times.396

The difference between the user input prior distribution on397

the root age and the prior observed when running the MCMC398

without data appears to be larger with the empirical data399

than with the simulated datasets. While the exact cause of400

this discrepancy is unknown, it may be related to the ladder-401

like tree topologies of the empirical data or the sampling402

times of the sequences. A different prior may improve some403

of these limitations. One option would be a serial sample404

coalescent prior with changing populations sizes (28, 29). This405

would also be more sensible to implement in a program which406

includes coalescent models, such as bpp. Such a prior could also407

allow for the incorporation of information on viral population408

sizes (such as from well described viral dynamic models) and409

knowledge of the time of infection.410

The viral dynamic simulation method developed in this411

paper is based on well-studied models of HIV population dy-412

namics within hosts. This is likely to be more realistic than413

traditional methods used to simulate phylogenies, such as414

constant rate birth-death processes, and it follows standard415

epidemiology approaches for studying viral dynamics. How-416

ever, this model does not incorporate selection, which is known 417

to be important in HIV evolution. The method produces trees 418

that are more star-like, with short internal branches, than 419

those typically inferred in empirical studies of HIV sequences. 420

Future work should focus on modeling selection, as well as 421

other aspects of HIV biology, such as clonal proliferation of 422

latently infected immune cells, to develop simulators and pri- 423

ors for inference that more accurately model HIV biology and 424

produce trees that more closely match the empirical observa- 425

tions. 426

Materials and Methods 427

Here we provide a brief description of the materials and methods 428

used in this paper, which are described fully in the SI Appendix. 429

Simulation of Phylogeny. A stochastic simulation based on existing 430

ODEs was developed to simulate tree topologies of sampled latent 431

and active HIV sequences. In the ODE, the sizes of five populations 432

of cells and viruses are tracked, including uninfected CD4+ target 433

cells, productively (actively) infected CD4+ target cells, virions, 434

replication-competent latent cells, and replication-incompetent la- 435

tent cells (see SI section 1). The stochastic model is formulated 436

as a continuous-time Markov chain with instantaneous rates as 437

described in the deterministic model (see SI section 2). The process 438

is modeled as a jump chain. A user specified number of virions and 439

latent cells are sampled at any number of user specified times. 440

A C program was written to to simulate under the stochastic 441

model. In addition to simulating population sizes, it tracks the 442

parent-daughter relationships of all infected cells and viruses in a 443

binary tree (see SI section 3). The amount of time latent in each 444

branch is also tracked. The stochastic and deterministic models 445

are in good agreement when population sizes are large, as expected 446

(Fig. S3). The total number of tips in the tree varied over time. 447

The maximum number of tips in a tree was on the order of 108 (Fig. 448

S3). 449

Simulation of Sequence Data. A separate C program was written to 450

simulate DNA sequences given a sampled tree with branch lengths 451

and a latent history. Sequences are simulated in the typical manner, 452

assuming independent substitutions among sites, starting at the 453

root of the tree and simulating forward in time toward the tips 454

of the tree. The simulator accommodates models as general as 455

the GTR+Γ substitution model (30, 31). No substitutions can 456

occur while a lineage is latent. The program allows an outgroup 457

with a node age of zero to be simulated. The sequence at the root 458

is specified by a FASTA format input file (from an existing HIV 459

sequence, for example). 460

Sampling and simulation parameters. 100 trees were simulated using 461

the stochastic simulator. 50 viruses and 10 latent cells are sampled 462

every year for 10 years. On the tenth year, an extra 50 latent 463

cells are sampled. For each of these 100 phylogenies, 30 alignments 464

for each of four genomic regions were generated with the DNA 465

simulator using an outgroup. To determine the DNA substitution 466

parameters, within-host longitudinal samples from published data 467

sets for four regions (tat, p17, nef, C1V2 ) were analyzed with 468

MCMCtree (see SI section 6). The estimated substitution rate 469

and length varied among the simulated regions, with C1V2 having 470

the highest substitution rate (µ = 3.56 × 10−5 per base per day) 471

and the most sites (n = 825) and nef having the next highest 472

substitution rate (µ = 1.34 × 10−5 per base per day) and number 473

of sites (n = 618). p17 has a slightly lower substitution rate than 474

tat (µ = 8.9 × 10−6 per base per day versus µ = 9.9 × 10−6 per 475

base per day), but more sites (n = 391 versus n = 132)(Table S2). 476

For each phylogeny and alignment, the sequences and phylogenies 477

were then subsampled three times to generate three trees and three 478

corresponding alignments. Specifically, 10 viruses were subsampled 479

every year for 10 years. 10 latent cells were subsampled after 5 years 480

of infection and 20 were subsampled after 10 years of infection. In 481

total, 300 tree topologies were simulated, each with 30 latent and 482

100 non-latent randomly sampled sequences. This led to a total of 483
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300 topologies × 30 alignments × 4 regions = 36, 000 simulated484

datasets.485

Maximum Likelihood Tree Inference and Rooting. To analyze the sim-486

ulated datasets a rooted tree topology was first inferred for use487

by HIVtree and other heuristic programs. Maximum likelihood488

trees were inferred with raxml-ng using an HKY+Γ model and489

outgroup rooted (32, 33). 25 parsimony and 25 random starting490

trees were used for the tree search. The outgroup was removed491

from the inferred tree. Both the LS and Bayesian methods use the492

outgroup rooted tree. For the ML method, the tree was re-rooted493

using root to tip regression available in the R package ape prior to494

analysis (19, 34). The LR method re-roots the tree using root to495

tip regression as part of the analysis. For LS, the sampling time496

was used as an upper bound for the latent lineages and the lower497

bound was 45 days prior to infection, while the active lineages were498

constrained to their sampling time. The ML and LR methods do499

not include additional constraints.500

Bayesian inference. For HIVtree analyses of simulated data, an501

HKY+Γ model was used with 5 rate categories and the prior κ ∼502

G(8, 1) (32). The prior for among site rate variation was α ∼ G(4, 8).503

A time unit of 1000 was used with a substitution rate prior of504

G(2, 200), meaning the mean was 10−5 per base per day. The root505

age prior was Gamma(36.5, 100). The latent times were bounded at506

3.695, which is equivalent to 45 days prior to infection. Two MCMCs507

were run for each analysis to check for convergence. MCMC lengths508

and conditions for convergence are described in the SI Appendix509

(see SI section 7).510

Combining Posterior Estimates from HIVtree. For combining results511

in Bayesian analyses of the simulated and empirical datasets, the512

function kdensity in the kdensity R package was used for kernel513

density estimation of the posterior distribution and the prior dis-514

tribution of each latent time (35). The posteriors and priors for515

each gene were multiplied according to equation 1. The resulting516

function was normalized by finding the proportionality constant517

using the integrate function. For the simulated datasets, the inte-518

gral bounds were set to the bounds on the latent time in HIVtree,519

which was the sample time and 45 days prior to infection. The520

0.025 and 0.975 quantiles were found using the invFunc function in521

the R package GoFKernel (36). The mean for the joint posterior522

was found using the integrate function. For the simulated datasets,523

this analysis was conducted on only a third of the trees from the524

main simulation analysis due to the highly demanding computations525

involved. For a small subset of simulated data, numerical issues526

prevented estimation of a combined latent integration time. (see SI527

section 8b).528

Existing Methods. The LR method was run using scripts available529

at:530

https://github.com/cfe-lab/phylodating531

The ML method used scripts available at:532

https://github.com/brj1/node.dating/releases/tag/v1.2533

The driver script provided by Jones et al. is available at:534

https://github.com/nage0178/HIVtreeAnalysis535

The LS method was obtained from:536

https://github.com/tothuhien/lsd-0.3beta/releases/tag/v0.3.3537

Empirical Analysis. Data sets published from (11, 13) required cu-538

ration prior to analysis. Due the large number of sequences in the539

the Abrahams et al. data set, sequences were subsampled, and540

alignments were edited due to gaps (see SI section 10). For all541

empirical data sets, raxml-ng was run using an HKY+Γ model (33).542

25 parsimony and 25 random starting trees were used for the tree543

search. Trees were rooted using root to tip regression using the rtt544

function in the ape package available in the R package ape prior to545

analysis (19, 34). Each of the four methods were run on all datasets.546

For the Jones et al. dataset, HIVtree was run with a root age547

prior of G(8,60) for patient 1 and G(15,50) for patient 2. These548

priors were chosen to have an induced prior when running without549

data with a variance of several years and a mean several years prior550

to diagnosis. Latent integration times were bounded 10 years prior551

to diagnosis, as a very conservative oldest possible bound. In the552

HIVtree analysis, an HKY+Γ model was used with 5 rate categories553

with the prior κ ∼ G(8, 1). The prior for among site rate variation 554

was α ∼ G(4, 8). A time unit of 1000 was used with a substitution 555

rate prior of G(5, 1000), meaning the mean was 5 × 10−6 per base 556

per day. For the LS analysis, latent integration times had the same 557

bounds of 10 years prior to diagnosis and the sample times. 558

For the Abrahams et al. dataset, the LS and HIVtree analyses 559

bounded the latent times at the infection times and the sample 560

times. In the HIVtree analysis, an HKY+Γ model was used with 561

5 rate categories with the prior κ ∼ G(8, 1). The prior for among 562

site rate variation was α ∼ G(4, 8). A time unit of 1000 was used 563

with a substitution rate prior of G(2, 200), meaning the mean was 564

10−5 per base per day. The root age prior was G(0.25, 110) for all 565

datasets. This prior was chosen to have a relatively wide variance 566

on the root age with a mean slightly before the infection time as well 567

as a large variance on the latent integration times. As described in 568

the Prior Model section, the root ages are older than the given prior 569

when run without data, and they are also different for each dataset. 570

When running the MCMC under the prior, small changes to the 571

prior appeared to cause little change to the posterior distribution 572

of the latent integration times. A full description of the MCMC 573

convergence criteria is provided in SI sections 9 and 10 for the Jones 574

et al. and Abrahams et al. datasets, respectively. The Jones et al. 575

dataset only sampled one gene, so estimates from multiple genes 576

could not be combined. The estimates from multiple genes for the 577

Abrahams et al. dataset were only combined for the tree with 10 578

non-latent sequences per sampling time and sites with gaps in over 579

75% of the sequences were removed from the alignment. 580

Program availability. The gene tree and the DNA simulation software 581

packages are available at: 582

https://github.com/nage0178/HIVtreeSimulations 583

The HIVtree software package is available at: 584

https://github.com/nage0178/HIVtree 585

Scripts to produce the results in this paper are available at: 586

https://github.com/nage0178/HIVtreeAnalysis 587
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Supporting Information Text11

1. Deterministic Model12

Here we describe the deterministic model of HIV population dynamics that will serve as the large-population analog of our13

stochastic model (see below). Let T (t) be the number of uninfected target cells at time t. Let T ∗(t) be the number of14

productively infected cells at time t. Let L(t) be the number of latently infected, replication-incompetent cells at time t. Let15

L∗(t) be the number of latently infected, replication-competent cells at time t. Let V (t) be the number of virions at time16

t (S1). Actively infected target cells that are replication-incompetent are not modeled. Define λ to be the rate at which17

uninfected target cells are produced and d to be the per cell rate at which they die. Let δ be the per cell rate at which actively18

infected cells die. Latent replication-competent cells and replication-incompetent cells die at constant per cell rates of σ and τ ,19

respectively. Let γ be the proportion of newly infected cells that are replication-incompetent. Let η be the proportion of newly20

infected cells that are latently infected and (1− η) be the proportion of newly infected cells that are actively infected. Let κ21

be the rate constant for target cells becoming infected cells. Productively infected cells must be replication-competent and22

are produced at a rate equal to product of the rate constant κ, the number of virions, the number of uninfected cells, the23

proportion of cells that are replication-competent, and the proportion of cells that are actively infected. The rate of production24

of latent replication-competent cells is calculated similarly, except that the proportion of cells that are latently infected is25

used rather than the actively infected population. For replication-incompetent latent cells, the rate of production is equal26

to the product of the rate constant κ, the number of virions, the number of uninfected cells, the proportion of cells that are27

replication-incompetent, and the proportion of cells that are latently infected. When an infected cell is produced, an uninfected28

cell is lost, since the uninfected cell becomes the infected cell. This is true for actively infected cells and both types of latently29

infected cells.30

Latent replication-competent cells can reactivate and become actively infected cells. This occurs at a constant per cell rate31

of α. HIV virions, V , are produced at a rate proportional to the concentration of actively infected cells, with rate constant π.32

The virions are cleared at a constant per virion rate of c. This model gives the following set of equations:33

dT (t)
dt

= λ− dT (t)− (1− γ(1− η))κT (t)V (t) [1]34

35

dT ∗(t)
dt

= (1− η)(1− γ)κT (t)V (t)− δT ∗(t) + αL∗(t) [2]36

37

dV (t)
dt

= πT ∗(t)− cV (t) [3]38

39

dL∗(t)
dt

= (1− γ)ηκT (t)V (t)− αL∗(t)− σL∗(t) [4]40

41

dL(t)
dt

= γηκT (t)V (t)− τL(t) [5]42

The solutions to these equation are obtained by numerical analysis using the function ode in the R package deSolve (1).43

2. Stochastic model44

Viral dynamics were modeled using a continuous-time Markov chain with instantaneous rates as previously described in the45

deterministic model. For example, let A be the event that a birth of an uninfected cell occurs in the time interval ∆t. Then,46

P (A) = λ∆t [6]47

The process is modeled as a jump chain. Only one event can occur in a small interval ∆t, and the number of viruses, or of any
cell type, can only change by one in that interval. The waiting time between birth events of uninfected cells is exponentially
distributed with mean waiting time 1

λ
. The instantaneous rates and waiting time between other events are determined similarly.

The total rate of events, R(t), is given by the sum of the rates of all possible events.

R(t) =λ+ (d+ (1− γ(1− η))κV (t))T (t) + (δ + π)T ∗(t)
+ (α+ σ)L∗(t) + τL(t) + cV (t) [7]

The waiting time between any event is exponentially distributed with mean 1
R(t) . Given that an event occurs, the probability48

the event was a birth of an uninfected cell, for example, is given by the ratio of the rate of birth events of uninfected cells and49

the total rate of events, λ
R(t) . The probabilities of other events are determined similarly.50
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3. Simulation of tree topologies51

The stochastic model was implemented as a C program. In the program, the parent daughter relationship of all of the viruses52

in a tree structure is tracked. The cell or virus type (e.g. T∗, V, L, or L∗) is also tracked. The simulation is initialized with53

a single actively infected cell. Each time a virus is born, an actively infected cell is randomly selected to branch into two54

daughter lineages. One lineage is an actively infected cell and the other an active virus. Each time a virus or cell dies, an55

existing virus or cell of that type is randomly removed from the tree. When a virus latently infects a cell, a virus is randomly56

chosen to branch into an infected cell and a virus. This is designed to follow the conventional ODE models, even though a57

single virus cannot infect multiple cells in real systems. This is likely inconsequential, since the waiting time for a virus to58

die is short, and thus the probability a virus infects multiple cells is very small. Replication-competent latent viruses may be59

reactivated, meaning they become actively infected cells. Extinction is considered to be analogous to a failure to establish60

infection. In this case, the simulation is restarted. At pre-specified times, a pre-specified number of active viruses and latently61

infected cells are sampled. Replication-competent and incompetent cells are not distinguished during sampling. Sampling is62

equivalent to a death event for all sampled lineages.63

4. Parameter Values64

Parameter values were determined using empirical estimates. Since many of the parameters are not independent and choosing65

parameters independently can lead to unrealistic patterns of viral load change over time, parameters obtained from a single66

patient and study were used for as many of the parameters as possible (2). The remaining parameters are taken from the67

literature (S1). η is fixed such that there are 1.4× 106 replication competent latent cells in 5L of blood at equilibrium (3). The68

initial concentration of uninfected target cells is assumed to be 10 cell/µL (2). Initially there is a single actively infected cell.69

All other cell and virus populations have size zero.70

In principle, the simulation method described above would allow the entire viral population within a host to be simulated.71

However, this is not computationally tractable due to the simulation time and memory usage. ODEs of viral dynamics in HIV72

typically describe the changes in concentrations of cells and viruses per mL of blood. If properties of the viral genealogies73

become independent of the simulation size as the simulation size increases, it may be reasonable to use a simulation volume74

much smaller than the total blood volume in an adult. To determine whether this was the case, the impact of simulation size75

was examined by simulating genealogies generated with different blood volumes while keeping the number sampled sequences76

constant. Tree length increases and then plateaus as the simulation size increases. Other tree metrics, including root age and77

total time spent in latency, also showed no trend with volume (S2). Thus, 100 mL was used as the simulation volume.78

5. Agreement between the deterministic and stochastic models79

For large population sizes, the stochastic model and the deterministic (ODE) model are expected to produce similar results for80

the population size as a function of time given the parameters and initial values are such that the population does not go81

extinct in the stochastic simulation. This is because we have designed the stochastic simulator to have an expected population82

size equal to the predicted population size for the deterministic model at any point in time and the relative variance of the83

stochastic model decreases with increasing population size. Populations sizes are in good agreement when there is no extinction84

(S3). Cases of extinction are common, but are not considered further.85

6. Estimation of DNA substitution model parameters86

To select DNA substitution model parameters to use in the simulations, parameters were inferred from empirical datasets for87

four genomic regions using MCMCtree (4). Alignments for nef, tat, C1V2, and p17 were taken from a studies on longitudinal88

Cytotoxic T-lymphocyte (CTL) responses from the LANL HIV special interest alignments (5–7). This patient (code PIC1362)89

was infected in 1998, was a homosexual male, and participated in a study at University of Washington Primary Infection Clinic.90

The patient had sequences samples taken at 18 time points and was untreated at the time of the study.91

To root the tree, sequences from four patients were selected using the LANL database to use as outgroups (GenBank92

accession numbers: AY331284, AY331289, AB078005, JN024426). The best outgroup is not always clear in phylogenetic studies.93

Multiple outgroups were used to compare of the effect of rooting on substitution rate estimates. All four of these patients were94

infected within 2 years of PIC1362, were likely infected on the west coast of the United States, has sexual transmission as a risk95

factor, were untreated at the time of sampling, and had all four genomic regions were available. The outgroup sequences were96

combined with the existing alignments using the SynchAlign tool on the LANL HIV database. This resulted in 16 alignments,97

one for each gene outgroup pair. Then, sites with more than 75% gaps were removed from the sequences using a custom R98

script. This was done to remove problematic regions of the alignments, particularly in C1V2.99

To obtain parameter estimates, maximum likelihood trees were inferred with RAxML-ng (8) under an HKY+Γ model (9, 10)100

and outgroup rooted. The outgroups were removed from each of the alignments and the maximum likelihood trees. MCMCtree101

was used to infer the substitution model parameters and substitution rate for each gene with each outgroup rooting (4). An102

HKY+Γ model with 15 rate categories was used. The prior for κ in the HKY model was G(8, 1). The prior for among site rate103

variation was α ∼ G(1, 1). A time unit of 1000 was used with a rate prior of G(2, 200), or 10−6 substitutions per base per day.104

A birth-death-sequential-sampling model was used with parameters λ = 2, µ = 1, ρ = 0, and ψ = 1.8 (11). A root age prior105

was U(1, 10), meaning the root age was 1000 to 10000 days prior to the last sample time, with 0.01 tail probabilities (12).106
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5 replicates of MCMCtree were run for each gene outgroup pair. Each MCMC was run with a burnin of 1000, sample107

frequency of 2, and 10000 samples. The estimates from each of the 5 replicate MCMCtree runs were similar in all cases,108

indicating the MCMC converged. The point estimate of the substitution rate and the 95% HPD interval bounds for the109

substitution rate were averaged over the 5 replicates. In most cases, each outgroup produced similar mutation rate estimates110

for a given gene. The outgroup rooting with the smallest 95% HPD interval of the substitution rate divided by substitution111

rate was used to provide parameters for DNA simulation. However, for nef, outgroup 1006 had a much different rooting than112

the other outgroups. CS2 and PIC55751 had the same root location. Of those two, the one with the smaller 95% HPD interval113

of the substitution rate divided by substitution rate was used. This resulted in JN024426 being selected as the outgroup for all114

genes. The first replicate MCMC run of MCMCtree with JN024426 as the outgroup rooting was used for parameters estimates115

for each gene. This included the estimates of α, κ, µ, and the stationary frequencies (S2).116

The HXB2 sequence was used at the root sequence for the simulation of each region (S2). However, no bases were removed117

inside the sequence, as done in the original alignment in regions with over 75% gaps. An HKY model was used for the simulation118

since the parameters inferences were made with an HKY model MCMCTree.119

7. MCMC settings for Simulation Analysis120

For each of the simulated datasets, HIVtree was run with two seeds. The MCMC was sampled every other iteration for 30,000121

samples with a burn in of 2,500. Thus a total of 30000× 2 + 2500 = 62, 500 iterations were run. The internal node ages of the122

two replicate MCMCs were compared for each analysis. If the mean age difference between the two replicate MCMCs was123

more than 10 days for more than 10 internal nodes, 20 days for more than 5 internal nodes, or 100 for any internal nodes, the124

MCMCs are considered to not have converged. A total of 347 pairs of MCMCs did not converge out of 36,000 pairs run. For125

each pair of MCMCs that did not converge, another 2 MCMCs were run with different seeds with 60,000 samples. Of those, 18126

pairs of MCMCs did not converge. Those MCMCs were rerun again with different seeds, a burnin of 10000 iterations, and were127

run for 240,000 iterations, sampling every other iteration. All of these runs met the above convergence criteria except one.128

This was a simulated nef dataset and was removed from all analyses.129

8. Combining Posteriors130

A. Example: Sample from a Bivariate Normal PDF. Suppose that we have samples Y = y1, . . . , ya and X = x1, . . . , yb from a131

bivariate normal density with means µy = µx = µ, variances σ2
x = σ2

y = 1 and correlation parameter ρ. Our goal will be to132

generate the posterior density of µ by combining posterior densities for x and y. We will treat the variables Y and X as133

independent in our inference procedure, though in reality ρ may be non-zero. For simplicity, we use a normal prior density134

for µ, which is a conjugate prior for the normal density and so the posterior is also normal. Suppose that Y ∼ N (µ, 1) and135

X ∼ N (µ, 1). Let the prior for Y be fy(µ) ∼ N (µ1, σ
2
1) and the prior for X be fx(µ) ∼ N (µ2, σ

2
2). The “preferred prior” for136

use in generating the posterior based on both X and Y is fp(µ) ∼ N (µp, σ2
p). The posteriors are then137

f(µ|Y ) ∼ N

( µ1
σ2

1
+ aȳ

1
σ2

1
+ a

,
σ2

1
1 + aσ2

1

)
138

and139

f(µ|X) ∼ N

( µ2
σ2

2
+ bx̄

1
σ2

2
+ b

,
σ2

2
1 + bσ2

2

)
140

The approximation of the posterior of µ, given X and Y , is then141

f(µ|X,Y ) = f(µ|X)f(µ|Y )
fy(µ)fx(µ) × fp(µ)× CxCy

Cxy
[8]142

The true posterior is know in this case when ρ = 0. Let Z = X ∪ Y and n = a+ b, then143

f(µ|X,Y ) ∼ N

( µp

σ2
p

+ nz̄

1
σ2

p
+ n

,
σ2
p

1 + nσ2
p

)
[9]144

This simple case can be used to test methods for inferring the posterior from combined samples. Rather than doing MCMC,145

instead simply sample iid random variables from f(µ|Y ), f(µ|X), fy(µ), and fx(µ) and use kernel density estimation to146

infer the density functions for each. Then apply equation 8 to estimate the posterior. The accuracy of the estimate can be147

determined by comparison with results from equation 9. For example, curves could be plotted for the true density versus the148

approximation. The approximate density will need to be renormalized so that it integrates to 1. The constant, C, to multiply149

values by to normalize could be estimated as150

1
C

=
∫

f(µ|X)f(µ|Y )
fy(µ)fx(µ) × fp(µ)dµ.151
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B. Numerical Issues Combining Posteriors. In a small number of cases, numerical issues arose when combining posteriors as152

using the packages described in the main text. In one case, no error messages resulted but the proportionality constant was on153

the order of 10−12. Likely due to numerical issues, this caused the mean latent integration time to be estimated to a value on154

the order of 106, which has zero prior probability. This latent integration inference was removed from the analysis. Out of155

inferences for 90,000 latent integration times, 63 other analyses combining latent integration times from all four gene produced156

error messages related to non-integrable functions, and did not produced an estimate. This occurred for 8 latent times in the157

analysis of two genes only. These cases were removed from further analysis. These likely result when the posterior distributions158

from different genes are non-overlapping.159

9. Empirical Analysis of the Jones et al. dataset160

Sequences originally published by Jones et al. (2018) were taken from GenBank (accession nos. MG822917-MG823179), and161

separated into patient 1 and patient 2 (13). The sequences from patient 1 were aligned using mafft (version 7.453) using the162

default settings (14). The sequences from patient 2 did not need to be aligned. The relative sample dates were determined163

using the collection date.164

HIVtree was run with a burnin of 5,000 iterations, with 70,000 samples, sampling every other iteration. Two replicate165

MCMCs were run for each dataset. Convergence was checked by confirming no more than 5% of the mean internal nodes ages166

differed by more than 10 days between replicate MCMCs, 2.5% differed by more than 20 days, or any of the internal nodes167

differed by more than 100 days. Both pairs of MCMCs met this convergence criteria.168

10. Empirical Analysis of the Abrahams et al. dataset169

Alignments for patients 217 and 257 originally published by Abrahams et al. (2019) were available from https://github.com/veg/ogv-170

dating/tree/master/results/alignments (15). There were multiple alignments for each data set and the "fasta_combined.msa"171

alignments were used. The week of sampling is included in the sequence name. Using the supplemental data table, the relative172

dates of sampling in units of days were determined. For some patients, there were multiple visit dates in the same week. In173

this case, the first visit date was used as the sample date for all sequences collected during that week. For each alignment,174

sequences were subsampled to include 10, 15, or 20 sequences from each pre-ART each collection time point and all outgrowth175

virus sequences. If less than the desired number of sequences were available at a given time point, all of the available sequences176

were used. While the sequences were aligned, some of the alignments had many gaps. Sites in the alignments were removed if177

they had more than 75%, 85%, or 95% gaps. Thus, for each of 8 starting alignments, 9 alignments were created. However, some178

of the alignments with gap removal were identical. Thus, a total of 46 unique alignments were created. HIVtree requires the179

sampling date to be at the end of the sequence name. Thus, the sequence names from the original publications were modified180

for our analyses.181

Two replicate runs of HIVtree were run for each analysis. A burnin of 8,000 was used with samples taken every other182

iterations for a total of 80,000 samples. Thus, the MCMC was run for 168,000 iterations. Convergence of the MCMCs was183

checked by comparing the mean ages of the internal node ages. If more than 5% of the mean internal nodes ages differed by184

more than 10 days between replicate MCMCs, 2.5% differed by more than 20 days, or any of the internal nodes differed by185

more than 100 days, the MCMC was considered to not have converged. Two pairs of MCMCs did not converge. These were186

rerun with a a total of 150,000 samples, sampling every other iteration with a burnin of 8,000 iterations. Convergence was187

checked again with the same criteria as previously. Both pairs MCMCs had converged.188

Each figure (S9 - S24) show the inferred integration date for each method, LR, LS, ML, and HIVtree. Each figure is for a189

single patient and gene. Some figures have two levels of gap removal instead of three because gap removal at different levels190

resulted in identical alignments. Thus, only the non-redundant results are shown. The gene names (e.g. ENV_4, NEF_1)191

match those in the original alignment names.192

11. Effect of the number of non-latent samples on method performance193

The effect of tree size on the inference of latent samples was examined by changing the number of non-latent samples at each194

sample time. Using the simulated trees and alignments used in the main simulation analysis, the subsampling was changed195

from having 10 to 10, 15 or 20 non-latent sequence sampled every year for ten years. This results in a larger phylogenetic196

tree with the same number of latent sequences for each tree. Each tree was subsampled only one time for each number of197

non-latent sequences, rather than three times in the main analysis. The number of non-latent sequences at each sampling198

time does not have a large impact on bias (S25), MSE (S26), size of the 95% confidence intervals (S27), or the probability the199

inferred integration times fall within the 95% confidence intervals or credible sets (S28) for any of the methods.200

As preliminary analysis did not show any trend with the other methods, this analysis was only run for the p17 datasets201

with HIVtree. For the analyses with HIVtree, the priors were the same as in the main simulation analyses with HIVtree. The202

MCMCs were run with a burnin of 5,000 iterations, sampling every other iteration and sampling a total of 50,000 times. Two203

replicate MCMCs were run for each analysis. The difference between the mean times of the internal nodes was compared. The204

MCMCs were considered to have converged if this difference was no more than 10 days for at most 10% of the internal nodes,205

20 days for at most 5% of the internal nodes, and no more than 100 days for any of the internal nodes. 10 pairs of MCMCs did206

not converge. These were run again with a burnin of 10,000 iterations, sampling 100,000 times with sampling every other207

iteration. The above convergence criteria were checked again. All MCMCs were considered to have converged.208
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Fig. S1. Within-host viral dynamics model
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Fig. S2. Impact of simulation volume on properties of genealogies. 50 active and 20 latent viruses were sampled at 75, 100, 200, and 300 days. 10 simulations were run for
each simulation volume. Other simulation parameters match those in S1. Standard error is shown.
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Table S1. Simulation parameters

Parameter Description Value

λ Birth rate of uninfected cells 170 cell
mL×day (2)

d Death rate of uninfected cells 0.017 1
day (2)

κ Transition rate from uninfected to actively infected cells 8.0 ×10−7 mL
virion×day (2)

δ Death rate of actively infected cells 0.31 1
day (2)

π Viral birth rate 730 virions
cell day (2)

c Viral clearance rate 3 1
day (2)

η Proportion of newly infected cells that are latent 1.16 ×10−3 (3)
α Rate of activation of replication-competent, latent cells 5.7 ×10−5 1

day (16, 17)
γ Proportion of viruses that are defective 0.95 (18)
σ Death rate of latent, replication-competent cells 5.2 ×10−4 1

day (19)
τ Death rate of latent, replication-incompetent cells 1.1 ×10−4 1

day (19)

The parameters from (2) are for patient 7. κ is typically estimated as the rate constant of new infections of replication-competent cells, which is
κ(1 − γ)(1 − η) in this model. Thus, the empirical estimates of κ, as presented in the table, is divided by (1 − γ)(1 − η) to obtain the parameter
value used in the model.
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Fig. S3. Predicted population sizes in the deterministic model and observed population sizes in the stochastic model are very similar. For both models, a blood volume of 10 mL
was modeled using the parameters listed in Table S1. The initial population sizes are 104 target cells/mL, 1 actively infected cell/mL, and 10 virions/mL. The deterministic
model is shown in black, and one realization of the stochastic simulation is shown in red. In comparison to the initial conditions described in the text, a larger number of actively
infected cells was used to limit the stochastic effects of small population sizes, allowing for a comparison when the virus is unlikely to become extinct.

Anna Nagel and Bruce Rannala 9 of 36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495297doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495297


Table S2. DNA simulation parameters. µ is in units of expected number of substitutions per day per base. The genes simulated do not cover
the entire genes.

Region HXB2 start HXB2 end µ α κ πA πC πG πT

C1V2 6213 7037 3.56 × 10−5 0.4294 6.9801 0.35322 0.17636 0.21123 0.259191
nef 8797 9414 1.34 × 10−5 0.4878 8.9138 0.30641 0.21240 0.28265 0.19853
p17 817 1207 8.9 × 10−6 0.5306 10.6361 0.39393 0.18392 0.25040 0.17175
tat 5831 5962 9.9 × 10−6 0.7283 7.1751 0.29841 0.21021 0.23449 0.25689
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Fig. S4. Proposal steps in the MCMC for latency times. Tips B and C correspond to non-latent sequences. At some time in the past, tA,l, lineage A became latent. The
dashed line shows when the lineages was latent. (a) Starting from the current latent time, (b) a new time can be proposed anywhere between the sample time and the age of
the parent node, shown in blue. (c) Once a time is proposed, the move can be accepted or rejected. In this case, the move is accepted and the time is updated. For the
calculation of the likelihood, the branch lengths correspond to the length of the solid lines only.
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Fig. S5. The user input prior for the root age is not the same as the prior determined by running HIVtree without data. The black line shows the user input root age prior of
Gamma(36.5, 100) on a tree with a last sample time of 3285 days before present with a time unit of 1000. This gives as mean root age of 3.65 in the time units used in HIVtree.
This is the same as all of the simulated trees in our analyses. Using a simulated dataset for C1V2, a tree toplogy was inferred with RAxML and outgroup rooted. This tree was
used to run HIVtree under the prior. The red line shows the results, in which the root age is older than the user input prior.
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Fig. S6. For a fixed tree toplogy, there are 30 latent integration times for each of the 30 alignments for a given gene. The line has slope 1 and intercept 0.
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Fig. S7. (a-c) and (d-f) show the inferred integration dates for each sequence from patient 1 and 2, respectively. (a,d), (b,e), and (c,f) show inferences from LS, LR, and ML,
respectively. The vertical lines show the first positive date (left) and start of cART (right). The bar show 95% confidence intervals for LS and LR. Confidence intervals are not
inferred in the ML method. With sample time 11.1 for patient 1, three of the latent integration times inferred with ML and one with LR are after the sampling date. The LS
method is bounded at the sample time, but those sequences are inferred to have been integrated at the sample time.
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Fig. S8. Each of the left three panels shows the integration times inferred using HIVtree for a single sequence. The panel on the right shows the inferred integration times when
the posterior estimate for the three sequences are combined. The results are from patient 217 (15). 10 non-latent sequence were used as each available timepoint and sites
with more than 75% gaps were removed from the alignment prior to analysis, as described in SI section 10. The dashed line shows the infection time, the solid line shows the
start of ART, and the dotted line shows the sample time.
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Fig. S9. The inferred latent integration dates for Env_2 from patient 217 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 75% missing gaps have been removed from
the alignment.
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Fig. S10. The inferred latent integration dates for Env_2 from patient 217 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 95% missing gaps have been removed from
the alignment.
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Fig. S11. The inferred latent integration dates for Env_3 from patient 217 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 75% missing gaps have been removed from
the alignment.
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Fig. S12. The inferred latent integration dates for Env_4 from patient 217 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 75% missing gaps have been removed from
the alignment.
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Fig. S13. The inferred latent integration dates for Env_4 from patient 217 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 95% missing gaps have been removed from
the alignment.
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Fig. S14. The inferred latent integration dates for Env_2 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 75% missing gaps have been removed from
the alignment.
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Fig. S15. The inferred latent integration dates for Env_2 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 85% missing gaps have been removed from
the alignment.
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Fig. S16. The inferred latent integration dates for Env_2 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 95% missing gaps have been removed from
the alignment.
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Fig. S17. The inferred latent integration dates for Env_3 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 75% missing gaps have been removed from
the alignment.
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Fig. S18. The inferred latent integration dates for Env_4 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 75% missing gaps have been removed from
the alignment.
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Fig. S19. The inferred latent integration dates for Env_4 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 85% missing gaps have been removed from
the alignment.
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Fig. S20. The inferred latent integration dates for Env_4 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 95% missing gaps have been removed from
the alignment.
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Fig. S21. The inferred latent integration dates for GAG_1 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and
the 95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment
start (solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 75% missing gaps have been removed from
the alignment.
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Fig. S22. The inferred latent integration dates for GAG_1 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and
the 95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment
start (solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 95% missing gaps have been removed from
the alignment.

Anna Nagel and Bruce Rannala 29 of 36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495297doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495297


Bayes LR LS ML

10
15

20

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9
inferred integration date (years)

se
qu

en
ce

Number of RNA 
sequences per 
sample time

10

15

20

Fig. S23. The inferred latent integration dates for NEF_1 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 75% missing gaps have been removed from
the alignment.
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Fig. S24. The inferred latent integration dates for NEF_1 from patient 257 are shown for each method. 95% confidence intervals are shown for the LR and LS methods, and the
95% credible interval is shown for HIVTree. Sequences are shown in the same order in each panel. The vertical lines show the time of infection (dashed), time of treatment start
(solid) and the time of sampling (dotted). The color shows the number of RNA sequences subsampled from the original alignment at each sample time. If fewer sequences
were available then the number indicated by the color at a given time, all available sequences were used. Sites with greater than 95% missing gaps have been removed from
the alignment.
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Fig. S25. The bias for each simulated region using each of four analysis is shown. Each data point in the violin plot is the average bias of 30 latent times in each of 30
alignments with a fixed topology. There are a total of 100 fixed topolgies for each violin plot. The number of non-latent sequences sampled at each of 10 sampling time points is
indicated by the color. While the longest and most quickly evolving gene, C1V2, has the lowest bias for all methods and the shorter, more slowly evolving genes have greater
bias, there is not a consistent trend in bias by the sample size.
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Fig. S26. Each data point in the violin plot is the average MSE of 30 latent times in each of 30 alignments with a fixed topology. There are a total of 100 fixed topolgies for each
violin plot. The number of non-latent sequences sampled at each of 10 sampling time points is indicated by the color. There is not a consistent trend in MSE by the sample size.
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Fig. S27. Each data point in the violin plot is the average size of the 95% confidence intervals (or credible sets for the Bayesian method) of 30 latent times in each of 30
alignments with a fixed topology. There are a total of 100 fixed topolgies for each violin plot. The number of non-latent sequences sampled at each of 10 sampling time points is
indicated by the color. The longest and most quickly evolving gene, C1V2, has smaller confidence intervals for all methods. The sample size does not have a large effect on the
size of the confidence intervals.
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Fig. S28. Each data point in the violin plot is the probability the true latent time falls within the 95% confidence intervals (or 95% highest posterior density set) for 30 latent times
in each of 30 alignments with a fixed topology. There are a total of 100 fixed topolgies for each violin plot. The number of non-latent sequences sampled at each of 10 sampling
time points is indicated by the color. This probability is always 1 for the LR method. For the LS method, the probability decreases when the region is shorter with a lower
mutation rate, but does not vary predictably with sample size. The ML method is not shown since it does provide confidence intervals or credible sets.
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