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ABSTRACT 
 
Worldwide, vineyards sustainability is threatened by grapevine (Vitis vinifera L.) trunk diseases (GTD), 
which spread insidiously, irreversibly degrading internal trunk tissues and ultimately entailing vine 
death. Foliar symptoms can erratically appear, but the sanitary status of vines cannot be ascertained 
without injuring the plants. To tackle this challenge, we developed a novel approach based on 
multimodal 4D imaging and artificial intelligence (AI)-based image processing that allowed a non-
invasive GTD diagnosis. Each imaging modality contribution to tissue discrimination was evaluated, 
and we identified quantitative structural and physiological markers characterizing wood degradation. 
The combined study of the anatomical distribution of degraded tissues and the foliar symptom history 
of plants collected in a vineyard in Champagne, France, demonstrated that white rot and intact tissue 
contents were key measurements. We finally proposed a model for an accurate GTD diagnosis. This 
work opens new routes for precision agriculture by permitting field monitoring of GTD and surveying 
plant health in situ.  
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INTRODUCTION 
 
Grapevine trunk diseases (GTDs) are a major 
cause of vine decline worldwide (1). They are 
mostly undetectable until advanced stages are 
reached, and the European Union has banned the 
only effective treatment, i.e., an arsenic-based 
pesticide. Therefore, vineyards sustainability is 
jeopardized, with yearly losses up to several 
billion dollars (2, 3).  
GTDs detection and monitoring are extremely 
challenging: fungal pathogens insidiously 
colonize trunks, leaving different types of 
irreversibly decayed tissues (1). The predominant 
GTD, Esca dieback, induces typical tiger stripe-like 
foliar symptoms observed erratically, but their 
origin remains poorly understood (4) and their 
sole observation is not indicative of the vines’ 
sanitary status (5-8). Quantifying degraded 
tissues within living vines could help determine 
the plant condition and predict disease evolution, 
but classical techniques (9) require sacrificing the 
plant, often yielding limited information. 
Reaching a reliable diagnosis is thus impossible in 
living plants. 
To address this issue, we developed a novel 
approach based on medical multimodal imaging 
(Magnetic Resonance Imaging (MRI) and X-ray 
computed tomography (CT)) and assisted by AI-
based automatic segmentation that allows 
unprecedented non-invasive diagnosis of GTDs. 
We were able to perform an accurate detection 
and quantification of healthy and unhealthy 
wood compartments within twelve entire vines 
from a vineyard in Champagne, France. As in 
medicine (10), vine-specific “digital twins” could 
revolutionize viticulture by providing diseased 
vines-dedicated models, and computerized 
assistance to diagnosis. 
We identified structural and physiological 
markers characterizing the early and late stages 
of wood degradation and assessed the 
contribution and efficiency of each imaging 
technique to their detection. We finally studied 

the relationships between foliar symptoms and 
the anatomical distribution of intact, degraded, 
and white rot tissues. This study gives access to 
key indicators of the vine sanitary status and 
enables solutions for field monitoring of GTDs 
and other complex diseases.  
 
RESULTS 
 
Multimodal 3D imaging of healthy and sick 
tissues in vines 

Based on foliar symptom history, symptomatic- 
and asymptomatic-looking vines (twelve total) 
were collected in 2019 from a Champagne 
vineyard (France) and imaged using four different 
modalities: X-ray CT and a combination of 
multiple MRI protocols: T1-, T2-, and PD-
weighted (w) (Fig. 1). Following imaging 
acquisitions, vines were molded, sliced, and each 
side of the cross-sections photographed (approx. 
120 pictures per plant). Eighty-four random cross-
sections and their corresponding images were 
manually annotated by experts according to 
visual inspection of tissue appearance. Six classes 
showing specific colorations were defined (Fig. 
2.a): (i) healthy-looking tissues showing no sign of 
degradation; and unhealthy-looking tissues such 
as (ii) black punctuations, (iii) reaction zones, (iv) 
dry tissues, (v) necrosis associated with GTD (incl. 
Esca and Eutypa dieback), and (vi) white rot 
(decay). The 3D data resulting from each imaging 
modality (three MRI, X-ray CT, and registered 
photographs) were aligned into 4D-multimodal 
images (11). It enabled 3D voxel-wise joint 
exploration of the modality’s information and its 
confrontation with ground-truth annotations by 
experts (Fig. 2.b). 
 
A preliminary study of manually annotated 
random cross-sections led to the identification of 
general signal trends distinguishing healthy- and 
unhealthy-looking tissues (Fig. 2.a, 2.c and 2.d).  
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Considering healthy-looking wood, areas of 
functional tissues were associated with high X-ray 
absorbance and high MRI values (i.e., high NMR 
signals in T1-, T2-, and PD-weighted images) while 
non-functional wood showed slightly lower X-ray 
absorbance (approx. -10%) and lower values in all 
three MRI modalities (-30 to -60%).  
As to unhealthy-looking tissues, signals were 
highly variable. Dry tissues, resulting from 
wounds inflicted during seasonal pruning, 
exhibited medium X-ray absorbance and very low 
MRI values in all three modalities. Necrotic 
tissues, corresponding to different types of GTD 
necrosis, showed medium X-ray absorbance 
(approx. -30% compared to functional tissues) 
and medium to low values in T1-w images, while 
signals in T2-w and PD-w were close to zero (-60 
to -85%). Black punctuations, known as clogged 
vessels, generally colonized by the fungal 
pathogen Phaeomoniella chlamydospora, were 

characterized by high X-ray absorbance, medium 
values in T1-w, and variable values in T2-w and 
PD-w. Finally, white rot, the most advanced stage 
of degradation, exhibited significantly lower 
mean values in X-ray absorbance (-70% compared 
to functional tissues; -50% compared to necrotic 
ones) and in MRI modalities (-70 to -98%).  
Interestingly, some regions of healthy-looking 
(uncolored) tissues showed a particularly strong 
hypersignal in T2-w compared to the surrounding 
ones (Fig. 2.d). Located in the vicinity of necrotic 
tissue boundaries and sometimes undetectable 
by visual inspection of the wood, these regions 
most probably corresponded to reaction zones 
described earlier as areas where host and 
pathogens strongly interact and showing specific 
MRI signatures (12).  
 
These results highlighted the benefits of 
multimodal imaging in distinguishing different 

Figure 1 
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tissues for their degree of degradation, and in 
characterizing signatures of the degradation 
process. The loss of function was properly 
highlighted by a significant MRI hypo signal. The 
necrosis-to-decay transition was marked by a 
strong degradation of the tissue structure and a 
loss of density revealed by a reduction in X-ray 
absorbance. While distinguishing different types 
of necrosis remained challenging because their 
signal distributions overlap, degraded tissues 
exhibited multimodal signatures permitting their 
detection. Interestingly, specific events such as 
reaction zones were detected by combining X-ray 
and T2-w modalities. Overall, MRI appeared to be 
better suited for assessing functionality and 
investigating physiological phenomena occurring 
at the onset of wood degradation when the wood 
still appeared healthy (Fig. 2.f). On the opposite, 
X-ray CT seemed more suited for the 
discrimination of more advanced stages of 
degradation. 
 
 
Figure 1: General Workflow: from wine 
multimodal imaging to data analysis. 
(1) and (2) Multimodal 3D imaging of a vine using MRI 
(T1-weighted, T2-w, and PD-w) and X-ray CT.  
(3) (Optional step) the vine is molded and then sliced 
every 6 mm. Pictures of cross-sections (both sides) are 
registered in a 3D photographic volume and some 
cross-sections are manually annotated by experts.  
(4) Multimodal registration of the MRI, X-ray CT, and 
photographic data into a coherent 4D image using 
Fijiyama (11). 
(5) Machine-learning based voxel classification. 
Segmentation of images based on the tissue expert 
manual annotations: wood (intact, degraded, white 
rot), bark and background. The classifier was trained 
and evaluated using manual annotations collected on 
different vines during step 3. 
(6) Data analysis and visualization.  
 

Automatic segmentation of intact, degraded, 
and white rot tissues using non-destructive 
imaging 

To propose a proper in vivo GTD diagnosis 
method, we aimed to assess vines' condition by 
quantifying automatically and non-destructively 
the trunks' healthy and unhealthy inner 
compartments in 3D. To achieve this complex 
task, we trained a segmentation model to detect 
the level of degradation voxel-wise, using imaging 
data acquired with non-destructive devices. We 
defined three main classes corresponding to the 
level of tissue degradation: (1) “intact” for 
functional or non-functional but healthy tissues; 
(2) “degraded” for necrotic and other altered 
tissues; and (3) “white rot” for decayed wood (Fig. 
2.a).  
An algorithm was trained to automatically classify 
each voxel in one of the three classes, based on 
its T1-w, T2-w, PD-w, and X-ray absorbance 
values (Fig. 3.a). The classification was performed 
using the Fast Random Forest algorithm 
implemented in the Weka library (13). The 
algorithm was first trained on a set of 81,454 
manually annotated voxels (Table S1), then cross-
validated, and finally applied to whole 4D-images 
(46.2 million voxels total) (Fig. 1.4). The mean 
global accuracy of the classifier (91.6% ± 2.0) 
indicated a high recognition rate, with minor 
variations among cross-validation folds (Table 
S2). In our evaluation, F1 scores were 93.6% (± 
3.7) for intact, 90.0% (± 3.8) for degraded, and 
91.4% (± 6.8) for white rot tissue classes. The 
global confusion matrix of the validation sets, 
summed over the 66 folds (895,994 samples), 
showed that the great majority of incorrect 
classifications were either due to confusions 
between intact and degraded classes (53.4%) or 
between degraded and white rot (20.8%) (Table 
S3). Intact and white rot classes were almost 
never confused (<0.001% error).  
The same validation protocol was used to 
compare the effectiveness of all possible 
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combinations of imaging modalities for tissue 
detection (Fig. 3.b): the most efficient 
combination was [T1-w, T2-w, X-ray] for 
detection of intact (F1= 93.9% ± 3.4) and 
degraded tissues (90.5% ± 3.2); and [T1-w, X-ray] 
for white rot (93.0% ± 5.1). Interestingly, the X-ray 
modality considered alone reached almost similar 
scores for white rot detection. In general, slightly 
better results (± 0.5%) were obtained without 
considering the PD-w modality, most probably 
due to its lower initial resolution.  
The classifier was finally applied to the whole 
dataset, and statistics were computed to 

compare the tissue contents in different vines. 
Considering the entire classified dataset (46.2 
million voxels), mean signal values significantly 
declined between intact and degraded tissues (-
19.3% for X-ray absorbance; and -57.3%, -86.3% 
and -71.3% for MRI T1-w, T2-w, and PD-w, 
respectively); and between degraded and white 
rot (-56.0% for X-ray absorbance; and -36.8%, -
76.8% and -64.2% for MRI T1-w, T2-w, and PD-w, 
respectively) (Fig. 2.e and Table S4). 
 
With the increasing deployment of X-ray and 
NMR devices on phenotyping tasks, in-field 

Figure 2 
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imaging has become accessible, but at a heavy 
cost in terms of image quality and resolution. We 
challenged our method by training and evaluating 
the classifier at coarser resolutions, ranging from 
0.7 up to 10 mm per voxel (Fig. 3.c). Results 
proved our approach maintained correct 
performances even at 10 mm (F1 ≥ 80% for I; ≥ 
70% for D and WR) while a human operator is no 
longer able to recognize any anatomical structure 
or tissue class at this resolution. 
 
These results confirmed both the wide range of 
potential applications and the complementarity 
of the four imaging modalities. Combining 
medical imaging techniques and an AI-based 
classifier, it was possible to segment intact, 
degraded, and white rot compartments 
automatically and non-destructively inside the 
wood. This represents an important 
breakthrough in their visualization, volumic 
quantification and localization in the entire 3D 
volume of the vines (Fig. 3.d). 
 
Figure 2: Multimodal imaging and signal 
analysis. 
a) Comparison of tissue classification based either on 
visual observation of trunk cross-sections (6 classes), 
multimodal imaging data (7 classes), or AI-based 
segmentation (3 classes). 
b) Multimodal imaging data collected on vines. XZ 
views of the photographic, X-ray CT, and MRI volumes, 
after registration using Fijiyama (11). 
c) Example of manual tissue annotation and 
corresponding multimodal signals. 
d) Multimodal signal values collected by manual 
annotation of tissues on random trunk cross-sections 
(19,372 voxels total). 
e) Multimodal signal values collected automatically on 
all 4D datasets (46.2 million voxels total) after AI-based 
voxel classification in three main tissue classes defined 
as Intact, Degraded and White rot. 
f) General trends for functional and structural 
properties during the wood degradation process, and 
proposed fields of application for MRI and X-ray CT 
imaging. 

Legend: letters on bar plots correspond to Tukey tests 
for the comparison of tissue classes in each modality. 
 
Deciphering the relationship between inner 
tissue composition and external symptomatic 
histories: a step forward toward a reliable in situ 
diagnosis 

Non-destructive detection of GTDs in vineyards is 
currently only possible through the observation 
of foliar symptoms and vine mortality, and 
numerous studies are based on these proxies for 
phenotyping. Foliage is usually screened at 
specific periods of the year when Esca or Eutypa 
dieback symptoms occur, and this screening is 
usually repeated for one or several years. New 
leaves are produced each year and symptoms 
may not recur in following years, making any 
diagnosis hazardous at best, and attempts to 
correlate external and internal impacts of GTDs 
unsuccessful. Here, foliar symptoms were 
recorded each year for twenty years, i.e., since 
the plot was planted in 1999 (Fig. 4.a). Together 
with the accurate quantification and localization 
of degraded and non-degraded compartments in 
trunks, this allowed more advanced 
investigations.  
 
Using only foliar symptoms observed in 2019 as 
markers, half of the vines would have been 
misclassified as “healthy” plants although 
harboring significantly degraded internal tissues 
(Fig. 4.b). Indeed, despite the absence of leaf 
symptoms these vines contained important 
volumes of deteriorated wood (up to 623 cm3 of 
degraded tissues and 281 cm3 of white rot) (Table 
S5). Considering one year at a time, the foliar 
symptom proxy would have led to different -and 
erroneous- diagnoses each year, confirming its 
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unreliability (Fig. 4.a). Correlations between foliar 
symptoms observed in 2019 and total internal 
contents were indeed very weak (R2= -0.25, 0.27 
and 0.18 for intact, degraded, and white rot, 
respectively). On the opposite, internal tissue 
contents were better supported by categories 

considering the complete vine history (Fig. 4.c). 
For example, the sum of foliar symptoms 
detected during the vine’s life was strongly 
correlated to the composition of internal tissues 
(R2= -0.87, 0.79, and 0.84 for intact, degraded, 
and white rot, respectively) and the correlation 

Figure 3 
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between inner contents and the date of the first 
foliar symptom expression was also high (-0.87 
for intact, 0.91 for white rot) (Table S6).  
 
As illustrated by 3D reconstructions (Fig. 3.d), 
degraded and white rot compartments were 
mostly continuous and located in the top of the 
vine trunk. This result was consistent with 
previous reports and the positioning of most 
pruning injuries that are considered as pathways 
for the penetration of fungal pathogens causing 
GTDs (1). However, the distribution and volumes 
of the three tissue classes helped distinguish 
different degrees in disease severity (Fig. 4.d). In 
detail, the tissue content located in the upper last 
centimeters of the trunk and the insertion point 
of branches allowed efficient discrimination of 
the vine condition (Fig. 4.e). On one hand, the 
proportion of intact tissues detected in this 
region discriminated between vines with mild 
forms of the disease (intact > 30%) and vines at 
more advanced stages (< 30%). On the other 
hand, the proportion of white rot distinguished 
the healthiest vines (white rot < 8%), more 
affected ones (8 to 15%), and the ones facing 
critical stages (> 15%). The volume of degraded 
tissues, together with the positioning of intact 
and white rot tissues, allowed to fine-tune the 
diagnosis (Fig. S1). 
 
Non-invasive imaging and 3D modeling offered 
the possibility to access both internal tissue 
contents and spatial information without 
harming the plant (Fig. 5). In vines suffering from 
advanced stages of trunk diseases, white rot 
tissues were surrounded by degraded tissues, 
while only thin areas of intact functional tissues 
were limited to the periphery of trunk tops. As 
illustrated in Fig. 5, abiotic stresses such as a fresh 
wound can also have a huge impact on the 
functionality of surrounding tissues and affect 
even more plant survival.  

 
Figure 3: Automatic tissues segmentation 
a) AI-based image segmentation using multimodal 
signals.  
b) Comparison of all possible imaging modality 
combinations for their effectiveness (F1-scores) in 
tissue detection. 
c) Effectiveness of tissue detection at lower imaging 
resolutions (using four modalities). 
d) 3D reconstructions highlighting the extent and 
localization of the degraded and white rot 
compartments in four vines. 
 
Figure 4: Deciphering the relationship between 
inner tissue degradation and external foliar 
symptoms. 
a) Left: Detailed history of external GTD symptoms 
expression. Right: classification of vines based on their 
external sanitary status, either considering year 2019 
only or the complete symptom history (right). 
b) and c) Internal tissue contents of the trunks. Vines 
are grouped per phenotypic categories, based either 
on the single 2019 observation or the complete 1999-
2019 symptom history. 
Tissue percentages are calculated from the upper 25 
cm of the trunk. 
d) Comparison of phenotypic categories for the white 
rot and intact tissues distribution (mean and interval) 
along the trunk. Position 0 cm corresponds to the top 
of the trunk and initiation of branches (i.e., > 0 in 
branches; < 0 in trunk). 
e) Comparison of vines for intact and white rot tissue 
contents in the region -2 to +2 cm (last 2cm of the 
trunk and first 2 cm of the branches). 
 
Figure 5: 3D visualization of internal tissue 
contents: example of a specimen at the critical 
stage of vine decline  
a) Original external view of the vine. 
b) Combining MRI data volume rendering and white 
rot model. 
c) 3D representation of the intact (green), degraded 
(orange) and white rot (red) compartments inside the 
trunk.  
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DISCUSSION 
A new method for non-destructive detection of 
wood diseases 

GTDs are mostly undetectable until advanced 
stages are reached, and their detection is 
currently only possible through destructive 
techniques or the observation of erratically 
expressed foliar symptoms. A non-destructive 
and reliable method for detecting GTDs is 
frequently expected (1, 14-16). To that end, we 
developed an innovative approach to non-
destructively measure healthy and unhealthy 
tissues in living perennial vines. We combined 1) 
non-invasive 3D imaging techniques originated 
from the medical field; 2) a registration pipeline 
for multimodal data; and 3) a machine-learning 
based model for voxel classification. We were 
able to determine voxel-wise the level of tissue 
degradation, and to accurately segment, 
visualize, and quantify healthy and unhealthy 
compartments in the plants.  
 
Among the imaging modalities tested, MRI 
already proved relevant to assess tissue functions 
in grapevine (17) and in several applications in 
living plants (18). In a recent study, MRI 
surprisingly failed to distinguish healthy and 
necrotic tissues in grapevine trunk samples (19). 
Here MRI was found particularly well suited for 
detecting early stages of wood degradation, 
characterized by a significant loss of signal (57 to 
86%) in T1-w and T2-w protocols between intact 
and degraded tissue classes. Combining MRI 
modalities provided information on the tissue 
functionality and water content. T1-w was 
efficient for anatomical discrimination and T2-w 
highlighted phenomena associated with host-
pathogens interactions such as reaction zones. 
Interestingly, the T2-w signal dropped by approx. 
-60% between functional and non-functional 
tissues but increased by +110% between non-
functional and reaction zones.  

X-rays CT, on the other hand, was particularly 
efficient in detecting more advanced stages of 
wood deterioration characterized by a loss in 
structural integrity and highlighted by a 56% drop 
in X-ray absorbance between degraded and white 
rot tissues.  
Multimodal imaging, together with the 4D 
registration step and machine learning to extract 
information, proved its efficacy: combining MRI 
and X-ray CT significantly increased the quality of 
tissue segmentation. All possible imaging 
combinations were finally compared for their 
efficiency, and it is now possible to select the 
modality(ies) best suited to specific needs. For 
example, combining T1-w, T2-w, and X-ray was 
optimal for intact and degraded tissues detection, 
but T2-w alone proved also efficient in case only 
one imaging modality is possible. For white rot 
detection, combining T1-w and X-ray, or using X-
ray alone were the best options.  
 
Monitoring wood degradation using X-ray 
tomography or MRI was previously tested in 
other species, mostly on blocks or planks, and 
using a single imaging technique (20-22). In 
grapevine, CT scan allowed visualizing the graft 
union (23), studying xylem refilling (24) and 
tyloses-occluded vessels (25), or quantifying 
starch in stems (26). It was also tested on leaves 
to investigate the origin of GTD foliar symptoms, 
suggesting that symptoms might be elicited from 
the trunk (4). X-ray CT and MRI were successfully 
combined to collect anatomical and functional 
information and investigate in vivo flows in stems 
(17). These techniques were recently tested for 
GTDs detection (19), but were applied separately 
and on different wood samples, preventing the 
possibility of combining modalities and thus 
limiting their effectiveness. Here we collected 
multimodal 3D data on whole trunks of aged 
plants and developed a pipeline for automatic 
analysis. Although vines were cut up to gather 
data to train and evaluate the classifier, this 
approach is now feasible without harming the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.09.495457doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.09.495457
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fernandez et al.     11 
 
 

plants (Fig. 1). It opens several exciting prospects 
for GTD diagnosis and potential applications to 
other plants or complex diseases difficult to 
detect so far. 
 
GTD indicators based on internal tissue 
degradation rather than external foliar 
symptoms 

New light was shed on classical monitoring 
studies when we compared foliar symptom 
histories with internal degradations. While 
previous reports showed necrosis volumes could 
be linked to the probability of esca leaf symptoms 
occurrence and white rot volumes to apoplectic 
forms (6-8, 15), only weak correlations between 
tainted or necrotic tissue contents and foliar 
symptoms were generally observed (5, 27). In 
most studies, plants are considered “healthy” if 
not expressing any foliar symptoms for one or 
two years only. Our results confirmed that the 
appearance of foliar symptoms in a given year are 
not linked to the volume of internal wood 
degradations, and that foliar symptoms are not 
reliable markers of the plant's actual health status 
in the GTD context.  
Here we considered that the internal tissue 
composition (intact, degraded, white rot) better 
reflects the severity of the disease affecting the 
vines and their actual condition. 
It seemed particularly relevant for asymptomatic 
vines: half of them, harboring large volumes of 
unhealthy tissues, would have been erroneously 
categorized as “healthy” plants using the foliar 
symptom proxy. Indeed, asymptomatic vines 
could have reached advanced stages of GTDs 
while symptomatic ones could be relatively 
unharmed. In such cases, foliar symptoms-based 
diagnosis is not reliable and internal tissue 
content is the only reliable proxy of plant health. 
Necrotic and decay compartments are intuitively 
more stable indicators than foliage symptoms: 
once tissues have suffered irreversible 

alterations, they will remain obviously not 
functional. 
 
An internal tissue-based model for accurate GTD 
diagnosis  

A model based on the quality, quantity and 
position of internal tissues could be proposed for 
an accurate diagnosis. Different stages in trunk 
damages could be distinguished: “Low” damages 
would be characterized by low volumes of altered 
tissues; - “moderate” by significant degraded and 
decay contents but still a fair amount of 
peripheral intact tissues; and - “critical” by only 
very limited areas of intact tissues (Fig. 6). 
Assuming a non-destructive imaging detection, 
these stages could be evaluated directly in 
vineyards and permit a reliable diagnosis in living 
specimens. Based on cross-sections, a threshold 
value of 10% white rot in branches has been 
proposed as a predictor for the chronic form of 
Esca (8, 15). This value could be a proper 
threshold between the low and moderate phases 
defined here, while 20% white rot would be the 
limit toward the critical stage. However, intact 
tissues should also be considered: a minimum of 
30% intact tissues located in the last centimeters 
of the trunk could be proposed as a threshold for 
critical status. 
Here all necrotic tissues were regrouped in a 
single degraded class, but defining more tissue 
classes (e.g. different types of necrosis) could 
enable studying each wood disease separately. 
Grapevine is a tortuous liana in which both the 
proportion and configuration of tissues are highly 
irregular along the trunk, and among plants. 
Thresholds for the transition from one stage to 
the other would probably need to be established 
according to the grapevine variety. Considering 
their vigor and capacity to produce new 
functional tissues every year, some varieties 
might be able to cope with large volumes of 
unhealthy tissues while maintaining sufficient 
physiological and hydraulic functions. Other 
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factors such as the environment, fungal 
pathogens and pruning mode might also 
influence the capacity of the plant to survive with 
only very limited intact tissues (1), and their 
impact could be measured using this novel non-
destructive approach.  
 
Predicting the course of diseases and assisting 
management strategies  

The quantity and position of healthy and 
unhealthy tissues could be useful to predict the 
evolution of the plant sanitary status. According 
to intact tissue content, it would indeed be 
tempting to predict that an asymptomatic vine 
might soon develop symptoms, assuming its 
proximity to neo-symptomatic vines (Fig. 4.e). 
Considering white rot and degraded tissues, we 
could also guess that, among the asymptomatic-
resilient vines, one was more likely to survive a 
few more years, whereas others were more likely 
to die in the next year or so. Additional and larger-
scale data are required to confirm the 
effectiveness of these proxies for individual and 
accurate predictive diagnosis, but multimodal 
imaging already proved relevant for diagnosing 
the current status of the vines studied here.  
 
White rot removal using a small chainsaw has 
been proposed to extend the life of seriously 
affected vines. This technique, called curettage, is 
under evaluation. It is particularly aggressive and 
applied "blindly", causing great damage to the 
plant. By giving access to the exact location and 
volume of sick tissues to be removed, our non-
destructive approach could improve precision 
surgery by enabling low-damage access to the 
sick inner compartments. It will also permit in vivo 
evaluation of its long-term efficacy.  
Finally, non-destructive and in vivo monitoring 
studies of internal tissue contents could help 
identify plants that require urgent intervention 
(i.e., local treatment, curettage, surveillance) or 

to prioritize replacements in plots, facilitating 
vineyards management.  
 
CONCLUSION 
 
By providing direct access to internal tissue 
degradations in living plants, non-destructive 
imaging and AI-based image analysis could 
provide new insights on complex diseases such as 
GTDs. A wide range of new, in vivo, and time-
lapse studies now become accessible. For 
example, physiological responses to wounding 
and pathogen-linked infection could be 
monitored at tissue level to search for varietal 
tolerance. At the individual level, long-term 
surveillance of healthy, necrotic and decay tissues 
could fine-tune prediction models and allow the 
evaluation of potential curative solutions. The 
enigmatic origin of Esca foliar symptoms, and the 
influence of environmental factors on disease 
development could probably be investigated 
more efficiently than with traditional, destructive 
methods. Previous studies, based on a limited 
number of foliar symptom observations, might 
also have led to wrong interpretations, and could 
be revisited. If no alternative is possible, foliar 
symptoms should at least be considered with 
extreme caution, after multiple years of survey.  
 
In medicine, imaging is often dedicated to single 
individuals, which is rarely the case for plants that 
are generally considered at the population level. 
In viticulture, however, plots are perennial, and 
each vine represents a long-term financial 
investment, especially in the Champagne region. 
Individual and non-destructive diagnosis is 
therefore of great interest for grapevine, whether 
to target a local treatment or to consider the 
replacement of specific individuals. Long-term 
and complex diseases are also generally more 
difficult to handle. Conceiving virtual digital twins 
of living vines would authorize monitoring 
complex diseases, modeling their evolution, and 
assessing the impact of novel solutions, at 
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different scales. Placing medical imaging at the 
bedside of grapevines offers great hopes and 
exciting perspectives and could help define next-
generation management processes.  
 

 

 
Figure 6: Model for GTD diagnosis based on the 
degree of trunk internal tissue degradation. 
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MATERIALS AND METHODS 
 
Plants 

A vineyard was planted in 1999 in Champagne, 
France, with Vitis vinifera L., cultivar Chardonnay 
rootstock 41B, and with a traditional Chablis 
pruning system. Each vine was monitored every 
year by CIVC for foliar symptom (FS) expression of 
grapevine trunk diseases (GTDs, including Esca, 
Black dead arm, Botryosphaeria and Eutypa 
diebacks). Observations were performed at 
different periods during the vegetative season to 
ensure the detection of different forms of GTDs, 
if present.  
Based on FS observed in 2019, vines were 
considered asymptomatic (healthy) or 
symptomatic (sick).  
Based on their whole FS history, vines were then 
sub-classified as: 

1) asymptomatic-always if they never 
expressed any FS. 

2) asymptomatic-resilient if they expressed 
FS in previous years but not in 2019. 

3) symptomatic-neo if they expressed FS for 
the first time in 2019. 

4) symptomatic-apoplectic if they died 
suddenly from typical apoplexy a few 
days before being collected.  

For our study, vines showing different histories 
(three vines per subclass, 12 total, Fig. 3.a) were 
manually collected from the vineyard on the 19th 
of August 2019. 
Branches and roots were cut out approx. 15 cm 
from the trunk, and plants were individually 
packed in sealed plastic bags to prevent drying. 
 
Multimodal imaging acquisitions 

Multimodal imaging acquisitions were performed 
on each vine individually, from rootstocks to the 
beginning of branches, by Magnetic Resonance 
Imaging (MRI) and X-ray Computed Tomography 
(CT).  

MRI acquisitions were performed with Tridilogy 
SARL (http://www.tridilogy.com) and the help of 
radiologists from CRP/Groupe Vidi at the Clinique 
du Parc (Castelnau-le-Lez, France), using a 
Siemens Magnetom Aera 1,5 Tesla and a human 
head antenna. Three acquisition sequences, T1-
weighted(-w), T2-w, and PD-w were performed 
on each specimen, respectively:  
- 3D T1 Space TSE Sagittal (Thickness 0.6 mm, 
DFOV 56.5 x 35 cm, 320 images, NEx 1, EC 1, FA 
120, TR 500, TE 4.1, AQM 256/256). 
- 3D T2 Space Sagittal (Thickness 0.9mm, DFOV 
57.4 x 35.5 cm, 160 images, NEx 2, EC 1, FA 160, 
TR 1100, TE 129, AQM 384/273). 
- Axial Proton Density Fat Sat TSE Dixon (Ep 5mm, 
Sp 6.5, DFOV 57.2 x 38 cm, 40 images, NEx 1, EC 
1, FA 160, TR 3370, TE 21, AQM 314/448). 
X-ray CT acquisitions were performed at the 
Montpellier RIO Imaging platform (Montpellier, 
France, http://www.mri.cnrs.fr/en/) on an 
EasyTom 150kV microtomograph (RX Solution). 
3D volumes were reconstructed using XAct 
software (RX solution) and resulted in approx. 
2500 images per specimen at the resolution of 
177 µm/voxel. Geometry, spot, and ring artifacts 
were corrected when necessary, using the default 
correction settings.  
 
Plant slicing and photographic acquisition 

After MRI and X-ray CT acquisitions, plants were 
individually placed in rigid PVC tubes, molded in a 
fast-setting polyurethane foam filler, and cut into 
6 mm-thick cross-sections using a bandsaw (Fig. 
1.3). Cutting thickness was approx. 1 mm. Marks 
were placed on tubes to ensure regular slicing, 
and three rigid plastic sticks with different 
diameters were molded together with vines to 
serve as landmarks for their realignment. Both 
faces of each cross-section were then 
photographed using a photography studio, 
artificial light, a tripod, a digital camera (Canon 
500d), and a fixed-length lens (EF 50mm f/1.4 
USM) to limit aberration and distortion. 
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Approximately 120 pictures per plant were 
collected and registered into a coherent 3D 
photographic volume based on landmarks. 
  
Data preprocessing: 4D multi-modal registration 

For each vine, 3D data from all modalities (MRI 
T1-w, T2-w and PD-w, X-ray CT, and 3D 
photographic volumes) were registered using 
Fijiyama (11) and combined into a single 4D-
multimodal image (voxel size = 0.68 mm x 0.68 
mm x 0.60 mm) (Fig. 1.4). To compensate for 
possible magnetic field biases, generally present 
at the edge of the fields during MRI acquisitions, 
we added checkpoints manually, facilitating the 
estimation of non-linear compensations during 
the 4D registration.  
The registration accuracy was validated using 
manually placed landmarks (167 couples) 
distributed in the different modalities. Compared 
to MRI and X-ray CT modalities, the photographic 
volume presented a reduced number of images 
and light geometric distortions due to slicing 
irregularities. However, the alignment between 
photographs and other modalities resulted in an 
estimated average registration mismatch of 1.42 
± 0.98 mm (mean ± standard deviation). The 
alignment between photographs and other 
modalities was accurate enough to allow experts 
to perform a manual annotation of tissues 
directly on the 4D-multimodal images (see 
below). 
 
Preliminary investigation of multi-modal signals 

An initial signal study was carried out on eighty-
four cross-sections randomly sampled from three 
vines.  
Tissues were firstly classified in 6 different classes 
based on their visual appearance (Fig. 2.a): (i) 
“healthy-looking tissues” showing no sign of 
degradation; (ii) “black punctuations” 
corresponding to clogged vessels; (iii) “reaction 
zones” described earlier (12); (iv) “dry tissues” 

resulting from pruning injuries; (v) “degraded 
tissues” including several types of necrotic 
tissues; and (vi) “white rot”.  
Once considering X-ray CT and MRI images, 
experts were able to distinguish “intact 
functional” and “intact non functional” tissues 
among the “healthy-looking” class, resulting in a 
total of seven tissue classes (Fig. 2.a and 2.c). 
Moreover, some apparently “healthy-looking” 
tissues showed specific MRI hypo- or hyper-
signals and were re-classified as “reaction zones” 
(Fig. 2.c). For these classes, an alteration of the 
wood aspect was not always visible by direct 
observation of the cross-sections. 
Finally, multiple regions of interest (ROIs, 19,372 
voxels total) were delineated by hand on the 
multimodal images and assigned to one of the 
seven tissue classes. For each selected voxel, 
values were gathered simultaneously from the 
four modalities (X-ray CT, T1-w, T2-w, and PD-w; 
77,488 values total) using the registered 
multimodal images. The data were processed 
using R (v3.5.3) and the R-studio interface 
(v1.2.5001). Results are summarized in Fig. 2.d. 
The significance of differences observed between 
the seven tissue classes was tested within each 
modality using Tukey tests and a 95% family-wise 
confidence level. 
 
Automatic tissues segmentation of the whole 3D 
datasets 

For each plant, thirteen cross-sections were 
sampled and manually annotated to label the 
corresponding voxels. Five classes were defined 
as 1) background; 2) bark; and three tissue classes 
3) intact tissues; 4) degraded tissues; and 5) white 
rot (Fig. 2.a). The annotation was performed 
using the Trainable segmentation plugin for Fiji 
(28), which was extended to process multi-
channel 3D images (see code availability). As a 
result, a set of 81,454 annotated voxels 
distributed among the twelve 3D volumes was 
produced (Table S1). 
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We trained an algorithm to classify each voxel 
Pi=(x,y,z) of the images (20 million voxels per 
specimen), attributing a class Ci among the five 
previously described (Fig 3.a). The classification 
was performed using the Fast Random Forest 
algorithm implemented in the Trainable 
Segmentation plugin given its performance when 
working with “small” training datasets (< 100.000 
samples). 
For each voxel, a feature vector Xi was built and 
then used by the classifier to predict the class Ĉ𝑖𝑖 
of the voxel Pi. Information on the voxel’s local 
environment was gathered in the feature vector 
by applying various image processing operators 
(local mean value, variance, edge, etc.) to the 
initial images, and for each imaging modality. 
These operators were parameterized using a 
scale factor taking values from 1 to 64 voxels. 
 
Evaluation of classifier performances 

The classifier performances were evaluated using 
a k-fold cross-validation strategy. In each fold, the 
annotated voxels were split into a training set and 
a validation set. The train set, regrouping 
annotations from 10 plants, was used to train the 
classifier. The validation set, containing 
annotations from the two remaining plants, was 
used to assess the performances of the trained 
classifier. A global confusion matrix was then 
computed from all possible 66 folds (Table S3). 
From this matrix, global and class-specific 
accuracies, and F1-scores (considering both the 
test precision p and the recall r (29) were 
evaluated for each class and for all possible 
combinations of imaging modalities (Fig. 3.b and 
Table S2). F1-scores are generally considered as a 
better indicator of performance because they 
highlight more precisely under- and over-
estimations of a specific class. 
 

Tissue quantification and 3D volumes 
reconstruction  

For further analysis, we only considered voxels 
corresponding to areas of interest, i.e., tissue 
classes intact, degraded, and white rot. The 
number and localization of these voxels were 
collected for tissue quantification and 
visualization. 3D views presented in Fig. 3.d and 
Fig. 5 were produced using isosurface extraction 
and volume rendering routines from VTK libraries 
(30). 
 
Relative positioning of tissue classes along the 
vines 

To compare the position of intact, degraded, and 
white rot tissues in different vines, we estimated 
the geodesic distance separating each voxel from 
a common reference area point located at the 
center of the trunk, twenty centimeters below 
trunk head. Using geodesic distances, we 
considered a region ranging from the last 20 cm 
of the trunk (defined as “position -20”), passing 
through the top of the trunk (“0”), to the first 5 
cm of branches (“+5”) (Fig. S2). This computation 
allowed the identification of voxel populations 
located within a same distance range while 
considering the tortuous shape of the trunks. 
 
Simulation of performances at lower resolutions  

To simulate an average portable imaging device’s 
resolution, test images were built by image sub-
sampling, resulting in voxel sizes ranging from 0.7 
(original resolution) up to 10 mm. The 
corresponding annotated samples were 
converted accordingly, retaining the most 
represented label for each voxel volume. The 
classifier was then trained and tested on these 
low-resolution sample sets. 
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SUPPORTING INFORMATION  

 
The following Supporting Information is available for this article: 
 
 

 
 
Table S1  Number of annotated samples available for classifier training and evaluation  
Distribution among tissue classes and vines.  
 
 
 
 
 
 
Table S2  Evaluation of classifier performances 
Global and class accuracies (Acc), precision (Prec), recall (Rec) and F1-scores (F1) percentages.  Mean 
(bold) and standard deviation (italic) were collected by training on ten vines and evaluating on the last 
two. Different combinations of imaging modalities were tested: MRI PD-w, T1-w, and T2-w; and X-ray 
CT (XR). 
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Table S3  Evaluation of the classifier performance: sum of confusion matrices 
Considering the 66 folds of the cross-validation.  
 
 
 
 
 

 
Table S4  Multimodal signal values corresponding to the three main tissue classes 
Means (in bold) and standard deviations (italic) (values in 8-bits) collected on the whole dataset (after 
automatic classification, 46.2 million voxels total). 
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Table S5  Tissue contents per vine 
Contents measured for each individual vine from the automatically segmented 3D datasets. Data were 
collected in the region ranging from the upper last 20 cm of the trunks to the first 5 cm of the branches. 
Results are expressed as volume (cm3) and percentages. 
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Table S6  Correlogram 
Chart of correlation statistics between “internal” (blue text) and “external” (black text) proxies for GTD 
status diagnosis. FS= foliar symptom; Nb= number; D= degraded tissues; WR= white rot.  
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Fig. S1 Detailed comparison of vines for intact, degraded, and white rot contents considering 
different positions along the vine trunk 
AS-A= asymptomatic-always; SY-N= symptomatic-neo; AS-R= asymptomatic-resilient; SY-A= 
symptomatic-apoplectic. 
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Fig. S2 Vine trunk geodesic distance estimation 
Geodesic distances were estimated from the center of the trunk and using the top of the trunk as a 
reference (point “0”). 
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