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Abstract 48 
Early adversity can change educational, cognitive, and mental health outcomes. However, 49 
the neural processes through which early adversity exerts these effects remain largely 50 
unknown. We used generative network modelling of the mouse connectome to test 51 
whether unpredictable postnatal stress shifts the constraints that govern the formation of 52 
the structural connectome. A model that trades off the wiring cost of long-distance 53 
connections with topological homophily (i.e. links between regions with shared neighbours) 54 
generated simulations that replicate the organisation of the rodent connectome. The 55 
imposition of early life adversity significantly shifted the best-performing parameter 56 
combinations toward zero, heightening the stochastic nature of the generative process. Put 57 
simply, unpredictable postnatal stress changes the economic constraints that shape 58 
network formation, introducing greater randomness into the structural development of the 59 
brain. While this change may constrain the development of cognitive abilities, it could also 60 
reflect an adaptive mechanism. In other words, neural development could harness 61 
heightened stochasticity to make networks more robust to perturbation, thereby facilitating 62 
effective responses to future threats and challenges.  63 
 64 
Significance statement 65 
Children who experience adversity early in life – such as chronic poverty or abuse – show 66 
numerous neural differences that are linked to poorer cognition and mental health later in 67 
life. To effectively mitigate the burden of adversity, it is critical to identify how these 68 
differences arise. In this paper, we use computational modelling to test whether growing up 69 
in an impoverished and unpredictable environment changes the development of structural 70 
connections in the mouse brain. We found that early adversity appears to introduce more 71 
stochasticity in the formation of neural architecture. Our findings point to a potential 72 
mechanism for how early adversity could change the course of child development. 73 
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Introduction  95 
The structure of the human brain undergoes complex changes over the first three decades 96 
of life1. At the macroscopic level, neural development proceeds through the formation of a 97 
network of white-matter projections between populations of neurons, a process both 98 
subject to genetic control and environmental regulation2–4. A complete wiring map of the 99 
brain, known as a “connectome”, can be reconstructed through diffusion-weighted 100 
magnetic resonance imaging (MRI) and analysed using graph theory5. Healthy neural 101 
architecture is characterised by a precise pattern of organisation, or topology, that emerges 102 
over the course of childhood6,7. For instance, brain networks exhibit small-worldness, a 103 
balance between a short average path length and high clustering that permits both 104 
integrated and segregated processing of information8,9. Features of connectome 105 
organisation can predict developmental differences across individuals, including variation in 106 
cognitive ability and mental health10,11. 107 
 108 
The structural organisation of the brain emerges amid a tight set of constraints. The most 109 
significant of these is the biophysical embedding of the network, because of which long-110 
distance connections incur a large metabolic cost12. The brain has adapted to limit this cost 111 
by making parsimonious use of energy and space, creating comparatively expensive features 112 
– such as connections between spatially distant regions – judiciously9,13. But cost 113 
minimisation alone cannot account for the observed organisation of biological neural 114 
networks14,15. Rather, the brain appears to negotiate an economic trade-off between the 115 
physical cost of structural connections and the topological value they add to the 116 
network9,16,17. Recent advances in computational modelling offer a way to directly 117 
investigate the constraints that govern the development of the connectome by generating 118 
networks using different wiring rules14,16,18–20. Studies employing this approach have shown 119 
that slight manipulations in the trade-off between two key generative model terms - wiring 120 
cost and topological value - can reproduce real-world diversity in structural brain 121 
organisation, and account for differences in behavioural phenotypes16,21,22. However, we do 122 
not yet know which developmental factors, including social environmental conditions in 123 
early life, modulate the wiring economy and thus shape the trajectory of brain network 124 
development. 125 
 126 
The quality of the early environment is a critical determinant of neurodevelopment23. 127 
Children who experience adversity or maltreatment show subtle differences in the 128 
organisation of their connectomes, including lower connectivity between modules and 129 
altered centrality of regions such as the amygdala24,25. Such neural differences may be 130 
conducive to navigating a hostile and unpredictable early environment, but may come at 131 
the expense of poorer cognition and mental health later in life26. Due to the methodological 132 
and ethical limits of human research, experimental studies in rodent models have proven 133 
invaluable for establishing the causal role of adversity in neural outcomes27. Recent work in 134 
mice has shown that early-life stress causes local changes in brain network organisation, 135 
including an increase in frontolimbic connectivity and decrease in efficiency of the 136 
amygdala, that drive a global increase in small-worldness and heightened anxiety-related 137 
behaviour28,29. The increasingly thorough demonstration of adversity-related differences in 138 
brain structure highlights a crucial mechanistic gap in our understanding: how does early 139 
adversity alter the development of network-level brain organisation?   140 
 141 
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In the current study we test whether early adversity alters the wiring economy of the 142 
developing mouse connectome using a paradigm of unpredictable postnatal stress (UPS). 143 
UPS pups are raised under conditions of limited bedding to mimic impoverishment and are 144 
also exposed to unpredictable hour-long bouts of maternal separation and nest disruption 145 
to model chaotic and complex adversity28,30. We reconstructed the structural connectomes 146 
of 49 adult mice, half of which were exposed to UPS during the first four weeks of life30. 147 
Using generative network modelling, we computationally simulated realistic networks for 148 
each animal and evaluated how well they replicated the observed connectomes. We then 149 
tested for differences in the economic conditions of brain development by comparing the 150 
generative model parameters that most closely replicated the connectomes of each group. 151 
Finally, we explored the developmental implications of shifts in the wiring economy of the 152 
brain. 153 
 154 

Results 155 
Empirical connectomes 156 
At birth, N = 49 pups were randomly assigned to a control or UPS30 condition (Figure 1a). 157 
Mice were kept in rearing conditions until adolescence and sacrificed in adulthood, at which 158 
point diffusion imaging was performed (see Methods). Using probabilistic tractography, we 159 
reconstructed binary structural connectomes for each mouse. The connectomes showed no 160 
differences between groups on gross measures of global topology, including on number of 161 
edges (p = 0.89), number of long-distance connections (p = 0.52), maximum modularity (p = 162 
0.72), global efficiency (p = 0.71), or small-worldness (p = 0.47) (see Methods; 163 
Supplementary Table S1). Groups did not differ on the distributions of key local 164 
characteristics, including node degree, clustering coefficient, betweenness centrality, edge 165 
length, mean matching index, and nodal efficiency (all p > 0.96) (see Methods; 166 
Supplementary Table S2). 167 
 168 
Generative modelling procedure  169 
To simulate the formation of each connectome, we formalised a trade-off between two 170 
competing factors: the wiring cost incurred by new connections and the topological value 171 
they add to the network16,21. The cost term penalises long-distance connections, thereby 172 
capturing the evolutionarily conserved drive to minimise the metabolic and material 173 
expense of axonal projections9,18. The value term favours connections between regions that 174 
share some topological property, such as a similar pattern of clustering or a large number of 175 
existing connections7,9,18. 176 
 177 
The model simulates connectome formation by incrementally adding connections, one at a 178 
time, from some initial conditions. At each step, it estimates the likelihood of potential new 179 
structural connections using a simple probability equation16,21: 180 
 181 

𝑃𝑖,𝑗 ∝ (𝐷𝑖,𝑗)𝜂(𝐾𝑖,𝑗)𝛾   (1) 182 

 183 
where 𝑃𝑖,𝑗 is the probability of forming a binary connection between any two previously 184 

unconnected regions of the brain, i and j . The first term 𝐷𝑖,𝑗 represents the wiring cost. As 185 

the resources required by an axonal projection increase with its length9, 𝐷𝑖,𝑗 approximates 186 

the cost of a connection using the Euclidean distance between the brain regions it would 187 
connect. The term is scaled by a parameter 𝜂, which determines the strength of its 188 
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contribution to the overall wiring probability. To penalise longer distance connections, 𝜂 is 189 
negative.  190 
 191 
The second term 𝐾𝑖,𝑗 represents the topological value of a connection and can take 192 

numerous forms. Following previous work16,21,22, we tested thirteen variations of 𝐾 (known 193 
as “generative rules”), each one quantifying a different topological relationship between the 194 
two nodes i and j .The generative rules we considered fall in three categories: (i) homophily 195 
models, which favour connections between nodes with similar connectivity 196 
neighbourhoods; (ii) clustering-based models, which utilise the clustering coefficients of the 197 
regions; and (ii) degree-based models, which utilise their node degree. 𝐾𝑖,𝑗 is scaled by a 198 

parameter 𝛾, which is positive to favour connections with a higher topological value. 199 
 200 

 201 
Figure 1. Experimental design and generative modelling procedure. (a) On postnatal day 0, N = 49 202 
pups were randomly assigned to a paradigm of unpredictable postnatal stress or standard rearing 203 
conditions until postnatal day 26. After postnatal day 70, mice were sacrificed and ex-vivo diffusion 204 
imaging was performed. Whole-brain probabilistic tractography was used to reconstruct the 205 
structural connectome of each animal. (b) An illustration of the generative process using a simplified 206 
connectome of ten nodes. Starting from a sparse seed network (t = 0), edges are added one at a time 207 
until the simulation reaches the number of edges found in the observed connectome (t = e). The 208 
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matrix of wiring probabilities is updated at each step, allowing for dynamic shifts as the topology of 209 
the network emerges. (c) By systematically varying generative rules and parameter combinations, it 210 
is possible to identify the topological term K and the parameters 𝜂 and 𝛾 that best simulate the 211 
organisation of the observed connectome. 212 
 213 
At every step of the generative process, the model multiplies the cost and value terms for 214 
each pair of regions to produce a matrix of relative wiring probabilities, and probabilistically 215 
chooses a “winning” edge to add to the simulation (Figure 1b). Given that every new 216 
connection changes the topology of the network, and therefore also the 𝐾𝑖,𝑗  term for some 217 

possible connections, the model iteratively updates 𝑃𝑖,𝑗 over time. In other words, the 218 

model continually re-computes the probability of future connections. 219 
 220 
Shifts in wiring probability can occur quite rapidly, especially whilst the connectome is 221 
sparse22. For example, consider the network at step t = 0 in Figure 1b. Suppose it is growing 222 
according to a generative rule that favours connections between regions with shared 223 
neighbours. According to the probability function (Eq. 1), nodes 4 and 5 would be unlikely to 224 
wire together at first, because they are relatively distant and share no neighbours. Instead, 225 
at step t = 1, a connection forms between proximal nodes 5 and 6. However, this new 226 
connection gives nodes 4 and 5 a shared neighbour and therefore increases the topological 227 
value of forming a direct connection, which occurs at step t = 2, despite the greater distance 228 
between them. Whilst wiring cost remains the same across development, the topological 229 
value of connections, and therefore the overall wiring probability, is dynamic from one step 230 
to the next. As the network grows, longer connections become increasingly likely as the 231 
topological value added by new links outweighs the penalisation of wiring cost31. 232 
 233 
The generative process terminates when the synthetic network reaches the number of 234 
edges of the connectome that the model is simulating. By varying the generative rule used 235 
as the topological term 𝐾𝑖,𝑗 , and the 𝜂 and 𝛾 parameters, it is possible to systematically 236 

manipulate the conditions that govern the development of the synthetic network (Figure 237 
1c). Identifying the rules and parameters that best simulate the real connectomes of 238 
individuals can thus shed light on what may be guiding their structural 239 
neurodevelopment18,21,22. 240 
 241 
Homophily-based simulations achieve best model fit 242 
We first sought to identify the generative rule that most successfully reproduced the 243 
structural connectomes of our sample of mice (N = 49). For each animal and generative rule, 244 
we tested 160,000 parameter combinations evenly distributed throughout the space 245 
defined by −10 ≤  𝜂 ≤  0 and 0 ≤  𝛾 ≤  10. Beginning with a sparse seed network of edges 246 
shared across all animals (see Methods; Supplementary Figure S1), connections were added 247 
according to the probability function (Eq. 1) until the synthetic network reached the number 248 
of edges of the empirical connectome of that animal.  249 
 250 
At the end of the generative process, we assessed how well each synthetic network fit the 251 
connectome it was simulating using the following energy equation21: 252 
 253 

𝐸 = max(𝐾𝑆𝑘 , 𝐾𝑆𝑐, 𝐾𝑆𝑏, 𝐾𝑆𝑑)                      (2) 254 
 255 
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where the terms are the Kolmogorov-Smirnov (KS) statistics comparing the synthetic and 256 
empirical distributions of node degree (k), clustering coefficient (c), betweenness centrality 257 
(b), and edge length (d). These four measures are critical properties of networks that are 258 
linked to stress exposure and psychiatric conditions32,33 and have previously been used to 259 
assess the similarity of empirical and economically simulated connectomes 21,22,34. As the 260 
energy is the maximum of the four statistics, a lower energy corresponds to better model 261 
fit. In other words, Eq. 2 compares the organisation of each synthetic network to the 262 
organisation of the biological connectome; if the networks are similarly organised, then the 263 
energy will be low. 264 
 265 
To assess the performance of the models, we compared the lowest-energy simulation 266 
produced by each rule. All generative rules outperformed a purely spatial model that 267 
considered only wiring cost (Figure 2a; Supplementary Table S3). An ANOVA and post-hoc 268 
Tukey test confirmed that models specifying homophily as the topological 𝐾𝑖,𝑗 term 269 

achieved lower energy than those utilising clustering (diff = -0.090, p = 1.97 x 10-12) or 270 
degree (diff = -0.020, p = 1.16 x 10-9). Thus, generative models that trade-off the wiring cost 271 
of a connection with a measure of neighbourhood similarity produce synthetic networks 272 
whose global topological distributions closely resemble those of the observed connectomes. 273 
As multiple models achieved low energy, the success of the top-performing models from 274 
each category was examined further. 275 
 276 
Homophily best recapitulates the local properties of observed networks 277 
The energy equation effectively assesses how closely the statistical distributions of nodal 278 
characteristics of the synthetic networks resemble those of the empirical connectomes. 279 
However, brain networks also exhibit local patterns of relationships between nodal 280 
characteristics. For instance, nodes with high betweenness centrality tend to be lower in 281 
clustering, given their position between modules35.  282 
 283 
To address this, we characterised the local organisational properties of the empirical and 284 
simulated networks using a method called the “topological fingerprint,” which has recently 285 
been developed for this purpose31. First, we selected the lowest-energy simulations 286 
produced by each generative rule. We then calculated six common measures of nodal 287 
topology, including degree, betweenness centrality, clustering coefficient, edge length, local 288 
efficiency, and mean matching index. Next, we computed correlations between these 289 
measures, calculated the sample average, and summarised the results in a 6-by-6 matrix. 290 
These matrices are called topological fingerprints because they summarise the unique 291 
patterns of local organisation found across a network. 292 
 293 
Topological fingerprints (TF) for the empirical connectomes and the top-performing 294 
generative models from each category can be found in Figure 2b (all other rules are shown 295 
in Supplementary Figure S2a). A visual comparison of the topological fingerprints offers a 296 
way of estimating how well the generative models replicate the local properties of the 297 
connectomes. To formalise this assessment quantitatively, we also calculated the difference 298 

in their topological fingerprints, (TF) according to the following equation31, which 299 
implements the Euclidean norm: 300 

∆𝑇𝐹𝑖,𝑗 = √∑ ∑ (𝑇𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙𝑖,𝑗
− 𝑇𝐹𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑖,𝑗

)
2

𝑗𝑖  (3) 301 
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The homophily model achieved the lowest TF, confirming the visual impression that its 302 
topological fingerprint was most similar to that of the empirical connectomes (Figure 2c; 303 
comparable results are shown for all other rules in Supplementary Figure 2b). In other 304 
words, a model that balances the cost of an additional connection against the number of 305 
shared neighbours produces networks with local patterns of organisation that closely 306 
resemble those of the rodent connectome, even though local topology was not explicitly 307 
optimised by the energy function. 308 
 309 
Figure 2. Relative performance of generative network models in replicating the organisation of 310 
empirical connectomes. (a) The energy of the top-performing synthetic networks for each animal (N 311 
= 49) across thirteen generative rules: a purely spatial model, which considers only the distance 312 
between two regions; two homophily models, which also consider a measure of the similarity of the 313 
neighbourhoods of the respective regions; five clustering-based models, which compare the 314 

clustering coefficients of 315 
the regions; and five 316 
degree-based models, 317 
which compare their node 318 
degree. White points 319 
indicate the sample mean. 320 
(b) The topological 321 
fingerprint is a correlation 322 
matrix of local network 323 
statistics, including node 324 
degree, clustering 325 
coefficient, betweenness 326 
centrality, total edge 327 
length, local efficiency, 328 
and mean matching 329 
index. Topological 330 
fingerprints are shown for 331 
the empirical networks 332 
and the best-performing 333 
rules across the three 334 
categories of generative 335 
models. Across all four 336 
matrices, the value of the 337 
correlation can be 338 
inferred from the colour 339 
bar, which spans -1 340 
(purple) to 1 (green). 341 
Correlations shown are 342 
the sample average (N = 343 
49). (c) Across the sample 344 
(N = 49), homophily 345 
achieves lowest ∆𝑇𝐹, a 346 
measure of the 347 
discrepancy in local 348 
patterns of connectivity 349 
between the simulations 350 
and empirical 351 
connectomes. 352 
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 353 
Homophily replicates spatial layout of empirical networks 354 
Given that the wiring of biological neural networks is shaped by their embedding in 355 
anatomical space36, realistic synthetic connectomes should ideally exhibit a spatial layout 356 
akin to that of connectomes derived from tractography. To test this similarity, we first 357 
calculated the six characteristics of each node of the parcellation, averaged across the 358 
sample, then correlated the values between simulated and empirical connectomes21,22. As 359 
shown in Figure 3, all four measures included in the energy equation exhibited significant 360 
correlations: degree (r = 0.360, p = 2.68 x 10-5), clustering coefficient (r = 0.346, p = 5.40 x 361 
10-5), betweenness centrality (r = 0.530, p = 9.33 x 10-11), and edge length (r = 0.543, p = 2.52 362 
x 10-11). Correlations were also observed between synthetic and empirical nodes on local 363 
efficiency (r = 0.420, p = 7.01 x 10-7) and mean matching index (r = 0.334, p = 1.02 x 10-4), 364 
confirming that the simulations replicated the spatial layout of nodal features that were not 365 
used to optimise model parameterisation.  366 
 367 

Figure 3. Simulated networks replicate spatial layout of empirical connectomes. Each point in the 368 
scatterplots represents the nodal measure for one of the 130 regions of the parcellation, taken as the 369 
average value across animals (N = 49). For each of the six measures, a significant positive correlation 370 
exists between the nodes of synthetic and empirical networks. A cumulative density function of the 371 
measure is also displayed, as well as a visualisation of the mouse brain in which the five regions with 372 
the lowest and highest error (i.e., discrepancy between synthetic and empirical networks) are 373 
highlighted in green and red respectively. Four of the statistics ((a) node degree, (b) clustering 374 
coefficient, (c) betweenness centrality, and (d) total edge length) are terms of the energy equation 375 
used to assess the fit of the synthetic networks, while the remaining statistics ((e) local efficiency and 376 
(f) mean matching index) are not.  377 
 378 
We also assessed discrepancies between the simulated and observed connectomes in the 379 
layout of these local characteristics. At each node, we computed a measure of spatial error 380 
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by subtracting the average value of each characteristic in the synthetic networks from its 381 
average value in the empirical connectomes22. Thus, a lower spatial error indicates more 382 
similarity between the local topology of a particular region in the simulations and in the 383 
observed connectomes. While overall spatial error was distributed throughout the brain 384 
(Supplementary Table S4), a significant correlation was observed between spatial error and 385 
node degree in the seed network (r = 0.436, p = 2.221 x 10-7) (Supplementary Table S5). This 386 
indicates that generative models may benefit from instructions as to where to begin adding 387 
connections if they are to best replicate the spatial patterning of network characteristics.  388 
 389 
Early adversity attenuates wiring constraints in optimal simulations  390 
Across all generative models, the homophily model implementing the neighbour rule 391 
exhibited the smallest coefficient of variation in the 𝛾 parameter and second smallest in the 392 
𝜂 parameter (Supplementary Table S3). Thus while this rule was best able to account for 393 
variations in topology across animals, it did so through minute adjustments in the weighting 394 
of its cost and value terms, likely indicative of the highly regulated nature of connectomic 395 
organisation (Figure 4a). To obtain maximally precise parameters for each animal, we 396 
therefore performed a second search of 40,000 parameter combinations in a narrow space 397 
centred at the apparent minimum of the energy landscape: −3.75 ≤  𝜂 ≤  −1.75 and 0.2 ≤398 
 𝛾 ≤  0.6.  399 
 400 
The parameters producing the lowest-energy networks for each animal are shown in Figure 401 
4b. The cost and value parameters were moderately correlated (r = -0.574, p = 1.65 x 10-5), 402 
placing the simulations on an axis from the origin of the parameter space (𝜂 = 0, 𝛾 = 0). 403 
This indicates that simulations with a more severe penalty on long-distance connections 404 
usually had stronger preference for connections between regions with shared neighbours. 405 
 406 

Figure 4. Adversity attenuates optimal generative modelling parameters. (a) In the first run of the 407 
homophily model, 160,000 unique combinations of cost parameter 𝜂 and value parameter 𝛾 were 408 
tested. The energy surface shown is the sample average (N = 49). (b) Optimal values of 𝜂 and 𝛾 409 
produce the lowest-energy synthetic networks. Values were obtained by testing an additional 40,000 410 
parameter combinations in a narrow low-energy window of the initial grid search, highlighted with a 411 
black rectangle in (a). Each data point in the scatterplot represents a single animal. Density plots 412 
above and to the right highlight differences between UPS and control conditions. Optimal 413 
parameters tend to fall closer to the origin for animals in the UPS condition (ANOVA F1,47 = 5.700, p = 414 
0.021). 415 

a     b 
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Along this axis, animals in the UPS condition tended to fall closer to the origin; we confirmed 416 
this observation by comparing the length of a vector from the origin to each point between 417 
groups (UPS M = 2.63, SD = 0.213, Control M 2.79, SD = 0.210; ANOVA F1,47 = 5.700, p = 418 
0.021). The simulations for animals in the UPS condition were therefore subject to weaker 419 
constraints on the formation of connections. One possible confound here is that the models 420 
may simply perform better for one group than the other, but this was not the case: no 421 
difference in model energy was observed (UPS M = 0.101, SD = 0.015, Control M = 0.105, SD 422 
= 0.010; ANOVA F1,47 = 0.719, p = 0.401).  423 
 424 
But what is the nature of this group difference in parameters? One possibility is that either 425 
or both parameters drive the change in a relatively independent manner. Alternatively, it 426 
could reflect a single underlying shift in wiring constraints that incorporates both 427 
parameters. We distinguished these alternatives using a partial least squares discriminant 428 
analysis (see Methods). This formally tests for the presence of underlying factors that 429 
explain the group difference in parameter combinations. There was a significant correlation 430 
between the group affiliation and the first latent variable (r = 0.36, ppermuted = 0.011) but not 431 
the second latent variable (ppermuted = 0.898). Both parameters of the generative model (𝜂 432 
coefficient = -1.5549, 95% CI = [-1.8929 -1.2969]; 𝛾 coefficient = 0.1229, 95% CI = [0.0684 433 
and 0.1858]) loaded significantly onto this component. There was no between-group 434 
difference in scores on the component (KS D1,47 = 0.308, p = 0.159). Thus, it seems that the 435 
observed group difference in location in the parameter space reflects a change that 436 
incorporates both wiring parameters, rather than reflecting one or two independent effects. 437 
 438 
Shift in wiring economy induces greater stochasticity 439 
Simulations closer to the origin of the parameter space have greater stochasticity or 440 
randomness in the generative process31. To understand why this is the case, imagine that 441 
the edges in the wiring probability matrix are competing with one another. When the cost 442 
penalty and topological preferences are strong, fewer edges have high probabilities of 443 
wiring and the preferred winner is clear. But when constraints are weaker, more edges 444 
qualify as good contenders, giving the probabilistic nature of the process a greater role in 445 
the gradual organisation of the network.  446 
 447 
Simulations for the UPS condition showed a flatter distribution with a greater dispersion of 448 
values in the probability matrix compared to the control condition (Figure 5a; KS D1,47 = 449 
0.055, p = 2.20 x 10-16), corresponding to more potential connections with higher 450 
probabilities of wiring and therefore heightened stochasticity. Variance among wiring 451 
probabilities rose over the course of the development of each simulation, particularly in the 452 
UPS condition, indicating that this increase in stochasticity was more pronounced later in 453 
the generative process (Figure 5b). At the end of the generative process, the simulations for 454 
mice in the UPS condition exhibited a distribution of node degree that was closer to normal 455 
(kurtosis: KS D1,47 = 0.475, p = 0.005), indicating that the shift in wiring probabilities subtly 456 
randomized network topology. 457 
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 458 
Figure 5. Weaker wiring constraints heighten stochasticity of network development. (a) 459 
Distributions of wiring probabilities (𝑃𝑖,𝑗) within the probability matrix, taken as the group averages 460 
across all steps of optimal simulations. The UPS condition shows a flatter distribution with greater 461 
dispersion, corresponding to more connections with higher wiring probabilities. (b) Variance among 462 
values in the probability matrix (𝑃𝑖,𝑗) corresponds to the dispersion of likelihoods of potential future 463 
connections. Wiring probability variance rises as simulations develop, especially in the UPS condition, 464 
indicating that model stochasticity was more pronounced later in the process. (c) To assess the effect 465 
of systematically manipulating wiring constraints, simulations were run at 10% increments from the 466 
optimal values for each animal to zero. This resulted in the 490 parameter combinations plotted in 467 
this space. (d) Distributions of wiring probabilities (𝑃𝑖,𝑗) within the probability matrix, taken as the 468 
average across all steps, at each parameter interval. Wiring probabilities for simulations with weaker 469 
parameters approach a normal distribution. (e) Topological dissimilarity (∆𝑇𝐹; see Methods) was 470 
averaged across 1000 randomly wired networks. The organisation of simulated networks gradually 471 
resembles random topology as parameters approach zero. The same trend is observed when 472 
comparing the UPS condition to the control condition, both for (f) optimal generative models and (g) 473 
biological connectomes derived through tractography. 474 
 475 
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To explore the relationship between model stochasticity and parameters more 476 
systematically, we produced simulations using incrementally smaller values of 𝜂 and 𝛾. 477 
Specifically, we ran generative models at 10% increments from the optimal parameters for 478 
each animal, at each stage moving towards the origin of the parameter space (Figure 5c).  479 
 480 
As the parameters neared 𝜂 = 0 and 𝛾 = 0, the distribution of values within the wiring 481 
probability matrices (𝑃𝑖,𝑗) exhibited greater dispersion (Figure 5d). This corresponds to a 482 

greater number of connections with high probability of wiring over the course of the 483 
generative process. Simulations with smaller wiring parameters had a more random 484 
topology (Figure 5e), as measured by the average ∆𝑇𝐹 to 1000 randomly wired networks. 485 
We found the same trend toward random network topology in the UPS group, both in the 486 
optimal simulations (Figure 5f; UPS M = 1.18, SD = 0.214, Control M = 1.27, SD = 0.214, 487 
ANOVA F1,47 = 2.158, p = 0.148) and the biological connectomes (Figure 5g; UPS M = 0.915, 488 
SD = 0. 125, Control M = 0.973, SD = 0.126, ANOVA F1,47 = 2.647, p = 0.110). Though subtle, 489 
this trend is in line with the principle that weaker wiring constraints heighten stochasticity in 490 
the formation of structural connections, thereby leading to more random brain network 491 
topology.  492 
 493 

Discussion 494 
We explored the effects of early adversity on the development of the structural 495 
connectome. We deployed generative network modelling in a mouse model of 496 
unpredictable postnatal stress (UPS) to test whether adversity alters the economic trade-off 497 
that governs structural brain development. The parameters that best simulated the rodent 498 
connectomes were closer to zero for the mice exposed to UPS, resulting in greater 499 
variability in wiring probabilities and therefore stochasticity in the generative process. Thus, 500 
exposure to a chaotic and unpredictable environment appears to attenuate the constraints 501 
governing brain development such that the formation of structural connections is subject to 502 
weaker control. These results point to a crucial intermediate level of explanation for the 503 
developmental impact of early adversity. 504 
 505 
Replicating prior work in generative network modelling, models with a topological term 506 
outperformed that based purely on distance16,21,22,34, and models implementing the 507 
principle of homophily produced the most realistic structural connectomes16,21,22,34. These 508 
findings accord well with previous research on the development of the mouse brain; wiring 509 
cost alone is not sufficient to recapitulate the complex topology of its macroscopic 510 
structural networks17. In our study, the neighbour rule – which favours connections 511 
between regions with a greater number of shared neighbours – produced networks that 512 
possessed not only similar statistical distributions of nodal characteristics, but also their 513 
local organisation and spatial layout. Importantly, this organisation was not hard-coded into 514 
the algorithm but emerged from the trade-off between cost and value over the course of 515 
the generative process. Our study is the first to implement the two-parameter generative 516 
model in rodents and replicate the comparative success of homophily in this species. One 517 
potential explanation for its success may be that it captures macroscopic dynamics of 518 
Hebbian learning: as regions with similar neighbourhoods are likely to experience 519 
comparable patterns of stimulation, mechanisms of activity-dependent plasticity would 520 
favour their consolidation into a structural network37,38. 521 
 522 
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The parameters that produced the best-fitting synthetic networks differed between mice 523 
according to their exposure to early adversity. Specifically, simulations for mice in the UPS 524 
condition were subject to a more moderate penalty on long-distance connections and a 525 
weaker preference for connections between regions with shared neighbours. The negative 526 
correlation between model parameters, in line with previously findings22,34 (but see also21),  527 
indicates that individuals negotiate the wiring economy of the brain by co-varying the two 528 
constraints. However, it is still possible that a single parameter accounts for the observed 529 
group difference. Using a partial least-squares discriminant analysis, we confirmed that a 530 
single latent factor that incorporates both the cost penalty and value term best explains the 531 
relationship between model parameters and group affiliation. As evolutionary pressures 532 
have favoured heightened phenotypic plasticity in harsh, unpredictable environments, even 533 
when this is energetically costly39,40, the brain may respond to early unpredictable stress by 534 
attenuating overall constraints on the formation of new structural connections. This finding 535 
is particularly important because existing measures of global organisation of brain structure 536 
do not have the granularity to detect the effects of early adversity. In other words, it 537 
appears that a generative modelling approach can capture complex and subtle outcomes of 538 
adversity by reducing many measures of neural organisation to a single latent factor, 539 
namely, the wiring economy of the brain. 540 
 541 
As lower-magnitude wiring parameters correspond to heightened model stochasticity, early 542 
adversity appears to favour more random formation of structural connections. Given that 543 
UPS mice show impaired fear learning28 and weaker wiring constraints are associated with 544 
poorer cognitive abilities in children22, our results might therefore offer a mechanistic 545 
account for the previous finding that growing up in an unpredictable environment can 546 
hamper cognitive development41. However, greater stochasticity in network development 547 
may also reflect an advantageous process of adaptation, as individuals exposed to early 548 
adversity tend to show skills and abilities that are conducive to successfully navigating 549 
stressful contexts39. Across scales, the probabilistic development of neural tissue harnesses 550 
stochastic and noisy processes to build circuits that are robust to perturbation42. In an 551 
adverse or unpredictable environment, heightened stochasticity in the development of the 552 
structural connectome could be adaptive if it enables the nervous system to respond more 553 
effectively to future challenges in hostile environments40. This proposal is consistent with a 554 
recent finding that the connectomes of children with cognitive difficulties are more robust 555 
to random attacks on networks hubs10. 556 
 557 
It is important to note that, while we have verified that the organisation of the synthetic 558 
networks replicates that of the empirical connectomes, they remain simulations. As such, 559 
our generative models do not provide conclusive evidence of longitudinal differences in 560 
neural development18. Future work could increase the biological complexity of the 561 
simulations in a few key ways. First, as the binarization of the connectomes is a gross 562 
simplification, a generative modelling strategy that produces weighted networks would be a 563 
welcome next step. Second, as structural neurodevelopment entails not just the formation 564 
of connections but their pruning, consolidation, and myelination43, models may benefit from 565 
varying rules and parameters across space and time. Additionally, models could incorporate 566 
other facts known to shape the emergence of connectivity, such as the functional identity or 567 
morphology of regions44,45. As UPS can have sex-specific effects on brain structure28, future 568 
work should test for sex differences in the wiring economy of the brain. Finally, comparing 569 
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the effects of UPS to a simpler paradigm that consists only of limited bedding could reveal 570 
whether unpredictability or impoverishment is responsible for the observed shift in wiring 571 
constraints. 572 
 573 
In conclusion, we found that unpredictable postnatal stress changes the economic 574 
conditions that govern the formation of macroscopic structural connections in the brain. 575 
Our results offer a promising and mathematically specified path toward understanding how 576 
early life adversity contributes to diversity in structural brain network organisation. 577 
 578 

Methods 579 
Animals 580 
Thirty female BALB/cByj mice were housed in breeding cages with standard bedding, and 581 
subsequently transferred to maternity cages once visibly pregnant. On postnatal day zero 582 
(P0), litters were culled to five to eight pups and randomly assigned to dams to mitigate the 583 
effects of genetics and litter size. Of 49 total pups, 25 (13 male and 12 female) were 584 
assigned to a control group, whilst 24 (12 male and 12 female) were assigned to an 585 
unpredictable early-life stress (UPS) condition. Mice in the control group were raised with 586 
standard bedding and nesting material. Mice in the UPS group received 25% of the standard 587 
amount of bedding material, no nesting material, and were separated from their dam for 588 
one hour on P14, P16, P17, P21, P22, and P25. Additional details about the paradigm are 589 
available elsewhere30. After weaning on P26, all mice were group housed with standard 590 
bedding and no nesting material. All experiments received the approval of the Institutional 591 
Animal Care and Use Committee (IACUC) at Yale University and were conducted in 592 
accordance with the NIH Guide for the Care and the Use of Laboratory Animals. 593 
 594 
Tissue and imaging acquisition  595 
Tissue was collected from the mice in adulthood (> P70) after the conclusion of behavioural 596 
testing unrelated to this analysis. Mice were anesthetized with chloral hydrate (100 mg/kg) 597 
and, once unresponsive, transcardially perfused using cold PBS/heparin (50 units/ml) 598 
solution followed by 10% formalin (polyScience). The mice were decapitated, and intact 599 
skulls were immersed in 10% formalin at 4˚C for 24 hours, transferred to sterile 1 X PBS (pH 600 
7.4), and kept at 4˚C until imaging acquisition. 601 
 602 
Magnetic resonance images were acquired at imaging facility of New York University using a 603 
7-Tesla scanner equipped with a cryogenic probe for enhanced signal-to-noise46. A modified 604 
3D-GRASE sequence was used with an echo time (TE) of 33 ms, repetition time (TR) of 400 605 
ms, 100 µm isotropic resolution, two non-diffusion-weighted (b0) images and 60 images 606 
acquired at unique gradient directions with b= 5000/mm2 47. Additional acquisition details 607 
are available in a protocol paper48. 608 
 609 
Images were corrected for noise and Gibbs ringing artefacts using MRtrix349–51, 610 
displacement and eddy currents using FSL52, and field bias using the N4 algorithm provided 611 
in Advanced Normalization Tools (ANTs)53. 612 
 613 
Connectome construction and comparisons 614 
For each subject, a map of brain connectivity was reconstructed using probabilistic 615 
tractography. First, unsupervised estimation of tissue-specific response functions was 616 
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conducted using the Dhollander algorithm54. The fibre orientation distribution was then 617 
estimated using multi-shell multi-tissue constrained spherical deconvolution (MSMT CSD)55. 618 
Probabilistic streamline fibre tracking with second-order integration (iFOD2)56 was 619 
performed with whole-brain seeding until ten million streamlines were reached. Fibre 620 
tracking parameters were optimized for ex-vivo rodent tissue (step size 50 µm, curvature 621 
threshold 45°, FA threshold 0.1, minimum fibre length 0.5 mm)57,58. 622 
 623 
A structural connectome was then built from each tractogram using a parcellation 624 
previously adapted from the Allen Mouse Brain Atlas (AMBA) and Allen Developing Mouse 625 
Brain Atlas (ADMBA) by Rubinov and colleagues17. The bilaterally symmetric parcellation 626 
consists of 41 cortical and 24 extracortical regions per hemisphere, for a total of 130 627 
regions. Using ANTs59, each subject image was first registered to the AMBA template space 628 
using affine and diffeomorphic transformations, then the inverse transformation was used 629 
to project the parcellation into subject space. The number of streamlines connecting each 630 
pair of regions were counted and transformed into connectivity matrices, which were 631 
symmetrized. Self-connections were removed. To eliminate spurious connections and 632 
highlight topological variation across subjects60, we applied a weight-based threshold of 633 
6100 streamlines to achieve a sparse connectome density (M = 3.52%, SD = 0.13%). 634 
Thresholded connectomes were then binarized. 635 
 636 
Connectomes were compared on five measures of global topology: (1) number of edges; (2) 637 
total edge length, approximated using the sum of the Euclidean distances between 638 
connected regions; (3) number of long-distance edges, defined as connections that are 639 
more than two standard deviations above the mean connection length across the sample; 640 
(4) global efficiency, calculated as the average inverse shortest path length of the network8; 641 
(5) small-worldness, defined as the ratio of clustering to shortest path length compared to 642 
its random network equivalent61, which we obtained by averaging across an ensemble of 643 
500 networks that were randomized whilst preserving the degree distribution. 644 
 645 
Wherever group differences were assessed, a Shapiro test was first applied to test the 646 
normality of the distributions; normal distributions were compared using ANOVA, while 647 
others were compared using a KS test. 648 
 649 
Generative network modelling procedure 650 
Synthetic networks were produced for each subject through a generative modelling 651 
procedure16,21. First, a seed network was constructed by identifying edges shared by all mice 652 
and selecting the strongest N = 28 so that, in line with previous work21,22, the seed would 653 
comprise about 10% of the final network density. The use of a seed network ensures 654 
parsimony, which is particularly important given the similarity of the rodent connectomes; 655 
see Supplementary Figure S1 for additional details on seed network construction. A single 656 
edge at a time was then added to the seed network according to the following probability 657 
equation16: 658 
 659 

𝑃𝑖,𝑗 ∝ (𝐷𝑖,𝑗)𝜂(𝐾𝑖,𝑗)𝛾 (1) 660 

 661 
The first term 𝐷𝑖,𝑗 quantifies the distance between nodes i and j, calculated as the Euclidean 662 

distance between the centroids of each brain region in the parcellation. The parameter 𝜂 663 
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determines the direction and strength of the contribution of distance to wiring probability 664 
(i.e., a negative value penalizes long edges while a positive value favours long edges, and a 665 
large value would produce a stronger effect than a small value).  666 
 667 
The second term 𝐾𝑖,𝑗 quantifies the topological similarity of nodes i and j as specified by 668 

each generative rule, and the parameter 𝛾 determines the direction and strength of its 669 
contribution to wiring probability. As each added edge changes the topological similarity of 670 
certain nodes, 𝐾𝑖,𝑗 and 𝑃𝑖,𝑗 are continually updated at every step of the generative process. 671 

If an edge is added between nodes i and j, 𝑃𝑖,𝑗  is set to zero. 672 

 673 
Evaluation of generative models 674 
Model energy  675 
The generative process was terminated when the number of edges of the synthetic network 676 
matched that of the empirical network. The fit of each synthetic network was assessed 677 
according to the following energy equation21: 678 
 679 

𝐸 = max(𝐾𝑆𝑘 , 𝐾𝑆𝑐, 𝐾𝑆𝑏, 𝐾𝑆𝑑) (2) 680 
 681 
The equation consists of the Kolmogorov-Smirnov (KS) statistics comparing the synthetic 682 
and empirical networks on distributions of node degree (k), clustering coefficients (c), 683 
betweenness centrality (b), and edge length (d). Thus, a synthetic network that closely 684 
resembled the empirical connectome in all four distributions would have a low energy, 685 
while a network that greatly differed from the empirical connectome on any one of the four 686 
would have a high energy. 687 
 688 
In addition to a purely spatial model, which did not include a topological term, we assessed 689 
three categories of generative models: two homophily models (number of common 690 
neighbours and the matching index); five clustering-based models (the average, minimum, 691 
maximum, difference in, and product of clustering coefficients); and five degree-based 692 
models (the average, minimum, maximum, difference in, and product of node degrees)21. 693 
Each model was computed using the Brain Connectivity Toolbox 694 
(https://sites.google.com/site/bctnet/Home) in MATLAB. 695 
 696 
To find the optimal parameters for each model, we performed a grid search in the space 697 
defined by −10 ≤  𝜂 ≤  0 and 0 ≤  𝛾 ≤  10. This approach was used to assess variability in 698 
model energies across the parameter space. A total of 160,000 parameter combinations 699 
were tested per subject and model, corresponding to 40,000 unique values of both 𝜂 and 𝛾. 700 
 701 
Model topological fingerprints 702 
To test the ability of generative models to replicate local hallmarks of empirical connectivity, 703 
we calculated the topological fingerprint matrices of both empirical and synthetic networks. 704 
TF matrices are a recently developed measure that consist of n-by-n correlation matrices of 705 
n local network statistics31. We included six common measures of topology in our TF 706 
matrices: node degree, betweenness centrality, clustering coefficient, edge length, local 707 
efficiency, and matching index. Each measure was calculated for all 130 nodes, then the 708 
Pearson correlation between each pair of measures was calculated and the correlations 709 
were averaged across subjects. A visual comparison of the synthetic and empirical TF 710 
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matrices provides a heuristic for assessing the similarity of the correlational structure of 711 
their topology, and thereby evaluating the generative models’ ability to replicate the 712 
organisation of empirical networks. To quantify this formally, we calculated the difference in 713 
their TF matrices according to the following equation31: 714 
 715 

∆𝑇𝐹𝑖,𝑗 = √∑ ∑ (𝑇𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙𝑖,𝑗
− 𝑇𝐹𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑖,𝑗

)
2

𝑗𝑖

 (3) 716 

 717 
Here, ∆𝑇𝐹 is calculated as the Euclidean norm of the difference between empirical and 718 
synthetic TF matrices. We used ∆𝑇𝐹 to compare the generative rules from each category 719 
(i.e., spatial, homophily, clustering and degree) that produced the lowest-energy networks. 720 
The generative rule that obtained the lowest ∆𝑇𝐹 was used in all subsequent analyses. To 721 
obtain accurate estimates of the optimal parameters for each subject, a second grid search 722 
of an additional 40,000 parameter combinations was performed in a much smaller 723 
parameter space defined by −3.75 ≤  𝜂 ≤  −1.75 and 0.2 ≤  𝛾 ≤  0.6.  724 
 725 
Modal spatial layout 726 
The spatial layout of the six nodal measures was also assessed22. Four of these measures 727 
(node degree, betweenness centrality, clustering coefficient, and edge length) are included 728 
in the energy equation while two (local efficiency and matching index) are not. For each 729 
measure, the value at each node was averaged across the synthetic networks of all 49 730 
subjects, resulting in a single 130-by-1 vector. The same procedure was performed on the 731 
empirical connectomes. Linear correlations between synthetic and empirical vectors were 732 
then calculated. At each node, the spatial error (or discrepancy) of each measure was 733 
calculated by subtracting its average value in the synthetic networks from its average value 734 
in the empirical connectomes22. Thus, a lower spatial error indicates more similarity 735 
between the local topology of a particular region in the simulations and in the observed 736 
connectomes. An absolute error was calculated as the sum of the Z-scores of all six 737 
generative errors.  738 
 739 
Group comparisons on generative modelling parameters 740 
A partial least squares (PLS) discriminant analysis62 was run to test whether the optimal 741 
model parameters (i.e. the values of 𝜂 and 𝛾 producing the lowest-energy simulations) 742 
reflected of a single latent factor. The correlation between each predictor component and 743 
the primary response component was calculated, and their significance was assessed by 744 
permuting the group membership of the mice 100,000 times. For the loading of each 745 
parameter onto the PLS components, 95% confidence intervals were calculated by 746 
generating 100,000 bootstrapped samples of 49 subjects and re-computing the loadings. 747 
 748 
The distance of each mouse from the origin of the parameter space (i.e. 𝜂 = 0 and 𝛾 = 0) 749 
was then calculated and compared between groups using ANOVA. 750 
 751 
Exploration of model stochasticity  752 
To explore the implications of a shift in model parameters, the composition of the wiring 753 
probability matrices (𝑃𝑖,𝑗) was also compared between groups31. This was achieved by 754 

testing for differences in the distribution of probability values in the wiring matrix, taken as 755 
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the average across all steps of the lowest-energy simulations. To examine whether the 756 
dispersion among probability values emerges over the course of the generative process, we 757 
calculated the variance among wiring probabilities across developmental time. 758 
 759 
To explore the effects of attenuated model parameters more systematically, additional 760 
simulations were run scaling 𝜂 and 𝛾 toward zero (i.e. running models at 90%, 80%, 70%, 761 
60%, 50%, 40%, 30%, 20%, 10%, and 0% of the optimal parameters). The distribution of 762 
values found in the wiring probability matrices (𝑃𝑖,𝑗) of these simulations was measured and 763 

plotted. To evaluate the randomness of simulation topology, the final networks for each of 764 
these simulations were compared to 1000 randomly wired networks using the ∆𝑇𝐹 measure 765 
described above. The same comparison was conducted using the optimal simulations for 766 
each mouse, and the biological connectomes derived through tractography. 767 
 768 
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Table S1. Comparisons of the global topology of the empirical connectomes. See Methods 990 
for details on the computation of the connectomic measures. 991 
 992 

Measure 
UPS 

M (SD) 
Control 
M (SD) 

Test statistic* p 

Edge count 296.875 (10.250) 297.320 (11.943) F1,47 = 0.02 0.89 
Long-distance 

connections 
20.583 (6.199) 19.360 (6.945) D1,47 = 0.42 0.52 

Maximum 
modularity 

0.591 (0.025) 0.589 (0.022) F1,47 = 0.13 0.72 

System 
segregation 

0.593 (0.177) 0.496 (0.403) D1,47 = 0.26 0.32 

Global efficiency 0.240 (0.015) 0.240 (0.013) D1,47 = 0.19 0.71 
Small-worldness 4.200 (0.395) 4.112 (0.445) F1,47 = 0.54 0.47 

* A Shapiro test was applied to test the normality of the distributions. Normal 
distributions were compared using ANOVA, while others were compared using a KS test.  
Note. “UPS” = unpredictable postnatal stress. 
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Table S2. Comparisons of the local topology of the empirical connectomes. Distributions of 1021 
local characteristics, taken as the group average for each node, were compared between 1022 
UPS and control conditions using Kolmogorov-Smirnov (KS) tests. See Methods for details on 1023 
the computation of the connectomic measures. 1024 
 1025 

Measure 
UPS 

M (SD) 
Control 
M (SD) 

D statistic p 

Node degree 1.292 (0.859) 1.200 (0.913) 0.046 1.00 
Betweenness 

centrality 
2.476 (4.959) 1.204 (4.670) 0.054 0.99 

Clustering 
coefficient 

0.236 (0.423) 0.320 (0.456) 0.062 0.96 

Edge length 29.743 (19.116) 28.159 (21.694) 0.039 1.00 
Mean matching 

index 
0.022 (0.017)  0.019 (0.016) 0.062 0.96 

Nodal efficiency 0.243 (0.431) 0.327 (0.463) 0.062 0.96 

Note. “UPS” = unpredictable postnatal stress. 
  

 1026 
 1027 
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 1028 
Figure S1. Seed network used for generative modelling. (a) An adjacency matrix of the 130 1029 
regions of the parcellation. The colour indicates the proportion of the sample whose 1030 
connectomes contain each connection, ranging from 0 (blue) to 1 (green). (b) The sample 1031 
mean of the weight of connections shared by all empirical connectomes. (c) A schematic 1032 
representation of the seed network (green) superimposed over a representative empirical 1033 
connectome (grey). 1034 
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Table S3. Energy, optimal parameters, and topological dissimilarity for each generative 1035 
rule. Lowest-energy networks for each animal (N = 49) were obtained by comparing 160,000 1036 
combinations of parameters in the space defined by −10 ≤  𝜂 ≤  0 and 0 ≤  𝛾 ≤  10. 1037 
 1038 

Generative 
Model 

Energy Eta (𝜼) Gamma (𝜸) 

Mean CV Mean CV Mean CV 

Spatial 0.309 6.848 -4.185 -12.314 5.120 52.631 

Neighbour 0.103 12.562 -2.667 -9.817 0.360 8.488 

Match 0.110 11.276 -2.624 -9.842 0.402 11.236 

C-Avg 0.170 11.972 -7.301 -13.144 2.361 34.19 

C-Min 0.214 8.094 -5.586 -22.763 0.546 22.261 

C-Max 0.178 12.184 -8.36 -15.669 4.946 52.494 

C-Diff 0.207 10.056 -6.166 -8.732 0.880 24.858 

C-Prod 0.215 8.176 -5.686 -14.933 0.569 15.848 

D-Avg 0.098 9.357 -4.787 -13.923 2.596 12.808 

D-Min 0.157 9.426 -5.116 -11.233 0.435 13.393 

D-Max 0.092 8.806 -4.968 -15.855 2.732 15.693 

D-Diff 0.132 10.305 -5.514 -25.623 2.507 21.68 

D-Prod 0.155 8.889 -5.000 -11.119 0.379 14.452 

 1039 
Note. “∆𝑇𝐹” = topological fingerprint dissimilarity, : “Neighbour” = Number of Shared 1040 
Neighbours, “Match” = Matching Index, “C-Avg” = Average Clustering, “C-Min” = Minimum 1041 
Clustering, “C-Max” = Maximum Clustering, “C-Diff” = Difference in Clustering, “C-Prod” = 1042 
Product of Clustering, “D-Avg” = Average Degree, “D-Min” = Minimum Degree, “D-Max” = 1043 
Maximum Degree, “D-Diff” = Difference in Degree, “D-Prod” = Product of Degree. 1044 
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 1045 
Figure S2. Topological fingerprint matrices and topological dissimilarity for all generative 1046 
models. (a) The topological fingerprint is a correlation matrix of local network statistics, 1047 
including node degree, clustering coefficient, betweenness centrality, total edge length, 1048 
local efficiency and matching index. Across all matrices, the value of the correlation can be 1049 
inferred from the colour bar, which spans -1 (lilac) to 1 (spring green). Correlations shown 1050 
are the sample average (N = 49). For ease of visualisation, the measures are arranged 1051 
according to the hierarchical clustering of measures in the empirical networks. (c) The 1052 
neighbour model achieves lowest ∆𝑇𝐹, a measure of discrepancy between synthetic and 1053 
empirical patterns of connectivity. White points indicate the sample mean (N = 49). Note: 1054 
“Neighbour” = Number of Shared Neighbours, “Match” = Matching Index, “C-Avg” = Average 1055 
Clustering Coefficient, “C-Min” = Minimum Clustering Coefficient, “C-Max” = Maximum 1056 
Clustering Coefficient, “C-Diff” = Difference in Clustering Coefficient, “C-Prod” = Product of 1057 
Clustering Coefficient, “D-Avg” = Average Degree, “D-Min” = Minimum Degree, “D-Max” = 1058 
Maximum Degree, “D-Diff” = Difference in Degree, “D-Prod” = Product of Degree. 1059 
 1060 
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Table S4. Error across topological measures and nodes. For each measure, the error 1061 
quantifies the discrepancy observed between synthetic and empirical networks, while the 1062 
absolute error is calculated as the sum of the Z-scores of all six errors. For details about each 1063 
region, see [1]. 1064 
 1065 

Node 
Degree 
Error 

Clustering 
Error 

Betweenness 
Error 

Edge 
Length 
Error 

Efficiency 
Error 

Matching 
Index 
Error 

Absolute 
Error 

L-AMd -0.22 0.14 -37.18 -3.42 0.12 0.01 1.42 

L-SSp-m2/3 -0.53 0.24 25.21 -2.46 0.22 0.01 2.13 

L-AUDd6a -8.98 -0.44 -290.73 -158.46 -0.59 -0.05 12.88 

L-SSp-n4 1.02 0.48 -95.17 15.35 0.54 0.03 5.88 

L-ml -3.63 -0.34 -64.12 -73.31 -0.41 -0.03 7.08 
L-AOBmi -1.92 0.06 69.14 -43.88 0.01 -0.02 2.67 

L-TEa1 -1.82 -0.22 25.6 -28.2 -0.28 -0.01 3.66 

L-COApm1-
3 

5.88 0.14 534.87 114.14 0.24 0.05 8.59 

L-PVHpml 4.31 -0.2 811.1 48.52 -0.23 0.01 6.08 

L-CUL4gr 5.55 -0.18 794.87 89.17 -0.08 0.03 7.63 

L-oct -2.37 0.11 -273.33 -46.5 0.04 0 3.16 
L-VM 1.82 0.17 102.94 40.52 0.23 0.04 4.52 

L-FLmo -1.02 -0.16 -91.14 -29.43 -0.17 0 2.83 

L-VISal6a -1.04 -0.08 -66.69 -26.06 -0.1 0 2.18 
L-SCdw -1.02 -0.11 -58.99 -15.86 -0.13 0.01 1.8 

L-RSPagl6a -1.9 -0.21 -71.33 -31.42 -0.23 -0.01 3.95 

L-TR2 3.16 0.01 508.69 39.5 0.01 0 3.17 

L-FLgr 0.37 0.22 -52.4 -7.48 0.21 0.03 2.96 
L-MPT -1.86 0.07 -80.9 -41.92 0.07 0.01 2.19 

L-DR 0.29 0.2 -29.77 5.42 0.19 0.02 2.6 

L-AHNp -6.35 0.08 -171.14 -120.83 -0.01 -0.04 7.16 
L-lotd -2.45 -0.2 -69.24 -50.25 -0.25 -0.02 4.8 

L-EPd -0.47 0.11 -141.54 2.34 0.1 0.02 2.09 

L-MPNm -2.41 -0.29 -59.58 -45.5 -0.34 -0.02 5.32 

L-INC -1.39 0.15 -278.04 -40.17 0.16 0.02 3.76 

L-ECT6a -3.94 -0.26 73.67 -79.93 -0.34 -0.03 6.54 

L-CENT3gr 2.84 0.12 -39.92 58.21 0.22 0.04 4.93 

L-cbt -1.78 -0.2 -102.34 -23.13 -0.23 0 3.3 
L-ORB1 -10.43 -0.56 -257.05 -128.4 -0.72 -0.07 14.55 

L-AHNa 6.22 -0.1 443.37 20.88 -0.04 0.02 4.28 

L-HPF -1.51 0.18 -161.84 -19.69 0.2 0.01 2.79 

L-VAL -0.96 0.1 -78.24 -30.29 0.06 0.01 2.12 
L-COAa 6.1 -0.18 432.69 74.68 -0.08 0.03 6.29 

L-PARN -6.63 -0.43 -265.15 -88.95 -0.54 -0.04 10.08 

L-NOD -2.76 0.28 -272.64 -55.55 0.21 -0.01 5.25 
L-RSPd -0.47 -0.29 319.89 -44.03 -0.36 -0.02 5.41 

L-arb -1.27 -0.15 -102.79 -17.8 -0.19 -0.01 2.88 

L-IV -1.39 0.24 -76.28 -22.73 0.2 0 2.98 

L-AUDv -1.96 -0.09 -113.77 -26.3 -0.13 -0.01 2.81 

L-TTd1-4 -3.82 -0.49 -138.03 -11.91 -0.53 -0.03 7.21 
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L-KF -0.98 0.24 -84.92 -13.53 0.22 0 2.8 
L-DORpm 0.53 0.03 -38.73 4.92 0.01 0 0.76 

L-lab 1.53 -0.02 -9.48 21.55 -0.04 0.01 1.49 

L-ptf -4.16 -0.16 -206.16 -49.74 -0.25 -0.03 5.87 

L-ttp 0.51 -0.03 174.81 -6.98 -0.07 0.01 1.12 
L-grv of 

CBX 
-0.98 0.44 -233.56 -10.88 0.42 0.01 4.78 

L-VISpl6a 3.47 0.11 -116.26 33.41 0.22 0.03 4.3 
L-SSp-un 1.86 0.3 69.48 22.8 0.36 0.04 4.92 

L-PBme 7.71 0.05 430.47 27.26 0.19 0.03 5.84 

L-MH 0.9 0.15 -53.74 -1.25 0.16 0.01 1.85 

L-IXn -1.39 0.38 -240.49 -30.09 0.35 0.02 5.07 
L-VISpm4 3.57 0.22 -10.2 6.38 0.34 0.04 4.71 

L-cbp 4.08 -0.02 -2.32 -2.05 0.09 0.03 2.68 

L-GU1 6.22 -0.17 1230.54 4.3 -0.08 0.04 7.39 
L-MSC -2.84 0.38 -486.32 -53.82 0.29 0.01 5.98 

L-ORBm2/3 10.69 -0.11 1647.14 75.78 0.02 0.04 11.06 

L-SSp-bfd1 -5.67 -0.47 -335.72 -88.6 -0.59 -0.03 9.97 

L-DMHv -3 0.37 -273.4 -43.09 0.34 0 5.55 
L-DECgr 1.37 0.18 -273.17 15.76 0.25 0.03 4.13 

L-CU -1.18 0.27 -256.02 -30.5 0.3 0 4.04 

L-CA1sp 6.49 0.01 8.04 105.77 0.19 0.03 5.82 

L-MO6a -0.8 0.33 -221.42 -28.66 0.29 0.01 3.96 

L-VISam5 2.55 0.02 -45.18 37.45 0.08 0.01 2.34 

L-CBXmo 0.84 0 -95.62 -19.04 0.03 0 1.1 
L-PB 2.18 -0.09 21.42 0.51 -0.03 0.01 1.45 

R-AMd 0.04 0.19 -151.96 7.23 0.18 0.01 2.53 

R-SSp-m2/3 -0.9 0.1 -70.07 18.86 0.11 0.01 1.84 

R-AUDd6a -7.88 -0.34 -263.05 -51.13 -0.49 -0.04 9.16 
R-SSp-n4 1.53 0.48 -67.28 40.02 0.55 0.03 6.65 

R-ml -2.02 -0.21 -39.71 -24.91 -0.25 -0.01 3.85 

R-AOBmi -0.39 -0.02 185.84 7.38 -0.05 0 1.29 
R-TEa1 -0.71 -0.19 134.37 15.07 -0.22 0 2.69 

R-COApm1-
3 

6.49 0.12 709.64 116.99 0.25 0.05 9.21 

R-PVHpml 4.41 -0.19 869.81 58.39 -0.2 0.01 6.39 
R-CUL4gr 6.69 -0.14 891.72 115.2 -0.03 0.04 8.68 

R-oct -2.55 0.01 -206.9 -38 -0.05 0 2.49 

R-VM 3.31 0.21 201.61 75.8 0.31 0.05 6.72 
R-FLmo -0.8 0 -112.73 -21.4 -0.01 0 1.29 

R-VISal6a -1.45 -0.09 -180.1 -24.03 -0.12 -0.01 2.79 

R-SCdw -2.06 -0.19 -89.53 -24.39 -0.23 0 3.24 

R-RSPagl6a -1.61 -0.11 -92.3 -19.35 -0.12 -0.01 2.71 
R-TR2 3.53 0.03 481.93 28.71 0.05 0.01 3.24 

R-FLgr 0.2 0.3 -24.57 1.81 0.29 0.02 3.28 

R-MPT -2.22 0 -158.84 -28.32 -0.02 0 1.88 
R-DR -0.2 0.14 -21.66 -5.26 0.12 0.02 1.89 

R-AHNp -6.29 -0.19 -94.75 -50.31 -0.28 -0.04 6.96 

R-lotd -1.08 -0.09 -36.35 -13.27 -0.1 -0.01 1.97 

R-EPd -1.16 0.13 -105.45 -0.28 0.09 0.02 2.14 
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R-MPNm -1.94 -0.25 -127.77 -27.65 -0.29 -0.02 4.52 
R-INC 0.04 0.11 -102.35 -16.94 0.15 0.02 2.46 

R-ECT6a -2.49 -0.15 25.07 -25.98 -0.2 -0.02 3.65 

R-CENT3gr 3.63 0.15 -157.78 100.04 0.26 0.05 6.88 

R-cbt -1.67 -0.24 -91.47 -10.9 -0.26 0 3.33 
R-ORB1 -9.71 -0.52 -325.37 -41.31 -0.66 -0.07 12 

R-AHNa 7.41 -0.17 733.8 39.9 -0.13 0.01 6.35 

R-HPF -1.76 0.23 -220.68 -24.71 0.25 0.01 3.53 
R-VAL -1.31 0.04 -80.58 -28.72 0.01 0.01 1.74 

R-COAa 5.84 -0.07 201.38 78.08 0.04 0.03 5.12 

R-PARN -7.02 -0.46 -192.47 -14.42 -0.59 -0.04 8.73 

R-NOD -2.49 0.22 -249.33 -11.57 0.15 -0.01 3.56 
R-RSPd 0.08 -0.34 331.05 6.02 -0.38 -0.01 4.73 

R-arb -1.67 -0.31 -56.07 -12.93 -0.35 -0.01 4.17 

R-IV -2.41 -0.06 -42.26 -25.36 -0.11 0 2.31 
R-AUDv -2.39 -0.18 -168.6 -21.52 -0.21 -0.01 3.72 

R-TTd1-4 -4.2 -0.44 -154.67 -10.37 -0.5 -0.03 7.03 

R-KF -0.98 0.12 -141.8 -1.91 0.1 0 1.67 

R-DORpm 1.24 0.06 23.94 47.52 0.08 0.01 2.08 
R-lab 2.71 -0.01 148.17 42.77 -0.02 0.02 2.73 

R-ptf -3.63 -0.17 -42.75 0.12 -0.23 -0.02 3.93 

R-ttp 1.18 0.11 40 32.74 0.13 0.02 2.45 

R-grv of 
CBX 

-1.06 0.57 -248.01 4.01 0.55 0.02 6.06 

R-VISpl6a 4.47 0.16 -15.31 52.98 0.31 0.03 5.46 
R-SSp-un 2.24 0.36 48.94 26.03 0.44 0.04 5.79 

R-PBme 8.33 0 474.66 56.07 0.15 0.04 6.49 

R-MH 0.59 0.12 -63.39 3.49 0.13 0.01 1.66 

R-IXn 0.02 0.49 -148.9 -10.61 0.47 0.03 5.27 
R-VISpm4 3.96 0.28 -49.44 41.2 0.4 0.04 6.34 

R-cbp 3.43 -0.01 -61.8 13.9 0.08 0.03 2.99 

R-GU1 6.88 -0.15 1466.97 3.95 -0.07 0.04 8.24 
R-MSC -2.41 0.34 -328.9 -25.66 0.25 0.01 4.6 

R-ORBm2/3 8.88 -0.27 1455.35 13.67 -0.18 0.03 9.4 

R-SSp-bfd1 -6.88 -0.44 -343.83 -54.41 -0.59 -0.03 9.49 

R-DMHv -3.41 0.27 -344.47 9.02 0.24 0 4.42 
R-DECgr 1.61 0.07 -88.32 37.7 0.15 0.03 3.32 

R-CU -1.43 0.21 -264.79 27.95 0.23 0 3.67 

R-CA1sp 6.02 -0.06 87.33 103.27 0.09 0.03 5.54 
R-MO6a -2.41 0.3 -321.76 10.68 0.25 0 4.3 

R-VISam5 0.71 -0.02 -72.09 0 -0.01 0 0.75 

R-CBXmo 0.24 0 -54.21 0 0.02 0 0.59 

R-PB 2.06 -0.06 -46.92 0 -0.01 0.01 1.32 

 1066 
[1] Wiring cost and topological participation of the mouse brain connectome. 1067 
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Table S5. Correlations between error in spatial embedding and seed network 1072 
characteristics. The error in spatial embedding quantifies the discrepancy between the 1073 
synthetic and empirical connectomes on one of six nodal characteristics: node degree, 1074 
clustering coefficient, betweenness centrality, edge length, nodal efficiency, and matching 1075 
index. For each characteristic, Pearson correlation coefficients were calculated between its 1076 
value in the seed network and the mean spatial error across the sample.  1077 
 1078 
 1079 

Nodal characteristic Correlation coefficient p value 

Degree 0.4356 2.221 x 10-7* 

Clustering -0.0104 0.9067 
Betweenness 0.1167 0.1862 
Edge length 0.1912 0.0293 

Efficiency 0.0026 0.9767 
Matching 0.0822 0.3523 

* Correlation is significant at Bonferroni corrected p < 0.00833 
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