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Motivation: The use of high-throughput omics technologies is
becoming increasingly popular in all facets of biomedical sci-
ence. The mRNA sequencing (RNA-seq) method reports quan-
titative measures of more than tens of thousands of biological
features. It provides a more comprehensive molecular perspec-
tive of studied cancer mechanisms compared to traditional ap-
proaches. Graph-based learning models have been proposed to
learn important hidden representations from gene expression
data and network structure to improve cancer outcome predic-
tion, patient stratification, and cell clustering. However, these
graph-based methods cannot rank the importance of the differ-
ent neighbors for a particular sample in the downstream can-
cer subtype analyses. In this study, we introduce omicsGAT, a
graph attention network (GAT) model to integrate graph-based
learning with an attention mechanism for RNA-seq data analy-
sis. The multi-head attention mechanism in omicsGAT can more
effectively secure information of a particular sample by assign-
ing different attention coefficients to its neighbors.
Results: Comprehensive experiments on The Cancer Genome
Atlas (TCGA) breast cancer and bladder cancer bulk RNA-
seq data, and primary diffuse gliomas single-cell RNA-seq data
validate that (1) the proposed model can effectively integrate
neighborhood information of a sample and learn an embed-
ding vector to improve disease phenotype prediction, cancer pa-
tient stratification, and cell clustering of the sample. (2) The
attention matrix generated from the multi-head attention coef-
ficients provides more useful information compared to the sam-
ple correlation-based adjacency matrix. From the results, we
can conclude that some neighbors play a more important role
than others in cancer subtype analyses of a particular sample
based on the attention coefficient.
Availability and implementation: Source code is available at:
https://github.com/CompbioLabUCF/omicsGAT
Supplementary information: Supplementary data are available
at BioRxiv online.
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Introduction
Cancer is a complex and heterogeneous disease with hun-
dreds of types and subtypes spanning across different or-
gans, tissues and have origins in various cell types (1, 2).
For example, breast cancer is highly heterogeneous with dif-
ferent subtypes that lead to varying clinical outcomes in-
cluding prognosis, response to treatment, and changes of re-
currence and metastasis (3–5). Hence, cancer subtype pre-
diction and cancer patient stratification have been the sub-
ject of interest to clinicians and patients for many decades.
Powered by the high-throughput genomic technologies, the

mRNA sequencing (RNA-seq) method is capable of mea-
suring transcriptome-wide mRNA expressions and molecular
activities in cancer cells (6, 7). Bulk RNA-seq data provides
a view of the average gene expression level of an entire tis-
sue sample instead of differentiating among cell types within
the sample. Whereas, single-cell RNA-seq (scRNA-seq) pro-
vides opportunities to explore gene expression profiles at the
single-cell level. These will enable predicting the changes of
expression level at a large scale so as to better understand the
biological mechanism that leads to cancer.

The high-throughput RNA-seq datasets show quantitative
measures of more than tens of thousands of mRNA isoforms
for a cohort of hundreds or thousands of samples (e.g., pa-
tients, cells). However, due to the unavoidable sample het-
erogeneity or experimental noise in the data, extracting bi-
ological valuable information and discovering the underly-
ing patterns from the data is becoming a serious challenge
to computational biologists (8). While hundreds of com-
putational methods have been developed for cancer subtype
prediction/identification (9, 10) and patient stratification (11)
using RNA-seq data (12), network analysis of sample sim-
ilarities has largely been ignored in most methods. Graph-
based neural network (GNN) and network-based embedding
models recently have shown remarkable success in learn-
ing network topological structures from large-scale biolog-
ical data (13–15). On another note, the self-attention mech-
anism has been extensively used in different applications in-
cluding bioinformatics (16–18). This mechanism allows in-
puts to interact with each other and permits the model to
utilize the most relevant parts of the inputs to improve the
performance of the deep learning models. The self-attention
mechanism was combined with the graph-structured data by
Veličković et al. (19) in Graph Attention Networks (GAT).
This GAT model calculates the representation of each node
in the network by attending to its neighbors, and it uses the
multi-head attention to further increase the representation ca-
pability of the model (20). It applies varied attentions to the
neighbors; therefore, find the most important neighbors of a
sample rather than giving all of them the same importance.
This model has been successfully applied on various tasks
including text classification (21), node classification (22), so-
cial influence analysis (23), recommendation system (24),
etc. The GAT model has also been applied to bioinformat-
ics applications including drug-target interaction prediction
(25), drug-microbe interaction prediction (26), gene essen-
tiality prediction (27), etc.

Inspired by the GAT for capturing node dependencies in a
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wide range of domains, we proposed omicsGAT model and
applied it on cancer samples with RNA-seq data. First, we
introduced the model in Methods section. Next, we tested
omicsGAT on The Cancer Genome Atlas (TCGA) breast in-
vasive carcinoma (BRCA) data collections (28) and urothe-
lial bladder carcinoma (BLCA) data collections (29) for can-
cer subtype prediction and cancer patient stratification, re-
spectively (Section F). Then, omicsGAT was applied on
2,458 cells from six primary diffuse gliomas with K27M hi-
stone mutations (H3K27M) for cell clustering (Section G).
Last, we discussed and interpreted the results based on the
sample-by-sample attention matrix generated from the omic-
sGAT model in the Discussion section.

Methods
In this section, we first introduce our proposed framework,
omicsGAT, which generates embeddings from gene expres-
sion data to be used in downstream classification and cluster-
ing. We extended the GAT model (19) to better fit our tasks of
disease outcome prediction and subtype stratification. Then,
we discuss the baseline models used to compare and vali-
date the performance of omicsGAT followed by the details of
evaluation metrics used in this study.

A. Graph Attention Network. The omicsGAT model ar-
chitecture builds on the concept of the self-attention mech-
anism. In omicsGAT, embedding is generated from the gene
expression data assuming that the samples (i.e., patients or
cells) with similar features (gene expressions) are expected
to have similar disease outcomes or cell types, and connected
to each other. Hence, network information is injected into the
model using the adjacency matrix to take these connections
into consideration. However, all connected neighbors of a
target sample should not get equal attention in generating the
embedding for that sample. A particular neighbor of a target
sample can contribute more to its subsequent prediction or
clustering which cannot be accurately apprehended by simi-
larity metrics. Therefore, to capture the importance of each
neighbor on a sample, the omicsGAT model automatically as-
signs different attentions to the neighbors of that sample for
singular head while generating the embedding. Moreover,
to consider the impact of different types of information se-
cured from the neighbors and stabilize the learning process,
the above procedure is repeated multiple times in parallel em-
ploying several heads (independent attention mechanisms) in
a multi-head framework.

The mathematical notations used to explain omicsGAT are
summarized in Table 1. Let n be the number of samples (e.g.,
patients, cells) and m be the number of features (e.g., genes)
representing each sample. The input feature matrix is given
byX = [x1,x2, ...,xn], where x ∈ R1×m represents a sam-
ple vector. A be the n×n adjacency matrix (includes self-
connections) built based on the pairwise correlation between
the samples. Suppose, the set of neighbors for a sample xi is
denoted by Ni. Depending on the number of neighbors |Ni|
to be kept for a sample, the connections with high correla-

Table 1. Mathematical notations for omicsGAT

Name Definition
n number of samples (i.e., patients or cells)
m number of features (i.e., genes)
p embedding size for a single head
h number of heads
X ∈ Rn×m input feature matrix
A ∈ Rn×n correlation-based adjacency matrix of samples
W ∈ Rm×p weight matrix of a single head
a ∈ R2p×1 attention weight matrix of a single head
α ∈ Rn×n attention coefficients of a single head
Z ∈ Rn×ph embedding matrix learned from the model

tion scores are kept (assigned a value of 1) and the others are
discarded (assigned a value of 0). The adjacency matrix is
binarized as it will be used to mask the attention coefficients
in later part of the model. Self-connections are applied to in-
tegrate the information from the samples themselves in their
embeddings. While generating the embedding of sample xi,
the attention given to it from its neighbor xj for a single head
can be calculated as

cij = aT [Wxi||Wxj ] (1)

where W ∈ Rp×m and a ∈ R2p×1 are learnable weight pa-
rameters of a single head which are shared across all the sam-
ples and p is the embedding size. || and .T symbols denote the
concatenation and transposition operations of the matrices re-
spectively. The calculated attention values are passed through
a LeakyReLU activation function. Then the structural infor-
mation of the network is introduced by masking the attention
values using the adjacency matrix. Only the attention values
where a connection is present between the nodes (samples)
in the adjacency matrixA are kept and all the remaining val-
ues are made zero. After that, the attention coefficient for a
neighbor xj is calculated using Softmax function which fol-
lows the equation below:

αij = exp(LeakyReLU(aT [Wxi||Wxj ]))∑
r∈Ni

exp(LeakyReLU(aT [Wxi||Wxr]))
(2)

The attention coefficients calculated for all of the neighbors
of xi using equation (2) are leveraged to calculate its final
embedding for a single head

x′
i = σ(

∑
j∈Ni

αijWxj) (3)

where σ is a non-linear activation function. Note that
the sample xi is also included in its neighbors since self-
connections are used in the adjacency matrix.
In a multi-head attention network, each head has a separate
attention mechanism with its own weight matrix W and at-
tention vector a. Outputs generated by all the heads for one
particular sample are concatenated to generate the final em-
bedding vector of that sample. This is done to stabilize the
learning process while generating the embedding. It is sim-
ilar to the mechanism used by Vaswani et al. (16) in self-
attention. Hence, the output embedding from the first part of
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B omicsGAT Classifier

Fig. 1. Workflow of omicsGAT. For a sample x1, based on the input feature matrix and adjacency matrix, each head calculates the attention given to x1 from its neighbors
separately. The embeddings produced by all heads are concatenated together to generate the final embedding for x1 which is then used for classification or clustering of x1.

our model for xi is given by:

zi =‖hk=1 σ(
∑
j∈Ni

αkijW
kxj) (4)

where h is the number of heads. The output projected in
the embedding space is represented by Z ∈ Rn×ph and em-
bedding for one sample is z ∈ R1×ph. The generated em-
beddings are then used in separate models for classification
and clustering tasks. The overall framework of our proposed
pipeline is illustrated in Figure 1.

B. omicsGAT Classifier. omicsGAT Classifier is a unified
model that passes the embedding Z generated from the first
part of our pipeline described in Section A through three fully
connected (FC) layers. Let the number of classes for the
classification task be c. The first two layers converts Z ∈
Rn×ph toZcls1 ∈Rn×

ph
2 and then toZcls2 ∈Rn×2c respec-

tively. The output layer transforms Zcls2 into Ycls ∈ Rn×c,
where Ycls = [ycls1 ,ycls2 , ...,yclsn ] represent the classifica-
tion outcomes. Each layer can be formulated as

Zcls = σ(WclsZin+bcls) (5)

where Zcls and Zin are the output and input matrices, Wcls

is the learnable weight, and bcls is the bias vector of a partic-
ular layer. σ denotes the activation function which is ReLU
for the first two layers and Softmax for the output layer.
Let the ground truth labels for n samples be Y =
[yin1 ,yin2 , ...,yinn ]. In order to calculate the overall loss of

the model, Negative Log Likelihood (NLL) loss function is
applied, formulated as follows:

Lcls =−
n∑
i=1

log(Likelihood(yclsi
|yini)). (6)

Lcls is minimized to train the unified omicsGAT Classifier
framework.

C. omicsGAT Clustering. For clustering, we propose a
two-step omicsGAT Clustering framework. The first step is
an autoencoder that generates the gene expression embed-
ding in an unsupervised approach, and the second step is a
hierarchical clustering model. omicsGAT described in Sec-
tion A serves as the encoder in the autoencoder architecture
whereas a four layers fully connected neural network is con-
structed as the decoder. The output Z ∈ Rn×ph from the
omicsGAT encoder is fed into the first layer of the decoder.
The output of the consecutive FC layers are Zclr1 ∈ Rn×

ph
2 ,

Zclr2 ∈ Rn×m
4 , Zclr3 ∈ Rn×m

2 , and Yclr ∈ Rn×m respec-
tively. Each layer can be formulated as

Zclr = σ(WclrZin+bclr) (7)

where Zclr and Zin are the output and input matrices re-
spectively, Wclr is the learnable weight, and bclr is the bias
vector of a particular layer of the decoder. For the first three
layers, σ denotes the activation function ReLU, and no acti-
vation function is used in the final layer.
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The output, projected back to the input feature space by the
decoder, is given by Yclr = [yclr1 ,yclr2 , ...,yclrn ]. Mean
squared error (MSE) is employed to calculate the reconstruc-
tion loss as follows:

Lclr =
n∑
i=1

(xi−yclri
)2. (8)

Lclr is minimized to train the autoencoder and an embedding
is generated as output from the trained encoder. The embed-
ding is then fed into the second step of omicsGAT Cluster-
ing, a hierarchical clustering model implemented using the
scikit-learn package (30). It stratifies the input samples into
the defined number of clusters by assigning each sample to a
group based on the similarity of the generated embedding of
that sample with that of the other samples in the group.

D. Baseline Models used for Comparison.

D.1. Baselines for Classification Tasks. Support Vector Ma-
chine (SVM), Random Forest (RF), Deep Neural Network
(DNN), and Graph Convolutional Network (GCN) are used
as baselines to evaluate and compare the performance of
omicsGAT Classifier. The baselines are built using several
Python open-source library packages including Scikit-learn
(30) and Pytorch (31).
SVM and RF are two of the most widely used machine learn-
ing models. In this study, ‘rbf’ kernel is applied for SVM.
Hyperparameters for RF, including the number of trees, split
criterion, maximum depth of the tree, maximum number of
features considered for split, are also tuned. The Deep Neural
Network model consists of three fully connected linear lay-
ers with first two of them followed by the ReLU activation
function. For better evaluation of our model by comparing it
to a similar graph-based deep learning model, we follow the
Graph Convolution Network (GCN) proposed by Kipf and
Welling (32). The GCN model is composed of four graph
convolution layers. The correlation-based adjacency matrix
A is used as neighborhood information in the GCN model.
The hyperparameters for all of these models were tuned on
the validation set using grid search.

D.2. Baselines for Clustering Tasks. To evaluate the embed-
ding learned from omicsGAT, we use the clustering results of
raw features and their PCA components as baselines. Hier-
archical and k-means clusterings are employed for the base-
lines, i.e., components learned using PCA or the raw features
are fed into the clustering models as input. Moreover, for a
better interpretation of our model, the attention coefficients
from each of the heads are extracted to build up the attention
matrix which will be described in the Discussion section. The
correlation-based adjacency matrix A is used as baseline to
evaluate the attention matrix. Hierarchical clustering is ap-
plied on the attention matrix and adjacency matrix, both of
which represent the relation among the samples.

E. Evaluation Metrices. In this section, we define three
evaluation metrics used in this study implemented using the

scikit-learn library of Python. The Area Under the Receiver
Operating Characteristic Curve (AUC) is used for compar-
ison of the classification models. It is defined as the area
under the curve plotted using True Positive Rate (precision)
along the y-axis and False Positive Rate (1-specificity) along
the x-axis. The Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI) are applied to evaluate the clus-
tering methods both of which have a range from 0 to 1, where
1 means perfect clustering and 0 means totally random.

Experiments
We carried out experiments on TCGA RNA-seq datasets and
H3K27M gliomas scRNA-seq data to evaluate the perfor-
mance of omicsGAT in this section. In the first part, we
performed experiments with omicsGAT for cancer outcome
prediction on TCGA breast cancer dataset and cancer patient
stratification on TCGA bladder cancer dataset (Section F). In
the later part, omicsGAT was applied on scRNA-seq data for
single cell clustering analysis (Section G).

F. Experiments on TCGA Cancer Patient Samples.

F.1. Datasets and Preprocessing. The proposed framework,
omicsGAT, was tested on TCGA breast invasive carcinoma
(BRCA) (28) and urothelial bladder carcinoma (BLCA) (29)
datasets. The RNA-seq mRNA expression dataset of each
cancer type was downloaded from UCSC Xena Hub (33).
log2(x+ 1) transformed mRNA expression was used in the
analyses. The clinical information of the two cancer studies
was downloaded from cBioPortal (34). The BRCA dataset
consists of 411 patient samples and 20,351 genes for each
sample. Similarly, the BLCA dataset consists of 426 patient
samples and 20,531 genes for each sample.

Table 2. The classification performance on TCGA breast cancer (BRCA) dataset.
The mean AUROC scores and standard deviation (SD) of classifying patients in
breast cancer subtypes are reported. *Denotes the difference between the results
of omicsGAT and baseline method to be statistically significant (p-value < 0.001)

Cancer Subtype Method AUC score SD

ER

SVM 0.9155 0.4868
Random Forest 0.9206 0.0436

DNN 0.8705∗ 0.0586
GCN 0.8835∗ 0.0612

omicsGAT 0.9407 0.0360

TN

SVM 0.8800∗ 0.0722
Random Forest 0.8567∗ 0.0663

DNN 0.8226∗ 0.0819
GCN 0.8560∗ 0.1023

omicsGAT 0.9368 0.0375

F.2. omicsGAT Improved Overall Cancer Outcome Predic-
tion. We designed two tasks on TCGA BRCA mRNA expres-
sion data to evaluate the performance of omicsGAT Classifier
on cancer outcome prediction. There are 331 Estrogen Re-
ceptor positive (ER+) and 80 ER negative (ER-) samples, 65
Triple-negative (TN) and 346 non-TN samples in the dataset.
The two tasks were to predict the ER and TN statuses of
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F Experiments on TCGA Cancer Patient Samples

the breast cancer patients. omicsGAT Classifier was com-
pared with SVM, RF, DNN, and GCN. First, the dataset was
divided into pre-train and test set containing 80% and 20%
of the total samples respectively. Then the pre-train set was
divided into training and validation set containing 80% and
20% samples of the pre-train set respectively. The hyper-
parameters of the proposed model used in these two tasks
are listed in Supplementary Table S1. They were selected
through grid search on the validation set. The same valida-
tion set was also applied to select the best model for DNN
and GCN. We ran omicsGAT Classifier and baseline methods
with above mentioned dataset splitting 50 times. The average
AUROC scores for both omicsGAT and baseline methods are
reported in Table 2. As we can see, our proposed model out-
performs all the baselines for both ER and TN status predic-
tions. Moreover, the gain in AUROC caused by omicsGAT
is significant for all baselines, except SVM and RF for ER
prediction. omicsGAT Classifier also offers a lower standard
deviation which signifies a more consistent and stable predic-
tion compared to the baselines. The stability of our proposed
model can be pertained to the use of several heads which can
secure information from different directions and the model
can effectively combine them by learning distinct attention
parameters for each head.
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Fig. 2. Survival and disease-free time predictions on breast cancer patients with
original gene expression and the embeddings generated by omicsGAT. Kaplan-
Meier plots for low (dashed line) and high (solid line) risk groups generated by a)
original gene expression and b) omicsGAT learned embeddings for survival analy-
sis; c) original gene expression and d) omicsGAT learned embeddings for disease-
free analysis. The number in the parenthesis indicates the number of samples in
low or high risk group. The p-value is calculated by the log-rank test to compare the
overall survival or disease-free probability of two groups of breast cancer patients.

To evaluate the performance of omicsGAT in greater depth,
the patient’s overall survival time and disease-free time were
predicted on the breast cancer dataset. The Cox proportional
hazards model with elastic net penalty (35) evaluated the cor-
relation between the patient’s overall survival time or disease-
free time and genomic features, i.e., the original gene expres-
sion and the omicsGAT learned embeddings. 80% of the pa-
tient samples were applied to train the model and the perfor-

mance was tested on 20% test samples. The low and high risk
groups on the independent test set were generated based on
the prognostic index (36). The survival and disease-free pre-
diction were visualized by Kaplan-Meier plots and compared
by the log-rank test. The Kaplan-Meier plots in Figure 2 il-
lustrates the improved patient survival time and disease-free
time prediction on breast cancer patients using the embed-
dings generated by omicsGAT compared to the original gene
expression. The log-rank test p-values clearly demonstrate a
strong additional prediction power of the learned embeddings
beyond the gene expression.

Table 3. Hyperparameter selection for omicsGAT Clustering

Hyperparameter Selection Set
No. of PCA components (fea-
tures) selected

[50,100,200,400]

Embedding size of a head [4,8,16,32,64]
No. of heads [4,8,16,32,64]
Network density of adjacency
matrix

[0.02,0.04,0.1,0.2]

No. of FC layers [2,3,4]

F.3. omicsGAT Improved Cancer Patient Stratification. To
evaluate the generalization of our embedding mechanism,
we employed omicsGAT Clustering to stratify bladder can-
cer (BLCA) patients. The dataset consisted of five cancer
subtypes and our task was to cluster the patients into these
five categories. Embeddings were generated following the
first step of omicsGAT Clustering, i.e., the autoencoder de-
scribed in Section C. First, the dimension of the raw gene ex-
pression data was reduced using PCA implemented through
sklearn.decomposition.PCA package. The top 400 PCA com-
ponents were then used as input in the omicsGAT pipeline,
and the generated embeddings were fed to the second step of
omicsGAT Clustering, a hierarchical clustering model. We
show two findings in this experiment: (1) clustering of the
embeddings demonstrates cluster-specific patterns in the em-
beddings, and (2) high-quality embeddings enhance the per-
formance of clustering cancer patients into cancer subtypes.
The embedding clustering result is illustrated in Figure 3
where each row represents a patient sample and columns rep-
resent embeddings. The patient samples were grouped to-
gether according to their cancer subtypes. The distinct pat-
tern can be observed for the embeddings generated for a par-
ticular cancer subtype signifying the ability of omicsGAT to
effectively integrate neighborhood information into the em-
bedding for a better predictive signature.

Next, we compared the performance of omicsGAT Clustering
with the baselines for clustering patient samples into cancer
subtypes. Assigned cluster values of the samples by omics-
GAT Clustering and the true cancer subtype of the samples
were matched to calculate NMI and ARI scores. The NMI
and ARI scores which were calculated after employing hier-
archical clustering and k-means clustering on raw gene ex-
pressions, and the 400 PCA components were used as base-
lines. Additionally, we clustered the sample adjacency matrix
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Fig. 3. Embeddings generated by omicsGAT clustered into the corresponding can-
cer subtypes

A as another baseline. The results are reported in Table 4. It
can be observed that both NMI and ARI scores are highest
for omicsGAT Clustering followed by the clustering of the
adjacency matrix. The scores for the PCA components and
the raw gene expression features are lower which can be at-
tributed to the absence of sample similarity information in
the datasets, whereas the embeddings from omicsGAT and
the adjacency matrix consider the relations between samples.
omicsGAT used the information from the neighbors more ef-
fectively by assigning different attention coefficients to the
neighbors of a sample, thereby capturing the hidden relations
between samples in the embeddings. This influx of informa-
tion caused by the attention mechanism in embedding gener-
ation enabled omicsGAT Clustering to outperform all base-
lines by a considerable margin.

To visualize the clustering performance, tSNE plots (Python
seaborn package) were created on the PCA components
and the embeddings generated by omicsGAT in Figure 4
(a) and (b) respectively. Figure 4 (a) illustrates that PCA
components cannot properly separate the five clusters. Al-
though there is some separation among the patient samples
in ‘Basal squamous’, ‘Luminal Papillary’, and ‘Luminal in-
filtrated’ subtypes, the samples in ‘Luminal’ and ‘Neuronal’
subtypes were randomly scattered on the plot. On the other
hand, Figure 4 (b) shows that omicsGAT Clustering can ef-
fectively separate all five clusters, revealing the meaningful
neighborhood information contained within the embeddings.
Moreover, ‘Luminal’ and ‘Neuronal’ are the subtypes with
the smallest number of samples which means our proposed
method particularly excels at clustering rare subtypes.

G. Experimentation on Single-cell RNA-seq data.
Single-cell RNA-seq (scRNA-seq) reveals heterogeneity at

Table 4. The clustering performance on TCGA bladder cancer (BLCA) dataset.
The NMI and ARI scores of omicsGAT Clustering and baseline methods are re-
ported in the table. Hierarchical clustering was computed with ‘Manhattan’ distance
and ‘Average’ linkage. Mean NMI and ARI scores with standard deviation are re-
ported for k-means clustering (run 10 times).

Input Data (Clus-
tering Method) NMI NMI SD ARI ARI SD

gene expression
(hierarchical) 0.0515 - 0.0153 -

gene expression
(k-means) 0.4944 0.0171 0.4468 0.0548

PCA components
(hierarchical) 0.1222 - 0.0353 -

PCA components
(k-means) 0.4883 0.0176 0.4338 0.0388

adjacency matrix
(hierarchical) 0.5448 - 0.5505 -

omicsGAT
embeddings
(hierarchical)

0.6147 - 0.6698 -
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Fig. 4. tSNE plots of the (a) PCA components generated from the BLCA data and
(b) omicsGAT generated embeddings for bladder cancer patients stratification.

the cell level and offers a larger number of samples (i.e., cells)
compared to bulk RNA-seq data (e.g., number of patient sam-
ples). We applied omicsGAT Clustering on scRNA-seq data
and clustered cells to evaluate the generalization of our pro-
posed model.

G.1. Dataset and Preprocessing. scRNA-seq data from six
primary H3K27M-gliomas (H3 lysine27-to-methionine mu-
tations) was used in the following experiment. This type of
gliomas (malignant tumors) primarily arise in the midline of
the central nervous system of young children (37). Early
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detection of tumors may improve disease prognosis; hence,
stratifying the tumor cells into the correct gliomas could be
very helpful for clinicians. Gene expression and label in-
formation of 2,458 cells was used for this experiment. The
dataset was downloaded from the Single Cell Portal (38) and
the cells were generated from six different gliomas: BCH836,
BCH869, BCH1126, MUV1, MUV5, MUV10. log2(x+ 1)
transformed TPM (Transcripts-per-million) value was used
in the analysis.

Table 5. The clustering performance on scRNA-seq H3K27M-gliomas data. The
NMI and ARI scores of omicsGAT Clustering and baseline methods are reported
in the table. Hierarchical clustering was computed with ‘Cosine’ distance and ‘Av-
erage’ linkage. Mean NMI and ARI scores with standard deviation are reported for
k-means clustering (run 10 times).

Matrix Type
(Clustering Type) NMI NMI SD ARI ARI SD

gene expression
(hierarchical) 0.0055 - 0.0010 -

gene expression
(k-means) 0.5052 0.0176 0.4410 0.0145

PCA components
(hierarchical) 0.6146 - 0.5339 -

PCA components
(k-means) 0.5010 0.0016 0.4640 0.0013

adjacency matrix
(hierarchical) 0.5757 - 0.3982 -

omicsGAT
embeddings
(hierarchical)

0.6584 - 0.6366 -

G.2. Single Cell Clustering. The same omicsGAT Clustering
method described in Section C is followed to cluster the cells
with scRNA-seq data. The top 200 PCA components were
selected as the input of the omicsGAT Clustering to gener-
ate embeddings. The omicsGAT’s hyperparameters for this
experiment are listed in Table S2 in the Supplementary docu-
ment. The autoencoder was trained following the same steps
as explained in Section F.3. Embeddings generated from
the autoencoder were then fed into the hierarchical cluster-
ing model. Hierarchical and k-means clustering methods on
raw gene expression and 200 PCA components were consid-
ered as the baselines along with hierarchical clustering on the
adjacency matrix. As reported on Table 5, omicsGAT Clus-
tering outperforms all the baselines which means the cluster
assignments resulting from the omicsGAT generated embed-
dings are more similar to the true label information. This
result is corroborated by the tSNE plots in Figure 5 (a) and
(b) which are drawn on the PCA components and the embed-
dings generated by omicsGAT respectively. The tSNE plot
for omicsGAT Clustering shows more separation among the
clusters as compared to the PCA components. Specifically,
for the ‘MUV1’ group, our model formed a single cluster
containing all the cells belonging to that type (red circle in
Figure 5 (b)), whereas the tSNE plot using PCA components
shows two different clusters for the cells in ‘MUV1’. Based
on the results, we can conclude that in the case of scRNA-

seq data analysis, omicsGAT Clustering can take advantage
of the detailed cellular level information and uses the atten-
tion mechanism on the cell-cell similarity network to better
cluster the samples.
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Fig. 5. tSNE plots of the (a) PCA components generated from the scRNA-seq data
and (b) omicsGAT generated embeddings for cell clustering.

Discussion
omicsGAT can successfully integrate the structural informa-
tion within gene expression data into sample embeddings en-
abling better classification and clustering performance com-
pared to the original dataset. The stronger predictive abil-
ity of the embeddings is contributed by the self-attention
mechanism in omicsGAT. A binary adjacency matrix is ap-
plied to define neighborhoods in omicsGAT that includes
self-connections to ensure that the information of a sample
itself is also considered in the embedding. The performance
is reduced when we ran the same classification task with just
the adjacency matrix. The adjacency matrix is calculated us-
ing correlation only, which keeps track of the pairwise lin-
ear relations between samples. However, using the attention
mechanism, omicsGAT can capture complex nonlinear rela-
tions by accounting for the importance of neighboring sam-
ples on the classification or clustering of a target sample. The
captured relations among samples are represented in the gen-
erated embeddings which enables the model to perform better
on classification and clustering tasks.

In order to verify the effect of the multi-head attention mech-
anism, a sample× sample attention matrix was constructed
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Table 6. NMI and ARI scores of the Hierarchical Clustering applied on attention and
adjacency matrices

Dataset Input Matrix NMI ARI

BLCA adjacency matrix 0.5448 0.5505
attention matrix 0.5743 0.6373

scRNA adjacency matrix 0.5757 0.3982
attention matrix 0.5788 0.4821
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Fig. 6. Clustermap of the Attention Matrix generated from the trained omicsGAT
model on BLCA data

by extracting the attention coefficients from a trained omic-
sGAT model following the method used by Ullah and Ben-
Hur (39). For a target sample, each of the h heads assigns
different attention coefficients to its neighbors, and only the
highest among the h attention coefficients was considered for
each neighbor to represent its relation with the target sample.
The same procedure is repeated to generate the full attention
matrix. This process was applied to build the attention ma-
trix for both BLCA and cell clustering tasks described in Sec-
tion F.3 and Section G.2 respectively. This attention matrix
reveals the importance of combining the attention mechanism
with the network information received through the adjacency
matrix. As seen in Table 6, clustering on the attention matrix
outperforms the clustering on the adjacency matrix for both
datasets. Moreover, the clustermap of the attention matrix
obtained from the trained model on BLCA data, illustrated
in Figure 6, shows a distinct pattern of the cancer subtypes
specifically for ‘Luminal papillary’ and ‘Basal squamous’.
From these results, we can conclude that some neighbors play
a more important role than others in classification or cluster-
ing of a sample, and omicsGAT can effectively inject this
information into the model along with the graph structure to
generate more meaningful embeddings for better downstream
analyses. An important aspect of omicsGAT is the use of
multiple heads. The learnable weight parameters (W and a)
of each head were initialized separately using the xavier nor-
mal library function in Pytorch (31).
For the clustering tasks, the NMI and ARI scores of the base-
lines were relatively low with hierarchical clustering which

can be observed in Table 4 and Table 5. Therefore, we also
applied k-means clustering to them in order to compare them
with omicsGAT. Since the performance of k-means clustering
depends on the initialization of the cluster-centers, clustering
was conducted 10 times and the mean scores along with stan-
dard deviations were reported in the tables.

Conclusion
Powered by high-throughput genomic technologies, the
RNA-seq method is capable of measuring transcriptome-
wide mRNA expressions and molecular activities in cancer
cells. Hundreds of computational methods have been de-
veloped for cancer outcome prediction, patient stratification,
and cancer cell clustering. Some of these methods consider
sample-sample similarities in the analysis, and some of them
do not. These sample similarity-based methods cannot dis-
tinguish the importance of the neighbors for a particular sam-
ple in the downstream prediction or clustering tasks. There-
fore, we introduced omicsGAT in this study which leverages
a self-attention mechanism consisting of multiple heads to
assign proper attention weights to the neighbors of a sam-
ple in the network. Experiments on cancer subtype analyses
show the superior performance of the model in every aspect
compared to the baseline methods. We also show the gener-
alization of omicsGAT’s performance on both bulk RNA-seq
and scRNA-seq data. As a future objective, we would like to
extend omicsGAT to include metapath selection which would
consider the best paths in a network to perform a certain task
on a particular sample.
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