
TMS-EVOKED RESPONSES ARE DRIVEN BY

RECURRENT LARGE-SCALE NETWORK DYNAMICS

PREPRINT

Davide Momi*

Krembil Centre for Neuroinformatics,

Centre for Addiction & Mental Health, Toronto

davide.momi@camh.ca

Zheng Wang*

Krembil Centre for Neuroinformatics,

Centre for Addiction & Mental Health, Toronto

zheng.wang@camh.ca

John David Griffiths

Krembil Centre for Neuroinformatics,

Centre for Addiction & Mental Health, Toronto;

Department of Psychiatry &

Institute of Medical Sciences, University of Toronto

john.griffiths@utoronto.ca

June 9, 2022

ABSTRACT

A major question in systems and cognitive neuroscience is to what extent neurostimulation responses 1

are driven by recurrent activity. This question finds sharp relief in the case of TMS-EEG evoked 2

potentials (TEPs). TEPs are spatiotemporal waveform patterns with characteristic inflections at 3

∼50ms, ∼100ms, and ∼150-200ms following a single TMS pulse that disperse from, and later re- 4

converge to, the primary stimulated regions. What parts of the TEP are due to recurrent activity? And 5

what light might this shed on more general principles of brain organization? We studied this using 6

source-localized TMS-EEG analyses and whole-brain connectome-based computational modelling. 7

Results indicated that recurrent network feedback begins to drive TEP responses from ∼100ms post- 8

stimulation, with earlier TEP components being attributable to local reverberatory activity within the 9

stimulated region. Subject-specific estimation of neurophysiological parameters additionally indi- 10

cated an important role for inhibitory GABAergic neural populations in scaling cortical excitability 11

levels, as reflected in TEP waveform characteristics. 12
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1 Introduction 15

The brain is a complex, nonlinear, multiscale, and intricately interconnected physical system, whose laws of motion 16

and principles of organization have proven challenging to understand with currently available measurement tech- 17

niques1. In such epistemic circumstances, application of systematic perturbations, and measurement of their effects, 18

is a central tool in the scientific armoury2;3. For human brains, the technological combination that best supports 19

this non-invasive perturbation-based modus operandi is concurrent transcranial magnetic stimulation (TMS) and elec- 20

troencephalography (EEG)4;5. TMS-EEG allows millisecond-level tracking of stimulation-evoked activity propaga- 21

tion throughout the brain6;7, originating from a target region that is perturbed by the secondary electrical currents of 22

a focal (2-2.5cm diameter), brief (∼1ms), and powerful (1.5-2T) magnetic field8. Trial-averaged TMS-EEG response 23

waveforms (known as TMS-evoked potentials or TEPs) have been used to elucidate basic neurophysiology in the areas 24

of brain connectivity9, axonal conduction delays10, and neural plasticity11; and also as a clinical biomarker for several 25

pathological conditions such as coma12, stroke13, depression14, obsessive compulsive disorder15, and schizophrenia16. 26

In addition to this wide variety of basic physiological and clinical applications, TEP measurements speak directly to 27

a central theoretical question at the very heart of systems neuroscience: to what extent does stimulus-evoked neural 28

activity propagate through the brain, via local and/or long-range projections, to affect activity in spatially distant brain 29

regions? In the present paper, we are concerned with this question, and even more so with its equally interesting 30

corollary: to what extent does stimulus-evoked activity propagate back from downstream areas to a primary stimula- 31

tion site. This phenomenon of top-down or cyclic feedback within large-scale brain networks is known as re-entry or 32

recurrence17;18;19;20. 33

Understanding the contribution of recurrent activity to TEPs, and stimulus-evoked activity in general, is critically 34

important for proper interpretation of TMS-EEG experimental results and design of clinical interventions. In the case 35

of TMS the direct physical and physiological effects at the primary stimulation site of an extracranially-applied mag- 36

netic perturbation are reasonably well-understood: secondary electrical currents initially depolarize the membranes 37

of cells in the superficial neural tissue underneath the coil, causing action potentials and an associated local response 38

in the stimulated brain region21. Concurrently, this local electrical activation propagates (as some combination of 39

soma-originating and prodromic axon-originating action potentials) along white matter pathways to reach distant cor- 40

tical and subcortical sites, resulting in predominantly excitatory effects with magnitudes depending on the strength 41

of the anatomical connections22. The final EEG-measurable outcomes of this process appear as early (<100ms) and 42

late (>100ms) responses at both the primary stimulation site and a broad set of interconnected brain regions, usually 43

persisting for ∼300ms, and showing reliable characteristic patterns but also high levels of inter-subject variability23. 44

A key challenge in interpreting these data is that it is impossible from the TMS-evoked EEG time series alone to dis- 45

entangle whether TEP waveform components at the primary stimulation sites arise due to a ‘local echo’ - driven only 46

by the recent history of that region, or to a ‘global echo’ - driven by the recurrent activity within the rest of network. 47

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.09.494069doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.09.494069
http://creativecommons.org/licenses/by-nc/4.0/


Momi, Wang, & Griffiths TMS-evoked responses are driven by recurrent network dynamics

Here we introduce a novel approach to addressing these questions around the physiological basis and spatiotem- 48

poral network dynamics of neural activity evoked by noninvasive brain stimulation, using a combination of empirical 49

TMS-EEG data analyses and whole-brain, connectome-based neurophysiological modelling. An overview and con- 50

ceptual framework is given in Figure 1. The logic proceeds as follows: In a first step, we fit a connectome-based model 51

to individual-subject TEP data, achieving accurate replication of the measured channel- and source-level TMS-EEG 52

patterns. Then, we introduce to the model a series of spatially and temporally specific ‘virtual lesions’ by setting to 53

zero the weights of all connections leaving from and returning to the primary stimulation site, at specific times. These 54

virtual lesions isolate the TMS-stimulated region from the rest of the brain for delineated periods, and allow us to 55

ask what its dynamics would look like with and without recurrent feedback from downstream brain areas. Activity 56

patterns at the stimulated node that are unchanged by a given virtual lesion that suppresses recurrent inputs are thus 57

independent of those inputs, and can be understood as a ‘local echo’ of the stimulation that persists in time for long 58

periods (dozens to hundreds of milliseconds). This framing implies two contrasting potential scenarios for the change 59

in TEP waveform components after introducing a lesion that suppresses recurrent feedback to the stimulation site: 60

a) TEP components are still observed and entirely or largely unchanged, or 61

b) TEP components are substantially reduced or disappear 62

As noted, clear evidence of a) would be consistent with these brain responses being simply a ‘local echo’ of 63

the TMS perturbation, that activates only the stimulated area. In contrast, evidence of b) would imply the local TEP 64

response requires global network reverberation - recurrent activity propagating out from the stimulated region, via its 65

distal interconnected notes, and back again to evoke or to amplify inflections at specific time points post-stimulation. 66

For modelling the empirical TMS-EEG TEP data following the investigative line described above, we use a 67

newly-developed numerical simulation approach that draws on recent technical advances from the field of machine 68

learning24. Our novel modelling methodology allows accurate and robust individual subject-level TEP waveform 69

fitting, allowing us to present here the first ever subject-specific, cortex-wide, connectome-based neurophysiological 70

model of TEP generation. As we show, this allows us to pose and answer questions around both the shared structure 71

and the well-known inter-subject variability of TMS-EEG responses25. We examine the general question of recurrent 72

activity in relation to feedforward and feedback connections to primary stimulation targets, as well as to the broader 73

graph topological structure of the anatomical connectome. Inter-subject variation in estimated physiological parame- 74

ters offers candidate explanations for TEP phenomena in terms of excitatory/inhibitory population parameters that are 75

consistent with known pharmaco-physiological effects26. We argue that this physiologically-based mathematical pa- 76

rameterization of brain stimulation responses offers an important new framework for understanding (and minimizing) 77

inter-subject variability in TMS-EEG recordings for basic scientific and clinical applications. 78
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Figure 1 | Studying the role of recurrent activity in stimulation-evoked neural responses with computational models. Shown
here is a schematic overview of the hypotheses, methodology, and general conceptual framework of the present work. A) Single
TMS stimulation pulse (i - diagram, iv - real data) applied to a target region (in this case left M1) generates an early response
(TEP waveform component) at EEG channels sensitive to that region and its immediate neighbours (ii). This also appears in more
distal connected regions such as the frontal lobe (iii) after a short delay due to axonal conduction and polysynaptic transmission.
Subsequently, second and sometimes third late TEP components are frequently observed at the target site (i, iv), but not in non-
connected regions (v). Our central question is whether these late responses represent evoked oscillatory ‘echoes’ of the initial
stimulation that are entirely locally-driven and independent of the rest of the network, or whether they rather reflect a chain of
recurrent activations dispersing from and then propagating back to the initial target site via the connectome. B) In order to investigate
this, precisely timed communication interruptions or ‘virtual lesions’ (vii) are introduced into an accurately fitting individual-
subject computational model of TMS-EEG stimulation responses (vi), and the resulting changes in the propagation pattern (vii) are
evaluated. No change in the TEP component of interest would support the ‘local echo’ scenario (viii), whereas suppressed TEPs
would support the ‘recurrent activation’ scenario (ix).
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2 Results 79

2.1 Connectome-based neurophysiological models accurately reproduce subject-specific TEP patterns 80

As an important preliminary to our primary research question, extensive testing confirmed that our new connectome- 81

based neurophysiological model of TMS-EEG responses achieves robust and accurate recovery of TEP waveforms at 82

both the group-average and individual level. This is demonstrated in Figures 2 and 3 for both the EEG channel level 83

and cortical surface source level, respectively. Figure 2A shows empirical and fitted (i.e. simulated, with optimized 84

physiological parameters) TEP waveforms and selected topography maps for three example subjects (for the entire 85

group, see Supplementary Figure S1). It is visually evident in these figures that the model accurately captures several 86

individually-varying features of these time series, such as the timing of the 50ms and 100-120ms TEP components, 87

and the extent to which they are dominated by left/right and temporal/parietal/frontal channels. (For the latter, this can 88

be seen by comparing the line colours in the upper and lower rows of corresponding columns in Figure 2A, and using 89

the channel location references given by the channel colour map on the top left of each TEP plot). Pearson correlations 90

between empirical and simulated TMS-EEG time series confirmed that an excellent goodness-of-fit was observed at 91

the whole-head level (Figure 2B) and individual channel level (Figure 2C), with time-wise permutation tests reveal- 92

ing a significant Pearson correlation coefficient for every electrode. As well as the millisecond-by-millisecond TEP 93

comparisons and the timing of key wwaveform components, we also assessed the accuracy of the model in capturing 94

holistic time series properties. As shown in Figure 2D, a significant positive correlation (R2 = 80%, p < 0.0001) was 95

found between the Perturbational Complexity Index (PCI)27 of the simulated and empirical waveforms. 96
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Figure 2 | Comparison between simulated and empirical TMS-EEG data in channel space. A) Empirical (upper row) and sim-
ulated (lower row) TMS-EEG butterfly plots with scalp topographies for 3 representative subjects, showing a robust recovery of
individual empirical TEP patterns in model-generated activity EEG time series. B) Pearson correlation coefficients between simu-
lated and empirical TMS-EEG time series for each subject. C) Time-wise permutation tests result showing the Pearson correlation
coefficient (top) and the corresponding significant reversed p-values (bottom) for every electrode. D) PCI values extracted from the
empirical (orange) and simulated (blue) TMS-EEG time series (left). A significant positive correlation (R2 = 80%, p < 0.0001)
was found between the simulated and the empirical PCI (right), demonstrating high correspondence between empirical and simu-
lated data.

Similarly to the single-subject fits, our model also showed accurate recovery of the grand mean empirical TEP 97

waveform when the fitted TEPs were averaged over subjects (Figure 3A). These grand mean channel-level waveforms 98

were further used to assess model fit in brain source space. As can be seen in the topoplots in Figure 3B, the same 99

spatiotemporal activation pattern is observed both for empirical (top row) and model-generated (bottom row) time 100

series. M1 stimulation begins with activation in left motor area at ∼20-30ms, then propagates to temporal, frontal and 101

homologous contralateral brain regions, resulting in a waveform peak at ∼100-120ms. Time-wise permutation tests 102

on these data revealed a significant Pearson correlation coefficient in 75.63% of all vertices (Figure 3C), and again a 103

significant correlation in the simulated and the empirical PCI (R2 = 80%, p < 0.0001). 104

Finally, significant positive correlations were found between the dynamic Statistical Parametric Mapping (dSPM) 105

values extracted from the 7 canonical Yeo Networks, with stronger correspondences for the primary stimulation target 106

(Somatomotor [SMN], R2 = 46%, p = 0.008) compared to the non-stimulated Networks (Visual [VISN]: R2 = 107

38%, p = 0.01; Dorsal Attention [DAN]: R2 = 38%, p = 0.004; Anterior Salience [ASN]: R2 = 38%, p = 0.003; 108

Limbic [LIMN]: R2 = 40%, p = 0.01; Fronto-parietal [FPN]: R2 = 41%, p = 0.006; Default Mode [DMN]: 109
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R2 = 43%, p = 0.009) ). This correspondence between empirical and simulated TEP data in the pattern of their 110

loadings across the canonical networks is clearly visible in the bar charts of Figure 3D. 111

Figure 3 | Comparison between simulated and empirical TMS-EEG data in source space. A) TMS-EEG time series showing a
robust recovery of grand-mean empirical TEP patterns in model-generated EEG time series. B) Source reconstructed TMS-evoked
propagation pattern dynamics for empirical (top) and simulated (bottom) data. C) Time-wise permutation test results showing the
significant Pearson correlation coefficient (top) and the corresponding reversed p-values (bottom) for every vertex. D) Network-
averaged dSPM values extracted for the grand mean empirical (left) and simulated (right) source-reconstructed time series.

2.2 Later TEP responses are driven by recurrent large-scale network dynamics 112

Having established the accuracy of our model at replicating TEP waveforms across a wide range of subject-specific 113

shapes (Figures S1, 2, 3), we now turn to the central question of the present study, as laid out in Figure 1B. Shown in 114

Figure 4 are effects on the simulated TEP of virtual lesions to recurrent incoming connections of the main activated 115

regions at 20ms, 50ms, and 100ms after single-pulse TMS stimulation of left M1. The leftmost column of Figure 116

4, which shows the simulated data grand average with no virtual lesion (re-plotting the data from the second row 117

of Figure 3B), serves as a reference point for other three columns. A key result here is that there is a reduction of 118

source activation at the 50-100ms time window in the central two panels (lesions at 20ms and 50ms, respectively), as 119

compared to the rightmost (lesion at 100ms) and leftmost (no lesion) panels. This reduction demonstrates the critical 120

importance of network recurrence in generating later TEP components. These effects were evaluated statistically by 121

extracting dSPM loadings from the source activity maps for each of the 7 canonical Yeo networks28 and entering them 122
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into an ANOVA with factors of NETWORK and TIME OF DAMAGE. Significant main effects were found for both 123

NETWORK (F(6,114) = 114.73, p < 0.0001, η2p = 0.85) and TIME OF DAMAGE (F(3,57) = 254.05, p < 0.0001, 124

η2p = 0.93) - indicating that the effects of virtual lesions vary depending on both the time administered and the site 125

administered to, as well as the combination of these factors (significant interaction NETWORK*TIME OF DAMAGE 126

(F(18,342) = 23.79, p < 0.0001, η2p = 0.55)). The specific results described above, with significant TEP suppression 127

at the stimulation site occurring in the early and late TEP components for specific time windows, was verified through 128

extensive post-hoc t-tests (see Supplementary Results Section 2.1). 129

Figure 4 | Removing recurrent connections from stimulated target nodes suppresses their late TEP activity. We found that
TMS-evoked propagation dynamics in the model change significantly depending on the specific time that a virtual lesion is applied
(highlighted orange circle). Specifically, early significant reductions in the TMS-evoked activity (50ms-100ms time window) were
found when important connections were removed at 20ms (blue) and 50ms (orange) after the TMS pulse, as compared to both
a later virtual lesion (100ms green) and no damage (red) conditions. This results is demonstrated also for network-based dSPM
values (bottom row) extracted for all four conditions.

2.3 TMS-evoked activity propagation strongly depends on highly connected brain regions 130

After demonstrating the importance for TEPs of recurrent feedback into the primary stimulation regions, we next asked 131

whether the activity propagation patterns observed in TMS-EEG also depend on more global topological features of 132

the anatomical connectome. In order to assess this, we performed the same time-windowed virtual lesion analyses 133

for two ATTACK TYPE conditions: targeted attack where the most important nodes in the brain network’s graph 134

structure were damaged; random attack where 1000 simulations were run and the nodes selected for removal were 135

randomly chosen. As shown in Figure 5B, by analyzing the PCI values at the channel level, significant main effects of 136

ATTACK TYPE (F(1,19) = 62.01, p < 0.0001, η2p = 0.76) and TIME OF DAMAGE (F(2,38) = 23.76, p < 0.0001, 137

9
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η2p = 0.55) were observed, as well as a significant interaction ATTACK TYPE*TIME OF DAMAGE (F(2,38) = 138

22.63, p < 0.0001, η2p = 0.54). This indicates that both the time and the type of the virtual lesion highly affect 139

the propagation of the activity elicited by a short TMS stimulation. Specifically, considering the type of the lesion, 140

targeted attack conditions significantly reduced EEG time series complexity compared to random attack conditions. 141

Conversely, considering the time of the lesion, the effects of early targeted attacks (20ms and 50ms) are significantly 142

higher compared to later lesion times (100ms). 143

To gain further insight into the anatomy of these effects, we then evaluated the effects of different virtual lesions 144

(type and timing) on the source reconstructed signal for each of the 7 Yeo et al. functional networks28. Network dSPM 145

values at source level (Figure 5C) showed significant main effects of NETWORK (F(6,114) = 42.99, p < 0.0001, η2p = 146

0.69) ATTACK TYPE (F(1,19) = 46.91, p < 0.0001, η2p = 0.71), and TIME OF DAMAGE (F(2,38) = 44.55, p < 147

0.0001, η2p = 0.70), as well as a significant double interaction ATTACK TYPE*TIME OF DAMAGE (F(2,38) = 148

27.12, p<0.0001, η2p = 0.58), NETWORK*TIME OF DAMAGE (F(12,228) = 10.62p < 0.0001, η2p = 0.35), and 149

a significant triple interaction NETWORK*ATTACK TYPE*TIME OF DAMAGE (F(12,228) = 6.28, p < 0.0001, 150

η2p = 0.24). The significant main and double effects here again show that different networks are affected at different 151

times and to different magnitudes by virtual lesion connectivity disruptions, underscoring the pivotal role of both time 152

and space for shaping the propagation of the brain activity induced by an external perturbation. For further details 153

on the post-hoc analyses pertaining to these ANOVA results please refer to Supplementary Results Section 2.2. For 154

a representation of the nodes removed, please refer to Supplementary Figures S2. For a comprehensive overview of 155

individual changes in TMS-EEG dynamics after different lesions, please refer to Supplementary Figures S3, S4 and 156

S5. 157
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Figure 5 | TMS-evoked activity propagation depends on connectome hubs. A) Effect of two anatomical connectivity-based lesion
strategies (random vs targeted) and time of damage (20ms: blue; 50ms: orange; 100ms: green) on TMS-EEG dynamics for one
representative subject. Overall, targeted attack (left column) significantly compromised the propagation of the TMS-evoked signal
compared to the random attack (right column) condition. Moreover, the EEG dynamics were significantly affected by early (20ms:
blue and 50ms: orange) compared to late (100ms: green) virtual lesions. B) PCI scores extracted for targeted (top) and random
(bottom) attack and for the different time of damage conditions. A gradient in the PCI scores was found for the targeted attack
condition, where earlier lesions were associated with the lower complexity and later ones with higher complexity. Conversely, in
the random attack condition, PCI did not differ significantly for different lesion times. C) Grand average dSPM values extracted
from source reconstructed TMS-EEG surrogate data for targeted (top) and random (bottom) attack and for the three different time
of damage conditions. Similarly to the channel-level results, source activity was significantly reduced for targeted attack compared
to random lesions. A significant decrease in the source-reconstructed activity was found after early compared to late connectome
damage. Interestingly, these effects were highest in the network receiving the initial stimulation, namely the sensorimotor network.
D) Demonstration of the network recurrence-based theory for one representative subject. Simulation of TMS-EEG dynamics run
using the intact (left) and fully-disconnected (right) anatomical connectome. In the latter case the external perturbation generates
a local response which reverberates locally and terminates after ∼50ms. This demonstrates again how later TEPs are driven by
recurrent network dynamics. E) Local Mean Field Power (LMFP) at the stimulation site for intact (blue line) and fully-disconnected
(orange line) anatomical connectome.

2.4 Inhibitory synaptic activity accounts for inter-subject differences in TEP waveforms 158

One of the key advantages of physiologically-based brain modelling is the potential for making meaningful associa- 159

tions between major empirical data features and the physiological constructs instantiated in the model’s parameters. 160

We explored this by examining the relationship between TEP waveform components and physiological parameters of 161

the Jansen-Rit model. To do this, singular value decompositions (SVDs) were performed on the channel x time TEP 162

waveform matrices for both empirical and simulated data. The left and right singular vectors from this decomposition 163
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respectively define the temporal and spatial expression of the channel-level TEP eigenmodes. The spatial part of each 164

eigenmode takes the form of a loading pattern over channels that can be represented as a topoplot. As with the TEP 165

waveform and PCI comparisons, this procedure also yielded high spatial similarity between empirical and simulated 166

grand average data (Figure 6A), as well as similar levels of variance explained (74.14% and 66.96% cumulatively by 167

the first two right SVD eigenvectors in simulated and empirical data, respectively). Inspecting the temporal peaks in 168

the left singular vectors for the first two eigenmodes revealed that the first was maximally expressed in empirical [/sim- 169

ulated] data at 72ms[/70ms], and the second at 115ms [/117ms] post-stimulus. Thus the first two eigenvectors of TEP 170

waveform correspond quite closely to the canonical ∼50ms and ∼100ms TEP waveform components. As shown in 171

Figure 6B, a significant negative correlation was found between the synaptic time constant of the Jansen-Rit inhibitory 172

population and the amplitude of the first eigenmode at its peak (R2 = 27%, p = 0.02). Interestingly, we also observed 173

a significant positive correlation between this parameter and the second eigenmode at its peak (R2 = 28%, p = 0.02). 174

For a comprehensive overview of individual timing and topographies of the first two eigenmodes, please refer to 175

Supplementary Figures S6. 176
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Figure 6 | Synaptic time constants of inhibitory neural populations affect early and late TEP amplitudes. A) Singular value
decomposition (SVD) topoplots for simulated (top) and empirical (bottom) TMS-EEG data. Results revealed that the first (orange
outline) and the second (blue outline) SVD eigenmodes were located ∼65ms and ∼110ms after the TMS pulse, respectively. B)
First and second SVD temporal eigenmode latencies and amplitudes were extracted for every subject, and the distribution plots (top
row) show the time window where highest cosine similarity with the SVD spatial eigenvectors was found. Scatter plots (bottom row)
show a significant negative (left) and positive (right) correlation between the synaptic time constant of the inhibitory population and
the amplitude of the the first and second eigenvector. C) Model-generated first and second SVD eigenmodes for 2 representative
subjects with high (top) and low (bottom) estimated values for the synaptic time constant of the inhibitory population. The topoplots
show that the magnitude of the synaptic time constant is closely coupled to the the amplitude of the individual first and second SVD
modes. D) Model-generated TMS-EEG data were run using the optimal (top right) or 85% decreased (central left) value for the
synaptic time constant of the inhibitory population. The bottom right panel shows absolute values for different magnitudes of this
parameter. Results show an increase in the amplitude of the first, early, and local TEP component; and a decrease of the second,
late, and global TEP component, as a function of the inhibitory synaptic time constant.
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3 Discussion 177

Using our novel computational framework for personalized TMS-EEG modelling, in this work we have presented 178

new insights into the role of recurrent activity in stimulation-evoked brain responses. Characterizing these phenomena 179

at a mechanistic level is important not only as a basic question in systems and cognitive neuroscience, but also as a 180

foundation for clinical applications concerned with changes in excitability and connectivity due to neuropathologies 181

or interventions. 182

We employed a ‘virtual dissection’ approach29 to study the extent to which model-generated TMS-evoked stim- 183

ulation patterns at the primary stimulation site relied on recurrent incoming connections from the rest of the brain, and 184

at what times. These in-silico interventions resulted in substantial reductions in TMS-evoked activity when pivotal 185

connections were inactivated. Specifically, compared to late (100ms after the TMS pulse) virtual lesions, and com- 186

pared to the control condition where no damage was applied, early (20ms, 50ms) damage of essential nodes’ afferent 187

and efferent pathways significantly reduced the amplitude of the 100ms TEP component at the stimulation site (left 188

M1) and its neighbouring regions (Figure 4). In these early lesion conditions some residual activity in the left M1 189

area was still observed at around 100ms, indicating that a local echo of the TMS stimulus does indeed persist for tens 190

to hundreds of milliseconds after stimulation. However, this purely locally-driven activity was low in amplitude, and 191

does not appear to be the principal source of the commonly studied 100ms TEP components in TMS-EEG recordings. 192

In additional to recurrence at the stimulation site, we can also see that amplification of the TMS-evoked stimulation 193

response occurs via network spreading and recruitment. Early lesions also compromised the propagation of the TMS- 194

evoked activity to the contralateral homologue of the stimulated region (i.e. right M1), as well as bilateral frontal and 195

parietal regions. This result clarifies not only that TMS-evoked activity in those regions depends on the presence of 196

those specific cross-hemispheric and parieto-frontal pathways in the network, but also when propagation along them 197

is critical for the subsequent response. Finally, in contrast to the 100ms TEP component, the 50ms TEP component at 198

the target site was largely unaffected by lesions to recurrent connections at 20ms and 50ms, indicating that this earlier 199

part of the the canonical TMS-EEG response can be attributed solely to the local impulse-response characteristics of a 200

patch of cortical tissue. 201

Our results, and the framework for investigating such questions that we are introducing here, have clear and 202

practical relevance to basic and clinical TMS-EEG research, but also have broader implications for the scientific un- 203

derstanding of functional brain organization. Variations on the concept of recurrence in systems neuroscience go 204

back many decades, and have been developed in a wide number of areas and with a wide number of labels, includ- 205

ing ‘re-entry’, ‘reverberation’, ‘feedback’, ‘top-down control’, ‘predictive coding’, ‘functional/effective connectivity’, 206

etc18;19;30;12;3;17. These framings vary a great deal on dimensions such as the spatial/temporal scale, role of corticotha- 207

lamic interactions, association with cognitive functions, association with global brain state, level of physiological 208

detail / abstraction, etc. In all these cases however the central shared intuition is that information or activity flows 209

between network elements in the brain are bidirectional, but that the primary direction of travel may fluctuate dynami- 210
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cally over time. For example, the response of the visual system to images - a sensory stimulation-evoked response that 211

is similar in many ways to electromagnetic stimulation-evoked responses - is widely understood to involve a period 212

of feedforward activity propagation hierarchically up the ventral visual stream, followed rapidly by recurrent top- 213

down feedback31;32;33. Moreover, in vitro recordings have shown how magnetic pulse delivered to a single ganglion 214

cell generates a local early response that terminates after few ms34 depicting a scenario similar to Figure 5D-E. The 215

connectome-based neurophysiological modelling approach presented here could easily be deployed to investigate sim- 216

ilar questions in these and other areas such as visual cognitive neuroscience or consciousness research, where feedback 217

and recurrence play a central explanatory role in current theories. 218

The mathematical and theoretical neuroscientific context that has particularly informed the present study owes 219

much to the ideas of Walter Freeman3 of Andreas Spiegler and colleagues30. Freeman’s hierarchical ‘K Set’ frame- 220

work3 offers a rigorous technical and qualitative analysis of neuronal dynamics in systems progressing in complexity 221

from a single excitatory neural population (K0e set), to ones with self-, uni-directional, and bi-directional excitation 222

an inhibition (KI sets), and eventually adding network-level interactions and feedback (KII and KIII sets). Notably, 223

Freeman’s analysis provides both physiological and mathematical motivation for the central premise of our argument 224

- that a local patch of cortical neural tissue can generate TEP-like damped oscillatory responses to a brief stimu- 225

lation, without the need for feedback from other brain regions. (This is also an implicit premise in all studies using 226

second-order differential equations to model sensory-evoked potentials, such as Freeman3, Jansen-Rit35, David36, and 227

ourselves here.) In these terms then, the questions we have posed and addressed are whether the 50ms and 100ms TEP 228

components at the stimulation site represent KI set or KII set ensemble behaviour. Complementing this, the nature 229

of recurrent activity at the level of whole-brain connectome networks in particular is expressed more sharply in the 230

work of Spiegler et al.30, who emphasizes how feedback loops within the connectome can lead to re-entrant activity, 231

the result of which is to produce longer-lasting and temporally more complex evoked responses - consistent with our 232

findings here. These authors also discovered from an exhaustive investigation comprising 37,000 simulation runs over 233

190 different stimulation targets that persistent, long-lasting activations tend to propagate within canonical resting- 234

state networks. Interestingly, this prediction was later confirmed in our own experimental TMS-EEG work37;25, which 235

demonstrated that the TEPs mainly propagate within distal cortical regions belonging to the same network. For exam- 236

ple, stimulation of parietal default-mode network (DMN) nodes resulted in widespread sustained activity across the 237

parietal, temporal, and frontal lobes - but this activity was primarily to be found within other DMN regions. The same 238

result was also observed for nearby stimulation of dorsal attention network (DAN) nodes. More recently we obtained a 239

similar result with anatomical connectivity9, namely that network-level anatomical connectivity is more relevant than 240

local and global brain properties in shaping TMS signal propagation after the stimulation of two resting-state networks 241

(again DMN and DAN). Whilst we did not study DMN or DAN stimulation in the present study, it can be seen from 242

the Yeo network loadings in Figures 3-5 that our results are also consistent with these experimental observations, with 243

the somatomotor network dominating for all our simulated M1 stimulations. Extending the present results to TEP 244
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measurements from additional target sites both anterior and posterior to the M1 target studied here is an important 245

priority for future work with this model. 246

In addition to our scientific conclusions on the nature of recurrent activity in stimulation-evoked brain dynam- 247

ics, the present work offers several technical advances over previous contributions in a number of areas. Our model 248

is to our knowledge the first connectome-based neurophysiological model for TMS-EEG that demonstrates accu- 249

rate single-subject reconstruction of TEP waveforms at the sensor and source level. Related work has focused on 250

stimulation-evoked functional connectivity patterns30 and stimulation-evoked time-frequency responses38 within ei- 251

ther large or small-scale networks. Most notably and recently, Bensaid and colleagues39 proposed a whole-brain model 252

of TMS-EEG TEP waveforms, with a focus on the sleep/wake differences in TMS-EEG responses studied by Casali27, 253

Massimini12, and others. Bensaid et al’s model includes extensive ‘horizontal’ corticothalamic connectivity, which we 254

elected not to replicate in the present model for reasons of tractability, but may add in future iterations. None of the 255

above studies, or indeed any published work to date to our knowledge, achieve the level of accuracy for single subject 256

TEP waveform fits that we show here. Our model’s success on this front is owed in large part to our decision to for- 257

mulate and implement the Jansen-Rit connectome network differential equations in the widely-used machine learning 258

library PyTorch40. We have recently discussed and demonstrated the advantages of deep learning-based computational 259

architectures for neurophysiological model simulation and parameter estimation24. In the present study this precision 260

was critical for addressing our research questions, which centred on the timing and amplitudes of well-defined TEP 261

waveform components. These components can be found in most or all subjects, but vary considerably in their shapes 262

and exact timings. 263

One example of the utility of this new model-fitting framework can be seen in our results in Figure 6, where 264

we identified trends over subjects in the relationship of estimated model parameters to individual variation in TEP 265

waveform features. Through these analyses we found, in an entirely data-driven fashion, that the synaptic time con- 266

stant of the inhibitory Jansen-Rit population is a strong predictor of the amplitude of early (P60) and late (N100) TEP 267

components. This is consistent with the finding of increased TEP amplitudes following application of paired-pulse 268

TMS protocols known to effect inhibition (or reduced excitability)41. Similarly, pharmacological intervention studies 269

have shown that GABAB receptor agonists (benzodiazepine) decrease N100 component amplitude, suggesting that 270

this component is driven by GABAB receptor-mediated inhibition. Whilst further research will be needed to explore 271

and verify this hypothesis, its generation via the combination of data-driven model fitting and theoretically-informed 272

brain network simulations offers a promising new approach for interpretation of TMS-EEG experiments, and neuro- 273

physiological research more broadly. 274
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4 Material and Methods 275

4.1 Overview of approach 276

The analyses conducted in the present study consist of four main components: i) TMS-EEG evoked response source re- 277

constructions, ii) construction of anatomical connectivity priors for our computational model using diffusion-weighted 278

MRI (DW-MRI) tractography, iii) simulation of whole-brain dynamics and stimulation-evoked responses with a 279

connectome-based neural mass model, and iv) fitting of the model to individual-subject TMS-EEG data. A schematic 280

overview of the overall approach given in Figure 7. 281

Figure 7 | Methodological workflow for subject-specific connectome-based neurophysiological modelling of TMS-EEG TEPs.
A) DW-MRI tractography was computed from a sample of healthy young individuals from the Human Connectome Project (HCP)
Dataset 42, and then averaged to give a grand-mean anatomical connectome. The 200-parcel Schaefer atlas 43 was used, which use-
fully aggregates its 200 brain regions into 7 canonical functional networks (Visual network: VISN, Somatomotor network: SMN,
Dorsal attention network: DAN, Anterior salience network: ASN, Limbic network: LIMN, Fronto-parietal network: FPN, Default
mode network: DMN). These parcels were mapped to the individual’s FreeSurfer parcellation using spherical registration 44. Once
this brain parcellation covering cortical structures was extrapolated, it was then used to extract individual anatomical connectomes.
B) The Jansen-Rit model 35, a neural mass model comprising pyramidal, excitatory interneuron, and inhibitory interneuron pop-
ulations was embedded in every parcel for simulating and fitting neural activity time series. The TMS-induced depolarization of
the resting membrane potential was modelled by a perturbing voltage offset to the mean membrane potential of the excitatory in-
terneuron population. C) A lead-field matrix was then used for moving the parcels’ time series into channel space and generating
simulated EEG measurements. D) The goodness-of-fit (loss) was calculated as the cosine similarity between simulated and empir-
ical TMS-EEG time series. E) Utilizing the autodiff-computed gradient 45 between the objective function and model parameters,
model parameters were optimized using the ADAM algorithm 46. F) Finally, the optimized model parameters were used to generate
the fitted, simulated TMS-EEG activity, for which we report comparisons with the empirical data at both the channel and source
level using conventional statistical techniques.
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4.2 TMS-EEG data and source reconstruction 282

The TMS-EEG data used in this study were taken from an open dataset collected and provided to the community 283

by the Rogasch group (figshare.com/articles/dataset/TEPs-_SEPs/7440713), where high-density EEG was 284

recorded following a stimulation of primary motor cortex (M1) in 20 healthy young individuals (24.50±4.86 years; 285

14 females), and in which state-of-the-art preprocessing had already been applied. For details regarding the data 286

acquisition and the preprocessing steps please refer to the original paper of Bibiani et al.47. All TMS-evoked EEG 287

source reconstruction was performed using the MNE software library48 (mne.tools/stable/index.html) running 288

in Python 3.6. First, the watershed algorithm was used to generate the inner skull, the outer skull and the outer 289

skin surface triangulations for the ‘fsaverage’ template. Then the EEG forward solution was calculated using a three 290

compartment boundary-element model49. Noise covariance was estimated from individual trials using the pre-TMS 291

(from -1000ms to -100ms) time window as baseline. The inverse model solution of the cortical sources was performed 292

using the dSPM method with current density50 and constraining source dipoles to the cortical surface. The resulting 293

output of EEG source reconstruction was the dSPM current density time series for each cortical surface location. 294

4.3 Neuroimaging data and definition of connectome weight priors 295

The whole-brain model we fit to each of the 20 subjects’ TMS-EEG consists of 200 brain regions, connected by 296

weights of the anatomical connectome. We set strong priors on the connection weights, such that individual fits 297

allow for small adjustment of these values. To obtain population-representative values for these connectivity priors, 298

we ran diffusion-weighted MRI tractography reconstructions across a large number of healthy young subjects and 299

averaged the results. For these analyses we used structural neuroimaging data of 400 healthy young individuals (170 300

males; age range 21-35 years), taken from the Human Connectome Project (HCP) Dataset (humanconnectome. 301

org/study/hcp-young-adult)42. DW-MRI preprocessing was run in Ubuntu 18.04 LTS, using tools from the 302

FMRIB Software Library (FSL 5.0.3; www.fmrib.ox.ac.uk/fsl)51, MRtrix3 (www.MRtrix.readthedocs.io)52 303

and FreeSurfer 6.053. All images used were already corrected for motion via FSL’s EDDY54 as part of the HCP 304

minimally-preprocessed diffusion pipeline55. The multi-shell multi-tissue response function56 was estimated using 305

constrained spherical deconvolution57. T1-weighted (T1w) images, which were already coregistered to the b0 volume, 306

were segmented using the FAST algorithm58. Anatomically constrained tractography was employed to generate the 307

initial tractogram with 10 million streamlines using second-order integration over fiber orientation distributions59. 308

Then, the spherical-deconvolution informed filtering of tractograms (SIFT2) methodology was applied60, in order to 309

provide more biologically accurate measures of fibre connectivity. Brain regions or network nodes were defined using 310

the 200-region atlas of Schaefer et al.43, which was mapped to each individual’s FreeSurfer surfaces using spherical 311

registration44. This atlas additionally provides categorical assignments of regions into 7 canonical functional brain 312

networks (Visual network: VISN, Somatomotor network: SMN, Dorsal attention network: DAN, Anterior salience 313

network: ASN, Limbic network: LIMN, Fronto-parietal network: FPN, Default mode network: DMN). Using this 314

atlas in combination with the filtered streamlines, 200x200 two anatomical connectivity matrices were extracted, 315
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with matrix elements representing the number of streamlines and the fiber lenght connecting each pair of regions, 316

respectively. These connectomes for the 400 HCP subjects were then averaged, yielding a healthy subject population- 317

representative connectome matrix. Finally, this matrix was prepared numerically for physiological network modelling 318

by rescaling values by first taking the matrix Laplacian, and second by scalar division of all entries by the matrix norm. 319

4.4 Large-scale connectome-based neurophysiological brain network model 320

As previously described, a brain network model comprising 200 cortical areas was used to model TMS-evoked activity 321

patterns, where each network node represents population-averaged activity of a single brain region according to the 322

rationale of mean field theory61. We used the Jansen-Rit (JR) equations to describe activity at each node, which 323

is one of the most widely used neurophysiological models for both stimulus-evoked and resting-state EEG activity 324

measurements35;36;62. JR is a relatively coarse-grained neural mass model of the cortical microcircuit, composed 325

of three interconnected neural populations: pyramidal projection neurons, excitatory interneurons, and inhibitory 326

interneurons. The excitatory and the inhibitory populations both receive input from and feed back to the pyramidal 327

population but not to each other, and so the overall circuit motif (Figure 7B) contains one positive and one negative 328

feedback loop. For each of the three neural populations, the post-synaptic somatic and dendritic membrane response 329

to an incoming pulse of action potentials is described by the second-order differential equation 330

v̈ (t) +
2

τe,i
v̇ (t) +

1

τ2e.i
v (t) =

He,i

τe,i
m (t) (1)

331

332

which is equivalent to a convolution of incoming activity with a synaptic impulse response function 333

v(t) =

∞∫
0

dτm(τ) · he,i(t− τ) (2)

334

335

whose kernel he,i(t) is given by 336

he,i =
He,i

τe,i
· t · exp(− t

τe,i
) (3)

337

where m(t) is the (population-average) presynaptic input, v(t) is the postsynaptic membrane potential, He,i is the 338

maximum postsynaptic potential and τe,i a lumped representation of delays occurring during the synaptic transmission. 339
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This synaptic response function, also known as a pulse-to-wave operator3, determines the excitability of the 340

population, as parameterized by the time constants τe and τi, which are of particular interest in the present study. 341

Complementing the pulse-to-wave operator for the synaptic response, each neural population also has wave-to-pulse 342

operator3 that determines the its output - the (population-average) firing rate - which is an instantaneous function of 343

the somatic membrane potential that takes the sigmoidal form 344

Su(t) =


e0

1−exp(r(v0−v(t))) t ≥ 0

0 t ≤ 0

(4)

where e0 is the maximum firing rate, r is the steepness of the sigmoid function, and v0 is the postsynaptic potential 345

for which half of the maximum firing rate is achieved. 346

In practice, we re-write the three sets of second-order differential equations that follow the form in Equation 1 347

(one for each population in the JR circuit) as three interconnected pairs of coupled first-order differential equations, 348

and so the full JR system for each individual cortical area j ∈ i : N in our network of N=200 regions is given by the 349

following six equations: 350

v̇j1 = xj1 (5)

ẋj1 =
He

τe
(p+ connj + S(vj2))−

2

τe
xj1 −

1

τ2e
vj1 (6)

v̇j2 = xj2 (7)

ẋj2 =
Hi

τi
(S(v3j))−

2

τi
xj2 −

1

τ2i
vj2 (8)

v̇j3 = xj3 (9)

ẋj3 =
He

τe
(S(vj1 − vj2))−

2

τe
xj3 −

1

τ2e
vj3 (10)

(11)

351

352

where v1,2,3 is the average postsynaptic membrane potential of the excitatory interneuron, inhibitory interneuron, 353

and pyramidal cell populations, respectively. The input from other nodes in the whole-brain network 354

355
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connj(t) = S(
∑
k ̸=j

ajkxk1(t−mjk) (12)

356

357

where ajk is the jth row and the kth column in the connectivity matrix A (which in our is the rescaled connectivity 358

Laplacian as described above). connj thus enters into the excitatory population only and collects excitatory population 359

activity from other network nodes. Due to the finite velocity of long-range axonal conduction, these inputs appear 360

after delays of around 5-50ms, which vary on a per-connection basis. This is specified by mjk, the j, kth entry of the 361

delays matrix M = T/s, which is a function of the inter-regional fibre tract length matrix T and the global axonal 362

conduction velocity s. Especially important here, the TMS-induced depolarization of the resting membrane potential 363

was modelled by an external perturbing voltage offset p applied to the excitatory interneuron population. 364

To establish which parcels in the model the TMS stimulation is injected into, and with what strength, the TMS- 365

induced electric field was modelled with SimNIBS63 in the MNI152 standard-space. The normalized electric field or 366

E-field distribution was thresholded at 83% of its maximal value, following recent estimates of the E-field thresholds 367

above which tissue is activated by TMS64. This thresholded E-field map was then used to inject a weighted stimulus 368

into the target regions in the model. Finally, channel-level EEG signals were computed in the model by first taking the 369

difference y(t) = v1(t) − v2(t) between the excitatory and inhibitory interneuron activity at each cortical parcel65, 370

and projected to the EEG channels space using a leadfield matrix. 371

4.5 Individual-subject Jansen-Rit connectome model parameter estimation from TMS-EEG data 372

We used a novel brain network model parameter optimization technique24 for fitting individual-subject TEP wave- 373

forms and identifying subject-level physiological parameters from empirical data. Notably, the model is implemented 374

in PyTorch40, a software library that has in recent years been widely adopted by the machine learning community in 375

both academic and commercial sectors. Moving to this framework from more conventional numerical simulation li- 376

braries involves some minor modifications to accommodate tensor data structures, but brings the substantial advantage 377

of naturally accommodating gradient-based parameter optimization via automatic differentiation-based algorithms, for 378

relatively complex sets of equations that do not admit of tractably computable Jacobians. This is one of a growing 379

number of cases (e.g.66;67) where the natural parallel between our physiologically-based large-scale brain network 380

models and deep recurrent neural networks used in machine learning is proving technically and conceptually fruit- 381

ful. The general mathematical framework for this approach has been described by us in a recent technical paper24, 382

where it was applied in the context of connectome-based neurophysiological modelling of resting-state fMRI data. In 383

the present work we are extending this technique’s domain of application to fast-timescale evoked responses, but the 384

overall approach in the two cases is the same with minor modifications. The algorithm proceeds by dividing a sub- 385

ject’s multi (in this case 64) -channel, 600ms long (-100ms to +500ms post-stimulus), trial-averaged TMS-EEG TEP 386
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waveform into short (40ms) non-overlapping windows, termed batches. Rolling through each batch in the time series 387

sequentially, the JR model-simulated TEP ŷ was generated with the current set of parameter values, and its match to 388

the empirical TEP y was calculated with the following mean-squared error (MSE) loss function 389

L =
1

Nt

Nt∑
t=1

(
1

Nch

Nch∑
i=1

(yi(t)− ŷi(t))
2

)
(13)

where Nt is the number of the timepoints and Nch is the number of EEG channels. It is assumed that model 390

parameters are Gaussian. Together with a complexity-penalizing regularization term on each model parameter θ, 391

C = lnσ +
1

σ2
(θ − µ)

2
, (14)

where the mean µ and standard variation σ of the model parameter θ are hyper-parameters to be fitted. The model 392

parameters’ complexity defined in Eq (14) is included as a regularization term to avoid over-fitting and help achieve 393

a robust model. The loss function L and the complexity term C are combined into a final objective function that is 394

provided to PyTorch’s native ADAM algorithm46, which selects the candidate parameter set for the next batch with a 395

stochastic gradient descent-based scheme that utilizes automatic-differentiation-based gradients (efficient computation 396

of which is primary design objective of the (Py)Torch C++ backend). When the batch window reaches the end of the 397

TEP time series, it returns to the start and repeats until convergence. For an overview of all parameters used in the 398

model, please refer to Supplementary Figure S7. For a complete description of the parameter estimation algorithm, 399

please see24. 400

4.6 Assessing similarity between simulated and empirical TEPs 401

To further assess goodness-of-fit of the simulated TEP waveforms arrived at after convergence of the ADAM algorithm, 402

we conducted additional analyses in both EEG sensor and source space. At the channel level, Pearson correlation 403

coefficients and corresponding p-values between empirical and model-generated TEP waveforms were computed for 404

each subject. In order to control for type I error, this result was compared with a null distribution constructed from 405

1000 time-wise random permutations, with a significance threshold set at p < 0.05. As a complement to these TEP 406

comparisons that emphasize matching of waveform shape and component timing, we also examined more holistic time 407

series variability characteristics using the PCI27, which was extracted from the simulated and the empirical TMS-EEG 408

data, and Pearson correlations between the two computed. Assessment of goodness-of-fit at the source level proceeded 409

in a similar fashion: Individual subjects’ empirical and model-generated TMS-EEG timeseries were first computed for 410

every source-space surface vertex, as described above. Pearson correlation coefficients and corresponding p-values, 411

indicating empirical-simulated data similarities, were computed. Again, in order to control for type I error, time-wise 412

permutation testing was done by comparison against 1000 surrogate, shuffled TEP differences, with a significance 413

threshold set at p < 0.05. Finally, and unlike the channel-level data, network-level comparisons of simulated vs. 414
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empirical activity patterns were made by averaging current densities over surface vertices at each point in time within 415

each of the 7 Freesurfer surface-projected canonical Yeo network maps28, and Pearson correlation coefficients and 416

p-values between empirical and simulated network-level time series were again computed. 417

4.7 Dissecting the propagation dynamics of TMS-evoked responses 418

A key aim of the present study is to ascertain whether the TMS-evoked activity in a certain region at a certain time point 419

is primarily attributable to a localized response to TMS at the primary stimulation site, or to re-entrant activity feeding 420

back from other nodes in the connectome network. In order to explore this, activity of each network node at a given 421

time point was extracted as the sum of the absolute value of the simulated pyramidal cell population activity within a 422

narrow temporal window (0-300ms). Maximally activated nodes were defined as the top 1% of nodes exceeding two 423

standard deviations above the mean over regions. This approach was used to identify, for each subject individually, the 424

most important nodes at three key time points: 20ms, 50ms, 100ms after the TMS pulse, where we wanted to identify 425

the contribution of re-entrant activity. 426

With these key brain regions identified for each time window of interest, simulations were re-run for each subject 427

using their optimal parameters estimated from the original TEP fitting step - but this time with the selected nodes’ 428

incoming and the outgoing connection weights set to zero for the duration of the window. These new ‘virtually 429

lesioned’ TEP time series were again projected to the EEG channel space and back to the source level, where they 430

were compared against the original model-generated TEP time series. Finally, as above, the model-generated dSPM 431

values were extracted from the 7 canonical network surface maps for each individual and for each condition, and 432

analyzed statistically using the Statistical Package for the Social Sciences (SPSS) Version 25 (IBM Corp). A 4x7 433

repeated measures ANOVA with within-subjects factors “TIME OF DAMAGE (4 levels: 20ms; 50ms; 100ms; no 434

damage) and “NETWORK” (7 levels: VISN; SMN; DAN; ASN; LIMN; FPN; DMN) was run. Post-hoc paired t- 435

tests were used to detect dSPM value changes for different networks and lesion times, testing on a per-network basis 436

whether and at what times the virtual lesions impacted on network-level activations. 437

4.8 Evaluating how the anatomical connectome affects TMS-evoked EEG dynamics 438

Complementing the analyses probing the importance of incoming and outgoing activity of the most-active regions at 439

key TEP timepoints, we also performed the same time-windowed virtual lesion analyses for regions based on their 440

role in the brain network’s graph structure. This provided additional insight into the importance of the anatomical 441

connectome in shaping the propagation of the TMS-evoked signal. In order to do this, the out-degree Oi of every node 442

i in the original (prior) tractography-derived connection weights matrix A was calculated as the number of outgoing 443

edges 444

Oi =
∑
j ̸=i

aji (15)
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where aij is the element of the ith row and jth column of A, and the sum is over all nodes in the network. In 445

the following we then focused on the top 1% of nodes according to out-degree. Simulation of these virtual lesions 446

proceeded exactly as above but with the incoming and the outgoing connections of the selected nodes set to zero at 447

different time point depending on the conditions (e.g. 20ms, 50ms or 100ms after the external input). In graph theory 448

and network science, investigation of network properties by lesioning the most important nodes in this way is known 449

as a ‘targeted attack’68. As a corresponding ‘random attack’ control condition69, 1000 simulations were also run 450

where the nodes selected for removal of their incoming and outgoing collections were randomly chosen. For both 451

random and targeted attack simulation conditions, the anatomical connectome was damaged at the same set of key 452

time points - 20ms, 50ms, and 100ms after the TMS pulse. To assess these comparisons statistically, we first examined 453

PCI extracted from the simulated TMS-EEG time series. This was done using a 2x3 repeated measures ANOVA with 454

within-subjects factors “ATTACK TYPE” (2 levels: targeted attack; random attack) and “TIME OF DAMAGE” (3 455

levels: 20ms; 50ms; 100ms). Post-hoc paired t-tests were used to examine dSPM values changes for individual types 456

and times of damage. Finally, the simulated TMS-EEG time series were projected into source space, and dSPM values 457

were extracted from the 7 Yeo network maps for each conditions. A 2x3x7 repeated measures ANOVA with within- 458

subjects factors “ATTACK TYPE” (2 levels: targeted attack; random attack) and “TIME OF DAMAGE” (3 levels: 459

20ms; 50ms; 100ms) and “NETWORK” (7 levels: VIS; SMN; DAN; ASN; LIM; FPN; DMN) was then used to test 460

for key effects of interest. Subsequently, post-hoc paired t-tests were used to detect dSPM value changes for different 461

networks and different types and times of damage. 462

4.9 Identifying clusters of different TMS-evoked responses 463

We were aimed at predicting the spatiotemporal propagation of the TMS-evoked signal using the optimized physiolog- 464

ical parameters of the model. Firstly, singular value decompositions (SVDs) were run on the grand mean of both the 465

empirical and the model-generated TMS-EEG data, in order to identify prototypical TMS-evoked responses. Follow- 466

ing this, the group-level SVD spatial eigenmodes were identified within each subject’s time series corresponding to 467

the time point with the highest cosine similarity between the individual’s TEP and the prototypical response. Latencies 468

and amplitudes of the SVD left singular vector time series peaks were extracted for every subject and related with the 469

individuals’ JR model parameters, with Pearson correlation coefficients and corresponding p-values were computed 470

accordingly. 471

Code and Data Availability 472

Full code for reproduction of the data analysis and model fitting described in this paper is freely available online 473

at github.com/GriffithsLab/PyTepFit. As noted above, TMS-EEG data were taken from an open dataset 474

(figshare.com/articles/dataset/TEPs-_SEPs/7440713). Structural MRI data used in the study are available 475

from the original Human Connectome Project dataset (humanconnectome.org). 476
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