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ABSTRACT 

 A fundamental goal in plant microbiome research is to determine the relative impacts of host and 
environmental effects on root microbiota composition, particularly how host genotype impacts bacterial 
community composition. Most studies characterizing the effect of plant genotype on root microbiota 
undersample host genetic diversity and grow plants outside of their native ranges, making the associations 
between host and microbes difficult to interpret. Here we characterized the root microbiota of a large 
population of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its 
native range. Our data, composed of >2000 samples, suggest field location is the primary determinant of 
microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, 
especially those in the Sphingomonadaceae family. Despite diverse compositions, we find that relatively few 
highly prevalent bacterial taxa make up the majority of the switchgrass root microbiota, a large fraction of 
which is shared across sites. Local genotypes preferentially recruit / filter for local microbes, supporting the 
idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci 
impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune 
responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core 
microbiota (i.e. microbes in >80% of samples) regardless of field location. Finally, we show a genetic 
relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study 
brings us closer to harnessing and manipulating beneficial microbial associations via host genetics. 
 
INTRODUCTION 1 

Recent insight into the composition, ecology, and functional importance of the plant microbiome has greatly 2 
increased interest in the potential to harness root microbiota to sustainably increase crop resilience and yield. Microbial 3 
inoculants have historically been discussed as a means to achieve this goal, but more recent calls for using plant breeding 4 
to enrich beneficial bacteria from the native microbiota have begun to emerge.  A roadblock hampering this effort is a 5 
lack of understanding about which microbes can respond to breeding practices, whether breeding can instill consistent 6 
effects on microbial assemblages across differing environments, and which genes and pathways from the host can be 7 
adjusted to modify microbiomes.  8 

Plant root bacterial microbiomes are derived from soil-borne communities, for which membership is largely 9 
driven by environmental factors such as geography and climate 1,2, land use history 3, and seasonal variation 4–6. The 10 
host plant exerts additional influence over its microbiota through active and passive mechanisms, resulting in filtered 11 
subsets of soil microbiota often composed of consistently enriched microbial taxa on and inside root tissue. Given that 12 
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microbiota can impart positive and negative outcomes on plant health, especially under varying environmental 13 
conditions, it follows that the filtering process may be under selection and lead to microbe-mediated local adaptation 7.  14 

Heritable variation is required for a trait to respond to selection. Indeed, several recent studies indicate that 15 
abundances of rhizosphere and root microbiome members are heritable 8–13, i.e. specific microbes and overall community 16 
composition vary depending on the genetic background of the host. These studies allude to the possibility of enriching 17 
for beneficial microbial associations through breeding, but given that most of these types of studies only look at a few 18 
host genotypes and/or grow host plants outside of their native ranges, the role of host genetics in root - microbe 19 
interactions has been difficult to interpret. Furthermore, given our relatively recent understanding that features of the 20 
microbiome are heritable14–16, genomic loci underlying root associated microbiome composition are still largely 21 
uncharacterized. There are notable exceptions however:  Deng et al used the Sorghum Association Panel to uncover loci 22 
impacting rhizosphere community composition 17. Bergelson et al. performed GWAS on Arabidopsis root (and leaf) 23 
microbiome community metrics including richness and principal coordinates based upon community dissimilarity 18. 24 
Uncovering the effects of host genetics on microbiomes across multiple native environments remains incomplete, but 25 
these studies provide exciting avenues to leverage host genetics to enrich for beneficial properties of the microbiome.  26 

Switchgrass (Panicum virgatum) is a wild C4 perennial prairie grass native to North America and has been 27 
championed by the US DOE as a potential biofuel crop due to its biomass yield potential when grown in marginal soil 28 
with minimal agricultural inputs. Its interesting biological features and important environmental and economic impact 29 
have made switchgrass a popular model to investigate root-associated microbiota assembly, especially in the rhizosphere 30 
(Singer et al. 2019; Ulbrich et al. 2021). Most recently, Sutherland et al. used a panel of switchgrass genotypes grown 31 
in a single location in the northeast United States to uncover the role of host genotype on rhizosphere bacterial 32 
assemblages 21. The authors of this study used GWAS to uncover putative loci affecting the abundance of several 33 
bacterial families in the rhizosphere and found gene ontology enrichments for diverse sets of functions. Still, relatively 34 
little is known about how host genetics drive tightly adhering / endophytic root-associated bacterial communities. 35 

In this study we addressed the following questions: 1) What bacteria are prominent members of the switchgrass 36 
root-associated microbiome when plants are grown across their natural range? 2) How does the effect of host genotype 37 
compare to that of the environment when determining the composition of root-associated bacterial microbiota? 3) Which 38 
microbial lineages show heritable variation in roots, and is heritability consistent across field sites? 4) Which host 39 
genomic loci impact the abundance of root associated bacteria? 5) Does microbial abundance show patterns of 40 
association with host immunity variation.  Answering these questions will bring us closer to harnessing and manipulating 41 
beneficial microbial associations via host genetics. 42 
 43 

RESULTS 44 
Field site is a primary determinant of switchgrass root microbiota composition 45 
 We used a population of fully resequenced switchgrass (Panicum virgatum) natural accessions that were 46 
clonally replicated and grown in field sites at Austin, TX, Columbia, MO; and Kellogg Biological Research Station, MI 47 
(from here on referred to as ATX, CMO, and KMI, respectively Fig 1A, map inset) to uncover the role of environmental 48 
variation and host genetics in shaping root microbiota composition. These plants had been established for two years, 49 
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show signatures of local adaptation 22,23, and have served as an important resource for switchgrass researchers. We first 50 
investigated the effect of field site on root bacterial microbiota. Principal coordinate analysis (PCoA) revealed three 51 
dominant clusters which were location-specific (Fig. 1A) and the significance of this observation was confirmed using 52 
perMANOVA (R2 = 0.51, P <0.001). While the communities showed large differences between field sites at the 53 
amplicon sequence variant (ASV) level, we found that phylum level relative abundances were largely consistent between 54 
sites (Fig. 1B).  Actinobacteria and Proteobacteria (namely Alpha and Gamma-proteobacteria) were dominant phyla 55 
associated with switchgrass roots at every site, which is consistent with most other terrestrial, non-flooded, plant 56 
microbiota studies.  57 
 A recent population genomic study of switchgrass found that tetraploid switchgrass can be broadly classified 58 
into three genetic subpopulations: Gulf, Midwest, and Atlantic 22. The ranges for these subpopulations are largely 59 
distinct (See Fig. 2A), with Gulf occupying habitats in the southern US, Atlantic occupying the Atlantic seaboard, and 60 
Midwest spread across northern latitudes. We compared the effect of field site, host subpopulation, and their 61 
interaction using linear models run on bacteria present in ≥ 50% of the samples study-wide. The effect of field site 62 

Figure 1 Field site is the primary determinant of switchgrass root microbiota composition. A) Principal 
coordinate analysis based on Bray-Curtis dissimilarities. Inset: map of field locations, colors match those in the figure 
legend. B) Relative abundance of phyla and Proteobacterial classes in every sample at each site. C) Effect sizes for 
Site, Host Subpopulation, and Subpopulation x Site for ASVs in dataset broken down by phylum / class. D) Number 
of ASVs with significant contrasts from the models displayed in panel C. E) Prevalence / abundance curves for each 
field site. Each point represents a single ASV and the black dashed line is the 80% prevalence threshold used to call 
core taxa. F) Venn diagram displaying overlaps of core microbiota from each site. G) Fraction of reads belonging to 
the core microbiota at each site (colored boxes) and the shared core microbiota (92 overlapping microbes from panel 
F, gray boxes). 
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was much larger than the secondary effects of host subpopulation and subpopulation x site interactions (Fig. 1C). We 63 
then compared the variance explained by site between bacterial phyla / classes to better understand how experimental 64 
factors impact broader taxonomic groupings. Effect sizes were largely consistent between these groups, with the 65 
exception of Chloroflexi and Actinobacteria, which showed larger effect sizes than Deltaproteobacteria (P < 0.05, 66 
Tukey’s Post-hoc Test). The large influence of field site on ASV relative abundance was also visible in the number of 67 
ASVs which exhibited significant differences in relative abundance across field sites (Fig. 1D).  68 

We next evaluated the relationship between ASV occupancy and mean relative abundance at each site (Fig 1E).  69 
Our study used an atypically high depth of sequencing (Supp. Fig. 1) which gave us greater confidence in assessing 70 
presence / absence of microbes in samples. In general, we found that ASVs with greater relative abundances were also 71 
present in a higher proportion of root microbiomes. We next defined site-specific core microbiota; to be consistent with 72 
other studies, we used a threshold of 80% occupancy 8 (Supp. Table 1). ATX had the most ASVs passing this occupancy 73 
threshold (Fig. 1F); we expected this, because we sequenced ATX samples at greater sequencing depths than the other 74 
two sites (Sup. Fig. 1, See Methods). Still, we found that each site hosted overlapping core microbiota: For all three 75 
sites, an overlap of 92 core microbes was found. CMO and KMI shared the most ASVs. The site-specific core microbiota 76 
typically comprised ~60-70% of the total microbial population (Fig 1G, colored boxplots) within each respective site, 77 
while the shared core microbiota made up ~25% of the total population (Fig 1G, gray boxplots). Thus, though field site 78 
acts as the primary determinant of switchgrass root-associated microbiota composition, large proportions of switchgrass 79 
root assemblages are shared between locations as a set of core microbes. 80 

 81 
Evidence of affinity between host genotypes and local microbiota 82 
 Our analyses revealed that host subpopulation and subpopulation by location interactions are important 83 
determinants of microbiota composition (Fig. 1C and D). Because the three switchgrass subpopulations are largely 84 
constrained to distinct geographic regions (Fig. 2A), we hypothesized that plants grown closer to their native habitat 85 
would show affinity for the microbes that persist and are abundant within these ranges. If this was true, then we would 86 
expect, at each site, that more ASVs would show preferential colonization of individuals in the subpopulation grown in 87 
its native range than in the other two subpopulations. To test this, we used linear models to analyze the abundance of 88 
ASVs within each site and contrasted the abundances between the different subpopulations. We defined a specific 89 
association as occurring if the relative abundance of an ASV was significantly greater in one subpopulation compared 90 
to the other two. Gulf plants in their native ATX site had the most specific associations, while Midwest plants enriched 91 
the most ASVs in native CMO and KMI sites (Fig. 2B, Supp. Table 2), supporting the notion that subpopulations enrich 92 
more microbes in their native habitats. Furthermore, we found the ASVs with subpopulation specific associations also 93 
tended to have significantly greater prevalence (Fig. 2C), but only for subpopulations growing within their native range. 94 
That is, ASVs with specific associations in the Gulf subpopulation had significantly greater prevalence than the 95 
background distribution at the ATX site, but not the other two sites. Likewise, microbes with specific associations in the 96 
Midwest subpopulation showed significantly greater prevalence in both CMO and KMI sites compared to the 97 
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background prevalence distributions (Fig 2C). These 98 
comparisons suggest there is preferential sorting of 99 
local microbiota onto locally adapted plant 100 
genotypes, especially for highly prevalent microbes.  101 
  102 
Switchgrass root microbiota show widespread 103 
heritable variation and genotype by environment 104 
interactions 105 
 Our analysis of switchgrass subpopulation 106 
effects on microbiota abundances underscores the 107 
importance of broad level host genotype in 108 
modulating root microbiome assembly. We next used 109 
an approach which incorporates a kinship matrix 110 
denoting finer genetic relationships among 111 
individuals of the population into the model to 112 
estimate how host genetic variation contributes to 113 
variation in microbe abundance. We used a suite of 114 
mixed effects models to partition additive genetic 115 
variance in microbial abundance (VA) using the host 116 
population genetic relationship matrix and how VA 117 
differs across the three environments (VGxE) with a 118 
compound symmetry model. Because microbiomes 119 
can be defined and analyzed at various taxonomic 120 
levels by aggregating counts at nodes of the bacterial 121 
phylogenetic tree, we tested the affect of host 122 
genotype on the relative abundance of taxa at various 123 
taxonomic levels. Across each taxonomic level both 124 
VGxE and VA significantly explained variation in 125 
microbial abundance (Fig 3A, Supp. Table 3). For 126 
microbial features within the top 10th percentile for 127 
VA and VGxE, we found generally increasing estimates 128 
for VA and decreasing estimates for VGxE from 129 
phylum to ASV (Fig. 3B).  We next asked whether 130 
taxonomic groupings of microbes at the ASV level 131 
were more likely to be under the influence of host 132 
genetics. Significant, non-zero VA and VGxE were 133 
widespread across the microbial phylogeny, however 134 
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specific orders were overrepresented in the data (Fig. 3C). In particular each tested ASV within the orders 135 
Sphingomonadales, Subgroup 6 (Acidobacteria), Gammaproteobacteria Incertae Sedis displayed significant VA or VGxE. 136 
We next compared the contribution of VA to VGxE.  In general, we found that more microbial features showed greater 137 
VGxE and this was consistent across taxonomic levels (Fig. 3D).  The prominence of GxE suggested that levels of VA 138 
differ between locations. To better understand the contribution of VA within each site, we fit an unstructured model to 139 
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ASVs which allowed for site-specific VA and as many unique covariances as site combinations. We applied these models 140 
to ASVs with prevalences > 80% in at least two field sites (Fig. 3E), finding similar trends to the compound symmetry 141 
model (Supp. Fig. 2).  When analyzing the core microbiota (i.e. the 92 ASVs with prevalence >80% in all three sites), 142 
we found 95 instances of significant site-specific VA spread across 64 unique ASVs (Supp. Table 4). CMO had the most 143 
ASVs displaying significant VA (n = 38) while KMI had the least (n = 24).  We also tested if there was a genetic 144 
association between the abundance of an ASV across multiple sites by focusing on the genetic covariance of root-145 
associated microbial traits across sites. Genetic covariances were mainly positive (Supp. Fig. 3A) and site comparison 146 
had a significant effect on covariance strength (P = 0.005, ANOVA). Specifically, we found that CMO/KMI covariances 147 
were significantly greater than those from ATX/KMI (adjusted P = 0.006, Tukey’s Post Hoc Test), but not ATX/CMO 148 
(P > 0.05, Tukey’s Post Hoc Test). We tested for ASVs that showed significant genetic covariance between sites and 149 
found 78 total significant estimates spread across 59 unique ASVs. Similar to the aggregate genetic covariance 150 
distributions, we found the most cases of significant genetic covariance between CMO/KMI, while CMO/ATX and 151 
KMO/ATX had equal instances of significant estimates (Sup. Fig. 3B). Together, these results indicate the host genetics 152 
plays a significant role in modulating an extensive phylogenetic swath of root-associated microbiota, that some bacterial 153 
clades are more likely to display heritable variation, and that genotype by environment interactions are widespread 154 
determinants of bacterial relative abundances on switchgrass roots.  155 
  156 
GWAS reveals microbiota assembly is a complex trait with extensive pleiotropy 157 
 After establishing that host genotypic variation influences the abundance of bacterial taxa, especially within 158 
single field sites, we next asked if host genomic regions responsible for heritable variation in associated bacteria could 159 
be localized with a genome wide association study (GWAS) framework. We first performed GWAS on community 160 
composition using the first three principal coordinates for each site (Supp. Fig. 4). Significant associations between 161 
SNPs and community composition were detected for each site, albeit on different PCo axes. These results indicate that 162 
variation in community composition is associated with host allelic variation. To better understand how host allelic 163 
variation influences individual microbes, we extended our analysis to perform GWAS on each ASV x site combination. 164 
We analyzed ASVs present in at least 80% of the samples, resulting in 1019 independent analyses of ASV x Site 165 
combinations. GWAS results were examined using a genome-wide significance threshold of 5x10-8 to identify SNPs 166 
associated with the abundance of various microbes, a common cutoff used in microbiome GWAS studies where many 167 
phenotypes are analyzed together 24,25. Using this criterion, we found 1,153 SNPs associated with 459 ASV x Site 168 
combinations.  Most ASVs with significant SNP associations were from the ATX site (253 ASVs), while CMO and 169 
KMI had similar numbers of ASVs with associated SNPs (101 and 105 ASVS, respectively). Taxa with associated SNPs 170 
were diverse, but no bacterial orders were over-represented (Fig 4A-C). Most ASVs with associated SNPs were specific 171 
to field sites; however, of the 179 ASVs that were tested in multiple sites, 50 showed associations across multiple field 172 
sites, with 9 showing associations across all three sites (Supp. Fig. 5D). In line with our heritability analysis, bacteria 173 
within Sphingomonadaceae featured prominently among ASVs with GWAS hits across multiple sites: 7 of the 10 ASVs 174 
within this family showed hits across 2 or more sites and 2 Sphingobium ASVs had at least one significantly associated 175 
SNP at all three sites (Fig. 5D).  176 
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We next asked whether any host genomic loci affected multiple microbial taxa (i.e. had statistically pleiotropic 177 
effects on microbiota and from here on referred to as pleiotropic loci) by compiling the 0.5% tail of 25 kB genomic bins 178 
into a quantitative trait locus (QTL) x ASV matrix for each site (see Methods). We first investigated the most commonly 179 
observed 25 kb genomic bins for each site by selecting the top 5 loci associated with the most ASVs within each site 180 
(ATX = 38-45 ASVs; CMO = 18-23 ASVs; KMI = 19-25 ASVs, Supp. Table 5).  Two pleiotropic loci overlapped with 181 
loci detected from our initial GWAS on community metrics (Supp. Fig. 4; CMO:Chr01N and ATX:Chr02K), indicating 182 
that while some pleiotropic loci account for larger trends in community composition, most identify variation not seen 183 
along the first three axes of community composition.  184 

To better characterize the candidate genes underlying these loci, we next compiled expression patterns for genes 185 
within these intervals. Most loci contained genes displaying higher expression patterns in switchgrass roots than shoots, 186 
implicating promising candidate genes affecting multiple microbiota members. These included several proteins involved 187 
in calcium signaling, immunity, and secondary cell wall biosynthesis. The microbes associated with pleiotropic loci 188 
were taxonomically diverse, with multiple bacterial phyla affected by each locus. In general, the additive effects of the 189 
QTL were largely consistent in sign across the different ASVs. This observation was also reflected in the taxa being 190 
affected by the loci: several loci show patterns where the relative abundances of Actinobacteria, Chloroflexi, or 191 
Alphaproteobacteria ASVs had consistent effect signs. This observation led us to the hypothesis that there may be an 192 
association between the QTL landscape and phylogenetic relationship for pairs of microbes. We found a positive and 193 
significant association between the sequence similarity of ASVs and their associated QTLs. This association differed 194 
weakly but significantly between sites with ATX showing a weaker correlation than CMO or KMI (P = 0.06 and 0.0015, 195 
respectively). Each site had a closely related ASV pair which stood out in terms of shared QTLs. These included two 196 
Sphingobium ASVs in ATX, Bacillus in CMO, and Acidibacter in KMI. Together these results indicate that host genomic 197 
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variation can have pleiotropic effects on microbiota and that the abundances of related microbes are more likely to be 198 
affected by the same host loci.     199 

The pleiotropic loci included several promising candidate genes, but to have a more robust understanding of 200 
the functional categories influencing switchgrass root associated microbiota we performed gene ontology (GO) 201 
enrichments for annotated genes underlying the ASV x QTL matrix.  We found that 789 of the ASV x site combinations 202 
displayed at least one significant GO enrichment. The most commonly observed GO term enrichments showed 203 
overlapping as well as contrasting patterns between sites (Supp. Fig. 6, Supp. Table 6). For example, the terms ‘response 204 
to biotic stimulus’, ‘response to auxin’, ‘negative regulation of growth’, and ‘sucrose biosynthesis’ were observed in 205 
multiple ASVs across every site, while ‘Defense response’, ‘prophenate biosynthetic process’, and ‘carbohydrate 206 
binding’ showed more site-specific patterns.   These results indicate that variation in host molecular pathways can 207 
influence the abundance of microbiota members and that some pathways are putatively dependent on environmental 208 
conditions.  209 

To better understand the contribution of loci independent of field site, we subsetted our scans to ASVs which 210 
had been tested in every site (i.e. the core microbiota), joining P-values generated during GWAS for a single ASV across 211 
each field site using Fisher’s method, a practice commonly used in meta-analyses to identify statistical tests with 212 
repeatable signal across multiple trials. A total of 239 SNPs passed a P value threshold of 5x10-8, revealing 44 out of 92 213 
core ASVs had a significant association (Fig. 5A, Sup. Fig. 5D). More than half of the ASVs with significant associations 214 
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Figure 5 GWAS reveals loci associated with core switchgrass root microbiota. A) Manhattan plot showing 
the association between SNPs and abundances of core ASVs. P values are derived from combining P-values 
using Fisher’s method. Peaks are colored by the Phylum / Class of the ASV. B) The most strongly enriched 
Gene Ontology (GO) terms within the core ASV GWAS tails. 
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(23/44) showed significant GWAS hits across 215 
multiple sites (Supp. Fig. 5D and Fig. 5A). 216 
Interestingly, some ASVs with combined P-values 217 
passing this genome-wide threshold did not display 218 
any significant associations in the ASV x site 219 
GWAS analyses. For example, ASV6, a highly 220 
abundant Bradyrhozobium strain displayed two 221 
significant peaks when P-values were combined 222 
that were not present during the initial site by ASV 223 
GWAS (Supp. Fig. 5D). These results indicate that 224 
leveraging multi-site GWAS by combining P-225 
values can identify loci impacting core microbiota.   226 

We explored the functional enrichments 227 
of combined p-value GWAS scans from the core 228 
microbiota (Fig 5B, Supp. Table 7, Supp. Table 8). 229 
We identified 76 distinct GO terms enriched across 230 
48 core ASVs, some of which have a priori 231 
implications in microbiome assembly. For 232 
example, malate transport and cell wall biogenesis 233 
were among the most frequent enriched terms. 234 
Malate is a prominent root exudate involved in 235 
shaping rhizospheric microbiome composition 26 236 
and cell walls form physical barriers as well as 237 
energy sources for microbes 27. Together this 238 
analysis revealed that while observations of loci 239 
associated with the abundance of various microbes 240 
is environmentally dependent, some loci can be 241 
implicated across multiple environments and the 242 
processes by which the host plant modulates core microbiota are diverse. 243 

 244 
Pattern triggered immunity responses genetically co-vary with root-associated microbiome composition  245 
 Plants surveil their biotic environment through perception of microbial associated molecular patterns, eliciting 246 
the activation of the pattern triggered immunity (PTI) pathway. We hypothesized that loci responsible for observed 247 
variation in PTI may overlap with host genetic variation controlling microbial abundance. To test this hypothesis we 248 
treated leaf disks from the population of plants growing in Austin, TX with Flg22, perhaps the most well studied MAMP. 249 
We measured the release of reactive oxygen species (ROS) over time using a well-characterized assay (see Methods). 250 
Flg22 elicited a range of ROS burst profiles in the population while mock treated samples did not display the typical 251 

1µM Flg22 Mock
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Figure 6 ASV abundances genetically co-vary with pattern 
triggered immune responses A) Response curves for the 
switchgrass population planted at the ATX site for treatment with 1 
uM Flg22. B) Response curves for mock inoculated plants. C) 
Narrow sense heritability estimates for the three PC axes of PTI 
response variation. D) Smoothed 5% and 95% percent tails of the first 
three PC axes of PTI response variation. E) Microbial Manhattan plot 
displaying the p-values for the covariances between ASV relative 
abundance and the PC axes of PTI variation. Colored circles 
represent ASVs passing a Bonferroni threshold of 0.05.   
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response curve of treated plants (Fig 6A). We converted the time series into principal components to better understand 252 
the different modes of variation displayed across treated samples. The tails of the PC axes were informative of the type 253 
of variation observed in the population (Fig. 6B): PC1 best explained the magnitude of response; PC2 separated plants 254 
with acute vs gradual responses; and PC3 showed a timing difference of peak ROS burst. All three axes showed 255 
significant h2 ranging from 0.48 to 0.38 (Fig. 6C). These results indicate that switchgrass genotypes significantly vary 256 
in their response to the PTI elicitor flg22. 257 
 The plant immune system has been implicated to actively shape the microbiome 28, therefore we hypothesized 258 
that genetic variation for PTI responses may genetically co-vary with abundance of various root-associated microbiota. 259 
To test this hypothesis we calculated the genetic co-variances for the PTI PC axes against the relative abundance of core 260 
bacterial ASVs in the ATX site.  We found significant genetic co-variances across each PTI axis: in total 126 / 739 ASVs 261 
showed significant genetic covariances with PTI axes (Bonferroni P < 0.05, Fig 6D). PTI PC1 had the most associations 262 
and PC2 had the least. PTI PCs 2 and 3 predominantly had negative co-variances with ASVs while PC1 had a similar 263 
amount of positive and negative co-variances. These results indicate that bacterial microbiota show positive and negative 264 
genetic correlations with PTI responsiveness and that associations between these traits are not phylogenetically limited.  265 
 266 

DISCUSSION 267 
 Here we have used natural switchgrass accessions growing in field sites spanning its native range to evaluate 268 
the contribution of environment and host genotype on root-associated bacterial assemblages. Field site was a major 269 
determinant of bacterial community assemblages in our study. Within sites, however, host genetics influenced the 270 
assembly of bacterial microbiomes, with local microbes preferentially colonizing native genotypes. We found numerous 271 
associations between bacterial relative abundances and host genomic loci through a GWAS framework, linking the 272 
abundance of taxa to host ontology groups and candidate genes. Our meta-analyses of GWAS scans performed on core 273 
ASVs implicated host loci affecting microbiota assembly independent of field location. Finally, we present evidence of 274 
correlation between pattern triggered immunity in the host and abundance of bacterial taxa associated with the roots.  275 
 276 
 277 
Genotype by environment interactions in host-associated microbiomes 278 
 A key finding of our study was that relative abundances of bacteria were strongly influenced by the interaction 279 
of host genetic variation and field site (Fig. 2 and Fig 3).  Further, we found that there were affinities between genotypes 280 
growing in their home environments and the local microbiota (Fig 2B). Interestingly, microbes with specific enrichments 281 
to local genotypes consistently had higher prevalence than expected (Fig 2C). A potential explanation is that home 282 
genotypes, as opposed to foreign genotypes, are more in sync with their native climates, photoperiods, and soil 283 
properties. This in turn, may reduce host stress and culminate in the acquisition of consistent microbiota. Alternatively, 284 
these results could be explained by a co-evolutionary framework, where evolution in the microbes drives selection on 285 
the host, and consequent selection in the microbes 15. However, given the stochastic dispersal of soil microbes 29, the 286 
more likely explanation is one-sided evolution where the local microbe population imposes selection and evolution on 287 
the host, rather than the host imposing selection on the microbes. Perhaps the elevated prevalence of enriched microbes 288 
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equate to more chances for interaction and act to exert stronger selection on hosts (Fig 2C). Another display of GxE was 289 
that ASVs rarely showed heritable variation across every site. While GxE for microbial community composition is often 290 
complex in these types of studies, the fundamental ‘disease triangle’ framework from the plant pathology field is useful 291 
when considering host-microbe associations, regardless of pathogenesis. This theory dictates that for disease to occur, a 292 
susceptible host genotype, virulent pathogen, and favorable environmental condition must co-exist. Each of the three 293 
points of the triangle can be explored further to explain GxE in root microbiota assemblages. We discuss these three 294 
points in the context of our study below. 295 
 Firstly, environmental variation occurs in biotic and abiotic flavors, which are not mutually exclusive. Our 296 
results indicate that the environment greatly influences the composition of root microbiota at each field site (Fig 1A). 297 
Field site had an almost universal effect on the abundance of ASVs (Fig. 1C). The three field sites do differ in their field 298 
uses, a factor which can contribute to soil microbiome variation 3. Columbia, MO and Kellogg Biological Research 299 
Station, MI sites are converted prairie and forest, respectively, and have histories of cultivating crops either agriculturally 300 
or experimentally. The ATX field site is located within city limits on a campus with no known history of agricultural 301 
cultivation. These land use history differences may explain the relatively large microbiome compositional variation 302 
between ATX and CMO / KMI sites. Furthermore, climate patterns are distinct between the sites, CMO and KMI having 303 
more similar climate patterns. Alternative favorable conditions may promote growth of certain taxa, which may 304 
ultimately influence the abundance of other microbes. 305 
 The microbial component of the disease triangle states that a virulent form of the pathogen must be present to 306 
infect a host and initiate disease. Implicit to this point is that genetic variation exists for microbes in addition to hosts. 307 
Unfortunately, we could not examine genetic variation of individual ASVs in our study, as we based the detection and 308 
abundance of different taxa on a small 250 bp segment of a single gene. While this may suffice to classify most microbes 309 
down to the genus or species level, it is insufficient to explore bacterial strain level variation. Every ASV in a site is 310 
under selective pressure by the local environment. Therefore, an ASV detected at one site will most likely have distinct 311 
polymorphisms with adaptive consequences compared to the same ASV at a different field site. Even within sites, ASVs 312 
can be composed of multiple microbial lineages, each conveying distinct phenotypes to the host 30. Polymorphisms, 313 
especially between sites, may preclude the microbe from falling under the genetic influence of the host, explaining why 314 
we detect significant heritability for the same ASV in some sites but not others. Nevertheless, we identified ASVs where 315 
combined p-values generated from site-specific GWAS helped to uncover loci consistently associated with their 316 
abundance. This was the case for half of the ASVs tested under this framework, suggesting that modulation of ASVs 317 
through shared mechanisms across field sites is relatively common, yet may not have effects passing a threshold in single 318 
ASV x site GWAS. A potential method to study GxE with host associated microbiomes is through construction of 319 
synthetic communities, which offer an ecologically relevant, yet controlled system for plants and microbes to interact 320 
while experiencing an experimental environment change. However, it must be noted that synthetic communities will 321 
remain incomplete representations of root-associated bacterial communities until highly prevalent and abundant, yet 322 
recalcitrant microbes become more easily cultivable. For example, strains belonging to Chloroflexi, Acidobacteria, and 323 
Verrucomicrobia are prominent members of plant microbial communities, but remain conspicuously absent from root 324 
bacterial culture collections 31–33. 325 
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 Finally, the third point of the disease triangle stipulates that a host plant must be susceptible to infection in 326 
order for pathogenesis to occur. In our case, this equates to host genetic variants being compatible for colonization by 327 
the local ASV. Susceptibility / compatibility, is likely dependent upon both biotic and abiotic environmental conditions. 328 
That is, habitat variation and microbial community variation between sites may activate or repress the expression of 329 
allelic variants responsible for regulation of microbial colonization.  For example, increased temperature attenuates 330 
effector triggered immunity in Arabidopsis, increasing susceptibility to Pseudomonas syringae 34. Xin et al demonstrate 331 
that elevated humidity can greatly influence the pathogenesis of Pseudomonas syringae, but in a host genotype 332 
dependent manner 35. In addition, given that the microbiomes vary substantially between sites, the biotic component of 333 
the environment may contribute to expression differences between allelic variants, thus leading to differential enrichment 334 
of metabolic, immunity, and developmental pathways. One fascinating angle recently put forward is that microbes which 335 
subvert plant immunity may ultimately serve as keystone taxa 36–38 by dampening the immune response, allowing other 336 
microbiota to side-step the host immune system.  Given that the biotic environment largely varies between sites, 337 
contrasting keystone taxa may exert alternative effects on different genotypes.  338 

In all of these scenarios it is important to acknowledge that both microbes and plants are sensitive to 339 
environmental conditions.  Microbes are a critical part of the host plant’s environment, and likewise, the host plant is an 340 
environment for the microbes. Environmental variation may change local microbiota community structure which in turn 341 
may affect the expression of host genes impacting microbiota assembly. 342 
 343 
Which taxonomic level is appropriate for calculating heritability of bacteria? 344 
 We find that heritability of microbiota features can be observed across every taxonomic level. Several studies 345 
have calculated heritability of rhizosphere or root associated bacteria 8–10,21. Typically, the analysis is conducted at the 346 
OTU or ASV level (i.e. the taxonomic level with the highest resolution). In the case of Sutherland et al., the authors 347 
chose to calculate heritability for aggregated counts of bacterial families.  This begs the question: which taxonomic level 348 
is appropriate for calculating heritability of host-associated bacteria? Our results indicate that, while individual ASVs 349 
displayed the greatest h2 on average, relatively high h2 can be observed even at the bacterial order and family level. This 350 
observation lends some support to the idea that plants do not select for particular microbes (i.e. specific ASVs), but 351 
rather for microbes with particular functional attributes 16,39. In some cases, it may be that functional attributes impacting 352 
host phenotypes diverge across closely related microbes 40, therefore the ASV level may be most appropriate. In other 353 
cases, a functional attribute selected for by the host may be conserved across wider evolutionary distances allowing for 354 
detection of h2 at higher taxonomic levels. Uncovering the appropriate unit for calculating heritable signal in host 355 
associated microbial communities will be an important challenge for future studies. 356 
 357 
Genetic architecture of host-microbiome interactions in roots 358 
 We identified numerous regions of the host genome associated with the abundance of core taxa. In addition, 359 
our results indicate that associated SNPs passing a genome wide threshold are rarely shared across multiple ASVs, yet 360 
the tails of GWAS p-value distributions contain commonly associated loci. These results suggest that loci with the largest 361 
effects on any particular ASV’s abundance are specific to that microbe while loci with smaller effects are shared between 362 
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ASVs. Together, these results indicate that microbiome assembly is a complex trait given that the microbiome constitutes 363 
a consortium of interdependent bacteria; that many significant loci were identified associated with these microbes’ 364 
abundances; and that many GO term enrichments were uncovered associated with these loci. That is, many genes and 365 
processes contribute relatively small effects to influence the relative abundance for various ASVs.  366 
 A difficulty in presenting these data is their complexity and the plethora of uncovered candidate genes 367 
putatively involved in microbiota assembly. We therefore focused on loci impacting the most members of the 368 
microbiome (i.e. pleiotropic loci, Fig 4). Several compelling candidate genes were identified among the commonly 369 
associated loci which showed enriched expression in roots. Among these were a cellulose synthase subunit, whose 370 
ortholog in Arabidopsis is involved in secondary cell wall synthesis and has been reported to influence resistance to soil-371 
borne bacterial pathogens in a defense hormone-independent manner 41. We also identified two root-expressed candidate 372 
nucleotide-binding leucine rich repeat proteins (NLRs) showing associations to multiple ASVs. NLRs are important 373 
sensors involved in effector triggered immunity and have been implicated in affecting sorghum rhizosphere microbiota 374 
17. Given the diversity of NLR genes within plant species (switchgrass has well over 1000 annotated NLR genes) and 375 
the presence / absence variation between individuals within species 42, an open question is how the repertoire of NLR 376 
genes shapes root associated microbiota. The co-evolution between NLR genes and microbiota will remain an 377 
compelling hypothesis to explain local adaptation to the biotic environment and may serve as a means for fine-tuning 378 
microbial communities. Ultimately, uncovering specific mechanisms and genetic networks controlling microbiota 379 
assembly requires reverse genetic approaches. Several studies in maize have used mutants to show that ablation of 380 
specific metabolites in exudates can modify microbial community composition 43 and can lead to a significant impact 381 
on plant resistance to herbivory 44. Our study provides a list of possible candidate loci to target for future research. 382 
 383 
An association between Pattern-triggered immunity and root microbiota composition 384 
 Several of our analyses implicated physical and immune defenses as modulators of microbiome composition. 385 
In our study we investigated the role of plant genotype in explaining PTI variation using the elicitor flg22. While flg22 386 
is one of many known elicitors, it serves as a good proxy for PTI given that pattern recognition receptors share similar 387 
co-receptors which funnel into similar pathways 45 and downstream transcriptional responses show strong overlaps 46. 388 
Much like a recent study in Arabidopsis, our results revealed strong heritable variation in PTI response within our 389 
population 47. Further, our analysis revealed a link between the abundance of the ATX core microbiota and modes of 390 
PTI variation within our switchgrass population. Particularly strong associations, both negative and positive, were 391 
observed between the first axis of PTI variation (ROS burst magnitude) and a phylogenetically broad set of root-392 
associated microbes (Fig 6D).  PTI canonically inhibits the entry of perceived pathogens 48, but our results suggest that 393 
it may also gate or limit the proliferation of commensal bacteria and their interactors, at least for ASVs with negative 394 
genetic covariances. This result is in line with previous studies showing that attenuation of PTI can lead to altered 395 
microbiota composition and even dysbiosis 49. Similarly, mutant Arabidopsis plants with altered defense hormone 396 
production host atypical root microbiota, indicating that immune signaling is an important modulator of microbiota 397 
assembly 50. On the other hand, we found ASVs with strong positive genetic covariance with PTI . These ASVs may 1) 398 
stimulate PTI sensitivity, such as in the case of induced systemic resistance (ISR); 2) escape the effects of PTI; or 3) 399 
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benefit from the exclusion of PTI sensitive microbes. Deciphering the role and mechanisms of the host immune system 400 
in regulating microbiota assembly processes and how assembly of microbiota in turn modulates the host immune system 401 
is an active area of investigation with implications for the design of plant probiotics 28. 402 
 403 

CONCLUSION 404 
 We found that though environmental variation in natural field locations is the primary driver of microbial 405 
community composition, host genotype leaves a significant, widespread footprint on the root microbiome. We find 406 
evidence that locally adapted host genotypes enrich highly prevalent local microbes compared to foreign genotypes.  407 
Leveraging the associations with microbiota via manipulation of host genetics to favor desirable outcomes on plant 408 
fitness or yield is a goal that is currently unrealized. By characterizing which microbes are responsive to plant genotype 409 
and potential loci involved in host-microbiome interactions, the insights from this study may be of use when engineering 410 
or configuring associations between plants and microbes in the field. 411 
 412 

METHODS 413 
Plant collection, propagation, and planting 414 
Collection, propagation, and field planting of the switchgrass population was previously described by Lovell et al. Briefly, the 415 
diversity population was established by collecting seeds and rhizomes from natural as well as common garden resources and 416 
transported to Austin, TX where the accessions were clonally propagated. Switchgrass is an outcrossing perennial plant, hence 417 
individuals in the planting populations are clonally propagated ramets and it is not possible to raise identical plants from seed. The 418 
genomes for individuals within the population were resequenced, aligned to the reference genome, and genomic variants were 419 
identified. Initial growth of plants and seedlings occurred in a mixture of Promix peat-based potting soil and calcined clay (Turface). 420 
Rhizome propagules were transplanted into 5 gallon pots containing finely ground pine-bark mulch and nutrients were supplied 421 
through slow release fertilizer (14-14-14, Osmocote). Final propagation of the accessions occurred in 2018 where ramets were grown 422 
in 1 gallon pots containing pine-bark mulch. In May to June 2018 the ramets were transplanted into the common gardens. Briefly, the 423 
fields were covered with weed cloth and the layout was marked such that each plant had a minimum of 1.56 m from the four 424 
surrounding plants. Holes were cut into the weed cloth and the soil was excavated using a spade shovel. The plants were placed into 425 
the holes, surrounded by soil, and hand watered. The lowland cultivar ‘Blackwell’ was planted around the edge of the field sites to 426 
account for border effects.  427 
 428 
 429 
Root Sample Collection and Processing 430 
Samples were collected in the summer of 2019.  Samples from ATX were collected in June, 2019 while CMO and KMI samples were 431 
collected in early August or 2019. The gap in sample collection timing between the sites was intentionally set to account for 432 
phenological differences in AP13, the reference genome accession, between locations. The size of our plantings as well as various 433 
characteristics of switchgrass plants presented several challenges during sampling. Switchgrass plants are obligately outcrossing 434 
therefore cannot be destructively sampled. Given that microbiomes can be dynamic, and can potentially respond to weather events, 435 
sampling of the fields had to occur within one day. Our plantings are large, and a team of samplers was employed to quickly collect 436 
root samples. A 1-inch diameter punch core was used for sample collection. Briefly, the corer was placed at the edge of the crown 437 
and rotated to be tangential to the crown. This allowed us to avoid the original potting soil directly underneath the crown where the 438 
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original transplantation occurred and minimized the chance of capturing legacy microbiota from the pre-transplanted roots. The corers 439 
were pushed 10-15 cm below the surface at a 45-degree angle. The soil-bound roots were extracted from the instrument using a 440 
scoopula and placed into a plastic baggie. Between samples, the corer was cleaned of remaining soil using a paper towel, but no effort 441 
was made to sterilize the instrument between samples as ethanol cannot remove DNA and bleaching / washing the instruments was 442 
not feasible for conducting the sampling in a reasonable timeframe. Roots were encased by surrounding soil in the core, therefore the 443 
risk of cross contamination was negligible. After a row was completed, the sampler returned to a workstation and the baggies were 444 
organized and placed into a cooler with ice packs or wet ice. 445 
 The samples were processed the next day. Living roots from the baggies were picked using ethanol and flame sterilized 446 
forceps. Two or three 1-inch pieces of roots were placed into a 2 mL tube with 1 mL sterile PBS. Typical root samples contained both 447 
transport roots with attached absorptive roots. The roots were vortexed in PBS for 10 seconds then sterilely transferred to a new, clean 448 
tube with 1 mL PBS. Again the roots were again vortexed to remove soil adhering to the surface and the resulting dirty PBS was 449 
discarded. This process was repeated until the PBS solution was clear and no soil remained in the tube. The roots in the tubes were 450 
then frozen and stored at -80 degrees until DNA extraction took place. 451 
 452 
DNA Extraction 453 
 DNA was extracted from samples using a procedure similar to Bollman-Giolai et al. 51. Briefly, root samples are ground to 454 
a fine powder with two sterile steel beads in a 2 mL tube using a GenoGrinder for 30s at 1750 rpm. After grinding 0.25 g of garnet 455 
particles (Lysing Matrix A, BioSpec) were decanted into the tube and 540 uL of Buffer I (181 mM NaPO4, 121 mM Guanidinium 456 
Thiocyanate) was pipetted into each tube. The samples were briefly vortexed, and 60 uL of buffer II (150 mM NaCl, 4% SDS, 500 457 
mM Tris pH 8) was added. The samples were then placed into the Genogrinder for 2 min at 1500 RPM to grind / lyse. The tubes were 458 
centrifuged at 10,000 g for 1 min to palette debris. The supernatant (500 uL) was transferred to a deepwell (1mL) 96-well plate and 459 
250 uL of Buffer III (133 mM Ammonium Acetate) was added to the samples and vortexed to precipitate SDS and proteins. The 460 
plates were placed in 4 degrees for 5 min, then centrifuged at 4000 g. The supernatant (500 uL) was transferred to a new plate and 461 
120 uL of Buffer IV (120 mM Aluminum Ammonium Sulfate Dodecahydrate) was added to precipitate fulvic and humic acids, typical 462 
PCR inhibitors from plant and soil samples. The samples were put at 4 degree for 5 min, then centrifuged for 2 min at 4000 g. After 463 
this step, the supernatant can be frozen /stored or directly used for the next SPRI bead purification step. For the SPRI cleanup, 300 464 
uL of the supernatant is mixed with 240 uL of SPRI beads in a deepwell 96-well plate and incubated for 5 min. The plates were then 465 
placed on a magnet, allowed to clear, and the supernatant was discarded. The beads were then washed twice with 80% ethanol and 466 
allowed to dry for 5 min. DNA was then eluted using 50 uL of water and transferred to a 96 well plate for storage at -20. 467 
 468 
Library preparation and sequencing 469 
 We amplified the V4 region of 16S rRNA gene to survey microbial membership and relative abundance in the samples. We 470 
used a two-step strategy, where V4 regions were first amplified using modified primers published by Parada et al. 52. The primers 471 
were modified to add nextera sequencing primer annealing sites to the amplicons. The resulting PCRs were checked for amplification 472 
on a gel and cleaned using SPRI beads. The second round of PCR added barcodes and flow cell annealing adapters to the amplicons. 473 
Our barcoding strategy adds 12 bp Golay barcodes to both ends of the amplicon. The libraries were purified again using SPRI beads 474 
and quantified using Qubit high sensitivity assays. The amplicons were normalized for concentration by pooling samples at different 475 
volumes depending on their concentrations. The resulting pools were then concentrated using SPRI beads and run on a 2% agarose 476 
gel. The appropriate band was cut from the gel and purified (Nucleospin) and sent for sequencing. 477 
 Sequencing occurred at multiple centers. Our first two libraries were sent to both the HudsonAlpha Genomic Sequencing 478 
Facility and to the Joint Genome Institute (JGI). All of the other libraries were sent to JGI. All sequencing was performed using 479 
Illumina NovaSeq configured with the SP flowcell which is capable of 250 x 250 bp paired end read lengths.  480 
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 481 
Sequence processing and ASV calling 482 
 Resulting reads were demultiplexed, if needed, using the demultiplex Python software 483 
(https://demultiplex.readthedocs.io/en/latest/index.html). Reads were trimmed to remove adapter sequences using cutadapt 53. ASVs 484 
were called using the dada2 R software package 54.  485 
 486 
Beta diversity measurements 487 
 Bray-Curtis dissimilarities were calculated using the vegdist function from the Vegan R package 55 on log2 transformed 488 
ASV relative abundances. Principal coordinate analysis was done using the capscale function from the Vegan package. Permanova 489 
was conducted using the adonis function.  490 
 491 
Modeling site and subpopulation effects on ASVs 492 
 We used a linear modeling framework to model the effect of field site, genetic subpopulation, and subpopulation x site 493 
effects on microbes. To be included in the analysis, an ASV must have been present in >= 50% of the total samples included in the 494 
study. For every ASV a linear model was run with the following structure 495 
 496 
lm(ASV_abundancei ~ log10(depth) + Site + Subpopulation + Site:Subpopulation) 497 
 498 
Where ASV_abundancei is the vector of rank-based inverse normal transformation for the ith ASV. This transformation was performed 499 
using the function RankNorm() from the R package RNOmni 56. Sequencing depth was accounted for by including the log10(depth) 500 
term in the model. Site represents the vector of field locations and Subpopulation represents the switchgrass genetic population of the 501 
host. Site:Subpopulation is the term capturing interaction effects between these two factors. Rank-based inverse normal 502 
transformations were performed to coax ASV relative abundances into a normal distribution, to fit the assumptions of the model. 503 
Variance partitioning of the terms was performed by running the function Anova() from the Car package on individual models and 504 
percent variance was calculated by dividing a factor’s sum of squares by the total sum of squares. Contrasts across model variables 505 
were calculated using the emmeans package 57. 506 
 507 
Genetic variance component analyses 508 
 Additive genetic variance and GxE variance was first calculated using the compound symmetry model in the R package 509 
Sommer. The compound symmetry structure model assumes constant total variance within each site as well as constant covariance 510 
between sites. This is the simplest model structure and was selected as the first step in our analysis because the model returns 511 
components for additive genetic variance and genotype by environment variance. To be included in the analysis, a feature must have 512 
been detected in >= 80% of the samples. The full model was run with the following structure. 513 
 514 
 Full_model <- mmer(rst ~ Site + log10(depth), random =~ vs(PLANT_ID, Gu=K) + vs(Site:PLANT_ID, Gu=EK), rcov = ~units, 515 
data = x2, tolparinv = 1e-01, verbose = T)   516 
 517 
rst is the vector of rank-based inverse normal transformed ASV relative abundance (or aggregated relative abundance if 518 
classification is above ASV). Rank-based inverse normal transformations were applied to the counts within each site for each ASV 519 
and resulted in a constant overall variance, fulfilling this assumption of the compound symmetry structure. In this model Site and 520 
sequencing depth were fit as fixed effects. PLANT_ID is the plant accession name and K is the kinship matrix with pairwise 521 
relationships between individuals in the population based upon SNP data. Site is the field location and ‘vs(Site:PLANT_ID, 522 
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Gu=EK)’ captures the variance of GxE in the model, where EK is a list of site-specific kinship matrices. Reduced models were 523 
constructed to test the contribution of VGxE and VA to the models. They were encoded as follows 524 
 525 
reduced_1 <- mmer(rst ~ Site + log10(depth), random =~ vs(PLANT_ID, Gu=K), rcov = ~units, data = x2, tolparinv = 1e-01, 526 
verbose = T)   527 
 528 
Notably, this model lacks the GxE term ‘vs(Site:PLANT_ID, Gu=EK)’.  This model was compared to the full model using a 529 
likelihood ratio test to examine whether GxE influenced the abundance of the tested ASV. To test for the effect of host genotype, 530 
we compared reduced_1 to the below model. 531 
 532 
reduced_2 <-  mmer(rst ~ Site + log10(depth), rcov = ~units, data = x2, tolparinv = 1e-01, verbose = T)   533 
 534 
This model lacks the effect of genotype altogether, thus comparing reduced_2 to reduced_1 using a likelihood ratio test examining 535 
whether host genotype contributes to the observed variance of the tested ASV. To make a call on whether GxE or VA influenced 536 
microbial abundances, we first asked if GxE showed an adjusted P value < 0.1. If so, our analysis stopped and we flagged the tested 537 
ASV as showing significant GxE. If not, then we tested whether VA had an effect with an adjusted P value < 0.1. If so, we made a 538 
call that the ASV is affected by host additive genetic variance. If not, we inferred that the ASV was not affected by host genotype. 539 
 540 
We next used the unstructured model in the sommer package to ask about additive genetic variance within each site. The 541 
unstructured model allows for unequal additive genetic variances within sites as well as unequal covariances between sites. This 542 
allowed us to ask about the influence of host genotype within sites and whether the influence of host genotype is consistent across 543 
multiple sites.   544 
 545 
 546 
Multiple testing was accounted for through correction by the Benjamini-Hochberg approach, and a significant contribution of either 547 
parameter was determined at FDR < 0.1.  548 
 549 
Microbial Genome Wide Associations 550 
 We performed GWAS for microbes found in >80% of the samples within each site. For this analysis, where we were 551 
performing quantitative models, we removed samples where the focal ASV was not detected and the relative abundance were 552 
transformed as previously mentioned using the rank-based inverse normal transformation. GWAS was run using the 553 
SwitchgrassGWAS R package (https://github.com/Alice-MacQueen/switchgrassGWAS) 22. This package dynamically chooses the 554 
number of genetic PCs to include as covariates in the model to control for population structure and reduce genomic inflation. The 555 
SNP matrix used in the analysis was dense, composed of over 25 million SNPs generated from the Panicum virgatum V5 genome. 556 
The gene content near SNPs passing a threshold of 5x10-8 was generated using BEDTools window 58 on the P. virgatum v5.1 557 
genome annotation with a window size of 50 kb.  558 
 For the core microbiota, i.e. microbes detected in >= 80% of the samples in each field site, the P-values for the GWAS 559 
scans of each microbe were combined using Fisher’s Method from the R package ‘metap’ 59. 560 
 561 
Detection of pleiotropic loci affecting multiple microbes 562 
 To identify regions of the host genome putatively influencing the abundance of multiple microbes we divided the genome 563 
into 25 kb bins, consistent with average linkage equilibrium decays suggested in other switchgrass studies 60. For each microbe, this 564 
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resulted in 43,402 bins. We next calculated the minimum p-value of the SNPs within each bin for each microbe and retained the top 565 
0.5% of bins with the lowest p-values (217 bins).  The resulting QTL bins were then compiled into a presence / absence matrix and 566 
we kept the top 5 loci from each site for further analysis.  We tested the likelihood of observing the number of overlapping loci in 567 
our data by using a permutation framework. In our QTL x ASV matrix, the ASVs were the rows and QTL were the columns. We 568 
randomized the QTLs for each ASV in the matrix and counted the maximum number of overlaps, stratifying by field location. This 569 
was performed 1000 times to develop a null distribution. All of our top 5 pleiotropic loci had p < 0.001. We chose to only analyze 570 
the top 5 loci for each site for presentability, but include the other loci passing this significance threshold in the supplemental tables. 571 
 572 
Gene Ontology Enrichments 573 
 We identified the gene content of the QTL matrix composed above using bedtools window, then extracted the Gene 574 
Ontology categories for each gene within each 25kb genomic bin. Enrichment was calculated against the background genome GO 575 
counts using a hypergeometric test and P values were corrected for multiple tests using the Benjamini-Hochberg procedure.  576 
 577 
Gene Expression Analysis 578 
 The expression values for gene underlying putative pleiotropic loci were extracted from the Panicum virgatum gene 579 
expression atlas which can be found on Phytozome 13. The FPKM values for P. virgatum gene expression across tissues and 580 
environments were generously shared with us by the group of Jeremy Schmutz. Differential expression between root and shoot 581 
tissue was performed using the following linear model on FPKM values. 582 
lm(log2(expression) ~ Tissue) 583 
 584 
The resulting P-values for the term ‘Tissue’ were corrected using the Benjamini-Hochberg procedure and significance was called at 585 
adjusted p value < 0.05. 586 
 587 
Pattern Triggered Immunity Assays 588 
 Leaf tissue was collected from the ATX field site plants in the spring of 2020. Leaf disks were punched from the leaves 589 
on location in the field and immediately placed in 2 mL of sterile DI water in a 48 well plate and covered with aluminum foil. The 590 
plates were gently shaken for 2 hours, then the disks were transferred to white, opaque 96 well plates in 50 uL of sterile DI water, 591 
wrapped in aluminum foil, and left overnight. The next day, the disks were treated with 50 uL of Flg22 elicitor cocktail (10ug/mL 592 
horseradish peroxidase, 34 ug/mL L-012, and 1 uM Flg22). The plates were read over a time series on a SpectraMax M3 plate 593 
reader. Negative control plates with a randomly selected group of genotypes were mock treated (10ug/mL horseradish peroxidase, 594 
34 ug/mL L-012, water). Each genotype was read in triplicate. To analyze the data, we log transformed the relative luminescence 595 
units of the time series and reduced the dimensionality using PCA.  596 
 597 
Genetic covariances of PTI axes and bacterial abundances 598 
 We performed genetic covariances between the first three PTI PCA axes and ATX root microbe relative abundances 599 
using the R package Sommer. We used the following mixed effects model. 600 
 601 
covar_mod <- mmer(cbind(ASV_abund, PTI_PC) ~ 1, random= ~vs(PLANT_ID, Gu=K), data=data, tolparinv = 1e-1) 602 
 603 
The terms for ASV_abund and PTI_PC changed depending on the focal ASV and focal PTI PC axis. Covariance estimates and 604 
standard errors for the estimates were gathered using the following command. 605 
 606 
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covar <- vpredict(covar_mod, covar ~ V2 / sqrt(V1*V3)) 607 
 608 
P values for observing the covariance estimate or larger (in magnitude) were calculated as p = 2*pnorm(estimate / standard_error, 609 
lower.tail=FALSE)610 
 

 

 

Figure Legends 

Figure 1. Field site is the primary determinant of switchgrass root microbiota composition. A) Principal coordinate 
analysis based on Bray-Curtis dissimilarities. Inset: map of field locations, colors match those in the figure legend. B) 
Relative abundance of phyla and Proteobacterial classes in every sample at each site. C) Effect sizes for Site, Host 
Subpopulation, and Subpopulation x Site for ASVs in dataset broken down by phylum / class. D) Number of ASVs 
with significant contrasts from the models displayed in panel C. E) Prevalence / abundance curves for each field site. 
Each point represents a single ASV and the black dashed line is the 80% prevalence threshold used to call core taxa. 
F) Venn diagram displaying overlaps of core microbiota from each site. G) Fraction of reads belonging to the core 
microbiota at each site (colored boxes) and the shared core microbiota (92 overlapping microbes from panel F, gray 
boxes). 
 

Figure 2. Plants show evidence of affinity to local bacterial strains. A) Map depicting locations where individuals 
within the population were collected. Colors represent their subpopulation memberships. Field sites are depicted with 
their three letter abbreviations. ATX = Austin, TX; CMO = Columbia, MO; KMI = KBS, MI. B) Proportion of ASVs 
showing specific enrichments in one subpopulation compared to the other two broken up by site. C) Histograms of 
microbial prevalence showing specific enrichments by subpopulation and site. P values represent the significance of 
the mean prevalence being greater than that of the background distribution. This was calculated by randomly drawing 
the number of enriched ASVs from the background distribution and asking how often we saw a mean prevalence 
greater than that of the focal set. 
 

Figure 3. Switchgrass root microbiota show widespread heritability which is influenced by field site differences. A) 
Variance components for aggregated abundances of different taxonomic levels and for ASVs. To be included in the 
models, features must have been present in greater than 80% of the samples, study-wide. B) The relationship between 
genetic variance components and microbial taxonomic rank C) The number of ASVs showing either significant GxE, 
VA, or no association to host genotype D) Comparison of the magnitude of VA vs GxE is presented as the log fold-
change in the ratio of VA to GxE for measured units within each taxonomic level.  E) VA estimates for the core 
microbiota present at every site. The size of the circles indicate the magnitude of estimated VA and dark perimeters of 
the circles indicate a significant association (FDR < 0.1).  
 

Figure 4. Pleiotropic loci influencing root microbiota. A) Number of ASVs detected in the 0.5% tails of the ASV x 
site GWAS p-value distributions. The top 5 most frequently observed genomic bins for each site are highlighted in 
site-specific colors. B) Candidate genes underlying the pleiotropic loci and their expression pattern in switchgrass 
roots and shoots. V1-V3 represent phenological stages of the plant and red boxes around expression values represent 
genes differentially expressed between roots and shoots (FDR < 0.05) C) Taxonomic breakdown of ASVs affected by 
putatively pleiotropic loci. D) Comparison of QTL similarity (1 - Jaccard Dissimilarity) and ASV sequence similarity.  
 

Figure 5 GWAS reveals loci associated with core switchgrass root microbiota. A) Manhattan plot showing the 
association between SNPs and abundances of core ASVs. P values are derived from combining P-values using Fisher’s 
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method. Peaks are colored by the Phylum / Class of the ASV. B) The most strongly enriched Gene Ontology (GO) 
terms within the core ASV GWAS tails. 
 

Figure 6. ASV abundances co-vary with mamp triggered immune responses A) Response curves for the switchgrass 
population planted at the ATX site for treatment with 1 uM Flg22. B) Response curves for mock inoculated plants. C) 
Narrow sense heritability estimates for the three PC axes of PTI response variation. D) The 5% and 95% percent tails 
of the first three PC axes of PTI response variation. E) Microbial manhattan plot displaying the p-values for the 
covariances between ASV relative abundance and the PC axes of PTI variation. Colored circles represent ASVs 
passing a Bonferroni threshold of 0.05.   
 

  

Supplementary Figure 1. Sequencing depths for samples included in this study 

 

Supplementary Figure 2. Comparison of the results from the compound symmetry and 

unstructured models used to estimate genetic variance components contributing to the abundance 

of ASVs. How ASVs change in their assignment of significant Va (G), GxE, or no association to 

host genetic variation (y-axis) between the two model structures (x-axis) are denoted by lines. The 

number of ASVs changing assignments are denoted by line thickness and written values.  

 

Supplemental Figure 3. Covariances of the same ASVs compared across different sites. A) Density 

plots showing the distribution of covariance estimates. B) Number of ASVs with significant 

covariance. 

 

Supplemental Figure 4. GWAS reveals loci contributing to community structure in each field site. 

GWAS on the first three PCo of community dissimilarity metrics (Bray) from each field location. 

The genome-wide threshold, set at 5x10-8, is indicated by a dashed line in each Manhattan plot.     
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Supplemental Figure 5. ASV by site GWAS scans identify diverse taxa affected by genomic 

variation. Bacterial ASVs tested for and showing significant associations with SNPs (P < 5x10-8) 

in A) Austin, TX, B) Columbia, MO, and C) KBS, MI. The number of tested microbes is in black 

while ASVs with significant associations show up in the color corresponding to the field site. The 

inset in panel C is the association between h2 and having at least one SNP associated with 

microbial abundance. D) Heatmap of ASVs where GWAS was performed in multiple sites. Black 

boxes indicate microbes with at least one significant SNP associated with relative abundance.  

 

Supplemental Figure 6. Gene Ontology enrichments show similar and contrasting patterns across 

locations.  

 

Supplemental Table 1 Study-wide and site-specific core taxa 
Supplemental Table 2 Subpopulation specific enriched microbes 
Supplemental Table 3 Compound Symmetry Model Results 
Supplemental Table 4 VA estimates using unstructured model 
Supplemental Table 5 Statistical Pleiotropic Loci 
Supplemental Table 6 Proportion of microbes with enriched GO terms 
Supplemental Table 7 Enriched GO terms from GWAS meta-analysis 
Supplemental Table 8 Significant GWAS Metanalysis Annotations 
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