Heritability and host genomic determinants of switchgrass rootassociated microbiota in field sites spanning its natural range.

Joseph A Edwards^{1*}, Usha Bishnoi Saran¹, Jason Bonnette¹, Alice MacQueen¹, Jun Yin¹, Tu uyen Nguyen¹, Jeremy Schmutz^{2,3}, Jane Grimwood², Len A. Pennacchio³, Chris Daum³, Tijana Glavina del Rio³, Felix B. Fritschi⁴, David B. Lowry⁵, and Thomas E. Juenger^{1*}

¹Department of Integrative Biology, University of Texas, Austin

²Genome Sequencing Center, HudsonAlpha Institute for Biotechnology

³Joint Genome Institute, Lawrence Berkeley National Laboratory

⁴Department of Plant Sciences, University of Missouri

⁵Department of Plant Biology, Michigan State University

*To whom correspondence should be addressed: j edwards@utexas.edu, tjuenger@austin.utexas.edu

ABSTRACT

A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here we characterized the root microbiota of a large population of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of >2000 samples, suggest field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, we find that relatively few highly prevalent bacterial taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit / filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e. microbes in >80% of samples) regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.

1 INTRODUCTION

2 Recent insight into the composition, ecology, and functional importance of the plant microbiome has greatly 3 increased interest in the potential to harness root microbiota to sustainably increase crop resilience and yield. Microbial 4 inoculants have historically been discussed as a means to achieve this goal, but more recent calls for using plant breeding 5 to enrich beneficial bacteria from the native microbiota have begun to emerge. A roadblock hampering this effort is a 6 lack of understanding about which microbes can respond to breeding practices, whether breeding can instill consistent 7 effects on microbial assemblages across differing environments, and which genes and pathways from the host can be 8 adjusted to modify microbiomes. 9 Plant root bacterial microbiomes are derived from soil-borne communities, for which membership is largely 10 driven by environmental factors such as geography and climate 1,2 , land use history 3 , and seasonal variation $^{4-6}$. The

- 11 host plant exerts additional influence over its microbiota through active and passive mechanisms, resulting in filtered
- 12 subsets of soil microbiota often composed of consistently enriched microbial taxa on and inside root tissue. Given that

13 microbiota can impart positive and negative outcomes on plant health, especially under varying environmental 14 conditions, it follows that the filtering process may be under selection and lead to microbe-mediated local adaptation ⁷.

15 Heritable variation is required for a trait to respond to selection. Indeed, several recent studies indicate that 16 abundances of rhizosphere and root microbiome members are heritable 8-13, i.e. specific microbes and overall community 17 composition vary depending on the genetic background of the host. These studies allude to the possibility of enriching 18 for beneficial microbial associations through breeding, but given that most of these types of studies only look at a few 19 host genotypes and/or grow host plants outside of their native ranges, the role of host genetics in root - microbe 20 interactions has been difficult to interpret. Furthermore, given our relatively recent understanding that features of the 21 microbiome are heritable¹⁴⁻¹⁶, genomic loci underlying root associated microbiome composition are still largely 22 uncharacterized. There are notable exceptions however: Deng et al used the Sorghum Association Panel to uncover loci 23 impacting rhizosphere community composition ¹⁷. Bergelson et al. performed GWAS on Arabidopsis root (and leaf) 24 microbiome community metrics including richness and principal coordinates based upon community dissimilarity¹⁸. 25 Uncovering the effects of host genetics on microbiomes across multiple native environments remains incomplete, but 26 these studies provide exciting avenues to leverage host genetics to enrich for beneficial properties of the microbiome.

27 Switchgrass (Panicum virgatum) is a wild C4 perennial prairie grass native to North America and has been 28 championed by the US DOE as a potential biofuel crop due to its biomass yield potential when grown in marginal soil 29 with minimal agricultural inputs. Its interesting biological features and important environmental and economic impact 30 have made switchgrass a popular model to investigate root-associated microbiota assembly, especially in the rhizosphere 31 (Singer et al. 2019; Ulbrich et al. 2021). Most recently, Sutherland et al. used a panel of switchgrass genotypes grown 32 in a single location in the northeast United States to uncover the role of host genotype on rhizosphere bacterial 33 assemblages ²¹. The authors of this study used GWAS to uncover putative loci affecting the abundance of several 34 bacterial families in the rhizosphere and found gene ontology enrichments for diverse sets of functions. Still, relatively 35 little is known about how host genetics drive tightly adhering / endophytic root-associated bacterial communities.

In this study we addressed the following questions: 1) What bacteria are prominent members of the switchgrass root-associated microbiome when plants are grown across their natural range? 2) How does the effect of host genotype compare to that of the environment when determining the composition of root-associated bacterial microbiota? 3) Which microbial lineages show heritable variation in roots, and is heritability consistent across field sites? 4) Which host genomic loci impact the abundance of root associated bacteria? 5) Does microbial abundance show patterns of association with host immunity variation. Answering these questions will bring us closer to harnessing and manipulating beneficial microbial associations via host genetics.

43

44 <u>RESULTS</u>

45 Field site is a primary determinant of switchgrass root microbiota composition

We used a population of fully resequenced switchgrass (*Panicum virgatum*) natural accessions that were clonally replicated and grown in field sites at Austin, TX, Columbia, MO; and Kellogg Biological Research Station, MI (from here on referred to as ATX, CMO, and KMI, respectively Fig 1A, map inset) to uncover the role of environmental

49 variation and host genetics in shaping root microbiota composition. These plants had been established for two years,

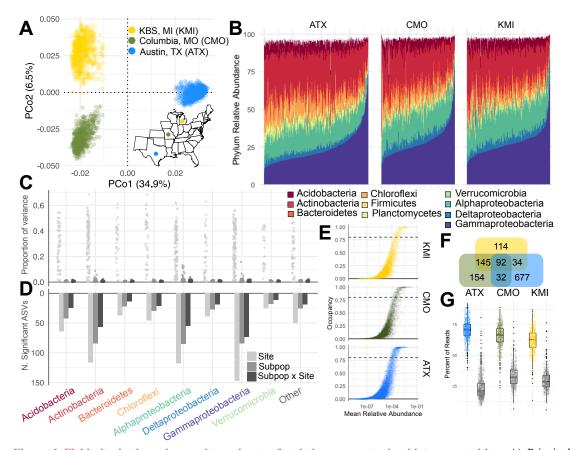


Figure 1 Field site is the primary determinant of switchgrass root microbiota composition. A) Principal coordinate analysis based on Bray-Curtis dissimilarities. Inset: map of field locations, colors match those in the figure legend. B) Relative abundance of phyla and Proteobacterial classes in every sample at each site. C) Effect sizes for Site, Host Subpopulation, and Subpopulation x Site for ASVs in dataset broken down by phylum / class. D) Number of ASVs with significant contrasts from the models displayed in panel C. E) Prevalence / abundance curves for each field site. Each point represents a single ASV and the black dashed line is the 80% prevalence threshold used to call core taxa. F) Venn diagram displaying overlaps of core microbiota from each site. G) Fraction of reads belonging to the core microbiota at each site (colored boxes) and the shared core microbiota (92 overlapping microbes from panel F, gray boxes).

- 50 show signatures of local adaptation ^{22,23}, and have served as an important resource for switchgrass researchers. We first
- 51 investigated the effect of field site on root bacterial microbiota. Principal coordinate analysis (PCoA) revealed three
- 52 dominant clusters which were location-specific (Fig. 1A) and the significance of this observation was confirmed using
- 53 perMANOVA (R2 = 0.51, P < 0.001). While the communities showed large differences between field sites at the
- amplicon sequence variant (ASV) level, we found that phylum level relative abundances were largely consistent between
- 55 sites (Fig. 1B). Actinobacteria and Proteobacteria (namely Alpha and Gamma-proteobacteria) were dominant phyla
- 56 associated with switchgrass roots at every site, which is consistent with most other terrestrial, non-flooded, plant
- 57 microbiota studies.

58

- A recent population genomic study of switchgrass found that tetraploid switchgrass can be broadly classified
- 59 into three genetic subpopulations: Gulf, Midwest, and Atlantic ²². The ranges for these subpopulations are largely
- 60 distinct (See Fig. 2A), with Gulf occupying habitats in the southern US, Atlantic occupying the Atlantic seaboard, and
- 61 Midwest spread across northern latitudes. We compared the effect of field site, host subpopulation, and their
- 62 interaction using linear models run on bacteria present in \geq 50% of the samples study-wide. The effect of field site

63 was much larger than the secondary effects of host subpopulation and subpopulation x site interactions (Fig. 1C). We

- 64 then compared the variance explained by site between bacterial phyla / classes to better understand how experimental
- 65 factors impact broader taxonomic groupings. Effect sizes were largely consistent between these groups, with the
- 66 exception of Chloroflexi and Actinobacteria, which showed larger effect sizes than Deltaproteobacteria (P < 0.05,
- 67 Tukey's Post-hoc Test). The large influence of field site on ASV relative abundance was also visible in the number of
- 68 ASVs which exhibited significant differences in relative abundance across field sites (Fig. 1D).
- 69 We next evaluated the relationship between ASV occupancy and mean relative abundance at each site (Fig 1E). 70 Our study used an atypically high depth of sequencing (Supp. Fig. 1) which gave us greater confidence in assessing 71 presence / absence of microbes in samples. In general, we found that ASVs with greater relative abundances were also 72 present in a higher proportion of root microbiomes. We next defined site-specific core microbiota; to be consistent with 73 other studies, we used a threshold of 80% occupancy ⁸ (Supp. Table 1). ATX had the most ASVs passing this occupancy 74 threshold (Fig. 1F); we expected this, because we sequenced ATX samples at greater sequencing depths than the other 75 two sites (Sup. Fig. 1, See Methods). Still, we found that each site hosted overlapping core microbiota: For all three 76 sites, an overlap of 92 core microbes was found. CMO and KMI shared the most ASVs. The site-specific core microbiota 77 typically comprised ~60-70% of the total microbial population (Fig 1G, colored boxplots) within each respective site, 78 while the shared core microbiota made up $\sim 25\%$ of the total population (Fig 1G, gray boxplots). Thus, though field site 79 acts as the primary determinant of switchgrass root-associated microbiota composition, large proportions of switchgrass 80 root assemblages are shared between locations as a set of core microbes.
- 81

82 Evidence of affinity between host genotypes and local microbiota

83 Our analyses revealed that host subpopulation and subpopulation by location interactions are important 84 determinants of microbiota composition (Fig. 1C and D). Because the three switchgrass subpopulations are largely 85 constrained to distinct geographic regions (Fig. 2A), we hypothesized that plants grown closer to their native habitat 86 would show affinity for the microbes that persist and are abundant within these ranges. If this was true, then we would 87 expect, at each site, that more ASVs would show preferential colonization of individuals in the subpopulation grown in 88 its native range than in the other two subpopulations. To test this, we used linear models to analyze the abundance of 89 ASVs within each site and contrasted the abundances between the different subpopulations. We defined a specific 90 association as occurring if the relative abundance of an ASV was significantly greater in one subpopulation compared 91 to the other two. Gulf plants in their native ATX site had the most specific associations, while Midwest plants enriched 92 the most ASVs in native CMO and KMI sites (Fig. 2B, Supp. Table 2), supporting the notion that subpopulations enrich 93 more microbes in their native habitats. Furthermore, we found the ASVs with subpopulation specific associations also 94 tended to have significantly greater prevalence (Fig. 2C), but only for subpopulations growing within their native range. 95 That is, ASVs with specific associations in the Gulf subpopulation had significantly greater prevalence than the 96 background distribution at the ATX site, but not the other two sites. Likewise, microbes with specific associations in the 97 Midwest subpopulation showed significantly greater prevalence in both CMO and KMI sites compared to the

98 background prevalence distributions (Fig 2C). These
99 comparisons suggest there is preferential sorting of
100 local microbiota onto locally adapted plant
101 genotypes, especially for highly prevalent microbes.
102

103 Switchgrass root microbiota show widespread
104 heritable variation and genotype by environment
105 interactions

106 Our analysis of switchgrass subpopulation 107 effects on microbiota abundances underscores the 108 importance of broad level host genotype in 109 modulating root microbiome assembly. We next used 110 an approach which incorporates a kinship matrix 111 finer genetic relationships denoting among 112 individuals of the population into the model to 113 estimate how host genetic variation contributes to 114 variation in microbe abundance. We used a suite of 115 mixed effects models to partition additive genetic 116 variance in microbial abundance (V_A) using the host 117 population genetic relationship matrix and how VA 118 differs across the three environments (V_{GxE}) with a 119 compound symmetry model. Because microbiomes 120 can be defined and analyzed at various taxonomic 121 levels by aggregating counts at nodes of the bacterial 122 phylogenetic tree, we tested the affect of host 123 genotype on the relative abundance of taxa at various 124 taxonomic levels. Across each taxonomic level both 125 V_{GxE} and V_A significantly explained variation in 126 microbial abundance (Fig 3A, Supp. Table 3). For 127 microbial features within the top 10th percentile for 128 V_A and V_{GxE}, we found generally increasing estimates 129 for VA and decreasing estimates for VGxE from 130 phylum to ASV (Fig. 3B). We next asked whether 131 taxonomic groupings of microbes at the ASV level 132 were more likely to be under the influence of host 133 genetics. Significant, non-zero VA and VGXE were 134 widespread across the microbial phylogeny, however



Figure 2 Plants show evidence of affinity to local bacterial strains. A) Map depicting locations where individuals within the population were collected. Colors represent their subpopulation memberships. Field sites are depicted with their three letter abbreviations. ATX = Austin, TX; CMO = Columbia, MO; KMI = KBS, MI. B) Proportion of ASVs showing specific enrichments in one subpopulation compared to the other two broken up by site. C) Histograms of microbial prevalence showing specific enrichments by subpopulation and site. P values represent the significance of the mean prevalence being greater than that of the background distribution. This was calculated by randomly drawing the number of enriched ASVs from the background distribution and asking how often we saw a mean prevalence greater than that of the focal set.

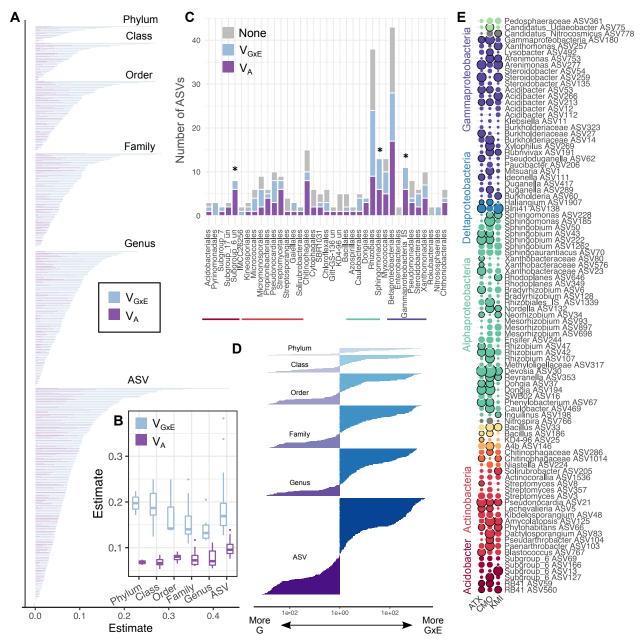


Figure 3 Switchgrass root microbiota show widespread heritability which is influenced by field site differences. A) Variance components for aggregated abundances of different taxonomic levels and for ASVs. To be included in the models, features must have been present in greater than 80% of the samples, study-wide. B) The relationship between genetic variance components and microbial taxonomic rank C) The number of ASVs showing either significant GxE, V_A, or no association to host genotype D) Comparison of the magnitude of V_A vs GxE is presented as the log fold-change in the ratio of V_A to GxE for measured units within each taxonomic level. E) V_A estimates for the core microbiota present at every site. The size of the circles indicate the magnitude of estimated V_A and dark perimeters of the circles indicate a significant association (FDR < 0.1).

- 135 specific orders were overrepresented in the data (Fig. 3C). In particular each tested ASV within the orders
- 136 Sphingomonadales, Subgroup 6 (Acidobacteria), Gammaproteobacteria Incertae Sedis displayed significant V_A or V_{GxE}.
- 137 We next compared the contribution of V_A to V_{GxE}. In general, we found that more microbial features showed greater
- 138 V_{GxE} and this was consistent across taxonomic levels (Fig. 3D). The prominence of GxE suggested that levels of V_A
- 139 differ between locations. To better understand the contribution of V_A within each site, we fit an unstructured model to

140 ASVs which allowed for site-specific V_A and as many unique covariances as site combinations. We applied these models 141 to ASVs with prevalences > 80% in at least two field sites (Fig. 3E), finding similar trends to the compound symmetry 142 model (Supp. Fig. 2). When analyzing the core microbiota (i.e. the 92 ASVs with prevalence >80% in all three sites), 143 we found 95 instances of significant site-specific V_A spread across 64 unique ASVs (Supp. Table 4). CMO had the most 144 ASVs displaying significant V_A (n = 38) while KMI had the least (n = 24). We also tested if there was a genetic 145 association between the abundance of an ASV across multiple sites by focusing on the genetic covariance of root-146 associated microbial traits across sites. Genetic covariances were mainly positive (Supp. Fig. 3A) and site comparison 147 had a significant effect on covariance strength (P = 0.005, ANOVA). Specifically, we found that CMO/KMI covariances 148 were significantly greater than those from ATX/KMI (adjusted P = 0.006, Tukey's Post Hoc Test), but not ATX/CMO 149 (P > 0.05, Tukey's Post Hoc Test). We tested for ASVs that showed significant genetic covariance between sites and 150 found 78 total significant estimates spread across 59 unique ASVs. Similar to the aggregate genetic covariance 151 distributions, we found the most cases of significant genetic covariance between CMO/KMI, while CMO/ATX and 152 KMO/ATX had equal instances of significant estimates (Sup. Fig. 3B). Together, these results indicate the host genetics 153 plays a significant role in modulating an extensive phylogenetic swath of root-associated microbiota, that some bacterial 154 clades are more likely to display heritable variation, and that genotype by environment interactions are widespread 155 determinants of bacterial relative abundances on switchgrass roots.

- 156
- 157

7 GWAS reveals microbiota assembly is a complex trait with extensive pleiotropy

158 After establishing that host genotypic variation influences the abundance of bacterial taxa, especially within 159 single field sites, we next asked if host genomic regions responsible for heritable variation in associated bacteria could 160 be localized with a genome wide association study (GWAS) framework. We first performed GWAS on community 161 composition using the first three principal coordinates for each site (Supp. Fig. 4). Significant associations between 162 SNPs and community composition were detected for each site, albeit on different PCo axes. These results indicate that 163 variation in community composition is associated with host allelic variation. To better understand how host allelic 164 variation influences individual microbes, we extended our analysis to perform GWAS on each ASV x site combination. 165 We analyzed ASVs present in at least 80% of the samples, resulting in 1019 independent analyses of ASV x Site 166 combinations. GWAS results were examined using a genome-wide significance threshold of 5×10^{-8} to identify SNPs 167 associated with the abundance of various microbes, a common cutoff used in microbiome GWAS studies where many 168 phenotypes are analyzed together ^{24,25}. Using this criterion, we found 1,153 SNPs associated with 459 ASV x Site 169 combinations. Most ASVs with significant SNP associations were from the ATX site (253 ASVs), while CMO and 170 KMI had similar numbers of ASVs with associated SNPs (101 and 105 ASVS, respectively). Taxa with associated SNPs 171 were diverse, but no bacterial orders were over-represented (Fig 4A-C). Most ASVs with associated SNPs were specific 172 to field sites; however, of the 179 ASVs that were tested in multiple sites, 50 showed associations across multiple field 173 sites, with 9 showing associations across all three sites (Supp. Fig. 5D). In line with our heritability analysis, bacteria 174 within Sphingomonadaceae featured prominently among ASVs with GWAS hits across multiple sites: 7 of the 10 ASVs 175 within this family showed hits across 2 or more sites and 2 Sphingobium ASVs had at least one significantly associated 176 SNP at all three sites (Fig. 5D).

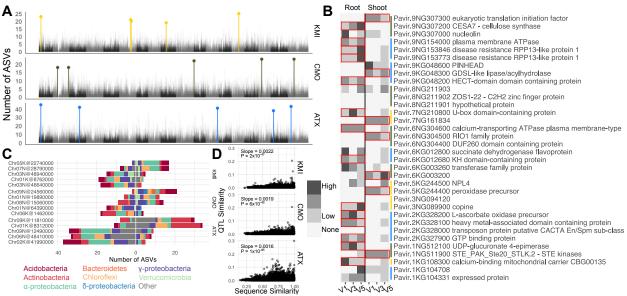


Figure 4 Pleiotropic loci influencing root microbiota. A) Number of ASVs detected in the 0.5% tails of the ASV x site GWAS p-value distributions. The top 5 most frequently observed genomic bins for each site are highlighted in site-specific colors. B) Candidate genes underlying the pleiotropic loci and their expression pattern in switchgrass roots and shoots. V1-V3 represent phenological stages of the plant and red boxes around expression values represent genes differentially expressed between roots and shoots (FDR < 0.05) C) Taxonomic breakdown of ASVs affected by putatively pleiotropic loci. D) Comparison of QTL similarity (1 - Jaccard Dissimilarity) and ASV sequence similarity.

177 We next asked whether any host genomic loci affected multiple microbial taxa (i.e. had statistically pleiotropic 178 effects on microbiota and from here on referred to as pleiotropic loci) by compiling the 0.5% tail of 25 kB genomic bins 179 into a quantitative trait locus (QTL) x ASV matrix for each site (see Methods). We first investigated the most commonly 180 observed 25 kb genomic bins for each site by selecting the top 5 loci associated with the most ASVs within each site 181 (ATX = 38-45 ASVs; CMO = 18-23 ASVs; KMI = 19-25 ASVs, Supp. Table 5). Two pleiotropic loci overlapped with 182 loci detected from our initial GWAS on community metrics (Supp. Fig. 4; CMO:Chr01N and ATX:Chr02K), indicating 183 that while some pleiotropic loci account for larger trends in community composition, most identify variation not seen 184 along the first three axes of community composition.

185 To better characterize the candidate genes underlying these loci, we next compiled expression patterns for genes 186 within these intervals. Most loci contained genes displaying higher expression patterns in switchgrass roots than shoots, 187 implicating promising candidate genes affecting multiple microbiota members. These included several proteins involved 188 in calcium signaling, immunity, and secondary cell wall biosynthesis. The microbes associated with pleiotropic loci 189 were taxonomically diverse, with multiple bacterial phyla affected by each locus. In general, the additive effects of the 190 QTL were largely consistent in sign across the different ASVs. This observation was also reflected in the taxa being 191 affected by the loci: several loci show patterns where the relative abundances of Actinobacteria, Chloroflexi, or 192 Alphaproteobacteria ASVs had consistent effect signs. This observation led us to the hypothesis that there may be an 193 association between the QTL landscape and phylogenetic relationship for pairs of microbes. We found a positive and 194 significant association between the sequence similarity of ASVs and their associated QTLs. This association differed 195 weakly but significantly between sites with ATX showing a weaker correlation than CMO or KMI (P = 0.06 and 0.0015, 196 respectively). Each site had a closely related ASV pair which stood out in terms of shared QTLs. These included two 197 Sphingobium ASVs in ATX, Bacillus in CMO, and Acidibacter in KMI. Together these results indicate that host genomic

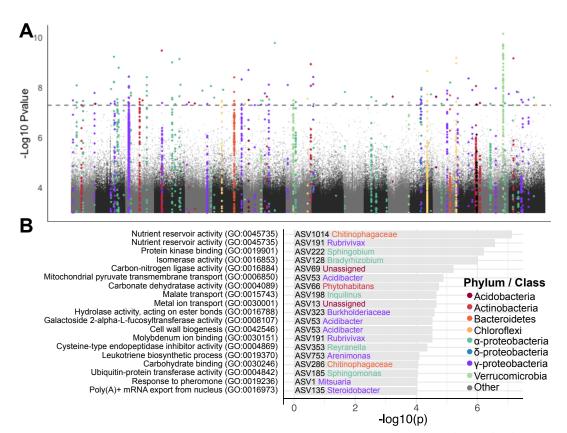


Figure 5 GWAS reveals loci associated with core switchgrass root microbiota. A) Manhattan plot showing the association between SNPs and abundances of core ASVs. P values are derived from combining P-values using Fisher's method. Peaks are colored by the Phylum / Class of the ASV. B) The most strongly enriched Gene Ontology (GO) terms within the core ASV GWAS tails.

198 variation can have pleiotropic effects on microbiota and that the abundances of related microbes are more likely to be 199 affected by the same host loci.

200 The pleiotropic loci included several promising candidate genes, but to have a more robust understanding of 201 the functional categories influencing switchgrass root associated microbiota we performed gene ontology (GO) 202 enrichments for annotated genes underlying the ASV x QTL matrix. We found that 789 of the ASV x site combinations 203 displayed at least one significant GO enrichment. The most commonly observed GO term enrichments showed 204 overlapping as well as contrasting patterns between sites (Supp. Fig. 6, Supp. Table 6). For example, the terms 'response 205 to biotic stimulus', 'response to auxin', 'negative regulation of growth', and 'sucrose biosynthesis' were observed in 206 multiple ASVs across every site, while 'Defense response', 'prophenate biosynthetic process', and 'carbohydrate 207 binding' showed more site-specific patterns. These results indicate that variation in host molecular pathways can 208 influence the abundance of microbiota members and that some pathways are putatively dependent on environmental 209 conditions.

To better understand the contribution of loci independent of field site, we subsetted our scans to ASVs which had been tested in every site (i.e. the core microbiota), joining P-values generated during GWAS for a single ASV across each field site using Fisher's method, a practice commonly used in meta-analyses to identify statistical tests with repeatable signal across multiple trials. A total of 239 SNPs passed a P value threshold of 5x10⁻⁸, revealing 44 out of 92 core ASVs had a significant association (Fig. 5A, Sup. Fig. 5D). More than half of the ASVs with significant associations

215 (23/44) showed significant GWAS hits across 216 multiple sites (Supp. Fig. 5D and Fig. 5A). 217 Interestingly, some ASVs with combined P-values 218 passing this genome-wide threshold did not display 219 any significant associations in the ASV x site 220 GWAS analyses. For example, ASV6, a highly 221 abundant Bradyrhozobium strain displayed two 222 significant peaks when P-values were combined 223 that were not present during the initial site by ASV 224 GWAS (Supp. Fig. 5D). These results indicate that 225 leveraging multi-site GWAS by combining P-226 values can identify loci impacting core microbiota. 227 We explored the functional enrichments 228 of combined p-value GWAS scans from the core 229 microbiota (Fig 5B, Supp. Table 7, Supp. Table 8). 230 We identified 76 distinct GO terms enriched across 231 48 core ASVs, some of which have a priori 232 implications in microbiome assembly. For 233 example, malate transport and cell wall biogenesis 234 were among the most frequent enriched terms. 235 Malate is a prominent root exudate involved in 236 shaping rhizospheric microbiome composition ²⁶ 237 and cell walls form physical barriers as well as 238 energy sources for microbes ²⁷. Together this 239 analysis revealed that while observations of loci 240 associated with the abundance of various microbes 241 is environmentally dependent, some loci can be 242 implicated across multiple environments and the

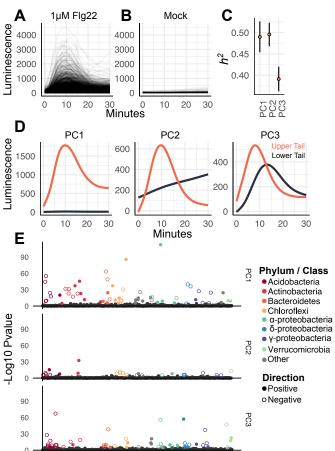


Figure 6 ASV abundances genetically co-vary with pattern triggered immune responses A) Response curves for the switchgrass population planted at the ATX site for treatment with 1 uM Flg22. B) Response curves for mock inoculated plants. C) Narrow sense heritability estimates for the three PC axes of PTI response variation. D) Smoothed 5% and 95% percent tails of the first three PC axes of PTI response variation. E) Microbial Manhattan plot displaying the p-values for the covariances between ASV relative abundance and the PC axes of PTI variation. Colored circles represent ASVs passing a Bonferroni threshold of 0.05.

243 processes by which the host plant modulates core microbiota are diverse.

244

245 Pattern triggered immunity responses genetically co-vary with root-associated microbiome composition

Plants surveil their biotic environment through perception of microbial associated molecular patterns, eliciting the activation of the pattern triggered immunity (PTI) pathway. We hypothesized that loci responsible for observed variation in PTI may overlap with host genetic variation controlling microbial abundance. To test this hypothesis we treated leaf disks from the population of plants growing in Austin, TX with Flg22, perhaps the most well studied MAMP. We measured the release of reactive oxygen species (ROS) over time using a well-characterized assay (see Methods). Flg22 elicited a range of ROS burst profiles in the population while mock treated samples did not display the typical

response curve of treated plants (Fig 6A). We converted the time series into principal components to better understand the different modes of variation displayed across treated samples. The tails of the PC axes were informative of the type of variation observed in the population (Fig. 6B): PC1 best explained the magnitude of response; PC2 separated plants with acute vs gradual responses; and PC3 showed a timing difference of peak ROS burst. All three axes showed significant h^2 ranging from 0.48 to 0.38 (Fig. 6C). These results indicate that switchgrass genotypes significantly vary in their response to the PTI elicitor flg22.

258 The plant immune system has been implicated to actively shape the microbiome ²⁸, therefore we hypothesized 259 that genetic variation for PTI responses may genetically co-vary with abundance of various root-associated microbiota. 260 To test this hypothesis we calculated the genetic co-variances for the PTI PC axes against the relative abundance of core 261 bacterial ASVs in the ATX site. We found significant genetic co-variances across each PTI axis: in total 126 / 739 ASVs 262 showed significant genetic covariances with PTI axes (Bonferroni P < 0.05, Fig 6D). PTI PC1 had the most associations 263 and PC2 had the least. PTI PCs 2 and 3 predominantly had negative co-variances with ASVs while PC1 had a similar 264 amount of positive and negative co-variances. These results indicate that bacterial microbiota show positive and negative 265 genetic correlations with PTI responsiveness and that associations between these traits are not phylogenetically limited.

266

267 **DISCUSSION**

268 Here we have used natural switchgrass accessions growing in field sites spanning its native range to evaluate 269 the contribution of environment and host genotype on root-associated bacterial assemblages. Field site was a major 270 determinant of bacterial community assemblages in our study. Within sites, however, host genetics influenced the 271 assembly of bacterial microbiomes, with local microbes preferentially colonizing native genotypes. We found numerous 272 associations between bacterial relative abundances and host genomic loci through a GWAS framework, linking the 273 abundance of taxa to host ontology groups and candidate genes. Our meta-analyses of GWAS scans performed on core 274 ASVs implicated host loci affecting microbiota assembly independent of field location. Finally, we present evidence of 275 correlation between pattern triggered immunity in the host and abundance of bacterial taxa associated with the roots.

276 277

278 Genotype by environment interactions in host-associated microbiomes

279 A key finding of our study was that relative abundances of bacteria were strongly influenced by the interaction 280 of host genetic variation and field site (Fig. 2 and Fig 3). Further, we found that there were affinities between genotypes 281 growing in their home environments and the local microbiota (Fig 2B). Interestingly, microbes with specific enrichments 282 to local genotypes consistently had higher prevalence than expected (Fig 2C). A potential explanation is that home 283 genotypes, as opposed to foreign genotypes, are more in sync with their native climates, photoperiods, and soil 284 properties. This in turn, may reduce host stress and culminate in the acquisition of consistent microbiota. Alternatively, 285 these results could be explained by a co-evolutionary framework, where evolution in the microbes drives selection on 286 the host, and consequent selection in the microbes ¹⁵. However, given the stochastic dispersal of soil microbes ²⁹, the 287 more likely explanation is one-sided evolution where the local microbe population imposes selection and evolution on 288 the host, rather than the host imposing selection on the microbes. Perhaps the elevated prevalence of enriched microbes

equate to more chances for interaction and act to exert stronger selection on hosts (Fig 2C). Another display of GxE was that ASVs rarely showed heritable variation across every site. While GxE for microbial community composition is often complex in these types of studies, the fundamental 'disease triangle' framework from the plant pathology field is useful when considering host-microbe associations, regardless of pathogenesis. This theory dictates that for disease to occur, a susceptible host genotype, virulent pathogen, and favorable environmental condition must co-exist. Each of the three points of the triangle can be explored further to explain GxE in root microbiota assemblages. We discuss these three points in the context of our study below.

296 Firstly, environmental variation occurs in biotic and abiotic flavors, which are not mutually exclusive. Our 297 results indicate that the environment greatly influences the composition of root microbiota at each field site (Fig 1A). 298 Field site had an almost universal effect on the abundance of ASVs (Fig. 1C). The three field sites do differ in their field 299 uses, a factor which can contribute to soil microbiome variation ³. Columbia, MO and Kellogg Biological Research 300 Station, MI sites are converted prairie and forest, respectively, and have histories of cultivating crops either agriculturally 301 or experimentally. The ATX field site is located within city limits on a campus with no known history of agricultural 302 cultivation. These land use history differences may explain the relatively large microbiome compositional variation 303 between ATX and CMO / KMI sites. Furthermore, climate patterns are distinct between the sites, CMO and KMI having 304 more similar climate patterns. Alternative favorable conditions may promote growth of certain taxa, which may 305 ultimately influence the abundance of other microbes.

306 The microbial component of the disease triangle states that a virulent form of the pathogen must be present to 307 infect a host and initiate disease. Implicit to this point is that genetic variation exists for microbes in addition to hosts. 308 Unfortunately, we could not examine genetic variation of individual ASVs in our study, as we based the detection and 309 abundance of different taxa on a small 250 bp segment of a single gene. While this may suffice to classify most microbes 310 down to the genus or species level, it is insufficient to explore bacterial strain level variation. Every ASV in a site is 311 under selective pressure by the local environment. Therefore, an ASV detected at one site will most likely have distinct 312 polymorphisms with adaptive consequences compared to the same ASV at a different field site. Even within sites, ASVs 313 can be composed of multiple microbial lineages, each conveying distinct phenotypes to the host ³⁰. Polymorphisms, 314 especially between sites, may preclude the microbe from falling under the genetic influence of the host, explaining why 315 we detect significant heritability for the same ASV in some sites but not others. Nevertheless, we identified ASVs where 316 combined p-values generated from site-specific GWAS helped to uncover loci consistently associated with their 317 abundance. This was the case for half of the ASVs tested under this framework, suggesting that modulation of ASVs 318 through shared mechanisms across field sites is relatively common, yet may not have effects passing a threshold in single 319 ASV x site GWAS. A potential method to study GxE with host associated microbiomes is through construction of 320 synthetic communities, which offer an ecologically relevant, yet controlled system for plants and microbes to interact 321 while experiencing an experimental environment change. However, it must be noted that synthetic communities will 322 remain incomplete representations of root-associated bacterial communities until highly prevalent and abundant, yet 323 recalcitrant microbes become more easily cultivable. For example, strains belonging to Chloroflexi, Acidobacteria, and 324 Verrucomicrobia are prominent members of plant microbial communities, but remain conspicuously absent from root 325 bacterial culture collections ^{31–33}.

326 Finally, the third point of the disease triangle stipulates that a host plant must be susceptible to infection in 327 order for pathogenesis to occur. In our case, this equates to host genetic variants being compatible for colonization by 328 the local ASV. Susceptibility / compatibility, is likely dependent upon both biotic and abiotic environmental conditions. 329 That is, habitat variation and microbial community variation between sites may activate or repress the expression of 330 allelic variants responsible for regulation of microbial colonization. For example, increased temperature attenuates 331 effector triggered immunity in Arabidopsis, increasing susceptibility to Pseudomonas syringae³⁴. Xin et al demonstrate 332 that elevated humidity can greatly influence the pathogenesis of *Pseudomonas syringae*, but in a host genotype 333 dependent manner³⁵. In addition, given that the microbiomes vary substantially between sites, the biotic component of 334 the environment may contribute to expression differences between allelic variants, thus leading to differential enrichment 335 of metabolic, immunity, and developmental pathways. One fascinating angle recently put forward is that microbes which 336 subvert plant immunity may ultimately serve as keystone taxa $^{36-38}$ by dampening the immune response, allowing other 337 microbiota to side-step the host immune system. Given that the biotic environment largely varies between sites, 338 contrasting keystone taxa may exert alternative effects on different genotypes.

339 In all of these scenarios it is important to acknowledge that both microbes and plants are sensitive to 340 environmental conditions. Microbes are a critical part of the host plant's environment, and likewise, the host plant is an 341 environment for the microbes. Environmental variation may change local microbiota community structure which in turn 342 may affect the expression of host genes impacting microbiota assembly.

- 343
- 344

Which taxonomic level is appropriate for calculating heritability of bacteria?

345 We find that heritability of microbiota features can be observed across every taxonomic level. Several studies 346 have calculated heritability of rhizosphere or root associated bacteria ^{8–10,21}. Typically, the analysis is conducted at the 347 OTU or ASV level (i.e. the taxonomic level with the highest resolution). In the case of Sutherland et al., the authors 348 chose to calculate heritability for aggregated counts of bacterial families. This begs the question: which taxonomic level 349 is appropriate for calculating heritability of host-associated bacteria? Our results indicate that, while individual ASVs 350 displayed the greatest h^2 on average, relatively high h^2 can be observed even at the bacterial order and family level. This 351 observation lends some support to the idea that plants do not select for particular microbes (i.e. specific ASVs), but 352 rather for microbes with particular functional attributes ^{16,39}. In some cases, it may be that functional attributes impacting 353 host phenotypes diverge across closely related microbes ⁴⁰, therefore the ASV level may be most appropriate. In other 354 cases, a functional attribute selected for by the host may be conserved across wider evolutionary distances allowing for 355 detection of h^2 at higher taxonomic levels. Uncovering the appropriate unit for calculating heritable signal in host 356 associated microbial communities will be an important challenge for future studies.

357

358 Genetic architecture of host-microbiome interactions in roots

359 We identified numerous regions of the host genome associated with the abundance of core taxa. In addition, 360 our results indicate that associated SNPs passing a genome wide threshold are rarely shared across multiple ASVs, yet 361 the tails of GWAS p-value distributions contain commonly associated loci. These results suggest that loci with the largest 362 effects on any particular ASV's abundance are specific to that microbe while loci with smaller effects are shared between

363 ASVs. Together, these results indicate that microbiome assembly is a complex trait given that the microbiome constitutes 364 a consortium of interdependent bacteria; that many significant loci were identified associated with these microbes' 365 abundances; and that many GO term enrichments were uncovered associated with these loci. That is, many genes and 366 processes contribute relatively small effects to influence the relative abundance for various ASVs.

367 A difficulty in presenting these data is their complexity and the plethora of uncovered candidate genes 368 putatively involved in microbiota assembly. We therefore focused on loci impacting the most members of the 369 microbiome (i.e. pleiotropic loci, Fig 4). Several compelling candidate genes were identified among the commonly 370 associated loci which showed enriched expression in roots. Among these were a cellulose synthase subunit, whose 371 ortholog in Arabidopsis is involved in secondary cell wall synthesis and has been reported to influence resistance to soil-372 borne bacterial pathogens in a defense hormone-independent manner⁴¹. We also identified two root-expressed candidate 373 nucleotide-binding leucine rich repeat proteins (NLRs) showing associations to multiple ASVs. NLRs are important 374 sensors involved in effector triggered immunity and have been implicated in affecting sorghum rhizosphere microbiota 375 ¹⁷. Given the diversity of NLR genes within plant species (switchgrass has well over 1000 annotated NLR genes) and 376 the presence / absence variation between individuals within species ⁴², an open question is how the repertoire of NLR 377 genes shapes root associated microbiota. The co-evolution between NLR genes and microbiota will remain an 378 compelling hypothesis to explain local adaptation to the biotic environment and may serve as a means for fine-tuning 379 microbial communities. Ultimately, uncovering specific mechanisms and genetic networks controlling microbiota 380 assembly requires reverse genetic approaches. Several studies in maize have used mutants to show that ablation of 381 specific metabolites in exudates can modify microbial community composition ⁴³ and can lead to a significant impact 382 on plant resistance to herbivory ⁴⁴. Our study provides a list of possible candidate loci to target for future research.

- 383
- 384

An association between Pattern-triggered immunity and root microbiota composition

385 Several of our analyses implicated physical and immune defenses as modulators of microbiome composition. 386 In our study we investigated the role of plant genotype in explaining PTI variation using the elicitor flg22. While flg22 387 is one of many known elicitors, it serves as a good proxy for PTI given that pattern recognition receptors share similar 388 co-receptors which funnel into similar pathways⁴⁵ and downstream transcriptional responses show strong overlaps⁴⁶. 389 Much like a recent study in Arabidopsis, our results revealed strong heritable variation in PTI response within our 390 population ⁴⁷. Further, our analysis revealed a link between the abundance of the ATX core microbiota and modes of 391 PTI variation within our switchgrass population. Particularly strong associations, both negative and positive, were 392 observed between the first axis of PTI variation (ROS burst magnitude) and a phylogenetically broad set of root-393 associated microbes (Fig 6D). PTI canonically inhibits the entry of perceived pathogens ⁴⁸, but our results suggest that 394 it may also gate or limit the proliferation of commensal bacteria and their interactors, at least for ASVs with negative 395 genetic covariances. This result is in line with previous studies showing that attenuation of PTI can lead to altered 396 microbiota composition and even dysbiosis ⁴⁹. Similarly, mutant Arabidopsis plants with altered defense hormone 397 production host atypical root microbiota, indicating that immune signaling is an important modulator of microbiota 398 assembly ⁵⁰. On the other hand, we found ASVs with strong positive genetic covariance with PTI. These ASVs may 1) 399 stimulate PTI sensitivity, such as in the case of induced systemic resistance (ISR); 2) escape the effects of PTI; or 3)

400 benefit from the exclusion of PTI sensitive microbes. Deciphering the role and mechanisms of the host immune system

- 401 in regulating microbiota assembly processes and how assembly of microbiota in turn modulates the host immune system
- 402 is an active area of investigation with implications for the design of plant probiotics ²⁸.
- 403

404 **CONCLUSION**

We found that though environmental variation in natural field locations is the primary driver of microbial community composition, host genotype leaves a significant, widespread footprint on the root microbiome. We find evidence that locally adapted host genotypes enrich highly prevalent local microbes compared to foreign genotypes. Leveraging the associations with microbiota via manipulation of host genetics to favor desirable outcomes on plant fitness or yield is a goal that is currently unrealized. By characterizing which microbes are responsive to plant genotype and potential loci involved in host-microbiome interactions, the insights from this study may be of use when engineering or configuring associations between plants and microbes in the field.

412

413 METHODS

414 Plant collection, propagation, and planting

415 Collection, propagation, and field planting of the switchgrass population was previously described by Lovell et al. Briefly, the 416 diversity population was established by collecting seeds and rhizomes from natural as well as common garden resources and 417 transported to Austin, TX where the accessions were clonally propagated. Switchgrass is an outcrossing perennial plant, hence 418 individuals in the planting populations are clonally propagated ramets and it is not possible to raise identical plants from seed. The 419 genomes for individuals within the population were resequenced, aligned to the reference genome, and genomic variants were 420 identified. Initial growth of plants and seedlings occurred in a mixture of Promix peat-based potting soil and calcined clay (Turface). 421 Rhizome propagules were transplanted into 5 gallon pots containing finely ground pine-bark mulch and nutrients were supplied 422 through slow release fertilizer (14-14-14, Osmocote). Final propagation of the accessions occurred in 2018 where ramets were grown 423 in 1 gallon pots containing pine-bark mulch. In May to June 2018 the ramets were transplanted into the common gardens. Briefly, the 424 fields were covered with weed cloth and the layout was marked such that each plant had a minimum of 1.56 m from the four 425 surrounding plants. Holes were cut into the weed cloth and the soil was excavated using a spade shovel. The plants were placed into 426 the holes, surrounded by soil, and hand watered. The lowland cultivar 'Blackwell' was planted around the edge of the field sites to 427 account for border effects.

- 428
- 429

430 Root Sample Collection and Processing

431 Samples were collected in the summer of 2019. Samples from ATX were collected in June, 2019 while CMO and KMI samples were 432 collected in early August or 2019. The gap in sample collection timing between the sites was intentionally set to account for 433 phenological differences in AP13, the reference genome accession, between locations. The size of our plantings as well as various 434 characteristics of switchgrass plants presented several challenges during sampling. Switchgrass plants are obligately outcrossing 435 therefore cannot be destructively sampled. Given that microbiomes can be dynamic, and can potentially respond to weather events, 436 sampling of the fields had to occur within one day. Our plantings are large, and a team of samplers was employed to quickly collect 437 root samples. A 1-inch diameter punch core was used for sample collection. Briefly, the corer was placed at the edge of the crown 438 and rotated to be tangential to the crown. This allowed us to avoid the original potting soil directly underneath the crown where the

original transplantation occurred and minimized the chance of capturing legacy microbiota from the pre-transplanted roots. The corers were pushed 10-15 cm below the surface at a 45-degree angle. The soil-bound roots were extracted from the instrument using a scoopula and placed into a plastic baggie. Between samples, the corer was cleaned of remaining soil using a paper towel, but no effort was made to sterilize the instrument between samples as ethanol cannot remove DNA and bleaching / washing the instruments was not feasible for conducting the sampling in a reasonable timeframe. Roots were encased by surrounding soil in the core, therefore the risk of cross contamination was negligible. After a row was completed, the sampler returned to a workstation and the baggies were organized and placed into a cooler with ice packs or wet ice.

The samples were processed the next day. Living roots from the baggies were picked using ethanol and flame sterilized forceps. Two or three 1-inch pieces of roots were placed into a 2 mL tube with 1 mL sterile PBS. Typical root samples contained both transport roots with attached absorptive roots. The roots were vortexed in PBS for 10 seconds then sterilely transferred to a new, clean tube with 1 mL PBS. Again the roots were again vortexed to remove soil adhering to the surface and the resulting dirty PBS was discarded. This process was repeated until the PBS solution was clear and no soil remained in the tube. The roots in the tubes were then frozen and stored at -80 degrees until DNA extraction took place.

453 **DNA Extraction**

452

468

454 DNA was extracted from samples using a procedure similar to Bollman-Giolai et al. ⁵¹. Briefly, root samples are ground to 455 a fine powder with two sterile steel beads in a 2 mL tube using a GenoGrinder for 30s at 1750 rpm. After grinding 0.25 g of garnet 456 particles (Lysing Matrix A, BioSpec) were decanted into the tube and 540 uL of Buffer I (181 mM NaPO4, 121 mM Guanidinium 457 Thiocyanate) was pipetted into each tube. The samples were briefly vortexed, and 60 uL of buffer II (150 mM NaCl, 4% SDS, 500 458 mM Tris pH 8) was added. The samples were then placed into the Genogrinder for 2 min at 1500 RPM to grind / lyse. The tubes were 459 centrifuged at 10,000 g for 1 min to palette debris. The supernatant (500 uL) was transferred to a deepwell (1mL) 96-well plate and 460 250 uL of Buffer III (133 mM Ammonium Acetate) was added to the samples and vortexed to precipitate SDS and proteins. The 461 plates were placed in 4 degrees for 5 min, then centrifuged at 4000 g. The supernatant (500 uL) was transferred to a new plate and 462 120 uL of Buffer IV (120 mM Aluminum Ammonium Sulfate Dodecahydrate) was added to precipitate fulvic and humic acids, typical 463 PCR inhibitors from plant and soil samples. The samples were put at 4 degree for 5 min, then centrifuged for 2 min at 4000 g. After 464 this step, the supernatant can be frozen /stored or directly used for the next SPRI bead purification step. For the SPRI cleanup, 300 465 uL of the supernatant is mixed with 240 uL of SPRI beads in a deepwell 96-well plate and incubated for 5 min. The plates were then 466 placed on a magnet, allowed to clear, and the supernatant was discarded. The beads were then washed twice with 80% ethanol and 467 allowed to dry for 5 min. DNA was then eluted using 50 uL of water and transferred to a 96 well plate for storage at -20.

469 Library preparation and sequencing

470 We amplified the V4 region of 16S rRNA gene to survey microbial membership and relative abundance in the samples. We 471 used a two-step strategy, where V4 regions were first amplified using modified primers published by Parada et al. ⁵². The primers 472 were modified to add nextera sequencing primer annealing sites to the amplicons. The resulting PCRs were checked for amplification 473 on a gel and cleaned using SPRI beads. The second round of PCR added barcodes and flow cell annealing adapters to the amplicons. 474 Our barcoding strategy adds 12 bp Golay barcodes to both ends of the amplicon. The libraries were purified again using SPRI beads 475 and quantified using Qubit high sensitivity assays. The amplicons were normalized for concentration by pooling samples at different 476 volumes depending on their concentrations. The resulting pools were then concentrated using SPRI beads and run on a 2% agarose 477 gel. The appropriate band was cut from the gel and purified (Nucleospin) and sent for sequencing.

Sequencing occurred at multiple centers. Our first two libraries were sent to both the HudsonAlpha Genomic Sequencing
Facility and to the Joint Genome Institute (JGI). All of the other libraries were sent to JGI. All sequencing was performed using
Illumina NovaSeq configured with the SP flowcell which is capable of 250 x 250 bp paired end read lengths.

481	
482	Sequence processing and ASV calling
483	Resulting reads were demultiplexed, if needed, using the demultiplex Python software
484	(<u>https://demultiplex.readthedocs.io/en/latest/index.html</u>). Reads were trimmed to remove adapter sequences using cutadapt ⁵³ . ASVs
485	were called using the dada2 R software package ⁵⁴ .
486 487	Beta diversity measurements
488	Bray-Curtis dissimilarities were calculated using the <i>vegdist</i> function from the Vegan R package ⁵⁵ on log2 transformed
489	ASV relative abundances. Principal coordinate analysis was done using the <i>capscale</i> function from the Vegan package. Permanova
490	was conducted using the <i>adonis</i> function.
491	
492	Modeling site and subpopulation effects on ASVs
493	We used a linear modeling framework to model the effect of field site, genetic subpopulation, and subpopulation x site
494	effects on microbes. To be included in the analysis, an ASV must have been present in >= 50% of the total samples included in the
495	study. For every ASV a linear model was run with the following structure
496	
497	$lm(ASV_abundance_i \sim log10(depth) + Site + Subpopulation + Site:Subpopulation)$
498	
499	Where ASV_abundance _i is the vector of rank-based inverse normal transformation for the i th ASV. This transformation was performed
500	using the function RankNorm() from the R package RNOmni ⁵⁶ . Sequencing depth was accounted for by including the log10(depth)
501	term in the model. Site represents the vector of field locations and Subpopulation represents the switchgrass genetic population of the
502	host. Site:Subpopulation is the term capturing interaction effects between these two factors. Rank-based inverse normal
503	transformations were performed to coax ASV relative abundances into a normal distribution, to fit the assumptions of the model.
504	Variance partitioning of the terms was performed by running the function Anova() from the Car package on individual models and
505	percent variance was calculated by dividing a factor's sum of squares by the total sum of squares. Contrasts across model variables
506	were calculated using the emmeans package ⁵⁷ .
507 508	Genetic variance component analyses
508 509	Additive genetic variance and GxE variance was first calculated using the compound symmetry model in the R package
510	Sommer. The compound symmetry structure model assumes constant total variance within each site as well as constant covariance
511	between sites. This is the simplest model structure and was selected as the first step in our analysis because the model returns
512	components for additive genetic variance and genotype by environment variance. To be included in the analysis, a feature must have
513	been detected in $\geq 80\%$ of the samples. The full model was run with the following structure.
514	been detected in 2 0070 of the samples. The fun model was fun with the following structure.
515	Full model <- mmer(rst ~ Site + log10(depth), random =~ vs(PLANT ID, Gu=K) + vs(Site:PLANT ID, Gu=EK), rcov = ~units,
516	data = x2, tolparinv = $1e-01$, verbose = T)
517	
518	rst is the vector of rank-based inverse normal transformed ASV relative abundance (or aggregated relative abundance if
519	classification is above ASV). Rank-based inverse normal transformations were applied to the counts within each site for each ASV
520	and resulted in a constant overall variance, fulfilling this assumption of the compound symmetry structure. In this model Site and
521	sequencing depth were fit as fixed effects. PLANT_ID is the plant accession name and K is the kinship matrix with pairwise
522	relationships between individuals in the population based upon SNP data. Site is the field location and 'vs(Site:PLANT_ID,

523	Gu=EK)' captures the variance of GxE in the model, where EK is a list of site-specific kinship matrices. Reduced models were
524	constructed to test the contribution of V_{GxE} and V_A to the models. They were encoded as follows
525	
526	reduced_1 <- mmer(rst ~ Site + log10(depth), random =~ vs(PLANT_ID, Gu=K), rcov = ~units, data = x2, tolparinv = 1e-01,
527	verbose = T)
528	
529	Notably, this model lacks the GxE term 'vs(Site:PLANT_ID, Gu=EK)'. This model was compared to the full model using a
530	likelihood ratio test to examine whether GxE influenced the abundance of the tested ASV. To test for the effect of host genotype,
531	we compared reduced_1 to the below model.
532	
533	$reduced_2 <- mmer(rst ~ Site + log10(depth), rcov = ~units, data = x2, tolparinv = 1e-01, verbose = T)$
534	
535	This model lacks the effect of genotype altogether, thus comparing reduced_2 to reduced_1 using a likelihood ratio test examining
536	whether host genotype contributes to the observed variance of the tested ASV. To make a call on whether GxE or VA influenced
537	microbial abundances, we first asked if GxE showed an adjusted P value < 0.1. If so, our analysis stopped and we flagged the tested
538	ASV as showing significant GxE. If not, then we tested whether V_A had an effect with an adjusted P value < 0.1. If so, we made a
539	call that the ASV is affected by host additive genetic variance. If not, we inferred that the ASV was not affected by host genotype.
540	
541	We next used the unstructured model in the sommer package to ask about additive genetic variance within each site. The
542	unstructured model allows for unequal additive genetic variances within sites as well as unequal covariances between sites. This
543	allowed us to ask about the influence of host genotype within sites and whether the influence of host genotype is consistent across
544	multiple sites.
545	
546	
547	Multiple testing was accounted for through correction by the Benjamini-Hochberg approach, and a significant contribution of either
548	parameter was determined at $FDR < 0.1$.
549	
550	Microbial Genome Wide Associations
551	We performed GWAS for microbes found in >80% of the samples within each site. For this analysis, where we were
552	performing quantitative models, we removed samples where the focal ASV was not detected and the relative abundance were
553	transformed as previously mentioned using the rank-based inverse normal transformation. GWAS was run using the
554	SwitchgrassGWAS R package (https://github.com/Alice-MacQueen/switchgrassGWAS) ²² . This package dynamically chooses the
555	number of genetic PCs to include as covariates in the model to control for population structure and reduce genomic inflation. The
556	SNP matrix used in the analysis was dense, composed of over 25 million SNPs generated from the Panicum virgatum V5 genome.
557	The gene content near SNPs passing a threshold of 5x10 ⁻⁸ was generated using BEDTools window ⁵⁸ on the <i>P. virgatum</i> v5.1
558	genome annotation with a window size of 50 kb.
559	For the core microbiota, i.e. microbes detected in $\geq 80\%$ of the samples in each field site, the P-values for the GWAS
560	scans of each microbe were combined using Fisher's Method from the R package 'metap' ⁵⁹ .
561	
562	Detection of pleiotropic loci affecting multiple microbes
563	To identify regions of the host genome putatively influencing the abundance of multiple microbes we divided the genome
564	into 25 kb bins, consistent with average linkage equilibrium decays suggested in other switchgrass studies ⁶⁰ . For each microbe, this

565 resulted in 43,402 bins. We next calculated the minimum p-value of the SNPs within each bin for each microbe and retained the top 566 0.5% of bins with the lowest p-values (217 bins). The resulting QTL bins were then compiled into a presence / absence matrix and 567 we kept the top 5 loci from each site for further analysis. We tested the likelihood of observing the number of overlapping loci in 568 our data by using a permutation framework. In our OTL x ASV matrix, the ASVs were the rows and OTL were the columns. We 569 randomized the QTLs for each ASV in the matrix and counted the maximum number of overlaps, stratifying by field location. This 570 was performed 1000 times to develop a null distribution. All of our top 5 pleiotropic loci had p < 0.001. We chose to only analyze 571 the top 5 loci for each site for presentability, but include the other loci passing this significance threshold in the supplemental tables. 572 573 **Gene Ontology Enrichments** 574 We identified the gene content of the OTL matrix composed above using bedtools window, then extracted the Gene 575 Ontology categories for each gene within each 25kb genomic bin. Enrichment was calculated against the background genome GO 576 counts using a hypergeometric test and P values were corrected for multiple tests using the Benjamini-Hochberg procedure. 577 578 **Gene Expression Analysis** 579 The expression values for gene underlying putative pleiotropic loci were extracted from the Panicum virgatum gene 580 expression atlas which can be found on Phytozome 13. The FPKM values for P. virgatum gene expression across tissues and 581 environments were generously shared with us by the group of Jeremy Schmutz. Differential expression between root and shoot 582 tissue was performed using the following linear model on FPKM values. 583 lm(log2(expression) ~ Tissue) 584 585 The resulting P-values for the term 'Tissue' were corrected using the Benjamini-Hochberg procedure and significance was called at 586 adjusted p value < 0.05. 587 588 Pattern Triggered Immunity Assays 589 Leaf tissue was collected from the ATX field site plants in the spring of 2020. Leaf disks were punched from the leaves 590 on location in the field and immediately placed in 2 mL of sterile DI water in a 48 well plate and covered with aluminum foil. The 591 plates were gently shaken for 2 hours, then the disks were transferred to white, opaque 96 well plates in 50 uL of sterile DI water, 592 wrapped in aluminum foil, and left overnight. The next day, the disks were treated with 50 uL of Flg22 elicitor cocktail (10ug/mL 593 horseradish peroxidase, 34 ug/mL L-012, and 1 uM Flg22). The plates were read over a time series on a SpectraMax M3 plate 594 reader. Negative control plates with a randomly selected group of genotypes were mock treated (10ug/mL horseradish peroxidase, 595 34 ug/mL L-012, water). Each genotype was read in triplicate. To analyze the data, we log transformed the relative luminescence 596 units of the time series and reduced the dimensionality using PCA. 597 598 Genetic covariances of PTI axes and bacterial abundances 599 We performed genetic covariances between the first three PTI PCA axes and ATX root microbe relative abundances 600 using the R package Sommer. We used the following mixed effects model. 601 602 covar mod <- mmer(cbind(ASV abund, PTI PC) ~ 1, random= ~vs(PLANT ID, Gu=K), data=data, tolparinv = 1e-1) 603 604 The terms for ASV abund and PTI PC changed depending on the focal ASV and focal PTI PC axis. Covariance estimates and 605 standard errors for the estimates were gathered using the following command. 606

- 607 covar <- vpredict(covar_mod, covar ~ V2 / sqrt(V1*V3))
- 608
- 609 P values for observing the covariance estimate or larger (in magnitude) were calculated as $p = 2*pnorm(estimate / standard_error,$
- 610 lower.tail=FALSE)

Figure Legends

Figure 1. Field site is the primary determinant of switchgrass root microbiota composition. A) Principal coordinate analysis based on Bray-Curtis dissimilarities. Inset: map of field locations, colors match those in the figure legend. B) Relative abundance of phyla and Proteobacterial classes in every sample at each site. C) Effect sizes for Site, Host Subpopulation, and Subpopulation x Site for ASVs in dataset broken down by phylum / class. D) Number of ASVs with significant contrasts from the models displayed in panel C. E) Prevalence / abundance curves for each field site. Each point represents a single ASV and the black dashed line is the 80% prevalence threshold used to call core taxa. F) Venn diagram displaying overlaps of core microbiota from each site. G) Fraction of reads belonging to the core microbiota at each site (colored boxes) and the shared core microbiota (92 overlapping microbes from panel F, gray boxes).

Figure 2. Plants show evidence of affinity to local bacterial strains. A) Map depicting locations where individuals within the population were collected. Colors represent their subpopulation memberships. Field sites are depicted with their three letter abbreviations. ATX = Austin, TX; CMO = Columbia, MO; KMI = KBS, MI. B) Proportion of ASVs showing specific enrichments in one subpopulation compared to the other two broken up by site. C) Histograms of microbial prevalence showing specific enrichments by subpopulation and site. P values represent the significance of the mean prevalence being greater than that of the background distribution. This was calculated by randomly drawing the number of enriched ASVs from the background distribution and asking how often we saw a mean prevalence greater than that of the focal set.

Figure 3. Switchgrass root microbiota show widespread heritability which is influenced by field site differences. A) Variance components for aggregated abundances of different taxonomic levels and for ASVs. To be included in the models, features must have been present in greater than 80% of the samples, study-wide. B) The relationship between genetic variance components and microbial taxonomic rank C) The number of ASVs showing either significant GxE, V_A , or no association to host genotype D) Comparison of the magnitude of V_A vs GxE is presented as the log fold-change in the ratio of V_A to GxE for measured units within each taxonomic level. E) V_A estimates for the core microbiota present at every site. The size of the circles indicate the magnitude of estimated V_A and dark perimeters of the circles indicate a significant association (FDR < 0.1).

Figure 4. Pleiotropic loci influencing root microbiota. A) Number of ASVs detected in the 0.5% tails of the ASV x site GWAS p-value distributions. The top 5 most frequently observed genomic bins for each site are highlighted in site-specific colors. B) Candidate genes underlying the pleiotropic loci and their expression pattern in switchgrass roots and shoots. V1-V3 represent phenological stages of the plant and red boxes around expression values represent genes differentially expressed between roots and shoots (FDR < 0.05) C) Taxonomic breakdown of ASVs affected by putatively pleiotropic loci. D) Comparison of QTL similarity (1 - Jaccard Dissimilarity) and ASV sequence similarity.

Figure 5 GWAS reveals loci associated with core switchgrass root microbiota. A) Manhattan plot showing the association between SNPs and abundances of core ASVs. P values are derived from combining P-values using Fisher's

method. Peaks are colored by the Phylum / Class of the ASV. B) The most strongly enriched Gene Ontology (GO) terms within the core ASV GWAS tails.

Figure 6. ASV abundances co-vary with mamp triggered immune responses A) Response curves for the switchgrass population planted at the ATX site for treatment with 1 uM Flg22. B) Response curves for mock inoculated plants. C) Narrow sense heritability estimates for the three PC axes of PTI response variation. D) The 5% and 95% percent tails of the first three PC axes of PTI response variation. E) Microbial manhattan plot displaying the p-values for the covariances between ASV relative abundance and the PC axes of PTI variation. Colored circles represent ASVs passing a Bonferroni threshold of 0.05.

Supplementary Figure 1. Sequencing depths for samples included in this study

Supplementary Figure 2. Comparison of the results from the compound symmetry and unstructured models used to estimate genetic variance components contributing to the abundance of ASVs. How ASVs change in their assignment of significant Va (G), GxE, or no association to host genetic variation (y-axis) between the two model structures (x-axis) are denoted by lines. The number of ASVs changing assignments are denoted by line thickness and written values.

Supplemental Figure 3. Covariances of the same ASVs compared across different sites. A) Density plots showing the distribution of covariance estimates. B) Number of ASVs with significant covariance.

Supplemental Figure 4. GWAS reveals loci contributing to community structure in each field site. GWAS on the first three PCo of community dissimilarity metrics (Bray) from each field location. The genome-wide threshold, set at $5x10^{-8}$, is indicated by a dashed line in each Manhattan plot.

Supplemental Figure 5. ASV by site GWAS scans identify diverse taxa affected by genomic variation. Bacterial ASVs tested for and showing significant associations with SNPs ($P < 5x10^{-8}$) in A) Austin, TX, B) Columbia, MO, and C) KBS, MI. The number of tested microbes is in black while ASVs with significant associations show up in the color corresponding to the field site. The inset in panel C is the association between h2 and having at least one SNP associated with microbial abundance. D) Heatmap of ASVs where GWAS was performed in multiple sites. Black boxes indicate microbes with at least one significant SNP associated with relative abundance.

Supplemental Figure 6. Gene Ontology enrichments show similar and contrasting patterns across

locations.

Supplemental Table 1 Study-wide and site-specific core taxa Supplemental Table 2 Subpopulation specific enriched microbes Supplemental Table 3 Compound Symmetry Model Results Supplemental Table 4 V_A estimates using unstructured model Supplemental Table 5 Statistical Pleiotropic Loci Supplemental Table 6 Proportion of microbes with enriched GO terms Supplemental Table 7 Enriched GO terms from GWAS meta-analysis Supplemental Table 8 Significant GWAS Metanalysis Annotations

ACKNOWLEDGMENTS

This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant no DE-SC0014156 and DE-SC0021126. The work (proposal: 10.46936/10.25585/60000507) conducted by the U.S. Department of Energy Joint Genome Institute (<u>https://ror.org/04xm1d337</u>), a DOE Office of Science User Facility, is supported by the Office of Science of The U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231. This work was supported in part by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018409. Support for this research was provided by the National Science Foundation Long-term Ecological Research. J.E. acknowledges the support of the USDA National Institute of Food and Agriculture Postdoctoral Fellowship (grant no. 2019-67012-2971/project accession no. 1019437). In addition, we would like to acknowledge Allison Hutt, Nick Ryan, and Lisa Vormwald for their help in collecting samples.

- Jiao, S., Xu, Y., Zhang, J., Hao, X. & Lu, Y. Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. *mSystems* 4, (2019).
- Santos-Medellín, C. *et al.* Prolonged drought imparts lasting compositional changes to the rice root microbiome. *Nat Plants* 7, 1065–1077 (2021).
- 3. Edwards, J. *et al.* Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. *Genome Biol.* **20**, 221 (2019).
- 4. Edwards, J. A. *et al.* Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. *PLoS Biol.* **16**, e2003862 (2018).
- 5. Zhang, J. *et al.* Root microbiota shift in rice correlates with resident time in the field and developmental stage. *Sci. China Life Sci.* **61**, 613–621 (2018).
- Xu, L. *et al.* Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. *Proc. Natl. Acad. Sci. U. S. A.* 115, E4284–E4293 (2018).
- Petipas, R. H., Geber, M. A. & Lau, J. A. Microbe-mediated adaptation in plants. *Ecol. Lett.* 24, 1302–1317 (2021).
- 8. Walters, W. A. *et al.* Large-scale replicated field study of maize rhizosphere identifies heritable microbes. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 7368–7373 (2018).
- 9. Peiffer, J. A. *et al.* Diversity and heritability of the maize rhizosphere microbiome under field conditions. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 6548–6553 (2013).
- Wagner, M. R. *et al.* Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. *Nat. Commun.* 7, 1–15 (2016).
- Edwards, J. *et al.* Structure, variation, and assembly of the root-associated microbiomes of rice.
 Proc. Natl. Acad. Sci. U. S. A. **112**, E911–20 (2015).
- Lundberg, D. S. *et al.* Defining the core Arabidopsis thaliana root microbiome. *Nature* 488, 86–90 (2012).
- Wagner, M. R., Roberts, J. H., Balint-Kurti, P. & Holland, J. B. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. *New Phytol.* 228, 1055–1069 (2020).

- Wagner, M. R. Prioritizing host phenotype to understand microbiome heritability in plants. *New Phytol.* (2021) doi:10.1111/nph.17622.
- Koskella, B. & Bergelson, J. The study of host-microbiome (co)evolution across levels of selection. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 375, 20190604 (2020).
- Beilsmith, K. *et al.* Genome-wide association studies on the phyllosphere microbiome: Embracing complexity in host-microbe interactions. *Plant J.* 97, 164–181 (2019).
- 17. Deng, S. *et al.* Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. *ISME J.* (2021) doi:10.1038/s41396-021-00993-z.
- 18. Bergelson, J., Mittelstrass, J. & Horton, M. W. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. *Sci. Rep.* **9**, 24 (2019).
- Singer, E., Bonnette, J., Kenaley, S. C., Woyke, T. & Juenger, T. E. Plant compartment and genetic variation drive microbiome composition in switchgrass roots. *Environ. Microbiol. Rep.* 11, 185–195 (2019).
- Ulbrich, T. C., Friesen, M. L., Roley, S. S., Tiemann, L. K. & Evans, S. E. Intraspecific Variability in Root Traits and Edaphic Conditions Influence Soil Microbiomes Across 12 Switchgrass Cultivars. *Phytobiomes Journal* 5, 108–120 (2021).
- Sutherland, J., Bell, T., Trexler, R. V., Carlson, J. E. & Lasky, J. R. Host genomic influence on bacterial composition in the switchgrass rhizosphere. *bioRxiv* 2021.09.01.458593 (2021) doi:10.1101/2021.09.01.458593.
- Lovell, J. T. *et al.* Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. *Nature* (2021) doi:10.1038/s41586-020-03127-1.
- MacQueen, A. H. *et al.* Mapping of genotype-by-environment interactions in phenology identifies two cues for flowering in switchgrass (Panicum virgatum). *bioRxiv* 2021.08.19.456975 (2021) doi:10.1101/2021.08.19.456975.
- 24. Kurilshikov, A. *et al.* Large-scale association analyses identify host factors influencing human gut microbiome composition. *bioRxiv* 2020.06.26.173724 (2020) doi:10.1101/2020.06.26.173724.

- Brachi, B., Filiault, D., Darme, P. & Le Mentec, M. Plant genes influence microbial hubs that shape beneficial leaf communities. *Biorxiv* (2017).
- Kawasaki, A. *et al.* Manipulating exudate composition from root apices shapes the microbiome throughout the root system. *Plant Physiol.* 187, 2279–2295 (2021).
- Veach, A. M. *et al.* Modification of plant cell wall chemistry impacts metabolome and microbiome composition in Populus PdKOR1 RNAi plants. *Plant Soil* 429, 349–361 (2018).
- Teixeira, P. J. P., Colaianni, N. R., Fitzpatrick, C. R. & Dangl, J. L. Beyond pathogens: microbiota interactions with the plant immune system. *Curr. Opin. Microbiol.* 49, 7–17 (2019).
- Richter-Heitmann, T. *et al.* Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland. *Front. Microbiol.* 11, 1391 (2020).
- Karasov, T. L. *et al.* Arabidopsis thaliana and Pseudomonas Pathogens Exhibit Stable Associations over Evolutionary Timescales. *Cell Host Microbe* 24, 168–179.e4 (2018).
- Bai, Y. *et al.* Functional overlap of the Arabidopsis leaf and root microbiota. *Nature* 528, 364–369 (2015).
- Zhang, J. *et al.* NRT1.1B is associated with root microbiota composition and nitrogen use in fieldgrown rice. *Nat. Biotechnol.* (2019) doi:10.1038/s41587-019-0104-4.
- Castrillo, G. *et al.* Root microbiota drive direct integration of phosphate stress and immunity. *Nature* 543, 513–518 (2017).
- Menna, A., Nguyen, D., Guttman, D. S. & Desveaux, D. Elevated Temperature Differentially Influences Effector-Triggered Immunity Outputs in Arabidopsis. *Front. Plant Sci.* 6, 995 (2015).
- 35. Xin, X.-F. *et al.* Bacteria establish an aqueous living space in plants crucial for virulence. *Nature* 539, 524–529 (2016).
- Teixeira, P. J. P. L. *et al.* Specific modulation of the root immune system by a community of commensal bacteria. *Proc. Natl. Acad. Sci. U. S. A.* **118**, (2021).
- 37. Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of

maize roots. Proc. Natl. Acad. Sci. U. S. A. 114, E2450-E2459 (2017).

- Ma, K.-W. *et al.* Coordination of microbe-host homeostasis by crosstalk with plant innate immunity. *Nat Plants* 7, 814–825 (2021).
- 39. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. *Annu. Rev. Plant Biol.* **64**, 807–838 (2013).
- Melnyk, R. A., Hossain, S. S. & Haney, C. H. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. *ISME J.* 13, 1575–1588 (2019).
- 41. Hernández-Blanco, C. *et al.* Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. *Plant Cell* **19**, 890–903 (2007).
- 42. Van de Weyer, A.-L. *et al.* A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. *Cell* **178**, 1260–1272.e14 (2019).
- Murphy, K. M. *et al.* Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (Zea mays). *Sci. Rep.* 11, 333 (2021).
- 44. Hu, L. *et al.* Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. *Nat. Commun.* **9**, 2738 (2018).
- Couto, D. & Zipfel, C. Regulation of pattern recognition receptor signalling in plants. *Nat. Rev. Immunol.* 16, 537–552 (2016).
- Bjornson, M., Pimprikar, P., Nürnberger, T. & Zipfel, C. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. *Nat Plants* 7, 579–586 (2021).
- Vetter, M., Karasov, T. L. & Bergelson, J. Differentiation between MAMP Triggered Defenses in Arabidopsis thaliana. *PLoS Genet.* 12, e1006068 (2016).
- Zipfel, C. *et al.* Bacterial disease resistance in Arabidopsis through flagellin perception. *Nature* 428, 764–767 (2004).
- 49. Chen, T. *et al.* A plant genetic network for preventing dysbiosis in the phyllosphere. *Nature* 580, 653–657 (2020).
- 50. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial

taxa. Science 349, (2015).

- Bollmann-Giolai, A. *et al.* A low-cost pipeline for soil microbiology profiling. *Microbiologyopen* 9, e1133 (2020).
- Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. *Environ. Microbiol.* 18, 1403–1414 (2016).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* 17, 10–12 (2011).
- Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon data. *Nat. Methods* 13, 581–583 (2016).
- 55. Oksanen, J. et al. The vegan package. Community ecology package 10, 631-637 (2007).
- McCaw, Z. R., Lane, J. M., Saxena, R., Redline, S. & Lin, X. Operating characteristics of the rankbased inverse normal transformation for quantitative trait analysis in genome-wide association studies. *Biometrics* 76, 1262–1272 (2020).
- Searle, S. R., Speed, F. M. & Milliken, G. A. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. *Am. Stat.* 34, 216–221 (1980).
- Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* 26, 841–842 (2010).
- 59. Dewey, M. metap: meta-analysis of significance values. (2022).
- 60. Grabowski, P. P. *et al.* Genome-wide associations with flowering time in switchgrass using exomecapture sequencing data. *New Phytol.* **213**, 154–169 (2017).