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Abstract 22 

Metastasis is the leading cause of breast cancer-related deaths and often driven by invasion and 23 

cancer-stem like cells (CSCs). Both the CSC phenotype and invasion have been associated with 24 

increased hyaluronic acid (HA) production. How these independent observations are connected, 25 

and which role metabolism plays in this process remains unclear due in part to the lack of 26 

convergent approaches that integrate engineered model systems, computational tools, and cancer 27 

biology. Using microfluidic invasion models, metabolomics, computational flux balance analysis 28 

(FBA), and bioinformatic analysis of patient data we investigated the functional links between the 29 

stem-like, invasive, and metabolic phenotype of breast cancer cells as a function of HA 30 

biosynthesis. Our results suggest that CSCs are more invasive than non-CSCs and that broad 31 

metabolic changes caused by overproduction of HA play a role in this process. Accordingly, 32 

overexpression of hyaluronic acid synthases (HAS) 2 or 3 induced a metabolic phenotype that 33 

promoted breast cancer cell stemness and invasion in vitro and upregulated a transcriptomic 34 

signature that was predictive of increased invasion and worse survival in patients. Collectively, 35 

this study suggests that HA overproduction leads to metabolic adaptations that help satisfy the 36 

energy demands necessary for 3D invasion of breast cancer stem cells further highlighting the 37 

importance of engineered model systems and multidisciplinary approaches in cancer research. 38 
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Introduction 40 

Despite advancements in treatment options, breast cancer remains the second leading cause of 41 

cancer-related deaths in women1. Mortality in breast cancer is driven by metastasis and relapse, 42 

during which cancer cells in the primary tumor invade into surrounding tissues and disseminate 43 

into distant sites to form secondary tumors. The pathogenesis of metastasis can be attributed to 44 

intratumoral heterogeneity, where phenotypic diversity enables a subset of cells to become 45 

invasive and resistant to traditional therapies2,3. In particular, the emergence of cancer cells with 46 

stem-like properties (CSCs) contributes to metastasis because of their self-renewal and invasive 47 

properties4. CSCs are identified by their expression of stem cell markers (e.g. NANOG, SOX2, 48 

OCT4, aldehyde dehydrogenase [ALDH]) and influenced by features of the tumor 49 

microenvironment including extracellular matrix (ECM)5,6. For example, CSC invasion into the 50 

surrounding stroma is controlled by ECM microarchitecture and stiffness7,8 including collagen 51 

fiber alignment at the tumor periphery7,9,10. However, the emergence and maintenance of the CSC 52 

phenotype and their consequences on 3D collagen invasion are poorly understood as studies often 53 

isolate tumor cells from the complex microenvironmental conditions that influence their behavior 54 

in vivo.  55 

 56 

One key component of the tumor microenvironment influencing tumor cell phenotype and 57 

invasion is hyaluronic acid (HA). While much prior work has focused on how HA secreted by 58 

stromal cells regulates tumorigenesis11–13, cancer cells themselves also produce HA. In fact, 59 

overproduction of HA by tumor cells enriches for a CSC phenotype14,15 and correlates with worse 60 

patient prognosis11,16. Although several studies have delineated the specific signaling pathways by 61 

which HA modulates cell behavior15,17, excess production of HA also regulates tumor cells via 62 
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biophysical mechanisms18,19. For example, biosynthesis and pericellular retention of HA as part of 63 

the glycocalyx allows tumor cells to invade and extravasate more effectively20,21. However, which 64 

metabolic adaptations tumor cells may use to increase HA-mediated tumor cell invasion and the 65 

role cancer cell stemness plays in this process remains unclear.  66 

 67 

Aberrant cellular metabolism is a hallmark of cancer that has been independently tied to increased 68 

tumor cell invasion, stemness, and HA biosynthesis. Therefore, we speculated that metabolism 69 

may serve as an overarching regulator of HA-mediated tumor cell invasion. Specifically, we 70 

hypothesized that metabolic adaptations increase cancer cell stemness, which phenotypically can 71 

more readily satisfy the energetic demands of 3D invasion. Prior findings suggest that CSCs 72 

exhibit metabolic phenotypes that are distinct from non-CSCs22–24 and that effective tumor cell 73 

invasion through dense ECM requires metabolic adaptations including increased glucose uptake 74 

and ATP generation25,26. While increased glucose uptake due to aerobic glycolysis is a common 75 

feature of tumor cell metabolism, this typically results in the fermentation of glucose to lactate 76 

(known as the Warburg Effect) which produces ATP less efficiently than oxidative 77 

phosphorylation per glucose molecule. This energetically disadvantageous state must then 78 

encourage tumor cells to develop compensatory mechanisms to generate the necessary energy for 79 

3D invasion.  80 

 81 

Because increased HA production of CSCs is known to direct intermediate products of glycolysis 82 

into the hexosamine biosynthetic pathway (HBP)17 it is possible that the resulting metabolic 83 

rewiring enables their 3D invasion by providing alternative strategies for ATP production. 84 

However, identifying broad metabolic changes beyond conventional biochemical methods 85 
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requires integrating computational approaches that can model the flow of metabolites through 86 

relevant large-scale metabolic networks, while simulating a desired metabolic phenotype for 87 

subsequent experimental validation. Here, we integrate engineered cell lines, microfabricated 88 

culture models, and computational approaches including flux-balance-analysis (FBA) to 89 

investigate the interconnectedness of the tumor cell phenotype, HA production, and metabolism 90 

and its influence on cancer cell invasion. We demonstrate that metabolic adaptations associated 91 

with increased HA production promote a stem-like phenotype in cancer cells, which can more 92 

readily satisfy the energy demands necessary for 3D invasion. Bioinformatic analysis of clinical 93 

data from publicly available datasets further indicated that these changes correlated with increased 94 

invasive potential and worse survival in patients. Collectively, our results suggest that HA 95 

overproduction due to metabolic reprogramming negatively influences prognosis in breast cancer 96 

patients by altering invasion, and further motivate the need for utilizing a multidisciplinary toolset 97 

to study intratumoral heterogeneity and its role in invasion. 98 

 99 

Results 100 

Cancer Stem-Like Cells Exhibit Increased Invasive Potential 101 

To investigate differences in invasion between CSCs and their non-differentiated counterparts, we 102 

utilized the CSC reporter cell line GFP-NANOG MDA-MB-231 in which green fluorescent 103 

protein (GFP) expression is controlled by the NANOG promoter27 (Fig. 1a). Using fluorescence-104 

activated cell sorting (FACS) GFP-NANOG MDA-MB-231 cells were sorted into GFPNull, GFPLow 105 

(bottom 5% GFP expressing), and GFPHigh (top 5% GFP expressing cells) populations to enrich 106 

for different stem-like states (Fig. 1a) whose phenotype was maintained over 5 days of culture 107 

(Supplementary Fig. 1). Moreover, the GFPHigh cell population proliferated more slowly than the 108 
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non-CSC GFPNull population, consistent with a more quiescent phenotype (Fig. 1b). To study 109 

potential differences in the invasive phenotype of these different cell populations, we monitored 110 

tumor cell invasion in response to a morphogen gradient using a microfluidic collagen type I 111 

hydrogel model (Fig. 1c). In this setup, GFPHigh NANOG MDA-MB-231 cells invaded into the 3D 112 

fibrillar collagen hydrogel region (Fig. 1d) of the device more readily than their less stem-like 113 

counterparts, validating that CSCs exhibit increased 3D invasive potential (Fig. 1e). Cell migration 114 

and invasion are energetically intensive processes requiring increased metabolic consumption28. 115 

Accordingly, inhibiting energy production with the glycolysis inhibitor 2-deoxyglucose (2-DG) 116 

reduced both collagen hydrogel invasion and random 2D migration of unsorted GFP-NANOG 117 

MDA-MB-231 cells (Fig. 1f,g). These results indicate that CSCs exhibit increased invasive and 118 

migratory potential in our experimental setup that was dependent on glycolytic metabolism. 119 

 120 

Cancer Stem-Like Cells Have Altered Metabolism 121 

To characterize the metabolic phenotype of cancer cells as a function of their stem-like phenotype, 122 

extracellular metabolite production and consumption rates were measured in sorted GFP-NANOG 123 

cells (Fig. 2a,b). The more stem-like cells consumed more glucose and produced more lactate 124 

relative to their non-stem-like counterparts indicative of increased glycolysis (Fig. 2a). Real-time 125 

metabolic analysis with the Agilent Seahorse (Seahorse) Analyzer of extracellular acidification 126 

rate (ECAR) and oxygen consumption rate (OCR) further suggested that CSCs not only exhibited 127 

increased glycolysis, but also oxidative phosphorylation (Fig. 2b, Supplementary Fig. 2). 128 

Acccordingly, culturing in glucose-free media decreased the percentage of GFPHigh cells relative 129 

to media containing physiological levels of glucose (Fig. 2c). This approach also decreased the 130 

ALDH bright (ALDHBr) fraction (a marker for breast CSCs29,30) of wildtype MDA-MB-231 cells 131 
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confirming that our results were not an artefact of the GFP-NANOG reporter cell line. Moreover, 132 

inhibition of glycolysis by 2-DG reduced the GFPHigh population further corroborating that the 133 

CSC phenotype is intimately linked to glucose metabolism (Fig. 2d).  134 

 135 

As increased HA production has been associated with both metabolic reprogramming and the CSC 136 

phenotype17,31, we next assessed how HA production correlates with the CSC phenotype. 137 

Immunofluorescence (IF) image analysis identified that GFP expression in GFP-NANOG MDA-138 

MB-231 cells positively correlated with the amount of cell surface-associated HA (Fig. 2e). These 139 

differences were likely due to changes in HA biosynthesis and subsequent cell surface retention as 140 

analysis of secreted HA by ELISA indicated low levels across all experimental conditions that 141 

were not significantly different from each other although more stem-like cells seemed to secrete 142 

slightly less HA (Supplementary Fig. 3a). Together, these results suggest that more stem-like cells 143 

exhibit increased glucose metabolism relative to their less stem-like counterparts and that these 144 

changes correlate with elevated levels of cell surface-associated HA. 145 

 146 

Hyaluronic Acid Production Correlates with Stemness 147 

To better quantify the relationship between glucose metabolism, cell surface-associated HA, and 148 

stemness, GFP-NANOG MDA-MB-231 cells were stained for HA and then subjected to flow 149 

cytometry and targeted metabolomics. Consistent with the IF results, the amount of cell surface-150 

associated HA directly correlated with GFP expression levels (Fig. 3a). Importantly, sorting the 151 

GFP-NANOG MDA-MB-231 cells into high and low HA producing cells for targeted 152 

metabolomics revealed broad changes of intracellular metabolites with hierarchical clustering 153 

separating the two HA production phenotypes (Fig. 3b). In particular, both upper glycolytic and 154 
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tricarbocylic acid (TCA) cycle metabolites such as glucose-6-phosphate (G6P), fructose-6-155 

phosphate (F6P), oxaloacetate (OAA), and citrate (CIT) were increased in the highly HA 156 

producing cells (Fig. 3c). Combining these results with the broad metabolic alterations of CSCs 157 

described above (Fig. 2), these data suggest a direct link between glycolysis-dependent HA 158 

synthesis and the CSC phenotype (Fig. 3d). To more directly test how HA synthesis affects 159 

stemness, GFP-NANOG MDA-MB-231 cells were cultured with the HA synthesis inhibitor 4-160 

methylumbelliferone (4-MU, 0.5 mM). These results trended towards a decreased fraction of stem-161 

like GFPHigh cells consistent with previous studies on stemness and invasion15,20 (Supplementary 162 

Fig. 3b).  163 

 164 

To more directly determine if increasing production of HA promotes stemness, HAS2 and HAS3 165 

were stably overexpressed in MDA-MB-231 and the non-malignant breast epithelial cell line 166 

MCF10A. While HA is synthesized by three HAS isoforms (HAS1, 2, 3), HAS 1 varies in HA 167 

synthesis and secretion rate from HAS 2 and 3. In contrast, HAS2 and HAS3 exhibit similar 168 

sensitivities and responses to precursor availability and thus were used here32–34. Overexpression 169 

of HAS2/3 increased the defining characteristic of CSCs in both cell lines. More specifically, 170 

overexpression of HAS2/3 increased MDA-MB231 self-renewal as measured through sphere 171 

formation in a limited dilution assay (Fig. 3e, Supplementary Fig. 4a,b) and increased the fraction 172 

of CD44+/CD24- MCF10A cells, which characterizes an invasive breast CSC population with more 173 

mesenchymal characteristics35,36 (Fig. 3f, Supplementary Fig. 4d). This population could not be 174 

assessed in HAS overexpressing MDA-MB-231 as this cell line contains an intrinsically high 175 

fraction of CD44+/CD24- cells (>85%), making changes difficult to quantify37,38 (Supplementary 176 

Fig. 4c). Finally, HAS3 overexpression also trended towards an increase in the ALDHBr fraction 177 
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of MCF10A (Supplementary Fig. 4e). Together, these results suggest that HA overproduction 178 

increases stem-like cell properties in breast cancer cells regardless of cell line and HAS2/3 isoform. 179 

 180 

Increased HA Production by CSCs is Associated with Increased Glucose Conversion and ATP 181 

Production 182 

Given our results that metabolic reprogramming of CSCs supports their energy demands during 183 

invasion (Fig. 2) and that a more stem-like phenotype is associated with increased HA production 184 

(Fig. 3), we speculated that increased HA production promotes a more energetic CSC phenotype. 185 

Probing the individual contribution of HA biosynthetic pathways to the metabolic state of CSCs 186 

solely by measuring different metabolite levels, however, is challenging given the 187 

interconnectedness of most metabolic pathways. To circumvent these limitations and delineate the 188 

contribution of HA biosynthesis to CSC metabolism more directly, a flux balance analysis (FBA) 189 

model was constructed. FBA is a widely utilized mathematical approach to model the flow of 190 

metabolites (flux) through a genome-scale network of metabolic pathways, including glycolysis, 191 

oxidative phosphorylation, hexosamine biosynthesis, and amino acid consumption39, and has been 192 

successfully used to investigate cancer metabolism40,41. In contrast to traditional metabolomics, 193 

FBA also enables the simulation of a desired metabolic phenotype by adjusting model parameters 194 

such as the objective function and flux constraints. To develop the model for our study, 195 

extracellular metabolomics of GFPHigh and GFPNull cells were performed over 72 hours to define 196 

metabolite consumption/production profiles used to constrain flux values for more and less stem-197 

like MDA-MB-231 breast cancer cells, respectively (Fig. 4a). Additionally, the objective function 198 

of the FBA model was set to maximize HA synthesis to study both the capacity of CSCs and non-199 

CSCs to produce HA and the associated changes in metabolic flux. Results from the FBA model 200 
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indicated that the more stem-like cells (GFPHigh) increased flux through the upper stages of 201 

glycolysis (i.e., conversion of glucose to fructose-6-phosphate), ATP generation, lactate 202 

production/secretion, and glutamine uptake relative to the non-stem-like cells (GFPNull) (Fig. 4b, 203 

Supplementary File 1). Additionally, the FBA model indicated increased flux through all HA 204 

synthesis intermediate steps for the GFPhigh cells relative to the GFPnull cells (Fig. 4c). Collectively, 205 

these data suggest that the increased capacity of CSCs to synthesize HA is related to increased 206 

glucose conversion but simultaneously allows these cells to produce ATP more efficiently. To 207 

confirm the predictive value of the FBA model, a Seahorse real-time ATP rate assay was 208 

performed. This analysis verified that the mitochondrial and overall ATP production rate was 209 

increased in GFPHigh versus GFPNull cells (Fig. 4 d,e). Together, these findings suggest that the 210 

metabolic phenotype of more stem-like cancer cells leading to increased HA biosynthesis 211 

promotes ATP production by these cells. FBA models are suitable for predicting these changes. 212 

 213 

Metabolic Changes resulting from Increased HA Production Stimulate a Stem-like Breast Cancer 214 

Cell Phenotype to Promote Invasion. 215 

Our aforementioned results suggest functional links between the stem-like and invasive phenotype 216 

of tumor cells (Fig. 1), CSCs and metabolism (Fig. 2), CSCs and HA (Fig. 3), and HA and 217 

metabolism (Fig. 4). However, whether these single observations are mechanistically connected 218 

remained to be determined. Therefore, we next hypothesized that the metabolic phenotype induced 219 

by HA overproduction leads to changes in energy production that increase the stem-like phenotype 220 

of breast cancer cells to promote invasion. Indeed, Seahorse analysis revealed that MCF10A and 221 

MDA-MB-231 cells overexpressing HAS2 and HAS3 had increased ECAR compared to their 222 

parental controls suggesting an increase in glycolytic energy production (Fig. 5a). Interestingly, 223 
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OCR was unchanged in HAS2/3-overexpressing MCF10A but increased in HAS2/3-224 

overexpressing MDA-MB-231 cells (Supplementary Fig. 5a), consistent with an increase in OCR 225 

in GFPHigh vs. GFPLow and GFPNull MDA-MB-231 (Fig. 2b). Treatment with 2-DG decreased both 226 

cell surface-associated and secreted HA in MCF10A cells (Supplementary Fig. 5b, c). Notably, 2-227 

DG treatment of MCF10A cells decreased the CD44+/CD24- fraction in the HA overproducing 228 

cells but had no effect on the parental control cells suggesting that the enhanced glycolysis 229 

associated with HA overproduction is critical to maintaining stemness (Fig. 5b). Furthermore, HA 230 

overproduction increased both total and glycolytic ATP production (Fig. 5c, Supplementary Fig. 231 

5d) that 2-DG reversed to similar levels as in MCF10A control cells (Fig. 5c). A similar trend was 232 

noted for MDA-MB-231 cells, although 2-DG decreased glycolytic ATP production only in the 233 

HAS3 overexpressing cells. Overexpression of HAS2/3 also increased invasion of both MCF10A 234 

and MDA-MB-231 (Fig. 5d, e), consistent with their increased stem-like phenotype (Fig. 3d, e). 235 

This effect was inhibited by 2-DG treatment, implicating a functional consequence of HA-236 

mediated stemness and metabolism in tumor cell invasion (Fig. 5d, e). As 2-DG treatment did not 237 

affect the ATP production rate in parental cells (Fig. 5c), these changes in invasion can be 238 

attributed to differences in metabolism rather than compromised cell viability. Together this data 239 

suggests that HA overproduction induces a glycolytic phenotype that is crucial for CSC-mediated 240 

invasion. 241 

 242 

HA Overproduction Transcriptome Changes Predict Worse Patient Survival 243 

As our data implied that HAS2 and 3 overexpression induced more invasive tumor cell phenotypes 244 

we next tested if and how these findings may correlate with differences in clinical prognosis. To 245 

this end, RNA sequencing was conducted on the MCF10A cells overexpressing HAS2 and HAS3 246 
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and their parental control to identify transcriptional changes that would allow us to interrogate the 247 

contribution of HA overproduction to stemness, invasion, and patient outcomes. Principle 248 

component analysis (PCA) and hierarchical clustering indicated that the transcriptome of HA 249 

overproducing cells differed significantly from their parental control (Fig. 6a, b, Supplementary 250 

Fig. 6a, Supplementary File 2). Gene set enrichment analysis (GSEA) with the Hallmarks gene 251 

sets from the Molecular Signature Database revealed enrichment of a wide range of pathways for 252 

both HAS2 and HAS3-overexpressing cells, including those previously associated with stemness 253 

and invasion such as NF-κB42, hypoxia8, PI3K signaling43, IL6-STAT3 signaling, and reactive 254 

oxygen species22,23 (Fig 6c). Since HIF1 signaling has been previously implicated in an HA-255 

dependent increase in the CSC phenotype17, we performed GSEA for HIF1 target genes44–48. 256 

Interestingly, neither HAS2 nor HAS3 transcriptomes were enriched for HIF1 target genes (Fig. 257 

6d), which have previously been suggested as drivers of HA-dependent stemness17. These results 258 

further support our findings that the cellular phenotypes investigated in this study are due to 259 

broader metabolic and energetic changes and cannot be attributed to glycolysis-driven changes in 260 

hypoxia-related signaling. 261 

 262 

To determine the clinical relevance of our findings, a 72-gene signature was generated from the 263 

genes upregulated in both HAS2 and HAS3-overexpressing cells (log2-fold change > 1, p-value < 264 

0.05) compared to their parental control (Fig. 6e, Supplementary Table 1). Overrepresentation 265 

analysis of this gene signature revealed no significant enrichment of genes associated with most 266 

metabolic pathways from the KEGG database (Supplementary Fig. 6b). While surprising these 267 

results can be explained by the fact that metabolism is significantly regulated by posttranscriptional 268 

changes49,50. Subsequently, we calculated enrichment scores for this HA overproduction gene 269 
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signature and a curated list of gene signatures involved in migration, cytoskeleton dynamics, and 270 

metabolism (Supplementary File 3, Supplementary Fig. 7a) using single sample GSEA 271 

(ssGSEA)51 for chemotherapy-naïve patients in the METABRIC cohort. Tumorous tissue from 272 

patients enriched for our HA overproduction signature were simultaneously enriched for several 273 

migration and actin cytoskeleton gene sets after accounting for random associations suggesting 274 

increased tumor invasion in these patients. Metabolic gene sets except for glycosaminoglycan 275 

synthesis were not enriched in patients consistent with our findings that metabolic pathways were 276 

not overrepresented in our HA production signature nor enriched by both HAS2/3 overexpression 277 

in MCF10A cells (Fig. 6f, Supplementary Fig. 6b, Supplementary Fig. 7b,c). Importantly, our HA 278 

overproduction signature also predicted worse patient survival consistent with their increased 279 

expression of invasion-related gene sets (Fig. 6f,g). Gene signatures specific to upregulation of 280 

either HAS2 or HAS3 also predicted worse patient survival that was not seen in the parental control 281 

(Supplementary Fig. 6c). Collectively, our results suggest that genes associated with increased HA 282 

biosynthesis correlate with an enrichment of migratory genes and predict worse patient survival 283 

regardless of HAS2/3 isoform and transcriptional regulation of metabolic gene sets. 284 

 285 

Discussion 286 

Although CSCs have been associated with HA production and altered metabolism, the exact nature 287 

of these connections to tumor heterogeneity and consequences on tumor cell invasion remain 288 

unclear. Because of the breadth of expertise required to probe each of these aspects, it is infeasible 289 

to rely on a single model system or analytical technique to perform a comprehensive investigation 290 

of these connections. Furthermore, the systems used must be compatible to enable a holistic 291 

evaluation of these aspects. Here, we have used a suite of multidisciplinary approaches that include 292 
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engineered cell lines, in vitro 3D cell culture models, computational metabolic modeling, and 293 

genomic tools to uncover the relationship between tumor cell phenotype, HA production, 294 

metabolic reprogramming, and 3D invasion. We demonstrate that CSCs can increase glycolytic 295 

and oxidative metabolism simultaneously and that the resulting changes in HA production support 296 

3D invasion by supporting more efficient ATP production. Moreover, we identified that these 297 

cellular changes correlated with a gene expression signature that was predictive of patient survival.  298 

 299 

Our data suggests that cell states associated with increased glycolysis enrich for highly invasive, 300 

HA-producing CSCs. Interestingly, HA produced by CSCs is primarily retained on the cell surface 301 

rather than excreted into the surrounding environment (Fig. 3, Supplementary Fig. 3). 302 

Consequentially, the retention of HA on the cell surface contributes to glycocalyx thickness whose 303 

biophysical properties impact the interactions between cells and their surrounding environment 304 

including cell-extracellular matrix interactions necessary for migration18,52. In particular, HA-305 

dependent changes of the glycocalyx can promote adhesion-independent or ameboid migration by 306 

altering the friction required for force generation against extracellular structures53, which may 307 

further decrease the energy needed for migration. Alternatively, changes in glycocalyx thickness 308 

impact surface receptor diffusion patterns and accessibility to impact both adhesion-mediated and 309 

receptor tyrosine kinase-mediated signaling54–56. Further studies to delineate the contributing 310 

biophysical properties are needed to determine the influence of HA on predominant migration 311 

mode.  312 

 313 

Throughout the metastatic cascade, HA has been implicated in promoting invasive phenotypes and 314 

to support survival of circulating cells in the vasculature19–21. While HA-dependent changes of 315 
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cancer malignancy and stemness have been primarily attributed to upregulation of HAS215,31, our 316 

findings indicate that HAS3 similarly promotes a stem-like state (Fig. 3). Indeed, our results that 317 

2-DG inhibited the stem-like phenotype in both HAS2/3-overexpressing mammary epithelial cells 318 

suggests that the metabolic reprogramming enacted by HA overproduction may be a central 319 

regulator of the tumor stem-like phenotype (Fig. 5b). Interestingly, exogenous degradation of HA 320 

produced by cancer cells promotes glucose uptake that can further promote migration56. This 321 

mechanism possibly provides a positive feedback mechanism by which increased HA production 322 

regardless of HAS isoform stimulates 3D invasion. Further studies are necessary to decouple the 323 

metabolic programming associated with HA production and degradation on the CSC phenotype. 324 

 325 

To interrogate alterations in other metabolic pathways associated with glycolysis and oxidative 326 

phosphorylation, we utilized FBA to predict changes in metabolic fluxes induced by stemness. 327 

FBA is especially proficient in enabling the study of cancer metabolism as it simulates metabolic 328 

phenotypes based on real-world constraints such as cell growth rate and glucose uptake39,57. The 329 

FBA model developed here indicated that stem-like cells exhibited an increased capacity for HA 330 

production, and that this increase in HA production was associated with broad metabolic 331 

alterations. Interestingly, our model suggested that although the conversion of glucose to pyruvate 332 

is decreased in stem-like cells when maximizing HA production, the production of both lactate 333 

and acetyl-CoA from pyruvate is increased. An alternative source of pyruvate are the malic 334 

enzymes, which convert malate to pyruvate while producing the reducing agent NADPH58. Indeed, 335 

our FBA model indicated an increase in the flux through malic enzyme 2 (ME2)  (Supplementary 336 

File 1), which has been previously associated with the loss of cellular senescence and increased 337 

tumorigenesis59,60. Although any connection with ME2 will need to be experimentally verified in 338 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2022.06.08.495338doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495338


15 

 

future experiments, the FBA model developed here was able to provide additional insights into the 339 

metabolic alterations associated with stemness-related HA production. 340 

 341 

The energetic demands associated with HA-mediated invasion can induce broad metabolic 342 

changes. For example, increased HA production rapidly depletes UDP-sugar substrates, which 343 

cancer cells may compensate for by increasing glycolysis to maintain flux into the HBP and thus, 344 

the pool of UDP-sugars17. Our FBA model corroborates this phenomenon and provides further 345 

insight into metabolic states associated with CSCs such as an increased HA production capacity. 346 

The resulting metabolic phenotypes associated with overexpressing HAS2 or HAS3 in cells 347 

suggest that the glycolytic demand dominates over possible changes in oxidative metabolism 348 

previously associated with stemness23,61,62. Furthermore, our finding that HA overproduction 349 

induces phenotypic and transcriptomic changes that correlate with invasion may help explain why 350 

glycolytic, mesenchymal breast CSCs localize to the leading edge of tumors and worsen patient 351 

prognosis23,36. Together, these results suggest that HA production enables a more invasive, 352 

malignant CSC metabolic phenotype. 353 

 354 

Transcriptomic analysis of HAS2 and HAS3 overexpressing MCF10As indicated an enrichment 355 

of multiple stemness-associated gene sets (e.g. IL6-JAK-STAT3 signaling and hypoxia), but 356 

metabolic genes were not differentially expressed. This discrepancy with our experimental 357 

observations may be explained by how metabolic changes are not only regulated transcriptionally 358 

but also by enzyme activity levels, localization, and substrate availability49,50,63,64. Furthermore, 359 

cytoskeletal rearrangement, which is critical for invasion, can independently control glycolytic 360 

flux by mediating enzyme degradation65 or sequestration50. Our results suggest that the glycolytic 361 
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CSC phenotype associated with HA overproduction is not regulated transcriptionally, but whether 362 

this is enacted by cytoskeletal dynamics or changes in the relative activity of different metabolic 363 

enzymes requires further investigation.  364 
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Materials and Methods 393 

Cell Culture 394 

MCF10A (ATCC) cells were cultured in DMEM/F12 supplemented with 5% Horse Serum, 1% 395 

penicillin/streptomycin, 10 µg/mL Insulin, 0.5 µg/mL Hydrocortisone, 100 ng/mL Cholera toxin, 396 

and 20 ng/mL human epidermal growth factor (EGF). MDA-MB-231 (ATCC) and the GFP-397 

NANOG MDA-MB-231 (a kind gift from Dr. Ofer Reizes27) cells were cultured in DMEM 398 

supplemented with 10% FBS and 1% penicillin/streptomycin. HAS overexpressing cells were 399 

cultured in their respective medias containing 1 µg/mL doxycycline (Santa Cruz Biotechnology). 400 

For glycolytic inhibition studies, cells were treated with media containing 2-deoxyglucose 401 

(MilliporeSigma) matching the glucose concentration in the media (25mM or 20mM for DMEM, 402 

DMEM/F12 respectively) for 24 hours unless otherwise noted. 403 

 404 

Generated Cell Lines 405 

cDNAs for human HAS2 and HAS3 were generated and cloned into the lentiviral vector pLV 406 

HygroR tetOn to create stably transduced, tetracycline-inducible MCF10A cell lines as previously 407 
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described52. cDNAs for human HAS2 and HAS3 were also fabricated and inserted into a 408 

tetracycline-inducible PiggyBac expression vector to generate pPB huHAS2-IRES2-mScarlet-409 

IRES2-NeoR and pPB huHAS3-IRES2-mScarlet-IRES2-NeoR through custom gene synthesis 410 

(Twist Biosience). Generation of the MDA-MB-231 HAS overexpressing cells was conducted 411 

using either the pPB huHAS2-IRES2-mScarlet-IRES2-NeoR or pPB huHAS3-IRES2-mScarlet-412 

IRES2-NeoR or with the Piggybac transponase using the Nucleofector Cell Line Kit V (Lonza). 413 

Stably transfected cells were selected using 1 µg/mL puromycin (MilliporeSigma) or 800 µg/mL 414 

G418 (ThermoFisher). MDA-MB-231 HAS overexpressing cells were then sorted post-selection 415 

on mScarlet expression levels. 416 

 417 

FACS and Flow Cytometry 418 

GFP-NANOG MDA-MB-231 cells were trypsinized and resuspended at 10x106 cells/mL in FACS 419 

buffer (2.5% FBS/PBS, 2mM EDTA) and processed on the BD FACSAria Fusion Cell Sorter. The 420 

top 5% and bottom 5% of the GFP+ fraction were designated as GFPHigh and GFPLow respectively, 421 

while the non-GFP expressing population were designated as GFPNull. Cells were sorted into cell 422 

culture media, recounted, seeded, and allowed to rest for 24 hours before use in experiments. 423 

Cell sorting for targeted metabolomics was conducted on GFP-NANOG MDA-MB-231 cells 424 

stained for HA using Alexfluor-568 (ThermoFisher) conjugated HA binding protein (HABP, 40 425 

µg/mL, MilliporeSigma). The high HA (top 5%) or low HA (bottom 5%) fractions were sorted 426 

using a BD FACSAria Fusion Cell Sorter. 427 

ALDH activity was determined for MDA-MB-231 and MCF10A cells using the Aldefluor™ 428 

Assay (STEMCELL Technologies)  according to manufacturer instructions with incubation 429 

conducted for 30min at 37°C. Analysis was conducted on a BD Accuri C6 Plus analyzer. 430 
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The fraction of CD44+/CD24- cells was determined by trypsinizing and resuspending cells in 431 

FACS buffer at 10x106 cells/mL followed by incubation with antibodies against human CD44 432 

(APC-conjugated, Clone G44-26, 1:5, BD Biosciences) and CD24 (PE-Cy7-conjugated, Clone 433 

ML5, 1:20, BD Biosciences). Gates were determined using the isotype controls mouse anti-IgG2b 434 

κ (APC-conjugated, Clone 27-35, 1:5, BD Biosciences) and mouse anti-IgG2a κ (PE-Cy7-435 

conjugated, Clone G155-178, 1:20, BD Biosciences). Cells were analyzed on a BD Accuri C6 Plus 436 

Analyzer. 437 

 438 

Invasion and Migration Assays 439 

To prepare microfluidic invasion assays, rat tail Type I collagen (Corning) was neutralized with 1 440 

N NaOH and diluted with 1X DMEM to a final concentration of 2.5 mg/mL. Before neutralization 441 

and dilution, 10x DMEM was added to collagen as a pH indicator to a final concentration of 10% 442 

v/v. Microfluidic 3D cell culture devices (AIM Biotech) were then injected with the 2.5 mg/mL 443 

rat tail Type I collagen solution into the center channel of the chip. The chips were then incubated 444 

at 4°C for 30 minutes, followed by incubation at 37°C for 30 minutes to complete collagen 445 

polymerization. For MDA-MB-231 invasion, DMEM containing 1% FBS and 1% 446 

penicillin/streptomycin was injected into the left flanking media channel, and DMEM containing 447 

10% FBS and 1% penicillin/streptomycin was injected into the right flanking media channel. For 448 

MCF10A invasion, MCF10A media devoid of Horse Serum and EGF was injected into the left 449 

flanking media channel, and fully supplemented MCF10A media was injected into the right 450 

flanking media channel. 10 μL of a 2.5x105 cell suspension of GFP-NANOG MDA-MB-231 or 451 

MCF10A cells were then injected into both ports of the left channel (20 μL total). Cells were 452 

allowed to invade through the hydrogel channel for 3 - 5 days before fixation in a 4% 453 
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paraformaldehyde solution. Media was exchanged every 24 hours. After fixation, chips were 454 

stained, imaged, and individual cell invasion distance was measured using ImageJ by segmenting 455 

nuclei.  456 

To assess random migration ability, GFP-NANOG MDA-MB-231 cells were plated on 457 

fibronectin-coated (30 μg/mL) glass 96 well plates and placed in an Incucyte S3 (Sartorius) live 458 

cell imaging system. Images were obtained in 20-minute intervals over 24 hours. Individual cell 459 

tracking was performed using ImageJ to determine migration velocity (motility) and random 460 

migration paths. 461 

 462 

Immunofluorescence 463 

GFP-NANOG MDA-MB-231 cells were plated on fibronectin-coated (30 µg/mL) glass coverslips 464 

at 2500 cells/cm2. Cells were then fixed in 4% paraformaldehyde (PFA)/PBS (w/v) for 20 min at 465 

room temperature, blocked with 1% bovine serum albumin (BSA)/PBS (w/v) for 1 hr at room 466 

temperature, and incubated overnight with AlexaFluor-568 conjugated hyaluronic acid binding 467 

protein (HABP, 13.3 µg/mL, MilliporeSigma) at 4°C. Afterwards cells were incubated with DAPI 468 

(2.5 µg/mL, ThermoFisher) for 30 min at room temperature. 469 

For invasion experiments, devices were fixed in 4% paraformaldehyde (PFA)/PBS for 30 min at 470 

room temperature, permeabilized with 0.1% Triton X-100/PBS (v/v) for 15 min at room 471 

temperature, blocked with 1% bovine serum albumin (BSA)/PBS (w/v) for 1 hr at room 472 

temperature, and incubated with DAPI (2.5 µg/mL) and either AlexaFluor-568 (ThermoFisher) or 473 

AlexaFluor-647 (ThermoFisher) phalloidin to visualize F-actin. 474 

 475 

Confocal Microscopy and Image Analysis 476 
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Images were acquired on a Zeiss LSM 710 confocal microscope with either a LD LCI Plan-477 

Apochromat 25×/0.8 Imm Korr DIC M27 or C-Apochromat W M27 10x/0.45 objective. Images 478 

were analyzed using ImageJ with custom scripts. Briefly, for single cell intensity measurements, 479 

z-stacks were sum projected and cells were segmented based on HA intensity. Cell clusters were 480 

manually corrected to individual cells, while overlapping or edge-located cells were excluded from 481 

analysis.  482 

For invasion experiments, the C-Apochromat W M27 10x/0.45 objective was used at 0.6x zoom, 483 

and a z-stack was obtained along a 2 mm length in the center of the device. Z-stacks were 484 

maximum intensity projected, and invasion was assessed based on nuclei displacement along the 485 

x-axis (across the hydrogel region). Invasion distance was normalized to the appropriate control 486 

in each set of replicates per experiment, and data was pooled together across device replicates to 487 

obtain averages per condition. 488 

 489 

Metabolic Analysis 490 

To obtain an initial measure of glycolytic ability, sorted GFP-NANOG MDA-MB-231 cells were 491 

seeded in 24 well plates at 10,000 cells/cm2 in 1 mL of media. Glucose concentration was measured 492 

using a GlucCell Glucose Monitoring System (CESCO Bioengineering), and lactate concentration 493 

was obtained using a colormetric lactate assay kit (Sigma). 494 

Targeted metabolomics was conducted on GFP-NANOG MDA-MB-231 cells 48 hours post 495 

sorting for HA production. Media was collected and non-adherent cells were pelleted at 500 x g 496 

for 4 minutes. Meanwhile, 0.5 mL of 80% methanol (MetOH) was added onto adherent cells and 497 

incubated at -80°C, After aspirating supernatant, the cell pellet was resuspended in 0.5 mL of 80% 498 

MetOH and added to the respective well of adherent cells in plate and incubated at -80°C for 15 499 
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minutes. Cells were then scraped using a cell scraper and collected into an Eppendorf tube and 500 

pelleted at 20,000 x g for 10 minutes at 4°C. Supernatant was then transferred to 2 mL screw-cap 501 

vial and dried overnight under vaccum at room temperature. Following overnight drying, samples 502 

were then dried for 2.5 hours in SpeedVac SPD 1030 at room temperature and then stored at -80°C 503 

until analyzed by Weill Cornell Medicine Proteomics and Metabolomics Core Facility.   504 

Real-time changes in metabolism were tested using a Seahorse XFe96 Analyzer in conjunction 505 

with the Seahorse XF Glycolysis Stress Test Assay Kit and the Seahorse XF Real-time ATP Assay 506 

Rate Kit (Agilent). Manufacturer instructions were followed to perform each of the assays. 507 

Wildtype and modified MDA-MB-231 cells were seeded on a Seahorse XFe96 Cell Culture 508 

microplate at 20,000 cells per well in standard media and allowed to attach overnight. For 509 

experiments with MCF10A, cells were seeded at 20,000 cells per well. HAS overexpressing cells 510 

had media changed 24 hours after seeding to include 1 µg/mL doxycycline. Media was then 511 

changed to the specific Seahorse assay media, and plates were prepared according to manufacturer 512 

instructions for each assay kit. Relevant metabolic values from each assay were calculated using 513 

template worksheets provided by Agilent. After the assays were complete, DNA was extracted 514 

from each well using Caron’s Buffer (25 mM Tris-HCl, 0.4 M NaCl, 0.5% (w/v) sodium 515 

dodecylsulfate), and total DNA content measured using the fluorometric Quantifluor dsDNA 516 

Assay (VWR) and converted to cell number for normalization.  517 

 518 

Flux Balance Analysis (FBA) 519 

To generate a computational model of metabolic fluxes in sorted GFP-NANOG MDA-MB-231 520 

cells, cells were sorted as described above and seeded into 24 well plates at 10,000 cells/cm2. Cells 521 

were allowed to attach overnight before a fresh media change. Media was collected 72 hours after 522 
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the initial media change and stored at -80°C before performing extracellular metabolomics to 523 

measure levels of glucose, lactate, and the 20 amino acids. Glucose was measured using Contour 524 

next EZ Blood Glucose Monitoring System (Ascensia Diabetes Care) using 5 L as the sample 525 

volume. Lactate and amino acid concentrations were assayed using an Acquity UPLC H-Class 526 

System equipped with QDa and tunable UV (TUV) detectors controlled by Empower 3 software 527 

(Waters Corporation). Specifically, extracellular amino acids were analyzed using a Waters AccQ-528 

Tag Ultra Derivatization Kit (Waters) according to the manufacturer's recommendations. 529 

Derivatized samples were injected onto an AccQ-Tag Ultra C18 column (1.7 m, 2.1 mm x 100 530 

mm, Waters) and detected by an Acquity TUV detector (Waters) at 260 nm.  Amino acids were 531 

identified by known retention times of standards and concentrations were determined by 532 

comparison with calibration standard curves.  For the lactate measurements, samples were first 533 

deproteinized by treatment with an equal volume of trichloroacetic acid followed by centrifugation 534 

at 12,000 x g for 10 minutes. 200 L of the supernatant was then combined with 600 L of 535 

acetonitrile (ACN) before injecting 2 L into the LC-MS system. Lactate was quantified using a 536 

standard curve ranging from 0.05mM to 1mM. Separations were performed on an Acquity UPLC 537 

BEH Amide Column (1.7 m, 2.1 mm x 100 mm, Waters). Solvent A consisted of 50:50 538 

ACN:Water and solvent B consisted of 95:5 ACN:Water. The solvent gradient started at 0.01% 539 

solvent A and 99.9% solvent B, raised to 40% A in 0.5 minutes, further raised to 70% A in 1.5 540 

minutes, and returned to initial conditions over 0.1 minute and held for 3 minutes to re-equilibrate 541 

the column. The flow rate was set to 0.6 mL/min, the autosampler was set to 5°C, and the column 542 

was set to 50°C. The mass-to-charge ratio (m/z) of lactate was 88.9. Analysis was performed in 543 

negative ion mode with a cone voltage of 15V and probe temperature of 600°C. 544 
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Extracellular metabolomics data of all 20 amino acids, lactate, and glucose was then used to 545 

constrain a flux balance analysis by imposing bounds on allowable fluxes. Growth rate and O2 546 

fluxes were constrained from cell counts and Seahorse data respectively. The model used in this 547 

study was implemented in the Julia programming language66, where the linear programming 548 

problem was solved using the GNU Linear Programming Kit (GLPK) package 549 

(https://www.gnu.org/software/glpk/). The stoichiometric matrix and metabolic growth 550 

requirements were derived from a previously developed Core Cancer model41. The objective 551 

function was set to maximize HA production subject to experimentally estimated rates of uptake, 552 

secretion, and cell growth to define the phenotype of interest; 1000 simulations were performed 553 

for each condition. A subset of the FBA results representing the energetic pathways of interest was 554 

incorporated into a graphical representation (Fig. 4). The full FBA results can be found in 555 

Supplementary File 1. 556 

 557 

Limited Dilution Assay 558 

Cells were serially diluted and seeded into ultra-low attachment 96-well plates (Corning) in 200 559 

 L of serum-free DMEM/F-12 containing 2% B27, 10 ng/mL basic fibroblast growth factor, 20 560 

ng/mL epidermal growth factor, 10 g/mL insulin, and 1 g/mL doxycycline. Sphere formation 561 

was assessed after two weeks of culture, and the number of spheres was counted using a phase-562 

contrast microscope. The stem cell frequency was determined using the extreme limited dilution 563 

algorithm67. 564 

 565 

RNA-Sequencing 566 
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Parental (NeoR-rtTA) and HA overproducing MCF10A cells were seeded on 10-cm dishes at 5000 567 

cells/cm2 and allowed to adhere overnight. Media was refreshed to include 1 µg/mL of doxycycline 568 

to induce HAS2 and HAS3 expression and cultured for an additional 48 hours. RNA was isolated 569 

using the Qiagen RNeasy kit according to manufacturer instructions. RNA libraries were prepared 570 

using the Illumina TruSeq RNA Kit, and single-ended 75bp read lengths were sequenced on the 571 

Illumina NextSeq 500 system. 572 

 573 

Sequence Alignment and Gene Set Enrichment Analysis 574 

Reads were trimmed using TrimGalore version 0.4.4 575 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and aligned to the human 576 

reference genome GRCh38 (ENSEMBL) using STAR version 2.6.0a68. Reads of genomic features 577 

were counted using featureCounts69, and differential gene expression was determined using 578 

DESeq270. Differentially expressed genes in HA overproducing cells were defined as a log-2 fold 579 

change greater than 1 and an adjusted p-value less than 0.0001 compared to the parental cells. 580 

Genes common to both HAS2 and HAS3 were combined to generate the HA overproducing gene 581 

signature for survival analysis. Individual HAS2 and HAS3 gene signatures were defined as the 582 

differentially expressed genes with log 2-fold change greater than 2 or 5, respectively, and a p-583 

value less than 0.0001. 584 

Gene set enrichment analysis (GSEA) was conducted with a ranked list generated by taking the 585 

sign of the fold change multiplied by the log-10 of the adjusted p-value. The list was inputted to 586 

the GSEA Java applet (http://software.broadinstitute.org/gsea/index.jsp) using the 587 

GSEAPreRanked tool and the Hallmarks gene sets from MSigDB v.7.0. Gene sets were considered 588 

significantly enriched with a p-value and FDR value ≤ 0.05. 589 
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 590 

Patient Survival and Enrichment Analysis 591 

Patient data from the METABRIC cohort was extracted from the Cancer Genomics Data Server. 592 

Patients were limited to those having not received chemotherapy. Gene signature scores were 593 

calculated using the single-sample GSEA (ssGSEA)71 with the GSVA package72. The top and 594 

bottom quartiles of the ssGSEA scores for the 72-gene HA overproduction signature were 595 

designated as high and low scores, respectively, for survival and enrichment analysis. Kaplan-596 

Meier survival analysis was conducted with the survival package in R using a Cox proportional 597 

hazard model with statistical significance determined using a log-rank test. Stratified patients were 598 

further analyzed for enrichment of curated lists of migration, cytoskeletal, and metabolic gene 599 

signatures obtained from the MSigDB v7.0. To correct for random associations, 300 randomly 600 

selected gene signatures with the same number of genes (15-500 genes) as gene sets in the curated 601 

list had ssGSEA enrichment scores additionally calculated. An empricial cumulative distribution 602 

function was established using the ecdf function in R and a p-value cutoff was determined where 603 

95% of values fell below. 604 

 605 

Statistical analysis 606 

All experiments were performed with at least three independent biological replicates unless 607 

otherwise noted. Pairwise comparisons were conducted using a Mann-Whitney U test unless 608 

otherwise noted. Multiple comparisons were evaluated with either a Kruskal-Wallis Test or two-609 

way ANOVA with Dunn’s post hoc analysis. Results were considered statistically significant with 610 

a p-value less than 0.05. Unless otherwise noted, all data points are plotted mean +/- the standard 611 

deviation. All statistically analysis was performed using GraphPad Prism v9.3 or R. 612 
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 773 
 774 

Figure 1: CSCs have increased invasive potential that is sensitive to metabolic challenge. a) 775 

Schematic of the cancer stem cell reporter line GFP-NANOG MDA-MB-231 and sorting 776 

strategy. b) Growth curve of sorted cells as measured by DNA amount, normalized to the first 777 

measurement at t = 12 hrs (n = 3 samples). c) Schematic of the microfluidic device to analyze 778 

cell invasion in response to a morphogen gradient generated by applying serum-containing 779 

medium to the right channel only. d) Representative confocal reflectance microscopy image of a 780 

fibrillar collagen hydrogel in microfluidic invasion device. e) Invasion distance of sorted GFP-781 

NANOG MDA-MB-231 into collagen type I over 5 days (n = 4 fields of views, 1 device per 782 

condition). f) Invasion of GFP-NANOG MDA-MB-231 cells into collagen type I treated with or 783 

without 2-DG for 5 days (n = 3 devices per condition). g) Random migration of GFP-NANOG 784 

MDA-MB-231 treated with or without 2-DG for 24 hours (n = 5 representative cells for 785 

migration plots, n = 20 cells per condition for motility). Scale bar = 250 m. * p< 0.05, ** 786 

p<0.01, *** p<0.001, **** p<0.0001 787 
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 789 
 790 

 791 

Figure 2: Cancer stem-like cells exhibit altered metabolism compared to non-stem-like 792 

cancer cells. a) Glucose and lactate concentrations in media conditioned by sorted GFP-793 

NANOG MDA-MB-231 cells 48 hrs post sort as measured by a GlucCell glucose meter and a 794 

lactate colorimetric assay (n = 3 samples). b) ECAR and OCR measurements of sorted GFP-795 

NANOG cells obtained during Seahorse-based glycolysis stress test (n > 6 samples). c) Fraction 796 

of GFP positive (GFP+) GFP-NANOG MDA-MB-231 (n = 6) (i) and aldehyde dehydrogenase 797 

high (ALDH+) (n = 3) (ii) parental MDA-MB-231 when cultured with 100 mg/dL glucose 798 

(+glucose) or glucose-free media (-glucose) for 72 hours. GFP+ and ALDH+ cells were 799 

determined by image analysis and Aldefluor assay, respectively. d) Fraction of GFP+ GFP-800 

NANOG MDA-MB-231 cells treated with or without 2-deoxyglucose (2-DG) (n = 3). e) 801 

Immunofluorescence analysis of HA in the MDA-MB-231 NANOG reporter line. (n = 248 cells)  802 

Scale bar = 50 m. * p< 0.05, ** p<0.01, *** p<0.001, **** p<0.0001.  803 
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 806 
 807 

 808 

Figure 3: Increased HA production correlates with an increase in CSCs. a) Flow cytometry 809 

analysis of cellular GFP levels categorized by their levels of cell surface-associated HA. b) 810 

Heatmap representing changes of intracellular metabolites as measured by metabolomics of 811 

sorted HAHigh and HALow GFP-NANOG MDA-MB-231. c) Graphical representation of selected 812 

metabolites in the central carbon metabolic pathway ratios between HAHigh and HALow cells. d) 813 

Schematic representing the theorized relationship between glycolysis, HA synthesis, and 814 

stemness. e) Representative images of spheres formed through a limiting dilution assay of HAS2 815 

and HAS3 overexpressing MDA-MB-231 and the corresponding sphere number. (n = 11) f) 816 

Flow cytometry analysis of the percentage of the CD44+/CD24- population of parental or HA 817 

overproducing MCF10A cells (n = 5). * p<0.05, ** p< 0.01, **** p<0.001. Scale bar = 200 m. 818 
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 820 
 821 

 822 

Figure 4: Flux balance analysis predicts increased HA production in cancer stem-like cells 823 

and ATP production. a) Workflow schematic. Sorted GFP-NANOG cells were cultured for 72 824 

hrs before performing extracellular metabolomics using LC-MS. This data was used to constrain 825 

a computational flux balance analysis model. b) Flux balance analysis model of the bioenergetic 826 

pathway of sorted GFP-NANOG MDA-MB-231 derived from extracellular metabolomics 827 

obtained over 72 hours of culture. Fluxes shown are GFPHigh relative to GFPNull. Grey 828 

metabolites indicate relevant metabolite fluxes constrained based on extracellular metabolomic 829 

profiles. Oxygen was constrained using values obtained from the Agilent Seahorse assay. For the 830 

total FBA model constraints and results, see Supplementary File 1. c) Expanded HA synthesis 831 

pathway flux balance analysis of GFPHigh relative to GFPNull (dashed box in B). Same legend as 832 

in B. d) ATP production rate and e) rate index derived from measurements using the Agilent 833 

Seahorse ATP real-time production rate assay kit (n ≥ 5). * p<0.05, ** p< 0.01. 834 
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Figure 5: Increased glycolytic metabolism necessary for HA production stimulates 837 

stemness and invasion of breast cancer cells. a) Extracellular acidification rate measurements 838 

of parental MCF10A or HA overproducing cells using the Agilent Seahorse XF Analyzer. b) 839 

Percentage of CD44+/CD24- cells of parental MCF10A or HA overproducing cells with or 840 

without 20mM 2-DG as measured by flow cytometry. c) ATP production rate of either MCF10A 841 

or MDA-MB-231 cells overexpressing HAS2 or HAS3 pre-treated with or without 2-DG (20mM 842 

for MCF10A, 25mM for MDA-MB-231) as measured using the Real-Time ATP Rate Assay in 843 

the Agilent Seahorse XF Analyzer. (n ≥ 8) d) Invasion of the MCF10A and e) MDA-MB-231 844 

HA overproducing cells. Representative immunofluorescence images and corresponding 845 

quantification of invasion after 5 days are shown (n = 3 devices per condition). Scale bar: 200 846 

m, * p< 0.05, ** p<0.01, *** p<0.001, **** p<0.0001  847 
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 848 
 849 

Figure 6: Gene signatures of HA overproducing cells correlate with worse patient 850 

prognosis regardless of HAS isoform. a) Principle Component Analysis plot of RNA 851 

sequencing results of the MCF10A or HA overproducing cells. b) Heatmap of z-score 852 

normalized gene expression of differentially expressed genes with hierarchical clustering of both 853 

samples and genes. c) Gene Set Enrichment Analysis of the Hallmarks gene signature database 854 

for genes upregulated in either HAS2 or HAS3 overexpressing cells contrasted against Parental 855 

MCF10A cells. d) Gene Set Enrichment Analysis of published HIF1α target genes for HAS2 or 856 

HAS3 overexpressing cells. All results are not significant. (FDR q-values ≥ 0.25) e) Venn 857 

diagram displaying the total number of significantly increased genes (FDR ≤ 0.05, log2(Fold 858 

Change) ≥ 1) in either HAS2 or HAS3 overexpressing cells. The top 4 most significant genes 859 

excluding HAS2/3 are shown in the table. f) Ranked enrichment analysis of a curated list of 860 
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migration and metabolism gene sets for tumors from the METABRIC cohort. The degree of 861 

enrichment is determined as the -log10(p-value) multiplied by the sign of the difference in 862 

enrichment scores (ES) of patients stratified into either low or high enrichment of the HA 863 

overproduction gene signature. The dashed red line denotes the empirically determined cutoff for 864 

non-random enrichment. g) METABRIC patient survival probability predicted by the 865 

overlapping 72-gene signature of HA overexpressing cells. Patient signature scores were 866 

stratified into quartiles, and a log-rank test was used to determine statistical significance. 867 
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