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Sensorimotor learning is a dynamic, systems-level process that involves the combined action of multiple
neural systems distributed across the brain. Although we understand a great deal about the special-
ized cortical systems that support specific components of action (such as reaching), we know less about
how cortical systems function in a coordinated manner to facilitate adaptive behaviour. To address this
gap in knowledge, our study measured human brain activity using functional MRI (fMRI) while par-
ticipants performed a classic sensorimotor adaptation task, and used a manifold learning approach
to describe how behavioural changes during adaptation relate to changes in the landscape of cortical
activity. During early adaptation, we found that areas in parietal and premotor cortex exhibited sig-
nificant contraction along the cortical manifold, which was associated with their increased covariance
with regions in higher-order association cortex, including both the default mode and fronto-parietal
networks. By contrast, during late adaptation, when visuomotor errors had been largely reduced, we
observed a significant expansion of visual cortex along the cortical manifold, which was associated with
its reduced covariance with association cortex and its increased intraconnectivity. Lastly, we found that
individuals who learned more rapidly exhibited greater covariance between regions in the sensorimo-
tor and association cortices during early adaptation. Together, these findings are consistent with a view
that sensorimotor adaptation depends on changes in the integration and segregation of neural activity
across more specialized regions of unimodal cortex with regions in association cortex implicated in
higher-order processes. More generally, they lend support to an emerging line of evidence implicating
regions of the default mode network in task-based performance.
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Adaptive behaviour depends on aligning one’s actions
with the external constraints present in a given situation,
and updating this mapping in response to new demands
[1, 2]. Contemporary perspectives on brain function sug-
gest that this process relies on cooperation between brain
systems specialized for implementing behaviour in the
moment, and those that help adapt behaviour in the face
of a changing environment. In the field of motor learn-
ing, much focus has been placed on identifying the con-
tributions of several sensorimotor brain areas whose ac-
tivity varies over the course sensorimotor adaptation, a
key form of learning by which the brain adjusts move-
ment through trial-and-error [3–9]. For instance, it is
well-understood that adaptation is supported, in part,
by an implicit learning process wherein discrepancies
between expected-versus-actual sensory outcomes (i.e.
sensory prediction errors) are computed within the cere-
bellum [6, 8, 10, 11]. These sensory prediction errors
serve as a ‘teaching’ signal to recalibrate subsequent mo-
tor commands in cortical sensorimotor regions, such as
parietal, premotor, and motor cortex [12, 13], and thus
gradually reduce errors over time.

In addition to this cerebellar-dependent learning pro-
cess, emerging evidence indicates that sensorimotor
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adaptation is supported by explicit learning processes
that presumably involve brain regions in association cor-
tex [14–16]. This explicit component to adaptation
uses knowledge about the change in environmental pa-
rameters in order to generate deliberate (and strategic)
compensatory movements to minimize movement errors
[17–19]. Considerable behavioural evidence suggests
that explicit and implicit learning processes operate in
parallel [15, 20], and that a greater relative contribu-
tion of explicit learning during the initial phases of adap-
tation, when errors are largest, results in a rapid er-
ror reduction [18, 21, 22]. Consistent with this notion,
there is strong evidence that faster adaptation across in-
dividuals results from a greater recruitment of explicit
processes, as compared to individuals who adapt more
slowly [19]. Explicit learning is considered to be a
largely cerebellum-independent process, involving the
recruitment of higher-order cortical areas that exert top-
down control over the sensorimotor system [14, 15]. To
date, neuroimaging and lesion studies have mainly impli-
cated brain areas involved in cognitive control and work-
ing memory, such as dorsolateral prefrontal cortex and
parietal cortex [15, 23, 24], as supporting explicit learn-
ing processes.

However, an intriguing possibility is that this cortical
involvement also extends into constituent areas of the
default mode network (DMN), a collection of distributed
areas implicated in the upper echelon of higher-order,
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or transmodal, processing [25]. Medial regions of the
DMN, such as medial frontal cortex and posterior cin-
gulate cortex, have been implicated in general shifts in
strategy [26, 27] and are increasingly recognized as sup-
porting several aspects of task-based cognition [28–31],
commensurate with the role of the DMN in internal men-
tation [32–34]. It has been hypothesized that the broad
contribution of the DMN to cognition (including dur-
ing tasks) can be accounted for by its functional inter-
actions with unimodal regions within sensory and mo-
tor networks [35–37]. These interactions are thought to
be enabled through its positioning on the cortical man-
tel, located equidistant between unimodal systems in-
volved in perception and action, which would allow it
to uniquely encode and integrate features of whole brain
activity [35, 38]. Taken together, the recruitment of ex-
plicit learning processes during adaptation, which are
cognitive and strategic in nature, is expected to engage
a much broader cortical functional architecture beyond
conventional sensorimotor cortical regions.

In order to explore and characterize the widespread in-
volvement of cortex during sensorimotor adaptation, our
study leverages advanced manifold learning approaches
that provide a compact, low-dimensional description of
changes in the overarching cortical functional architec-
ture. Recent electrophysiological work has established
that low-dimensional manifolds can provide a compact
description of the covariance of neural population ac-
tivity within regions of the premotor and motor cor-
tices [39–41]. At the same time, studies in other do-
mains have applied the same logic to establish that low-
dimensional representations of cortical activity can be
a useful description of the macroscale organization of
neural activity [42, 43]. Recently, whole-brain mani-
folds, or gradients, have provided insight into the low-
dimensional organization of brain structure and mor-
phometry [44–46], intrinsic brain activity during rest
[38], and changes in brain organization in clinical disor-
ders [47–49] and throughout the lifespan [50–52]. Here,
we applied this approach to gain insight into how dis-
tributed cortical activity is coordinated during sensori-
motor adaptation, and how this changing cortical land-
scape unfolds across different phases of learning. Specifi-
cally, by estimating the relative positions of cortical brain
regions in a connectivity-derived manifold space, and un-
derstanding how these change in response to an environ-
mental perturbation, we aimed to capture the evolving
landscape of brain activity that supports sensorimotor
adaptation, as well as the features of this activity that
relate to better or worse learning performance.

Results

We had participants (N = 32) perform a classic visuo-
motor rotation task [53] during functional MRI (fMRI)
scans, in which they launched a cursor from an initial
centre position to a cued target that could be located in
one of eight encircling positions on a visual display (Fig.

1A). Participants launched the cursor by applying a brief
isometric directional force pulse on an MRI-compatible
force sensor. Following a Baseline block (120 trials), in
which the cursor direction directly matched the force di-
rection (Fig. 1A, top), the cursor was rotated 45◦ clock-
wise relative to the force direction for a remaining 320
trials (Fig. 1A, bottom). Overall, we found that partici-
pants’ angular error was low during Baseline, indicating
that individuals could perform the task with high accu-
racy (Fig. 1B). Following the onset of the rotation, errors
increased significantly as participants had to learn how
to counteract the cursor rotation to successfully hit each
target (by aiming their hand in a 45◦ counterclockwise
direction). Over time, participants were able to reduce
their error to near-Baseline levels of performance, indica-
tive of successful adaptation (Fig. 1B).

In order to study adaptation-related changes in func-
tional cortical organization, we used three distinct,
equal-length epochs over the time course of the task.
Specifically, in addition to task Baseline (120 trials), we
defined Early and Late adaptation epochs using the ini-
tial and final 120 trials, respectively, after rotation onset.
For each participant, we extracted mean blood oxygena-
tion level-dependent (BOLD) timeseries for each cor-
tical region defined by the Schaefer 1000 parcelation
[54] and estimated separate functional connectivity ma-
trices for each epoch (Baseline, Early and Late) using
the covariance matrix of the timeseries (Fig. 1C). To
reduce the influence of large individual differences in
functional connectivity that can obscure any task-related
changes (Fig. 1D; see also [55]), all connectivity ma-
trices were centered according to a Riemmanian man-
ifold approach (see Materials and Methods; [56–58]).
To demonstrate the effect of this centering procedure—
and its importance for elucidating learning-related ef-
fects in the data—we projected participants’ individual
covariance matrices, both before and after centring, us-
ing uniform manifold approximation (UMAP; [59]). As
can be seen in Fig. 1D (left), prior to the centering
procedure, functional network structure is dominated
by participant-level clustering, which masks any task-
related structure (i.e., differentiation of Baseline, Early
and Late learning). However, after centering (Fig. 1D,
right), a task structure becomes more readily apparent.

To examine reconfigurations of cortical connectivity
during visuomotor adaptation, we took the centered ma-
trices and estimated separate cortical connectivity mani-
folds for each participant’s Baseline, Early, and Late con-
nectivity matrices. Using established procedures [38, 60,
61], each matrix was first transformed into an affinity
matrix by computing the pairwise cosine similarity be-
tween regions after row-wise thresholding (see Materials
and Methods). Then, we applied principal components
analysis (PCA) to obtain a set of principal components
(PCs), i.e. manifold, that provides a low-dimensional
representation of cortical functional organization. Each
matrix was then aligned to a template Baseline mani-
fold, which was constructed using the mean of all Base-
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Fig. 1. Procedure and analysis overview. (A) Visuomotor rotation task. On Baseline trials, cursor direction matched the aim di-
rection. On rotation trials, cursor direction was rotated 45°clockwise relative to aim direction. (B) Average participant performance
throughout the visuomotor rotation task. Shading indicates ±1 standard error of the mean (SEM). Three equal-length task epochs
for subsequent neural analyses are indicated below: Baseline, Early adaptation (Early), and Late adaptation (Late). (C) Neural
analysis approach. For each participant and each task epoch, functional connectivity matrices were computed using region-wise
timeseries extracted with the Schaefer 1000 parcellation. Functional connectivity manifolds for each task epoch were estimated
using PCA with centered and thresholded connectivity matrices (see Materials and Methods). All manifolds (participant×epochs)
were aligned to a common template manifold created from a group-average Baseline connectivity matrix (left) using Procrustes
alignment. (D) Visualization of the similarity of connectivity matrices, both before and after centering, using UMAP. Note that
uncentered connectivity matrices show strong participant-level clustering (outer-left, coloured by participant), which masks differ-
ences in task structure (inner-left, coloured by task). By contrast, centering removes this participant-level clustering (inner-right)
and decouples task structure (outer-right) from these individual differences.
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line connectivity matrices across participants (Fig. 1C,
right). Crucially, not only did this template Baseline man-
ifold provide a common target for manifold alignment
[60], but it also allowed us to examine changes in cor-
tical connectivity that selectively arise during the learn-
ing phase itself (i.e., Early and Late adaptation), thus
increasing our sensitivity to detect deviations from the
Baseline functional architecture.
Connectivity manifold during task Baseline. The top
three principal components (PCs) of the template Base-
line manifold (Fig. 2A) provide a compact representation
of the cortical functional organization during Baseline
trials. PC 1 distinguishes somatomotor regions (positive
loadings in red) from remaining cortical areas (negative
loadings in blue), most prominently higher-order associ-
ation regions within the default mode network (DMN),
such as posteromedial cortex (PMC), as well visual ar-
eas. Meanwhile, PC 2 illustrates a gradient between
visual areas and the DMN, and PC3 is a joint gradient
of (i) superior-versus-inferior frontoparietal regions and
(ii) lateral-versus-medial occipital regions. These top
three PCs collectively explain 49.30% of the total vari-
ance (Fig. 2B). Although only the top three PCs were re-
tained for all subsequent analyses, we note that including
PC 4, which explains nearly as much variance (8.98%) as
PC 3 (9.63%), does not meaningfully alter our results and
interpretations (see Supplementary Fig. S1).

Mapping brain regions onto their assigned intrinsic
functional network [54, 62] shows that PCs 1 and 2
jointly differentiate visual, DMN, and somatomotor re-
gions, resembling the tripartite structure of resting-state
connectivity gradients (Fig. 2C; [38]). This differen-
tiation is thought to reflect a fundamental feature of
functional brain organization, in which the transition
from largely unimodal cortex (i.e. visual and somato-
motor networks) to transmodal cortex (i.e. DMN) rep-
resents a global processing hierarchy of increasing inte-
gration and abstraction from lower- to higher-order sys-
tems. [25, 38, 63]. In contrast, PC3 appears to be task-
specific in that it isolates key dorsal attention, control,
and somatomotor regions known to be involved in the
planning and execution of hand movements required to
successfully perform goal-directed actions, such as dorsal
premotor cortex (PMd), superior parietal cortex (SPC),
and dorsolateral prefrontal cortex (DLPFC; [64–66]).

Next, in order to characterize the relative positions
of cortical brain regions along the Baseline connectivity-
derived manifold space, which provides the basis for ex-
amining resultant changes in these positions throughout
learning, we computed each region’s manifold eccentric-
ity by taking its Euclidean distance from the manifold
centroid (Fig. 2D; [50, 51, 67]). Eccentricity provides
a multivariate index of each region’s three-dimensional
embedding, in which distal regions situated at the an-
chors of the manifold have greater eccentricity than prox-
imal regions within the manifold core (Fig. 2E, left).
Highly eccentric regions therefore can be interpreted as
functionally segregated from other networks in the rest

of the brain, as revealed by correlating eccentricity with
graph theoretical measures of integration and segrega-
tion. We find that Baseline eccentricity is positively re-
lated to node strength (r = 0.83, two-tailed p < 0.001)
and within-manifold degree z-score (r = 0.49, two-tailed
p < 0.001), consistent with the idea that eccentric re-
gions are tightly interconnected with other members of
the same functional network (see Supplementary Fig.
S2). Commensurate with this, we also find that eccen-
tricity is inversely proportional to a region’s degree of
cross-network integration, as measured through partic-
ipation coefficient (r = −0.69, two-tailed p < 0.001).
Thus, taken together, adaptation-induced changes in a
region’s functional segregation or integration can be as-
sessed through changes in eccentricity during Early and
Late adaptation.
Manifold reconfigurations during adaptation. We
found that the Early and Late adaptation epochs each
exhibited distinct patterns of increases (i.e. expansion)
and decreases (i.e. contraction) in manifold eccentricity
relative to Baseline (Fig. 3A; for raw eccentricity maps,
see Supplementary Fig. S3). To determine which re-
gions showed significant changes in manifold eccentric-
ity across the three task epochs (Baseline, Early and Late
adaptation), we performed region-wise repeated mea-
sures ANOVAs and corrected for multiple comparisons
using false-discovery rate correction (FDR; q < 0.05).
Across cortex, we found that 131 regions showed a sig-
nificant main effect of task epoch, i.e. adaptation-related
changes, with 111 of these regions forming 14 contigu-
ous clusters (Fig. 3B). Major clusters include contigu-
ous regions spanning from left (contralateral) PMd to
SPC (18 regions), left PMC (20 regions), and dorsolat-
eral portions of bilateral extrastriate cortex (left = 22
regions; right = 11 regions). Smaller clusters and sin-
gleton regions were also observed throughout the rest
of cortex, and the combination of all clusters/regions
spanned all six non-Limbic functional networks (Fig.
3C). Note that these topographical clusters arise because
of the large degree of spatial autocorrelation along each
dimension (see Fig. 2A). That is, topographically adja-
cent regions are more likely to have similar connectivity
profiles, and thus have similar projections onto the man-
ifold.

To provide a concise summary of the ANOVA results
presented above, we used k-means clustering to group
regions with significant main effects according to their
coordinates at Baseline (Fig. 3C, coloured circles). This
approach gave way to brain regions that tended to ex-
hibit similar temporal trajectories in manifold space dur-
ing adaptation (Fig. 3C traces). The clustering analy-
sis revealed four ensembles of regions (Fig. 3D): En-
semble 1 (blue) is composed of somatomotor and dor-
sal attention network regions that load positively onto
PC 1 and 3, which includes left sensorimotor regions
that make up the largest cluster in Fig. 3B, along with
right PMd and parietal regions; Ensemble 2 (red) primar-
ily involves higher-order transmodal areas of the DMN
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Fig. 2. Template Baseline manifold structure and eccentricity. (A) Region loadings for top three PCs. (B) Percent variance
explained for the first 20 PCs. (C) Functional network organization of the template Baseline manifold. Right, scatter plots show the
embedding of each region along the top three PCs, coloured according to their intrinsic functional network [54, 62]. Left, probabil-
ity density histograms show distribution of each functional network along each PC. Vis: Visual. SomMot: Somatomotor. DorsAttn:
Dorsal attention. SalVentAttn: Salience/Ventral attention. Cont: Control. (D) Eccentricity calculation. Region eccentricity along
the manifold is computed as the Euclidean distance (dashed line) from manifold centroid (black square). The eccentricity of four
example brain regions is highlighted (bordered coloured circles). (E) Regional eccentricity during Baseline. Each brain region’s
eccentricity is color-coded and visualized in low-dimensional space (left) and on the cortical surface (right).

that load negatively onto PC 1 and 2, such as PMC, an-
gular gyrus (AG), and superior temporal sulcus (STS);
Ensemble 3 (purple) is mainly comprised of visual re-
gions, which include bilateral extrastriate and parahip-
pocampal regions, which load negatively and positively
onto PC 1 and 2, respectively; and Ensemble 4 (yellow),
which includes remaining regions in somatomotor and

salience/ventral attention networks that load positively
on PC1 but negatively on PC3. Computing the aver-
age eccentricity of each ensemble reveals distinct pat-
terns of contractions and expansions along the manifold
that characterize the key changes in connectivity during
adaptation (Fig. 3D, right).

Next, we directly examined the region-based changes
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Fig. 3. Adaptation-related changes in manifold eccentricity. (A) Region-wise mean changes in eccentricity during Early and
Late adaptation, relative to Baseline. Positive (mauve) and negative (teal) values indicate relative increases and decreases in
eccentricity, respectively. (B) Significant changes in eccentricity across task epochs according to region-wise repeated measures
ANOVAs with false-discovery rate (FDR) correction for multiple comparisons (q < 0.05). (C) Temporal trajectories of statistically
significant regions from B in low-dimensional space. Coloured circles indicate each region’s initial position during Baseline and
the traces show the unfolding displacement of that region during Early and Late adaptation. Each region is coloured according
to its functional network assignment (left). Nonsignificant regions are shown in gray point cloud. (D) Patterns of effects for four
ensembles of significant regions in B derived from k-means clustering on each brain region’s coordinates during Baseline (see C).
Scatter plots (right) show within-ensemble mean eccentricity for each participant, and line plot overlays (white markers) show
the group mean across task epochs. (E) Pairwise contrasts of eccentricity between task epochs. Region-wise paired t-tests were
performed for each contrast and FDR correction was applied across all comparisons (q < 0.05). Positive (orange) and negative
(blue) values show significant increases and decreases in eccentricity, respectively.
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in eccentricity between each task epoch by performing
follow-up paired t-tests on the regions that exhibited
significant main effects (in Fig. 3B), with corrections
for multiple comparisons applied across all tests using
FDR correction (q < 0.05; Fig. 3E). As revealed by a
contrast of Early>Baseline, Early adaptation is primarily
characterized by reductions in eccentricity, i.e. manifold
contractions, of regions belonging to Ensembles 1 and
2, including regions in somatomotor and premotor cor-
tex, as well as areas of the DMN, such as bilateral PMC
and angular gyrus (AG). Although regions in Ensemble
3 (visual network) collectively trend towards manifold
contraction during Early learning (see Fig. 3D), only
eight regions in extrastriate and parahippocampal cor-
tices exhibited significant contractions, after corrections
for multiple comparisons. Meanwhile, regions in Ensem-
ble 4 showed significant increases in eccentricity over the
same time window, i.e. manifold expansion.

As revealed by the contrast of Late>Baseline (Fig.
3E, middle), we found that sensorimotor and DMN re-
gions in Ensembles 1 and 2, respectively, maintained
their contraction during Late adaptation. Performing a
Late>Early contrast (Fig. 3E, bottom) shows that the ex-
tent of the contraction in these regions did not signifi-
cantly differ between epochs, with the exception of an
increased contraction in left somatosensory cortex and a
subregion within left PMC. However, by and large, the
main characteristic feature of Late adaptation is the ex-
pansion of visual cortex along the manifold, including
bilateral extrastriatal regions. These effects are more
pronounced for the Late>Early contrast than for the
Late>Baseline contrast, which is a result of the overall
trend towards manifold contraction of these visual areas
areas during Early adaptation.

Taken together, the above pattern of results suggest
that, during Early adaptation, several visual, sensorimo-
tor and transmodal areas in the DMN begin to integrate
with regions outside of their respective functional net-
works. By contrast, during Late adaptation when per-
formance plateaus and errors become minimized, our
findings suggest that visual cortical regions, particularly
higher order visual areas, become functionally segre-
gated from other brain networks. In the next section,
we seek to directly test these interpretations of manifold
contractions and expansions during Early and Late adap-
tation, respectively.
Connectivity changes underlying manifold reconfig-
urations. Because eccentricity represents a multivariate
measure of a region’s overall connectivity profile, we per-
formed seed connectivity analyses in order to help char-
acterize the changes in connectivity that underlie the pat-
terns of manifold contraction and expansion we observed
throughout adaptation. To describe connectivity changes
during Early adaptation, we selected representative re-
gions of the three largest clusters in the Early>Baseline
contrast, which included left PMC, left SPC, and left PMd
(see Materials and Methods). For each region, we con-
trasted seed connectivity maps between the Early and

Baseline epochs (Early>Baseline) by computing region-
wise paired t-tests, producing contrast maps for each
seed region (Fig. 4A). We show the unthresholded con-
trast maps to allow visualization of the complete array
of connectivity differences that collectively contribute to
the eccentricity changes.

During Early adaptation, we found that the left PMC
seed region exhibited decreased connectivity with other
PMC subregions across both hemispheres, as well as with
other DMN areas located in bilateral AG and STS, and
with left dorsolateral prefrontal cortex (DLPFC). Instead,
the PMC exhibited increased connectivity with sensori-
motor regions such as PMd and SPC, along with ante-
rior portions of frontal cortex and insula. Notably, the
opposite pattern can be observed for both the left SPC
and PMd seed regions, which exhibited decreased con-
nectivity with other sensorimotor regions in favour of in-
creasing their connectivity with areas of the DMN (e.g.,
bilateral PMC, AG, STS) and the DLPFC. Together, these
findings indicate that manifold contractions of the PMC,
SPC, and PMd during Early adaptation largely arise from
increased integration between sensorimotor regions (En-
semble 1) and higher-order transmodal regions of the
DMN (Ensemble 2).

We also repeated the seed connectivity analysis to
investigate the basis of the manifold expansion of vi-
sual cortex observed during Late adaptation. Using the
Late>Early eccentricity contrast, we selected a represen-
tative region from the left extrastriate cluster, which was
the largest cluster across both hemispheres. By con-
trasting seed maps between the Late and Early epochs
(i.e. Late>Early), we found that connectivity increased
within bilateral visual cortex and parahippocampal re-
gions (Fig. 4B). Meanwhile, connectivity to the rest
of cortex remained relatively unchanged, with the ex-
ception of subtle connectivity reductions in dorsomedial
frontal cortex. These results suggest that the segrega-
tion/expansion of visual areas during Late adaptation
is mainly driven by increased intraconnectivity of visual
cortex rather than a decoupling from the rest of cortex.
Notably, this same visual seed region also exhibited a
significant contraction in our Early>Baseline eccentricity
contrast (see Fig. 3E), and as such, we additionally con-
trasted this region’s seed connectivity during the Early
and Baseline epochs. This analysis revealed decreased
connectivity with visual and sensorimotor regions during
Early adaptation, while also showing increased connec-
tivity with DMN areas, such as AG, STS, and dorsome-
dial frontal cortex (Fig. 4C). Thus, consistent with the
pattern of effects shown above for areas PMC, SPC and
PMd, we found that greater connectivity with the DMN
also underlies significant manifold contractions of visual
areas. Together, this suggests that increased functional
interactions between unimodal and transmodal cortical
areas is a feature of early learning.
Eccentricity relates to performance during Early
adaptation. Thus far, we have characterized within-
participant alterations to manifold structure throughout
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Fig. 4. Patterns of connectivity differences underlying changes in manifold eccentricity. (A) Early>Baseline seed connectivity
contrast maps for left PMC, SPC, and PMd. Selected seed regions are shown in yellow and are also indicated by arrows. Positive
(red) and negative (blue) values show increases and decreases in connectivity, respectively, during Early adaptation relative to
Baseline. (B) Late>Early and (C) Early>Baseline seed connectivity contrast maps for the left visual/extrastriate (Vis) seed region.

adaptation, revealing patterns of manifold contraction
and expansion expressed across individuals. It is well-
established, however, that significant intersubject vari-
ability exists during the initial phases of learning, when
visual-motor errors are largest [17–19]. Consistent with
this prior work, we find a large degree of between-
participant variability in performance during Early adap-
tation (Fig. 5A), which we measured by computing the
median angular error for each participant (i.e. Early er-
ror; Fig. 5B). Given these prominent individual differ-
ences in performance, we next asked whether this inter-
subject variability is related to manifold structure during
Early adaptation, as captured by eccentricity.

To examine this question at the region-level, we cal-
culated the correlation between participants’ Early er-
ror and the eccentricity values within each cortical re-
gion during Early adaptation (Fig. 5C). Following FDR-
correction for multiple comparisons (q < 0.05), we found
that regions within left (contralateral) parietal cortex
and bilateral PMd exhibited significant positive associ-

ations between their manifold eccentricity and partici-
pant Early error (i.e. greater eccentricity corresponds
with greater error or worse performance). Note that,
across participants, these same regions exhibit overall
manifold contractions during Early adaptation (see Fig.
3E), and thus participants with greater contractions (i.e.
lower eccentricity) in these regions during Early adapta-
tion show faster learning (i.e. lower Early error). Also re-
call that manifold contractions of these same regions (the
left PMd and SPC seed regions used for connectivity anal-
yses (Fig. 5C, arrows) are associated with increased con-
nectivity with higher-order transmodal regions within
the DMN (Fig. 4A). Taken together, these findings sug-
gest that participants who adapt more rapidly express a
greater degree of integration between sensorimotor and
higher-order association networks during Early adapta-
tion. This is consistent with the idea that the coupling
of transmodal and sensorimotor cortical regions during
adaptation reflects the recruitment of explicit learning
processes, which exert top-down control over the senso-
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Fig. 5. Manifold eccentricity during Early adaptation relates to task performance. (A) Individual differences in behavioural
performance during Early adaptation. Black line shows the average error across participants, binned by trial block, and coloured
traces show binned error for individual participants. Different participants are coloured according to their median error in B.
(B) Distribution of median error during Early adaptation. Colour in scatter plot indicates median error, with lighter colour in
scatter plot indicating lower Early error (better learning). (C) Correlation map between Early eccentricity and Early error. Yellow
traces show significant regions following FDR correction (q < 0.05). Arrows indicate left PMd and SPC seed regions in Fig.
4A, which are used as exemplar significant regions in D. (D) Example correlations from left PMd and SPC seed regions in Fig.
4A. (E) Correlations between network eccentricity and Early error (left); scatter plots are shown for the two largest correlations
(right). Bar and scatter plot colours correspond to network colours shown on brain surface (middle). Of all networks, Dorsal
Attention B and Control A showed the strongest correlations (right). VisCent: Visual Central. VisPer: Visual Peripheral. SomMotA:
Somatomotor A. SomMotB: Somatomotor B. TempPar: Temporal Parietal. DorsAttnA: Dorsal Attention A. DorsAttnB: Dorsal
Attention B. SalVentAttnA: Salience/Ventral Attention A. SalVentAttnB: Salience/Ventral Attention B. ContA: Control A. ContB:
Control B. ContC: Control C. *p < 0.05, ***p < 0.001, †q < 0.05

rimotor system [16–18].

It is noteworthy that the region-level correlations
shown in Fig. 5C exhibit a high degree of spatial con-
tiguity; that is, the parietal and premotor cortical re-
gions that pass FDR-correction (noted above) are situ-
ated within much larger clusters of regions that exhibit
a very similar pattern of correlations with learning per-
formance. This topography suggests that the associa-
tion between manifold eccentricity and participant be-
haviour during Early adaptation may be further charac-
terized at the level of distributed functional networks.
To explore this possibility, we mapped each region onto
its respective functional network and, within each par-

ticipant, computed the average manifold eccentricity for
each network (i.e. network eccentricity). For this pur-
pose, we used the 17-network mapping in order to cap-
italize on the improved spatial precision—and thus abil-
ity to better localize effects—compared to the 7-network
mapping [54, 62]. Next, we correlated, for each net-
work, its eccentricity during Early adaptation with par-
ticipants’ Early error. Among these networks, the Dorsal
Attention B (r = 0.60, two-tailed p < .001; Fig. 5E)
and Control A (r = 0.35, two-tailed p = 0.046) networks
showed a significant positive association with Early error
(although the Control A did not survive FDR-correction,
q < 0.05). Collectively, these two networks span sev-
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eral parietal (e.g., SPC, intraparietal sulcus), premotor
(e.g., PMd, frontal eye fields), and prefrontal areas (e.g.,
DLPFC), which together represent an array of brain ar-
eas previously implicated in higher-order sensorimotor
processing and the top-down control of goal-directed be-
haviour [65, 68–70].

Discussion

Complex behaviour depends on the coordinated op-
eration of several specialized neural systems distributed
throughout the brain. During sensorimotor adaptation,
these distributed systems must modify their interactions
to ensure that motor behaviour appropriately responds
to changes in environmental dynamics and regularities.
While much focus to date has been on understanding
the cerebellar-dependent mechanisms that underlie sen-
sorimotor adaptation, our understanding of the contri-
butions and functional reorganization of cortical systems
remains incomplete [71]. Here, we capitalized on re-
cent analytical methods that link together topographic
and functional brain organization [38, 60] in order to
quantify adaptation-related changes in cortical activity
patterns, and how features of this reorganization relate
to learning performance.

By projecting subjects’ cortical functional connectivity
patterns into compact low-dimensional manifold spaces,
we found that adaptation was primarily characterized by
increasing manifold contractions of higher-order senso-
rimotor regions in parietal and premotor cortex, as well
as transmodal areas of the DMN. Further analyses re-
vealed that these manifold contractions were the result
of greater covariance in neural activity between trans-
modal (i.e., DMN and frontoparietal networks) and uni-
modal (i.e. sensorimotor) systems, which was largely
maintained across the entire adaptation period. In ad-
dition, we found that, by the late stages of adaptation,
when visual-motor errors had been largely reduced, vi-
sual cortical regions exhibited expansion along the corti-
cal manifold, a pattern that was explained by greater in-
traconnectivity within visual cortex. Finally, our analyses
revealed that these changes have important behavioural
correlates, as faster overall adaptation was linked to
increased covariance between sensorimotor and trans-
modal areas of the DMN. Together, our results provide a
novel characterization of the macroscale cortical changes
that support human sensorimotor adaptation and perfor-
mance. As we discuss below, these findings have impor-
tant implications for our understanding of the cortical
basis of adaptation, in general, and the role that asso-
ciation cortex, and the DMN in particular, plays in the
organization of adaptive behaviour.

Several prior fMRI studies have revealed adaptation-
related increases and decreases in the activity of individ-
ual sensorimotor cortical brain regions, including areas
in motor, premotor, and parietal cortex [3–5, 7, 23, 72].
Our results expand on these findings by suggesting that
these individual region-based changes are part of a

broader reorganization of the cortical landscape that oc-
curs during adaptation. Specifically, our analyses sug-
gest that sensorimotor areas become increasingly inte-
grated with higher-order association areas in the DMN
and DLPFC following a visuomotor perturbation. Con-
temporary models of cortical organization [25, 38] sug-
gest that transmodal regions are important for organiz-
ing behaviour in an increasingly abstract manner. It is
possible that the observed changes in the cortical land-
scape, therefore, reflect the increased need for more ab-
stract control over unimodal systems. This perspective is
consistent with behavioural and lesion work indicating
that adaptation recruits cortically-driven explicit learn-
ing processes (e.g., mental rotation, working memory,
etc.) that are strategic and declarative in nature, and
thus presumed to involve brain areas in higher-order as-
sociation cortex (e.g., prefrontal regions; [15, 24]). Fur-
thermore, existing evidence suggests that faster learn-
ing across participants results from the greater recruit-
ment of explicit learning processes during adaptation
[19]. Consistent with this, we find that faster learning
across participants is associated with a greater manifold
contraction of higher-order sensorimotor regions in pari-
etal and premotor cortex, and that these contractions re-
flect the increased covariance of these areas with regions
of the DMN and prefrontal cortex (Fig. 4). We find it
noteworthy that these parietal and premotor cortical ar-
eas belong to the dorsal attention (DAN) network (see
Fig. 5E), given that this network, in particular, has been
heavily implicated in the top-down control of attention
and action [62, 68, 70]. However, we recognize that,
although our study highlights the interactions of both
unimodal and transmodal systems during learning, our
design does not allow us to delineate the specific higher-
order control processes that this pattern reflects.

Our data also have important implications for un-
derstanding the role of the DMN in cognition and be-
haviour. Traditionally, the DMN was thought to mainly
support perceptually decoupled states, such as mind-
wandering, mental time travel or autobiographical mem-
ory [35, 73, 74]. However, recent studies have shown
that regions in this system can also play a direct role in
task-based cognition, particularly under situations where
decision-making cannot be based on immediate sensory
input and must instead be based on prior information
(e.g., from a previous trial) [28–31, 36, 75]. Our study
adds to this emerging literature by providing the first ev-
idence that the DMN is also involved in a sensorimotor
process like error-based learning, whereby action selec-
tion on the current trial (i.e., what direction to move)
must be based on information accrued across previous
trials (e.g., a memory of visual-motor errors experienced
[76]. As such, our findings are inconsistent with the view
that the DMN is strictly ‘task-negative’, but rather that
its activity may be important for organizing cognition
and behaviour in a more abstract, flexible manner [35].
This process can be important not only when we are en-
gaged in stimulus-independent patterns of thought, such
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as when we daydream or imagine the future, but also in
more coupled modes of cognition, such as when adapt-
ing one’s current motor behaviour based on the history
of sensory feedback experienced [76].

One curious observation was our finding that the vi-
sual cortex exhibited contraction along the cortical man-
ifold during Early adaptation whereas, during Late adap-
tation, it exhibited expansion (Fig. 3E). Our further anal-
yses indicated that this reversal pattern resulted from the
relative increase in covariance, during Early adaptation,
between visual cortex and areas of the DMN (e.g., me-
dial prefrontal cortex, angular gyrus, superior temporal
gyrus) compared to a relative decrease in this covariance
during Late adaptation. While we can only speculate
on the nature of these changes, one possibility is that
they reflect a relative shift in the neural processing of
visual errors experienced by participants across the dif-
ferent phases of learning. During Early adaptation, sub-
jects experience large visual errors ( 45°), which tend
to engage explicit re-aiming processes to help minimize
those errors [77]. At the neural level, this would require
that errors sensed by the visual system be fed forward
to higher-order association cortex, which, in turn, would
implement a re-aiming strategy to help reduce those vi-
sual errors. This would presumably be manifest as in-
creased covariance between visual and transmodal cor-
tex, which is consistent with our Early adaptation results.
Likewise, by the end of learning, when visual errors have
been reduced to near baseline levels, the feed forward
exchange of information from visual to transmodal cor-
tex would be expectantly reduced. This would presum-
ably be manifest as decreased covariance between visual
and transmodal cortex, which is also consistent with our
late adaptation results.

Another, albeit not mutually exclusive possibility, is
that the pattern of manifold expansion-then-contraction
of visual cortex described above relates to learning-
dependent changes in the top-down modulation of vi-
sual cortical activity by transmodal cortex. For instance,
during Early adaptation, when visual errors are large
and numerous (and when learning rates are maximal),
the attentional processing of visual errors is likely to be
heightened and prioritized as compared to during Late
adaptation, when errors tend to be much smaller in mag-
nitude and when performance has more or less stabi-
lized. Prior work has shown that the allocation of at-
tentional resources during learning plays a critical role
in successful sensorimotor adaptation [78–80] and, sim-
ilarly, that the allocation of spatial attention during mo-
tor planning modulates neural activity in visual cortex
[81–83]. Although the neural circuits by which visual
cortex is modulated during tasks involving motor learn-
ing and control remain poorly understood, such modu-
lation likely involves top-down projections from higher-
order brain areas in association cortex [84, 85]. Taken
together, our visual cortex findings are likely to be ex-
plained, at least in part by, both bottom-up and top-down
interactions between transmodal and visual cortex.

In summary, here we applied recent dimensionality
reduction approaches in order to describe the chang-
ing functional architecture of cortex during sensorimo-
tor learning. This approach enabled us to identify
adaptation-related shifts in low-dimensional connectiv-
ity structure that are driven by increasing integration be-
tween regions within sensorimotor and higher-order as-
sociation networks, and later in adaptation, functional
segregation of visual areas. These findings offer a unique
perspective in our understanding of the cortical contri-
butions to sensorimotor adaptation, which not only have
important implications in contemporary theories of mo-
tor learning, but also the role of transmodal cortex in
task-based performance.
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Materials and Methods

Participants. 40 right-handed individuals (13 males) be-
tween the ages of 18 and 35 (M = 22.5, SD = 4.51)
participated in the study. Eight participants were ex-
cluded based on in-scanner head motion (four partic-
ipants; >2mm translation or >2◦ rotation in a single
scan) or inability to correctly perform and learn the vi-
suomotor rotation task (four participants). Right hand-
edness was assessed using the Endinburgh Handedness
Questionnaire [86]. Participants’ written, informed con-
sent was obtained before commencement of the experi-
mental protocol. The Queen’s University Research Ethics
Board approved the study and it was conducted in ac-
cordance with the principles outlined in the Canadian
Tri-Council Policy Statement on Ethical Conduct for Re-
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search Involving Humans and the principles of the Dec-
laration of Helsinki (1964).
Experimental setup. Participants performed hand
movements directed towards a target by applying a di-
rectional force onto an MRI-compatible force sensor (ATI
Technologies) using their right index finger and thumb.
The target and cursor stimuli were rear-projected with
an LCD projector (NEC LT265DLP projector, 1024 × 768
resolution, 60 Hz refresh rate) onto a screen mounted
behind the participant. The stimuli on the screen were
viewed through a mirror fixed to the MRI coil directly
above participants’ eyes, thus preventing participants
from being able to see the hand. The force sensor and
associated cursor movement were sampled at 500Hz.
Visuomotor rotation task. We used a well-established
motor learning task, the visuomotor rotation task [53],
to probe sensorimotor adaptation. To start each trial, the
cursor (20 pixel radius) appeared in a central start po-
sition (25 pixel radius). A white target circle (30 pixel
radius) appeared at one of eight locations (0◦, 45◦, 90◦,
135◦, 180◦, 225◦) on an invisible ring around the central
position (300 pixel radius) and filled in (white) following
a 200 ms delay. Once launched, the cursor would travel
the 300 pixel distance to the ring over a 750 ms period
(with a bell-shaped velocity profile) before becoming sta-
tionary at the ring to provide participants with end-point
error feedback. If the cursor overlapped with the target
to any extent, the target would become green, signifying
a target "hit". Each trial was separated by 4 s and within
this period, participants had 2.6 s from target presenta-
tion to complete the trial (including the 200 ms target
delay, participants’ own reaction time, and the 750 ms
cursor movement; any remaining time was allotted to
providing the end-point error feedback). At 2.6 s the
trial was ended, the screen was blanked, the data saved,
and participants would briefly wait for the next trial to
begin. Reaction times were not stressed in this experi-
mental procedure. On trials in which the reaction time
exceeded 2.6 s, the trial would end, and the participant
would wait for the next trial to begin. These discarded
trials were rare (0.56% across all trials, all participants)
and were excluded from behavioural analyses, but were
kept in the neuroimaging analysis due to the continuous
nature of the fMRI task and our focus on functional con-
nectivity analyses. On each trial we measured the angu-
lar error between the target and the final cursor position.
Trials with reactions times <100 ms or >2000 ms were
discarded (the former value was chosen as a conservative
threshold on prepotent or anticipatory responses).
Procedure. Participants performed the visuomotor rota-
tion task during two identical fMRI sessions, separated
by exactly 24 hours. In each session, participants com-
pleted a single continuous task scan (29 minutes and 52
seconds), which comprised of 120 baseline trials (15 sets
of 8 trials) with no cursor rotation (baseline), followed
by 320 rotation trials, in which a 45◦ clockwise rotation
of the cursor was applied. In a subsequent washout scan
(8 minutes and 32 seconds), conditions were restored to

baseline (i.e. no rotation of cursor) and participants per-
formed 120 washout trials. We also interspersed three 6-
minute resting state scans before and after the task scan,
and after the washout scan. During these resting-state
scans, participants were instructed to rest with their eyes
open, while fixating a central cross location presented on
the screen.

Note that the aforementioned procedure, repeated
over two fMRI sessions, was collected to explore individ-
ual differences in functional brain organization related to
sensorimotor adaptation, de-adaptation, and subsequent
re-adaptation (see [57, 87]). Given that the present
study aims to specifically examine changes in functional
brain architecture during initial adaptation to a novel vi-
suomotor perturbation, we focused our analyses exclu-
sively on the task scans of the first session.
MRI acquisition and preprocessing. Participants were
scanned using a 3T Siemens TIM MAGNETOM Trio MRI
scanner located at the Centre for Neuroscience Stud-
ies, Queen’s University (Kingston, Ontario, Canada). For
each participant on each day, we collected a T1-weighted
ADNI MPRAGE anatomical (TR = 1760 ms, TE = 2.98
ms, field of view = 192 mm × 240 mm× 256 mm, matrix
size = 192 × 240 × 256, flip angle = 9°, 1 mm isotropic
voxels). Functional MRI volumes were acquired using
a 32-channel head coil and a T2*-weighted single-shot
gradient-echo echo-planar imaging (EPI) acquisition se-
quence (TR = 2000 ms, slice thickness = 4 mm, in-plane
resolution = 3 mm × 3 mm, TE = 30 ms, field of view
= 240 mm × 240 mm, matrix size = 80 × 80, flip angle
= 90°), and acceleration factor (integrated parallel ac-
quisition technologies, iPAT) = 2 with generalized auto-
calibrating partially parallel acquisitions (GRAPPA) re-
construction. Each volume comprised 34 contiguous (no
gap) oblique slices acquired at a 30° caudal tilt with re-
spect to the plane of the anterior and posterior commis-
sure (AC-PC), providing whole-brain coverage. For the
task scan, we collected a single, continuous scan of 896
imaging volumes. This included an additional 8 imaging
volumes at both the beginning and the end of the exper-
imental run.

Preprocessing of anatomical and functional MRI
data was performed using fMRIPrep 20.1.1 ([88, 89];
RRID:SCR_016216) which is based on Nipype 1.5.0 ([90,
91]; RRID:SCR_002502). Many internal operations of
fMRIPrep use Nilearn 0.6.2 [92, RRID:SCR_001362],
mostly within the functional processing workflow. For
more details of the pipeline, see the section correspond-
ing to workflows in fMRIPrep’s documentation. Below
we provide a condensed description of the preprocessing
steps.

T1w images were corrected for intensity non-
uniformity (INU) with N4BiasFieldCorrection [93],
distributed with ANTs 2.2.0 [94, RRID:SCR_004757].
The T1w-reference was then skull-stripped with a Nipype
implementation of the antsBrainExtraction.sh work-
flow (from ANTs), using OASIS30ANTs as target tem-
plate. Brain tissue segmentation of cerebrospinal fluid
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(CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast [FSL
5.0.9, RRID:SCR_002823, 95].A T1w-reference map was
computed after registration of 2 T1w images (after INU-
correction) using mri_robust_template [FreeSurfer
6.0.1, 96]. Brain surfaces were reconstructed using
recon-all [FreeSurfer 6.0.1, RRID:SCR_001847, 97],
and the brain mask estimated previously was refined
with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the
cortical gray-matter of Mindboggle [RRID:SCR_002438,
98]. Volume-based spatial normalization to standard
space (MNI152NLin6Asym) was performed through non-
linear registration with antsRegistration (ANTs 2.2.0),
using brain-extracted versions of both T1w reference and
the T1w template.

For each BOLD run, the following preprocessing
was performed. First, a reference volume and its
skull-stripped version were generated using a custom
methodology of fMRIPrep. Head-motion parameters
with respect to the BOLD reference (transformation
matrices, and six corresponding rotation and transla-
tion parameters) are estimated before any spatiotem-
poral filtering using mcflirt [FSL 5.0.9, 99]. BOLD
runs were slice-time corrected using 3dTshift from
AFNI 20160207 [100, RRID:SCR_005927]. The BOLD
reference was then co-registered to the T1w refer-
ence using bbregister (FreeSurfer) which implements
boundary-based registration [101]. Co-registration
was configured with six degrees of freedom. The
BOLD timeseries were resampled with a single inter-
polation step by composing all the pertinent transfor-
mations (i.e. head-motion transform matrices, and co-
registrations to anatomical and output spaces). BOLD
timeseries were resampled onto their original, native
space, as well as standard space (MNI152NLin6Asym),
using antsApplyTransforms (ANTs), configured with
Lanczos interpolation to minimize the smoothing ef-
fects of other kernels [102]. Subcortical and cerebel-
lar data in standard space was combined with resam-
pled BOLD timeseries on the fsaverage surface to pro-
duce Grayordinates files [103] containing 91k samples,
using fsaverage as the intermediate standardized sur-
face space. Resampling onto fsaverage was performed
using mri_vol2surf (FreeSurfer).

A set of 34 motion and physiological regressors were
extracted in order to mitigate the impact of head mo-
tion and physiological noise. The six head-motion esti-
mates calculated in the correction step were expanded
to include temporal derivatives and quadratic terms of
each of the original and derivative regressors, totalling
24 head-motion parameters [104]. 10 component-based
physiological regressors were estimated using the aCom-
pCor approach [105, 106], where the top five princi-
pal components were separately extracted from WM and
CSF masks. Principal components were estimated after
high-pass filtering the preprocessed BOLD timeseries (us-
ing a discrete cosine filter with 128s cut-off).

Region timeseries extraction. The first three imaging
volumes were discarded to avoid scanner equilibrium ef-
fects. Then, for each participant and scan, the average
BOLD timeseries were computed from the grayordinate
timeseries for each of the 998 regions defined according
the Schaefer 1000 parcellation ([54]; two regions are
removed from the parcellation due to their small parcel
size). The Schaefer 1000 parcellation was selected in
order to balance computational feasibility across partici-
pants and task epochs (see below) with high spatial reso-
lution. Region timeseries were denoised using the above-
mentioned confound regressors in conjunction with the
discrete cosine regressors (128s cut-off for high-pass fil-
tering) produced from fMRIprep and low-pass filtering
using a Butterworth filter (100s cut-off) implemented in
Nilearn. Finally, all region timeseries were z-scored.
Functional connectivity estimation. For every partici-
pant, region timeseries from the task scan were spliced
according to four equal-length task epochs (each 240
imaging volumes). Baseline comprised of the initial 120
trials with the veridical hand-to-cursor motion mapping
(i.e. no cursor rotation), whereas Early and Late adap-
tation consisted of the first and last 120 trials after rota-
tion onset, respectively. Washout was defined as the 120
trials without cursor rotation in the washout scan. Then,
we separately generated functional connectivity matrices
for each epoch by computing the region-wise covariance
matrix using the Ledoit-Wolf estimator [107].

We centered the connectivity matrices according to a
previously described procedure that leverages the nat-
ural geometry of the space of the covariance matrices
[56–58]. First, a grand mean covariance matrix, S̄gm,
was computed by taking the geometric mean covariance
matrix across all participants and epochs. Then, for each
participant i we computed the geometric mean covari-
ance matrix across task epochs, S̄i, and each task epoch
covariance matrix Sij was projected onto the tangent
space at this mean participant covariance matrix S̄i to
obtain tangent vector

Tij = S̄
1/2
i log(S̄

−1/2
i SijS̄

−1/2
i )S̄

1/2
i , (1)

where log denotes the matrix logarithm. We then trans-
ported each tangent vector to the grand mean S̄gm using
the transport proposed by [108], obtaining a centered
tangent vector

T c
ij = GTijG

⊤ (2)

where G = S̄
1/2
gm S̄

−1/2
i . Finally, we projected each cen-

tered tangent vector back onto the space of covariance
matrices, to obtain the centered covariance matrix

Sc
ij = S̄1/2

gm exp(S̄−1/2
gm T c

ijS̄
−1/2
gm )S̄1/2

gm , (3)

where exp denotes the matrix exponential. For the ben-
efits (and general necessity) of this centering approach,
see Fig. 1D, and for an additional overview, see [57].
Manifold construction. Connectivity manifolds for all
centered functional connectivity matrices were derived
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in the following steps. First, consistent with previous
studies [38, 47], we applied row-wise thresholding to
retain the top 10% connections in each row, and then
computed cosine similarity between each row to produce
an affinity matrix that describes the similarity of each re-
gion’s connectivity profiles. Second, we applied princi-
pal components analysis (PCA) to obtain a set of prin-
cipal components (PC) that provide a low-dimensional
representation of connectivity structure (i.e. connectiv-
ity gradients). We selected PCA as our dimension reduc-
tion technique based on recent work demonstrating the
improved reliability of PCA over non-linear dimensional-
ity reduction techniques (e.g., diffusion map embedding;
[61]).

To provide a basis for comparing changes in func-
tional network architecture that arise during learning
specifically, we constructed a template manifold from a
group-average Baseline connectivity matrix derived from
the geometric mean (across participants) of all centered
Baseline connectivity matrices. This template Baseline
manifold, which underwent the same aforementioned
manifold construction procedures, served as a represen-
tative task Baseline space, and as such, we aligned all in-
dividual manifolds (32 participants × 4 epochs; 128 to-
tal) to the template manifold using Procrustes alignment.
All analyses on the aligned manifolds were performed
using the top three PCs, which cumulatively explained
49.30% of the total variance in the template manifold. Al-
though PC4 (8.98%) explained a similar amount of vari-
ance to PC3 (9.63%), including PC4 did not substantially
impact the results and interpretations of our main analy-
ses (see Supplementary Fig. S1). Across participants and
epochs, the top three PCs, following Procrustes align-
ment, had an average correlation of r = .89 with their
respective PCs in the template manifold, thus demon-
strating good overall reliability and alignment across par-
ticipants and epochs. Together, this approach enabled
us to selectively examine adaptation-related changes in
low-dimensional connectivity structure with respect to a
well-defined Baseline task functional architecture, thus
improving the sensitivity of our analyses.
Manifold eccentricity. Recent work has quantified the
embedding of regions and networks in low-dimensional
spaces using Euclidean distance [50, 51, 67, 109]. Ec-
centricity refers to the Euclidean distance between a
single region and the manifold centroid [51], which is
equivalent to a region’s magnitude, or vector length,
in the case of PCA. Eccentricity provides a scalar in-
dex of network integration and segregation, in which
distal regions with greater eccentricity are more segre-
gated than proximal regions that integrate more broadly
across functional networks [51, 67, 109]. To validate
this interpretation with our own data, we correlated
template manifold eccentricity with three graph theo-
retical measures of functional integration and segrega-
tion. These measures were calculated on the row-wise
thresholded template connectivity matrix and included
node strength, which is the sum of a region’s connectivity

weights; within-module degree z-score, which measures
the degree centrality of a region within its respective net-
work; and participation coefficient, which measures the
network diversity of a region’s connectivity distribution
[110]. Regions were assigned to their respective intrin-
sic functional networks [54, 62] for within-module de-
gree z-score and participation coefficient. The signifi-
cance of each correlation was evaluated against a null
distribution generated by projecting each measure (node
strength, within-module degree z-score, or participation
coefficient) onto their respective Schaefer 1000 parcels
on the 32k fsLR spherical mesh and performing 1000
iterations of the Cornblath spin permutation procedure
[111, 112].

We computed eccentricity for each region for all in-
dividual manifolds (each participant and epoch). This
allowed us to observe manifold expansions (increases
in eccentricity) and contractions (decreases in eccentric-
ity) throughout adaptation, thereby probing adaptation-
related changes in functional integration and segrega-
tion.
Eccentricity analyses. We compared region eccentric-
ity between Baseline, Early and Late adaptation epochs
by performing repeated-measures ANOVAs for each re-
gion. Results were corrected for multiple comparisons
using false discovery-rate (FDR) correction at q < .05
[113]. We performed additional post hoc paired t-tests
on significant regions to identify significant changes in
eccentricity between individual epochs; FDR correction
was applied (q < .05) across all comparisons (998 re-
gions × 3 contrasts).

To succinctly describe and interpret the results of our
region-wise analyses, we performed k-means clustering
on regions exhibiting significant adaptation-related ef-
fects. As adjacent regions in low-dimensional space dur-
ing Baseline tend to give rise to similar effects during
adaptation (see Fig. 3C), clustering was performed using
each region’s average embedding during Baseline (i.e.
the average loading for each of the three PCs), there-
fore identifying ensembles of regions with common ef-
fects. k = 4 provided a parsimonious solution reflecting
the four broad trends of changes observed throughout
adaptation (see Fig. 3C). As the purpose of this analy-
sis was to simply summarize our region-wise effects, we
performed no statistical analyses directly on the different
ensembles.

The primary aim of the current study was to examine
changes in functional brain organization during adapta-
tion. However, for completeness and curious readers, we
provide a supplemental analysis on the subsequent de-
adaptation (i.e. Washout) that unfolds as the cursor per-
turbation is removed (see Supplemental Fig. 4). Here,
we performed planned contrasts (region-wise paired t-
tests) between Washout and Baseline, Early, and Late
adaptation. FDR correction was applied (q < .05) across
all comparisons (998 regions × 3 contrasts). To visualize
the (dis)similarity between Washout and the remaining
epochs, we used UMAP [59] to derive a two-dimensional
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embedding based on the pairwise Euclidean distances
between epochs, which was computed using the eccen-
tricity of regions with significant adaptation-related ef-
fects (i.e. all regions in Fig. 3B). Therefore, this visu-
alization situated de-adaptation (Washout) effects with
respect to the regions that exhibited adaptation-related
effects over the other phases of the task (Baseline, Early
and Late adaptation). As seen in Fig. S4, de-adaptation
(Washout) is associated with an overall contraction of
sensorimotor and DMN areas along the cortical manifold,
with Washout exhibiting closest similarity to the pattern
of effects observed during Early adaptation (Fig. S4B).

Seed connectivity analyses. In order to explore the
underlying changes in functional connectivity that ulti-
mately give way to changes in manifold eccentricity, we
performed seed connectivity contrasts between the dif-
ferent task epochs. We selected seed regions accord-
ing to the following procedure. First, to examine key
connectivity differences between Early adaptation and
Baseline, we selected the three largest clusters in the
Early>Baseline contrast (Fig. 3E), which included left
PMC, SPC, and PMd. Second, because regions within
the same cluster tend exhibit the same overall effect
(Fig. 3C-D), within each cluster we selected the region
with the t-value closest to the cluster average, thus al-
lowing us to demonstrate the average effect of the clus-
ter. To probe changes in visual cortex during Late adap-
tation, we repeated our seed contrast analysis using a
Late>Early contrast. A representative seed region in left
extrastriate cortex was identified in the largest cluster
from the Late>Early contrast (Fig. 3E) using the same
seed selection procedures as above.

For each seed, we generated functional connectivity
maps for the epochs of interest in every participant.
For PMC, SSc/SPC, and PMd seeds, we performed an
Early>Baseline seed contrast by computing region-wise
paired t-tests. For the visual cortex seed, we performed
a Late>Early contrast. Note that we also performed
an Early>Baseline contrast with the visual cortex seed
region, as this region also displays a significant reduc-
tion in eccentricity between Early and Baseline (see Fig.
3E, Early>Baseline). For all contrasts, we opted to
show unthresholded t-maps so as to visualize the com-
plete multivariate pattern of connectivity changes that
drive changes in eccentricity. Indeed, these analyses are
mainly intended to provide characterization (and inter-
pretation) of the connectivity changes of representative
regions from our main eccentricity analyses.

Behavioural correlation analyses. We performed two
correlational analyses to investigate the relationship be-
tween manifold structure and individual differences in
performance during initial adaptation. First, we com-
puted a correlation, across participants, between each
region’s eccentricity during Early adaptation and the me-
dian angular error of the 120 trials completed during
Early adaptation (Early error). This produced a corre-
lation map between participants’ Early eccentricity and
Early error. FDR correction (q < .05) was applied to cor-
rect for multiple comparisons across all regions.

Second, to explore correlations at the level of whole-
brain functional networks, we took the average eccen-
tricity, across regions, within each functional network for
every participant and correlated this ‘network eccentric-
ity’ with participant Early error. Here, we used the 17-
network Schaefer 1000 assignments [54] in order to cap-
ture the spatial specificity of the region-wise correlation
map, such as the difference in brain-behaviour correla-
tions between dorsal and ventral somatomotor regions
(see Fig. 5C). We applied an FDR correction (q < .05)
across all 17 correlation tests to correct for multiple com-
parisons. Together, these complementary approaches en-
abled us to explore how individual differences in perfor-
mance relate to manifold structure at both the region-
and network-levels.
Software. All code used for analyses is avail-
able on Github [https://github.com/danjgale/
adaptation-manifolds]. All analyses were performed us-
ing Python 3.8.5 and involved the following open-source
Python packages. Functional connectivity estimation and
centering were performed with Nilearn 0.7.1 [92] and
PyReimann 0.2.6 [114], respectively. All steps to gen-
erate and align connectivity manifolds were generated
using Brainspace 0.1.1 [60]. Graph theoretical measures
were computed using Brain Connectivity Toolbox (bctpy;
https://github.com/aestrivex/bctpy/wiki), and spin
permutation testing procedures were implemented in
neuromaps 0.0.1 [115]. All statistical analyses were
performed with Pinguoin 0.5.0 [116] and Scipy 1.7.2
[117]. For unsupervised learning analyses, UMAP was
implemented with Umap-learn 0.5.2 [59], and k-means
clustering was performed with Scikit-learn 0.24.1 [118].
Surface visualizations were generated using Surfplot
0.1.0 [119]. All other general data processing and
visualization was performed using Numpy 1.19.2 [120],
Pandas 1.2.3 [121, 122], Nibabel 3.2.1 [123], Matplotlib
3.4.2 [124], Seaborn 0.11.1 [125], and Cmasher 1.6.1
[126].
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Fig. S1. Four-dimensional manifold with the inclusion of PC 4. (A) Overview of PC 4. PC 4 primarily distinguishes dorsal
somatomotor and PMC regions from other brain networks. Note that these regions show strong task effects (see C, Fig. 3B),
which suggests that PC 4 represents a task-specific component. (B) Manifold eccentricity using PCs 1-4. While overall patterns of
eccentricity remain similar to Fig. 2E, eccentricity is expectedly enhanced for dorsal somatomotor and PMC regions due to their
distinction in PC 4. (C) Same as Fig. 3B, but using PCs 1-4. Overall, task effects remain similar to Fig. 3B, with the exception of
more pronounced effects in bilateral PMC, which likely reflect more sensitivity to connectivity differences in these regions due to
PC 4. (D) Same as Fig. 3D, using data from C. (E) Same as Fig. 5C, but using PCs 1-4. (F) Same as Fig. 5E, but using PCs 1-4.
Overall, the correlations between eccentricity and performance during Early adaptation remain largely unaffected by the inclusion
of PC 4.
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Fig. S2. Functional connectivity properties underlying manifold eccentricity. Top, maps of node strength, participation
coefficient, and within-module degree z-score from the group-average Baseline connectivity matrix (i.e. reference connectivity
matrix). Bottom, corresponding correlations between each functional connectivity measure and manifold eccentricity (ordinary
least-squares linear regression line overlaid).
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Fig. S3. Group-average manifold structure and eccentricity across task epochs. (A) Mean region embeddings. (B) Raw mean
eccentricity maps.
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Fig. S4. Washout eccentricity. (A) Average change in eccentricity during Washout relative to Baseline from Fig. 3A. (B)
Two-dimensional embedding of task epochs using the UMAP algorithm [59]. To situate each epoch based on adaptation-related
regions, embedding was performed on the eccentricity values of significant regions in Fig. 3B for each participant and epoch.
Square markers indicate mean embedding across participants, and bars show ±1 SEM of each dimension. (C) Pairwise contrasts
of eccentricity between Washout and remaining epochs. Region-wise paired t-tests were performed for each contrast and FDR
correction (q < .05) was applied across all comparisons.
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