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Abstract 12 

In asexual populations that don’t undergo recombination, such as cancer, deleterious 13 
mutations are expected to accrue readily due to genome-wide linkage between 14 
mutations. Despite this mutational load of often thousands of deleterious mutations, 15 
many tumors thrive. How tumors survive the damaging consequences of this mutational 16 
load is not well understood. Here, we investigate the functional consequences of 17 
mutational load in 10,295 human tumors by quantifying their phenotypic response 18 
through changes in gene expression. Using a generalized linear mixed model (GLMM), 19 
we find that high mutational load tumors up-regulate proteostasis machinery related to 20 
the mitigation and prevention of protein misfolding. We replicate these expression 21 
responses in cancer cell lines and show that the viability in high mutational load cancer 22 
cells is strongly dependent on complexes that degrade and refold proteins. This 23 
indicates that upregulation of proteostasis machinery is causally important for high 24 
mutational burden tumors and uncovers new therapeutic vulnerabilities.  25 
 26 
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Introduction 37 

Cancer develops from an accumulation of somatic mutations over time. While a 38 
small subset of these mutations drive tumor progression, the vast majority of remaining 39 
mutations, known as passengers, don’t help and might hinder cancer growth. The role 40 
that passengers play in tumor progression has traditionally received little attention 41 
despite their abundance and variation across cancer types. The number of passengers 42 
in a tumor can vary by over four orders of magnitude, even within the same cancer type, 43 
from just a few to tens of thousands of point mutations1. 44 

Whether these passengers are neutral or damaging to tumors has long been a 45 
matter of debate2–10. Some have argued that passengers are functionally unimportant to 46 
tumors given that most non-synonymous mutations are not removed by negative 47 
selection in somatic tissues2,3. This is in direct contrast to the human germ-line, where 48 
non-synonymous mutations are functionally damaging to most genes11 and signals of 49 
negative selection are pervasive3. The common explanation for why damaging protein-50 
coding mutations are removed in the human-germline but maintained in somatic tissues 51 
is that most genes are only important for multi-cellular function at the organismal level 52 
(e.g. during development), but not during somatic growth2,12. 53 

However, the notion that non-synonymous mutations are only selectively neutral 54 
in somatic tissues is surprising given their known functional consequences in the germ-55 
line. Non-synonymous mutations are known to be damaging in the human germ-line 56 
due to their effects on protein folding and stability13, which ought to be shared between 57 
somatic and germline evolution. An alternative explanation is that non-synonymous 58 
mutations are indeed damaging in somatic evolution, but negative selection is too 59 
inefficient at removing them due to linkage effects driven by the lack of recombination in 60 
somatic cells10. Without recombination to break apart combinations of mutations, 61 
selection must act on beneficial drivers and deleterious passengers that arise in the 62 
same genome together. This makes it less efficient for selection to individually favor 63 
beneficial drivers or remove deleterious passengers14. As a result, a substantial number 64 
of weakly damaging passengers can accrue in cancer due to inefficient negative 65 
selection over time. In support of this model, tumors with very small numbers of 66 
passengers – where linkage effects are expected to be negligible – have recently been 67 
shown to exhibit signatures of negative selection and weed out damaging non-68 
synonymous mutations10. In contrast, the remaining majority (>95%) of tumors, which 69 
contain much larger numbers of linked mutations, display patterns of inefficient negative 70 
selection. This provides evidence in favor of the inefficient selection model and implies 71 
that most tumors carry a correspondingly large deleterious mutational load. 72 

If individual passengers are in fact substantially damaging in cancer, successful 73 
tumors with thousands of linked mutations must find ways to maintain their viability by 74 
mitigating this large mutational load. While paths to mitigation are difficult to predict for 75 
non-coding mutations, tumors with mutations in protein-coding genes are expected to 76 
minimize the damaging phenotypic effects of protein mis-folding stress. Here, we 77 
investigate this hypothesis by analyzing tumor tissues with paired mutational and gene 78 
expression profiles to assess how the physiological state of cancer cells change as they 79 
accumulate protein coding mutations. Using a general linear mixed effects regression 80 
model (GLMM), we leverage variation across 10,295 tumors from 33 cancer types and 81 
find that complexes that re-fold proteins (chaperones), degrade proteins (proteasome) 82 
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and splice mRNA (spliceosome) are up-regulated in high mutation load tumors. We 83 
validate these results by showing that similar physiological responses occur in high 84 
mutational load cancer cell lines as well. Finally, we establish a causal connection by 85 
showing that high mutational load cell lines are particularly sensitive when proteasome 86 
and chaperone function is disrupted through downregulation of expression via short-87 
hairpin RNA (shRNA) knock-down or targeted therapies. Collectively, these data 88 
indicate that the viability of high mutational load tumors is strongly dependent on the up-89 
regulation of complexes that degrade and refold proteins, revealing a generic 90 
vulnerability of cancer that can potentially be therapeutically exploited. 91 

Results 92 

Quantifying transcriptional response to mutational load in human tumors. 93 
 94 
We first performed a genome-wide screen to systematically identify which genes 95 

are transcriptionally upregulated in response to mutational load in human tumors. To do 96 
so, we utilized publicly available whole-exome and gene expression data from 10,295 97 
human tumors across 33 cancer types from The Cancer Genome Atlas (TCGA)15,16. We 98 
considered multiple classes of mutations to define mutational load and investigated their 99 
degree of collinearity, focusing on protein-coding regions since the use of whole-exome 100 
data limits the ability to accurately assess mutations in non-coding regions. We find that 101 
there is a high degree of collinearity among synonymous, non-synonymous and 102 
nonsense point mutations in protein coding genes (R > 0.9) but weak collinearity 103 
between point mutations and copy number alterations (R < 0.05) (Supplemental Figure 104 
1). Thus, we decided to focus on the aggregate effects of protein-coding mutations and 105 
for all analyses defined mutational load as log10 of the total number of point mutations in 106 
protein-coding genes. For simplicity, we used all mutations rather than focusing only on 107 
passenger mutations since identifying genuine drivers against a background of linked 108 
passenger events can be difficult, especially for tumors with many mutations.  109 

Since gene expression can vary across tumors due to many factors, such as 110 
cancer type, tumor purity and other unknown factors, we utilized a generalized linear 111 
mixed model (GLMM) to measure the association of mutational load and gene 112 
expression while accounting for these potential confounders (Fig. 1A). Within the 113 
GLMM, tumor purity and mutational load were modeled as fixed effects whereas cancer 114 
type was modeled as a random effect since it varies across groups of patients and can 115 
be interpreted as repeated measurements across groups. The following GLMM was 116 
applied separately to each gene, 117 

𝑌 ~ 𝛽0  +  𝛽1𝑋1  +  𝛽2𝑋2   + v + 𝑒		118 
	119 

where 𝑌 is a vector of normalized expression values across all tumors, 𝛽0 is the fixed 120 
intercept, 𝛽1 is the fixed slope for the predictor variable 𝑋1 which is a vector of mutational 121 
load values for each tumor, 𝛽2 is the fixed slope for the predictor variable 𝑋2 which is a 122 
vector of the purity of each tumor, v is the random intercept for each cancer type, and 𝑒 123 
is a Gaussian error term (Methods). 124 
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Using this approach, we applied the GLMM to all tumors in TCGA and identified 125 
5,330 genes that are significantly up-regulated in response to mutational load (𝜷1 > 0, 126 
FDR < 0.05). Next, we linked these genes to cellular function by performing gene set 127 
enrichment to known protein complexes (CORUM database17, Fig. 1B) and pathways 128 
(KEGG database18, Fig. 1C) using gprofiler219. As expected for tumors with many 129 
mutations, pathways and protein complexes related to cell cycle, DNA replication and 130 
DNA repair were enriched in tumors with a high mutational load. However, some of the 131 
most significant enrichment terms were for protein complexes and pathways that 132 
regulate translation (mitochondrial ribosomes), protein degradation (proteasome 133 
complex), and protein folding (CCT complex/HSP60), consistent with the hypothesis 134 
that high mutational load tumors experience protein misfolding stress. Surprisingly, we 135 
also found that the spliceosome, a large protein complex that regulates alternative 136 
splicing in cells, is up-regulated in response to mutational load. This suggests that 137 
transcription itself could also be regulated in response to protein misfolding stress, as 138 
seen in other studies20,21. 139 

 140 
Figure 1. General linear mixed effects model (GLMM) identifies protein complexes and pathways 141 
up-regulated in response to mutational load in human tumors. (A) Overview of the GLMM used to 142 
measure the association of mutation load with gene expression while controlling for potential co-variates 143 
(purity and cancer type). Genes with a significant, positive 𝜷1 regression coefficient and false discovery 144 
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rate (FDR) < 0.05 are used for gene set enrichment analysis. (B-C) Circular bar plots of protein 145 
complexes from the CORUM database (left) and pathways from the KEGG database (right) that are 146 
significantly enriched (p < 0.05) in response to mutational load. Length of bars denote negative log10 of 147 
adjusted p-value and colors denote broad functional groups enriched in both databases.   148 
 149 
 150 
Gene silencing through alternative splicing in high mutational load tumors. 151 

 152 
We next investigated in detail how these protein complexes could mitigate the 153 

damaging effects of protein misfolding in high mutational load tumors by examining the 154 
role of the spliceosome in gene silencing. We hypothesized that the up-regulation of the 155 
spliceosome in high mutational load tumors prevents further protein misfolding by 156 
regulating pre-mRNA transcripts to be degraded rather than translated. The down-157 
regulation of gene expression via alternative splicing events, such as intron retention, is 158 
one known mechanism to silence genes by funneling transcripts to mRNA decay 159 
pathways.22–24 160 

To test whether gene expression is down-regulated in high mutational load 161 
tumors through intron retention, we utilized previously called alternative splicing events 162 
in TCGA25. Alternative splicing events within this dataset were quantified through a 163 
metric called percent spliced in or PSI. PSI is calculated as the number of reads that 164 
overlap the alternative splicing event (e.g. for intron retention, either at intronic regions 165 
or those at the boundary of exon to intron junctions) divided by the total number of 166 
reads that support and don’t support the alternative splicing event. Thus, PSI estimates 167 
the probability of alternative splicing events only at specific exonic boundaries in the 168 
entire transcript population without requiring information on the complete underlying 169 
composition of each full length-transcript. 170 

Using these alternative splicing calls, we reasoned that if a transcript contains an 171 
intron retention event and is downregulated in expression, the transcript is more likely to 172 
have been degraded by mRNA decay pathways. For all genes, we first quantified 173 
whether intron retention events were present based on a threshold value >80% PSI. For 174 
each gene with an intron retention event, we quantified whether the expression of the 175 
same gene was under-expressed. Each gene was counted as under-expressed if it was 176 
one standard deviation below the mean expression within the same cancer type. To 177 
control for mutations that might affect patterns of expression, (i.e., expression 178 
quantitative trait loci or eQTL effects), alternative splicing events that contained a point 179 
mutation within the same gene were removed from the analysis (which only represent 180 
~1% of intron retention events across all tumors; Methods). We find that relative to all 181 
transcripts with intron retention events, the number of transcripts that are under-182 
expressed increases with tumor mutational load (Fig. 2A), suggesting that the degree of 183 
intron-retention driven mRNA decay is elevated in high mutational load tumors. This 184 
trend is robust to other PSI value thresholds (>50-90% PSI), even for other alternative 185 
splicing events (e.g., exon skipping, mutually exclusive exons, etc.) and when not 186 
filtering for potential eQTL effects (Supplemental Figure 2 and 3). 187 
 We next investigated which genes are more likely to be silenced through mRNA 188 
decay between low and high mutational load tumors. For each intron retention event, 189 
we calculated whether PSI values were significantly different in low mutational load 190 
tumors (<10 total protein-coding mutations) compared to high mutational load tumors 191 
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(>1000 total protein-coding mutations) using a t-test. This approach identified 606 and 192 
201 genes that have more and less intron retention events in high mutational load 193 
tumors, respectively. Using gene set enrichment analysis, we find that cytoplasmic 194 
ribosomes contain more intron retention events in high mutational load tumors, 195 
potentially leading to their down-regulation through mRNA decay to prevent further 196 
protein mis-folding (Fig. 2B). Genes that contain fewer intron retention events in high 197 
mutational load tumors, which are less likely to undergo mRNA decay, are primarily 198 
related to mRNA splicing.  199 
 200 

 201 
Figure 2. Gene silencing is elevated in high mutational load tumors likely through the coupling of 202 
intron retention with mRNA decay. (A) Counts of the number of under-expressed transcripts with intron 203 
retention events, relative to counts of all intron retention events in tumors binned by the total number of 204 
protein-coding mutations. Intron retention events with PSI > 80% are counted. Error bars are 95% 205 
confidence intervals determined by bootstrap sampling. (B) Barplot of significant protein complexes in the 206 
CORUM database (in red) and Reactome pathway database (in blue) with more (bottom) and less (top) 207 
intron retention events in high mutational load tumors compared to low mutational load tumors.  208 
 209 
Regulation of translation, protein folding and protein degradation in high 210 
mutational load tumors. 211 
 212 
 Next, we investigated in detail how the remaining proteostasis complexes that 213 
were significant in our genome-wide screen, which regulate protein synthesis, 214 
degradation and folding, could mitigate protein misfolding in high mutational load 215 
tumors. To do so, we expanded our gene sets to include other chaperone families, all 216 
ribosomal complexes and proteasomal subunits (Fig. 3A). Using the GLMM framework 217 
detailed above, we find that the expression of nearly all individual genes in chaperone 218 
families that participate in protein folding (HSP60, HSP70 and HSP90), protein 219 
disaggregation (HSP100), and have organelle-specific roles (ER and mitochondrial) are 220 
significantly up-regulated in response to mutational load. Interestingly, however, small 221 
heat shock proteins, which don’t participate in protein folding or disaggregation, are 222 
significantly down-regulated in response to increased protein coding mutations. The role 223 
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of small heat shock proteins is primarily to hold unfolded proteins in a reversible state 224 
for re-folding or degradation by other chaperones26 and thus, could possibly be down-225 
regulated due to their inefficiency in mitigating protein misfolding.  226 

We further examined differences in expression of different structural components 227 
of the proteasome, a large protein complex responsible for degradation of intracellular 228 
proteins. Consistent with the over-expression of chaperone families that mitigate protein 229 
mis-folding, both the 19s regulatory particle (which recognizes and imports proteins for 230 
degradation) and the 20s core (which cleaves peptides) of the proteasome are up-231 
regulated in response to mutational load in TCGA (Fig. 3A). In addition, we find that 232 
specifically mitochondrial — but not cytoplasmic — ribosome complexes are up-233 
regulated in high mutational load tumors. As previously reported in yeast27 and human 234 
cells28, mitochondrial ribosome biogenesis has been shown to occur under conditions of 235 
chronic protein misfolding as a mechanism of compartmentalization and degradation of 236 
proteins. In contrast, translation of proteins through cytosolic ribosome biogenesis has 237 
been previously characterized to be attenuated and slowed to prevent further protein 238 
mis-folding29. This decrease in expression of cytoplasmic ribosomes is also consistent 239 
with observed patterns of alternative splicing coupled to mRNA decay pathways in high 240 
mutational load tumors (Fig. 2B). 241 

Finally, we performed a jackknife re-sampling procedure to confirm that specific 242 
cancer types aren’t driving patterns of association within the GLMM. This was achieved 243 
by removing each cancer type from the regression model one at a time, and re-244 
calculating regression coefficients on the remaining set of samples. Overall, regression 245 
coefficients were stable across cancer types and trends were unchanged (Supplemental 246 
Figure 4). In addition, we also confirmed that patient age was not driving patterns of 247 
association of mutational load and gene expression within the GLMM (Supplemental 248 
Figure 5). Taken together, this suggests that protein re-folding, protein disaggregation, 249 
protein degradation, and down-regulation of cytoplasmic translation are potential 250 
mechanisms to mitigate and prevent protein misfolding in high mutational load tumors. 251 

 252 
Validating proteostasis expression responses in cancer cell lines and 253 
establishing a causal connection through perturbation experiments. 254 
 255 

We next sought to validate these results by examining whether the expression 256 
patterns observed in human tumors replicate within cancer cell lines from the Cancer 257 
Cell Line Encyclopedia (CCLE)30. Unlike TCGA, samples within each cancer type in 258 
CCLE can be small and are unbalanced (i.e., some cancer types have <10 samples and 259 
others have >100 samples). Since GLMMs may not be able to estimate among-260 
population variance accurately in these cases31, we utilized a simple generalized linear 261 
model (GLM) instead to measure the effect of mutational load on patterns of expression 262 
without over-constraining the model. Indeed, we find that expression patterns seen in 263 
human tumors broadly replicate in cancer cell lines (Fig. 3). Similar to the expression 264 
analysis in TCGA, we also confirmed through a jackknife re-sampling procedure that 265 
specific cancer types aren’t driving patterns of association within the GLM 266 
(Supplemental Figure 6). Overall, this indicated that the expression patterns observed 267 
are cell autonomous (i.e., independent of organismal effects such as the immune 268 
system, age or microenvironment) and consistent across high mutational load cancer 269 
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cells. Importantly, it also demonstrates that cancer cell lines are a reasonable model to 270 
causally interrogate these effects further through functional and pharmacological 271 
perturbation experiments. 272 

 273 

 274 
 275 

 276 
Figure 3. Protein folding, degradation, and synthesis are regulated in both high mutational load 277 
tumors (TCGA) and cell lines (CCLE). Box plots of 𝜷1 regression coefficients (top panels) and negative 278 
log10 adjusted p-values (bottom panels) measuring the association of mutation load and the expression of 279 
individual genes in chaperone (purple), proteasome (yellow), and ribosome (green) complexes. Shown 280 
are regression coefficients from human tumors (TCGA) on the left and cell lines (CCLE) on the right. 281 
Percentages and grey lines on top panels show the quantile distribution of regression coefficients 282 
measuring the association of mutational load and expression for all genes in the genome within each 283 
dataset. Vertical grey line on bottom panels shows threshold of significance (p = 0.05). 284 
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To establish a causal relationship between the over-expression of proteostasis 285 
machinery and maintenance of cell viability under high mutational load, we utilized 286 
expression knock-down (shRNA) estimates from project Achilles32 for the same cancer 287 
cell lines as in CCLE. We sought to measure how mutational load impacts cell viability 288 
when protein complexes and gene families undergo a loss of function through 289 
expression knock-down. Since the shRNA screen was performed on an individual gene 290 
basis, we utilized a GLM framework that aggregates expression knock-down estimates 291 
of all genes within a given proteostasis gene family to jointly measure how mutational 292 
load impacts cell viability after loss of function. Specifically, we included an additional 293 
categorical variable of the gene name within each gene family to allow for a change in 294 
the intercept within each gene in the GLM when measuring the association of 295 
mutational load and cell viability after expression knock-down. In addition, we similarly 296 
evaluated whether specific cancer types were driving patterns of association within the 297 
GLM through jackknife re-sampling by cancer type (Fig. 4A). 298 

Overall, we find that elevated mutational load is associated with decreased cell 299 
viability when the function of most chaperone gene families are disrupted through 300 
expression knock-down (Fig. 4A). However, only chaperones within the HSP100 family, 301 
which have the unique ability to rescue and reactivate existing protein aggregates in 302 
cooperation with other chaperone families33, show a significant negative relationship 303 
between mutational load and cell viability across almost all cancer types. Similarly, we 304 
find specificity in the vulnerability that mutational load generates when the function of 305 
the proteasome and different ribosomal complexes are disrupted (Fig. 4A). Mutational 306 
load significantly decreases cell viability only when expression knock-down of the 19s 307 
regulatory particle of the proteasome is disrupted, suggesting that targeting the protein 308 
import machinery of the proteasome is more effective than targeting the protein cleaving 309 
machinery in the 20s core. Finally, mutational load significantly increases cell viability 310 
when cytoplasmic ribosomes – which are already down-regulated in response to 311 
mutational load (Fig. 2B) – undergo a loss of function through expression knock-down. 312 
Conversely, expression knock-down of mitochondrial ribosomes significantly decreases 313 
viability with increased mutational load in cell lines, which is also consistent with the 314 
patterns of expression observed. 315 

Since functional redundancy in the human genome can make expression knock-316 
down estimates within individual genes noisy, we also examined how drugs targeting 317 
the function of whole complexes impacts viability with mutational load across all cancer 318 
types and when removing individual cancer types through jackknife re-sampling. To do 319 
so, we utilized drug sensitivity screening data in project PRISM34 within CCLE and used 320 
a simple GLM to measure the association of mutational load and cell viability after drug 321 
inhibition. We find that treatment with the majority of proteasome inhibitors (6/8) and 322 
ubiquitin-specific proteasome inhibitors (2/3), which target protein degradation 323 
complexes, are significantly associated with a decrease in cell viability in high 324 
mutational load cell lines. Similarly, most HSP90 inhibitors decrease cell viability with 325 
mutational load (8/10), although only a few drugs show a significant relationship. This 326 
variability in the efficacy of drugs with similar mechanisms of action likely reflects that 327 
the efficacy to disrupt the function of proteostasis machinery is dependent on the 328 
specific molecular affinity of a compound to its target and downstream effectors. While 329 
these are the only relevant proteostasis drugs in the PRISM dataset that are currently 330 
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available, we anticipate that drugs targeting other chaperone machinery or splicing 331 
complexes could also target other potential vulnerabilities in high mutational load 332 
cancers. Collectively, these results indicate that elevated expression of protein 333 
degradation and folding machinery is causally related to the maintenance of viability in 334 
in high mutational load cell lines, and likely in high mutational load tumors by extension. 335 

 336 
Figure 4. Viability in high mutational load cell lines decreases when proteostasis machinery is 337 
disrupted. (A) Heatmap of 𝜷1 regression coefficients jointly measuring the association of mutational load 338 
and cell viability after expression knockdown of individual genes in proteostasis complexes. (B) Heatmap 339 
of 𝜷1 regression coefficients measuring the association mutational load and cell viability after inhibition of 340 
proteostasis machinery via drugs. Both panels show how stable regression estimates are when including 341 
all cancer types (‘All Cancers’) shown in black boxes and when removing each individual cancer type on 342 
the y-axis. Colors denote a positive (blue), zero (grey), or negative (red) relationship of mutational load 343 
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and cell viability after expression knock-down or drug inhibition. Stars denote whether the relationship is 344 
significant (* = p < 0.05; ** = p <0.005; *** = p < 0.0005). 345 

 346 
Lastly, we find that most drugs in the PRISM database do not significantly 347 

decrease cell viability with mutational load (Fig. 5A), suggesting that high mutational 348 
load cancer cells are not generically vulnerable to all classes of drugs. Specifically, we 349 
find that drugs which inhibit transcription, cytoskeleton organization, protein 350 
degradation, chaperones, protein synthesis and promote apoptosis are most effective at 351 
targeting high mutational load cancer cells – delineating additional potential therapeutic 352 
vulnerabilities in high mutational burden tumors (Fig. 5B). 353 
 354 

Figure 5. Targeting proteostasis machinery is a key vulnerability in high mutational load cell lines. 355 
(A) Bar plot of the number of drugs in the PRISM database significantly (black) and not significantly (grey) 356 
associated with mutational load and cell viability using a simple generalized linear model (GLM). (B) 357 
Fraction of drugs in broad functional categories significantly negatively associated with mutational load 358 
and cell viability from the GLM. Confidence intervals were determined by randomly sampling 50 drugs in 359 
each functional category 100 times. Dashed line is the median of randomly sampled drugs across all 360 
categories. 361 
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Discussion 367 

Here, we test the hypothesis that cancer cells regulate their proteostasis 368 
machinery to mitigate the damaging effects of passenger mutations, which can 369 
destabilize and misfold proteins. Misfolded proteins can arise from non-synonymous or 370 
nonsense passengers which cause abnormal amino acid modifications or pre-mature 371 
truncations in proteins. Even synonymous passengers, which are traditionally thought to 372 
be functionally silent, can lead to misfolding of proteins through changes in mRNA 373 
stability35, translational pausing36,37, and non-optimal codon usage.38,39 As a result, 374 
protein misfolding can be damaging in cells not only due to a loss of function of the 375 
original protein, but also due to a gain in toxicity caused by the aggregation of aberrant 376 
peptides. It is intriguing to consider the possibility that the need to manage protein 377 
misfolding stress is a hallmark of somatic evolution in cancer. 378 

To maintain viability by minimizing these cytotoxic effects, we find that high 379 
mutational load tumors – similar to yeast40, bacteria41,42, and viruses43 – up-regulate the 380 
expression of chaperones, which allow mutated proteins that would otherwise be 381 
misfolded to retain function. We find evidence suggesting that specific chaperone 382 
families that actively participate in protein re-folding (HSP60, HSP90 and HSP70) or 383 
disaggregation (HSP100) are up-regulated in response to mutational load, while other 384 
chaperone machinery that salvage proteins (Small HS) are downregulated. In addition, 385 
we find degradation of mutated proteins through up-regulation of the proteasome to be 386 
another possible strategy high mutational load tumors use to mitigate protein misfolding 387 
stress. 388 

Finally, we find additional mechanisms that high mutational load tumors use to 389 
not just mitigate but also prevent protein misfolding. By utilizing post-transcriptional 390 
processes that couple alternative splicing with mRNA decay pathways known to occur 391 
in normal human tissues22,44,45, high mutational load tumors appear to selectively 392 
prevent protein production by regulating certain pre-mRNA transcripts to be degraded 393 
rather than translated. We find evidence suggesting that the targets of this coordinated 394 
un-productive splicing are primarily related to cytoplasmic ribosomal gene expression 395 
that controls the translation of proteins, consistent with observations in other 396 
organisms46–48. Intriguingly, we find that while cytoplasmic ribosome expression is 397 
attenuated, mitochondrial ribosome biogenesis in human tumors is up-regulated in 398 
response to mutational load. This could both be another mechanism that high 399 
mutational load tumors use to compartmentalize and degrade proteins27 and reflect the 400 
increased energetic demands of proteostasis maintenance49.  401 

The expression responses observed here are not only consistent with protein 402 
misfolding stress in other organisms, but also cross-validate in cancer cell lines, where 403 
we find similar expression responses to mutational load. This provides further evidence 404 
of a generic, cell intrinsic phenomenon occurring that cannot be explained by extrinsic 405 
organismal effects, such as aging, changes in the immune system or microenvironment. 406 
Furthermore, we move beyond correlations of gene expression responses to mutational 407 
load and establish a causal connection by demonstrating that mitigation of protein 408 
misfolding through protein degradation and re-folding is necessary for high mutational 409 
load cancer cells to maintain viability through perturbation experiments via knockdown 410 
experiments with shRNA and drug profiling. 411 
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The results presented here have many implications. First, they suggest that while 412 
there is direct selection during somatic evolution for pathogenic drivers that allow cancer 413 
cells to continually proliferate, damaging passengers that destabilize proteins must also 414 
cause cancer cells to experience second-order indirect selection for alterations that 415 
allow tumors to overcome this proteostasis imbalance. This could occur through 416 
phenotypic plasticity, shifts in methylation and chromatin structure, or through 417 
compensatory point mutations and duplications, consistent with other studies50,51. 418 
Indeed, gene duplication, where one copy can still perform the required function while 419 
the other copy is non-functional, is another known mechanism that allows cells to 420 
maintain robustness to damaging mutations in many eukaryotic organisms52,53. In 421 
support of this, whole genome-duplication, which is common in cancer, has recently 422 
been shown as another potential mechanism that tumor cells could use to maintain 423 
robustness to deleterious passengers54. However, duplication events are also known to 424 
be deleterious due to gene dosage effects that cause protein imbalance55, which could 425 
further exacerbate protein misfolding. Further experimental studies are needed to 426 
distinguish how cancer cells compensate for protein misfolding and the role that 427 
genome duplication may play in this process.  428 

Second, the extra demands of proteostasis maintenance presents important 429 
vulnerabilities in high mutational load cancers that could be exploited. The clinical use of 430 
chaperone inhibitors for cancer treatment has been explored for over two decades56–58 431 
but no study, to our knowledge, has compared the efficacy of chaperone inhibitor use in 432 
tumors stratified by mutational load. Similarly, the clinical use of proteasome inhibitors, 433 
which are currently only approved for the treatment of multiple myeloma and mantle-cell 434 
lymphoma59,60, has not been directed specifically to high mutational load tumors. While 435 
the efficacy of proteasome inhibitors in multiple myeloma patients is linked to the protein 436 
misfolding stress response61,62 , it is currently unknown whether high mutational load 437 
tumors are more susceptible to these inhibitors. Outside of drugs in the clinic, the need 438 
for cancers to compensate for protein misfolding could also present additional 439 
vulnerabilities due to evolutionary trade-offs, where the improvement in fitness of one 440 
trait comes at the expense of another. Previous work in yeast has identified strong 441 
trade-offs between the adaptive mechanisms that allow for the tolerance of 442 
mistranslation and survival under conditions of starvation49. Whether similar conditions 443 
could be exploited in high mutational load cancer cells warrants additional further 444 
investigation.  445 

Finally, our results contribute to an accumulating body of evidence that cancer 446 
and aging are different manifestations of related underlying evolutionary processes63–65. 447 
The same forces of mutation and inefficient selection in somatic evolution generates a 448 
persistent problem of deleterious mutation accumulation in normal somatic tissues and 449 
during tumor growth. Disruption of proteostasis is a known hallmark of aging in normal 450 
tissues66. Many transcriptional responses observed in high mutational load tumors — 451 
such as shifts in regulation of alternative splicing67, protein degradation68, and protein 452 
re-folding69 — are also observed in normal aging tissues which contain somatic 453 
mutations. Despite this, aging tissues appear to utilize different strategies to deal with 454 
proteostasis disruption —  such as up-regulation of chaperones in the Small HS family70 455 
and autophagy71 — which are not a pre-dominant response observed here in high 456 
mutational load tumors. Whether different combinations of strategies are used by high 457 
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mutational load cancer cells use to overcome their mutational load or whether all the 458 
strategies identified here are needed to maintain proteostasis is unclear. Differences in 459 
these proteostasis strategies could be due to different selection pressures during 460 
somatic evolution, the degree of mutational load required to induce a stress response, 461 
differences in energetic costs of protein maintenance, or the interplay that exists 462 
between apoptosis and proteostasis. Further studies are needed to elucidate the 463 
precise dynamics and physiological consequences of inefficient negative selection in 464 
somatic evolution, how this impacts cellular growth, and the mechanisms somatic cells 465 
use to maintain robustness to proteostasis disruption. 466 
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Methods 479 

Data availability and resources. Whole-exome, somatic mutation calls of 10,486 480 
cancer patients across 33 cancer types in The Cancer Genome Atlas (TCGA) were 481 
downloaded from the Multi-Center Mutation Calling in Multiple Cancers (MC3) project16 482 
(https://gdc.cancer.gov/about-data/publications/mc3-2017). For the same patients in 483 
TCGA, RNA-seq data of log2 transformed RSEM normalized counts were downloaded 484 
from the UCSC Xena Browser72 (https://xenabrowser.net/datapages/) and copy number 485 
alterations (CNAs), including amplifications and deletions, called via ABSOLUTE were 486 
downloaded from COSMIC (v91)73 (https://cancer.sanger.ac.uk/cosmic/download). 487 
Tumor purity estimates for TCGA were downloaded from the Genomic Database 488 
Commons (GDC)74 (https://gdc.cancer.gov/about-data/publications/pancanatlas). Data 489 
for all cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE) were downloaded 490 
from DepMap30 (https://depmap.org/portal/download/all/). Specifically, mutation calls 491 
(Version 21Q3) from whole-exome sequencing data, copy number alternations 492 
quantified by ABSOLUTE (Version CCLE 2019), log2 transformed TPM normalized 493 
counts (Version 21Q3) from RNA-seq data, shRNA data from project Achilles32 494 
normalized using DEMETER (DEMETER2 Data v6), and primary drug sensitivity 495 
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screens of replicate collapsed log fold changes relative to DMSO from project PRISM34 496 
(Version 19Q4) were used.  497 

Statistical analysis. The lmerTest and lmer package in R was used to apply a separate 498 
generalized linear mixed model (GLMM) for each gene in the genome to identify groups 499 
of genes whose expression is up-regulated in response to mutational load in TCGA. For 500 
each gene, expression values across all patients were z-score normalized in all 501 
analyses to ensure fair comparisons across genes. Known co-variates of tumor purity 502 
and cancer type were included in the GLMM. Tumor purity and mutational load were 503 
modeled as fixed effects, whereas cancer type was modeled as a random effect (i.e. 504 
random intercept) since it varies across groups of patients and can be interpreted as 505 
repeated measurements across groups. For all analyses, mutational load was defined 506 
as log10 of the number of synonymous, nonsynonymous and nonsense mutations per 507 
tumor. For each gene, the parameters used in the GLMM were as follows, 508 

𝑌 ~ 𝛽0  +  𝛽1𝑋1  +  𝛽2𝑋2   + v + 𝑒		509 

where 𝑌 is a vector of expression values of each tumor, 𝛽0 is the fixed intercept, 𝛽1 is 510 
the fixed slope for the predictor variable 𝑋1 which is a vector of mutational load values 511 
for each tumor, 𝛽2 is the fixed slope for the predictor variable 𝑋2 which is a vector of the 512 
purity of each tumor, v is the random intercept for each cancer type, and 𝑒 is a 513 
Gaussian error term.  514 

Unlike TCGA, samples within each cancer type in CCLE can be small and are 515 
unbalanced (i.e. some cancer types have <10 samples and others have >100 samples). 516 
In these cases, mixed effects models may not be able to estimate among-population 517 
variance accurately31. Thus, for all regression-based analyses in CCLE, a simple 518 
generalized linear model (GLM) was used instead. Cell viability values across all cell 519 
lines were z-score normalized by gene in all analyses to ensure fair comparisons across 520 
genes. To assess whether the same sets of genes are up-regulated in response to 521 
mutational load in CCLE using the GLM, a similar procedure to the GLMM was 522 
performed. A separate GLM was applied for each gene with the following parameters, 523 

𝑌 ~ 𝛽0  +  𝛽1𝑋1 + 𝑒 	524 

where 𝑌 is a vector normalized expression values of each cell line, 𝛽0 is the fixed 525 
intercept, 𝛽1 is the fixed slope for the predictor variable 𝑋1 which is a vector of mutational 526 
load values for each tumor, and 𝑒 is a Gaussian error term. A similar GLM framework as 527 
above was used to estimate the association of mutational load and cell viability after 528 
shRNA knock-down of individual genes in proteostasis complexes with the following 529 
parameters, 530 

𝑌 ~ 𝛽0  +  𝛽1𝑋1  +  𝛽2𝑋2  + 𝑒	531 
 532 

where 𝑌 is a vector of normalized cell viability estimates after expression knock-down of 533 
an individual gene across all cell lines, 𝛽0 is the fixed reference intercept, 𝛽1 is the fixed 534 
slope for the predictor variable 𝑋1 which is a vector of mutational load values for each 535 
cell line, 𝛽2 is a change in the intercept for 𝑋2 which is a categorical variable of individual 536 
genes within each proteostasis complex, and 𝑒 is a Gaussian error term. To estimate 537 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495407
http://creativecommons.org/licenses/by/4.0/


16 

the association of mutational load and cell viability after pharmacologic inhibition of 538 
proteostasis machinery, the following GLM was applied to each relevant drug in PRISM: 539 

𝑌 ~ 𝛽0  +  𝛽1𝑋1 + 𝑒 	540 

where 𝑌 is a vector normalized cell viability estimates after drug inhibition across all cell 541 
ines, 𝛽0 is the fixed intercept, 𝛽1 is the fixed slope for the predictor variable 𝑋1 which is a 542 
vector of mutational load values for each tumor, and 𝑒 is a Gaussian error term.  543 
 544 
Model validation. For both the GLM and GLMM, model assumptions of homogeneity of 545 
variance were verified by plotting residuals versus fitted values in the model and 546 
residuals versus each covariate in the model. Multi-collinearity with other mutational 547 
classes (e.g. such as copy number alterations, CNAs) were considered but not found to 548 
correlate with point mutations (Supplemental Figure 1). A jackknife re-sampling 549 
procedure was used for outlier analysis and to determine whether specific cancer types 550 
are driving patterns of association within the GLM and GLMM. Briefly, each cancer type 551 
was removed from the regression model one at a time, and regression coefficients were 552 
re-estimated. Overall, regression coefficients were fairly stable across cancer types and 553 
trends remained the same (Supplemental Figure 4 and 6). 554 

Proteostasis gene sets. Genes for chaperone complexes were identified from75 and 555 
genes that are co-chaperones were not considered. Proteasome and ribosomal 556 
complexes were identified from CORUM17. 557 

Gene set enrichment analysis. All gene set enrichment analysis was performed using 558 
gprofiler2 with default parameters. For all sets of genes, significance was determined 559 
after correcting for multiple hypothesis testing (FDR < 0.05). For gene set enrichment 560 
analysis used to identify genes up-regulated in TCGA in response to mutational load, all 561 
terms in CORUM database were reported and enrichment terms in the KEGG database 562 
of diseases not related to cancer (e.g. 'Influenza A') were omitted from the main figures 563 
for clarity and space. For gene sets used to identify terms differentially splice in between 564 
high and low mutational load tumors, all terms in the CORUM and the REACTOME 565 
database were reported in the main figures. The full set of enrichment terms for all 566 
analyses is reported in Supplemental Table 1. 567 

Alternative splicing analysis. Alternative splicing events were quantified through a 568 
previously established metric called PSI. PSI is calculated as the number of reads that 569 
overlap the alternative splicing event (e.g. for intron retention, either at intronic regions 570 
or those at the boundary of exon to intron junctions) divided by the total number of 571 
reads that support and don’t support the alternative splicing event. PSI summarizes 572 
alternative splicing events at specific exonic boundaries in the entire transcript 573 
population without needing to know the complete underlying composition of each full 574 
length-transcript. 575 

Alternative splicing calls for all tumors in TCGA were downloaded from TCGA 576 
SpliceSeq25. Default splice event filters (percentage of samples with PSI values >75%) 577 
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from the database were applied. To test whether gene expression is down-regulated in 578 
high mutational load tumors through alternative splicing, we calculated whether 579 
alternative splicing events were present based on different threshold values of percent 580 
spliced in (PSI) from 90% to 50%. (Supplemental Figure 3). For each alternative splicing 581 
event in a gene, we quantified whether the expression of the same gene was under-582 
expressed. Each gene was counted as under-expressed if it was one standard deviation 583 
below the mean expression within each cancer type. Genes that contained a point 584 
mutation within the same alternative splicing event were removed to control for eQTL 585 
effects. We note that intron retention events removed from this analysis represent only 586 
~1% of intron retention events across all tumors and similar trends are found when this 587 
filtering scheme is not applied (Supplemental Figure 2). In addition, we evaluated 588 
whether this trend is robust to other alternative splicing events (i.e., Alternate Donor 589 
Sites, Alternate Promoters, Alternate Terminators, Exon Skipping Events, ME=Mutually 590 
Exclusive Exon; Supplemental Figure 3). 591 

To investigate which genes are differentially spliced in between low and high 592 
mutational load tumors for specific alternative splicing events (i.e. intron retention), a t-593 
test was used to calculate whether PSI values were significantly different in tumors with 594 
< 10 protein-coding mutations compared to tumors with > 1000 protein-coding 595 
mutations. Each alternative splicing event within a gene was required to have less than 596 
25% of missing PSI values and a mean difference between the two groups of >0.01 to 597 
be considered. This approach identified 606 and 201 significant genes that have more 598 
and fewer intron retention events in high mutational load tumors, respectively, after 599 
correcting for multiple hypothesis testing (FDR < 0.05). 600 
 601 
Drug category annotation and enrichment analysis. A separate GLM was ran for all 602 
drugs in the PRISM database to evaluate whether they are associated with mutational 603 
load and cell viability. All drugs that were negatively associated with mutational load and 604 
viability were queried on PubMed based on their reported mechanism of action in 605 
PRISM and grouped into broad categories (Supplemental Table 1). Categories of drug 606 
mechanism of action were first chosen based on their role in metabolism and known 607 
hallmarks of cancer. Additional categories not directly related to known cancer 608 
associated functional groups were made for drugs that could not otherwise be grouped 609 
(i.e. ‘Ion Channel Regulation’, Viral Replication Inhibitor', etc.). Drugs with ambiguous 610 
mechanism of action (e.g. 'cosmetic', 'coloring agent') were grouped into ‘Other’. The 611 
abstracts of up to 10 associated papers were used to examine for evidence connecting 612 
drug mechanisms of action to 33 broad categories. In total, 700 drug mechanism of 613 
action were grouped and annotated into 33 broad categories. These broad categories 614 
were used to assess whether high mutational load cancer cell lines are generically 615 
vulnerable to drugs or whether certain categories are more likely to contain drugs 616 
effective against high mutational load cell lines. To control for differences in the number 617 
of drugs within each category, 50 drugs were randomly sampled, and the fraction of 618 
drugs significantly associated with mutational load in each category was calculated 100 619 
times to generate confidence intervals. 620 
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Code and software availability. All code used for analysis will be made publicly 621 
available on Github under the open-source MIT License upon publication. 622 
 623 

 624 
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 643 
Supplemental Figures 644 
 645 

 646 

Supplemental Figure 1. No collinearity of point mutations and copy number alterations in human 647 
tumors (TCGA) and cancer cell lines (CCLE). Heatmap of Pearson’s correlation coefficients between 648 
different classes of mutations in A. CCLE (cancer cell lines) and B. TCGA (human tumors). Colors denote 649 
magnitude of correlation coefficients and whether the relationship is positive (red), negative (blue) or 650 
negligible (white). CNAs are defined as the combined number of amplifications and deletions, while SNVs 651 
are the combined number of all point mutations. 652 
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 653 

 654 

Supplemental Figure 2. Intron retention events that overlap with mutations do not account for the 655 
association of gene silencing in high mutational load tumors. A. Counts of the number of intron 656 
retention events filtered (in red) due to overlap with a mutation present in the same gene (and thus 657 
corresponding to potential eQTLs) compared the number of remaining alternative splicing events with no 658 
overlap with a mutation (in blue). Alternative splicing events filtered represent ~1% of all alternative 659 
splicing events across all tumors. B-C. Counts of the number of under-expressed transcripts with intron 660 
retention events, relative to counts of all intron retention events in tumors binned by the total number of 661 
protein-coding mutations. Shown are when trends when (B) not filtering alternative splicing events due to 662 
overlap with mutations and (C) when events are filtered (same as Fig. 2A). Intron retention events with 663 
PSI > 80% are counted. Error bars are 95% confidence intervals determined by bootstrap sampling. 664 
These results further support the prediction that gene silencing is elevated in high mutational load tumors 665 
and likely mediated by the coupling of intron retention with mRNA decay 666 
 667 
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 673 

Supplemental Figure 3. The number of under-expressed transcripts increases with the mutational 674 
load of tumors for different PSI value thresholds and alternative splicing events. A. Counts of the 675 
number of under-expressed transcripts with intron retention events, relative to counts of all intron 676 
retention events in tumors binned by the total number of protein-coding mutations. Intron retention events 677 
with different PSI thresholds are shown colored. B. Counts of the number of under-expressed transcripts 678 
that contain different classes alternative splicing events, relative to counts of all alternative splicing events 679 
of the same class in tumors binned by the total number of protein-coding mutations. Alternative splicing 680 
events of different classes are shown colored (AA=Alternate Acceptor Sites, AD=Alternate Donor Sites, 681 
AP=Alternate Promoter, AT=Alternate Terminator, ES=Exon Skip, ME=Mutually Exclusive Exons, RI= 682 
Retained Intron). Error bars are 95% confidence intervals determined by bootstrap sampling. 683 
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 685 

 686 

Supplemental Figure 4. Association between expression in proteostasis complexes and 687 
mutational load is not driven by a single cancer type in TCGA. Box plots of regression coefficients 688 
from the GLMM measuring the association of the expression of each individual gene with the mutational 689 
load of tumors in TCGA colored by different proteostasis complexes. Shown are regression estimates 690 
after removing each individual cancer type (x-axis) and re-running the GLMM.  691 
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 692 

Supplemental Figure 5. Association between the expression in proteostasis complexes and 693 
mutational load is not driven by patient age. Boxplots of regression coefficients from the GLMM 694 
measuring the association of the expression of each individual gene with the mutational load of tumors 695 
from TCGA colored by different proteostasis complexes. Shown are regression coefficients when running 696 
the GLMM on tumors stratified by different age groups (x-axis). 697 
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 699 

Supplemental Figure 6. Association between the expression in proteostasis complexes and 700 
mutational load is not driven by a single cancer type in CCLE. Box plots of regression coefficients 701 
from the GLM measuring the association of the expression of each individual gene with the mutational 702 
load of tumors colored by different proteostasis complexes. Shown are regression estimates after 703 
removing each cancer type in CCLE (x-axis) and re-running the GLM. 704 
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