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Abstract

Background

Identification of impactful genetic variants from DNA sequencing data relies on increasingly
detailed filtering strategies to isolate the small subset of variants that are more likely to underlie
a disease phenotype. Datasets reflecting population allele frequencies of different types of
variants have been demonstrated as powerful filtering tools, especially in the context of rare
disease analysis. While such population-scale allele frequency datasets now exist for structural
variants (SVs), it remains a challenge to match SV calls between multiple datasets and thereby
correctly estimate the population allele frequency of a putative SV.

Results

We introduce SVAFotate, a software tool for SV matching that enables the annotation of SVs
with variant allele frequency and related information. These annotations are derived from known
SV datasets which are incorporated by SVAFotate. As a result, VCF files annotated by
SVAFotate offer a variety of annotations to aid in the stratification of SVs as common or rare in
the broader human population.

Conclusions

Here we demonstrate the use of SVAFotate in the classification of SVs with regards to their
population frequency and illustrate how annotations provided by SVAFotate can be used to filter
and prioritize SVs. Lastly, we detail how best to utilize these SV annotations in the analysis of
genetic variation in studies of rare disease.
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Background

Structural variants (SVs) encompass a diverse range of genomic changes that vary
considerably in type and size, but are commonly defined as any DNA variant that consists of at
least 50 nucleotides (1). SVs can alter DNA copy number or structure, impact gene dosage, and
contribute to human phenotypes (2–4). Accurate identification of SVs is challenging as many
SVs arise in paralogous and repetitive regions, resulting in inconsistencies between samples
not only in terms of the presence or absence of a given SV, but also in the predicted breakpoints
of the event. It is estimated that the average human genome harbors at least 8,000 SVs,
encompassing millions of bases of DNA sequence, when compared to the human reference
genome (5). However, when considering individual Mendelian phenotypes, including human
diseases, the vast majority of these SVs are likely inconsequential. Thus, the identification of
causal or otherwise impactful SVs relies on increasingly sophisticated SV variant filtering and
prioritization pipelines.

Traditional genomic annotation tools, like the Variant Effect Predictor (6) or SnpEff (7), rely on
identifying overlaps with known genomic features to provide annotations that aid in identifying
SVs that may have phenotypic consequence. However, these methods are generally more
applicable to other variant types including single nucleotide variants (SNVs) and
insertions-deletions (INDELs). Annotation tools have been created specifically for the
complexities of SVs (8–10) and may add useful information to help define SVs of interest.
Existing software tools attempt to prioritize SV calls with scores that reflect the potential
pathogenicity of a given SV call (11–14). However, many of these tools are trained on or
incorporate previously published data and few consider the entirety of available SV-specific
datasets. Furthermore they have limited capacity to integrate additional SV callsets as they
continue to be generated.

Large-scale reference datasets of human genetic variation have enabled the measurement of
accurate allele frequencies (AFs) and provide the opportunity to stratify variants as common or
rare in the general population (15,16). Prioritizing variants based on their population frequency
provides an effective prioritization strategy for SNVs and INDELs, especially in the context of
rare disease. Filtering based on AF substantially reduces the number of putative genetic
variants for analysis, especially when combined with additional annotations and expected
inheritance patterns (17).

Until recently, population-scale measures of SV allele frequencies have been limited. The
Database of Genomic Variants (18) represents the first human SV-specific reference dataset,
consisting of SV calls from a variety of studies, methods, and platforms. In recent years,
however, collaborations involving the whole-genome sequencing (WGS) of thousands of human
samples have generated extensive SV datasets making population-level AFs and related
metrics available for SV analysis. These include the CCDG (19), gnomAD (20), and 1000G (21)
SV datasets, all of which were generated using different samples, sequencing protocols, and SV
calling methods. Unsurprisingly, given the distinct methodologies used to create each dataset
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and human population growth (22), the vast majority of all identified SVs are rare (average of
85% with AF < 0.01) and many SVs are limited to only a few samples, or are "singletons" (i.e.,
found in one individual, Supplementary Figure 1).

By focusing on overlapping genomic coordinates to identify SVs observed in multiple datasets,
we find that the fraction of SVs of the same variant type (SVTYPE) shared by multiple datasets
decreases as the degree of overlap required among them increases (Figure 1).

Figure 1. Matching SVs from different datasets based on shared SVTYPE and genomic overlaps
The average fraction of overlaps between deletions (DEL, in red), duplications (DUP, in blue), and inversions (INV, in
purple) from CCDG, gnomAD, and 1000G are identified using varying amounts of required reciprocal overlap. Higher
required reciprocal overlap fractions correspond to more exact genomic coordinate matches. Each dataset is
compared to one another (CCDG + gnomAD, CCDG + 1000G, and gnomAD + 1000G) and overlaps with a different
required reciprocal fraction are calculated. The fraction of total SVs found to have overlaps given the required
reciprocal overlap fraction is found for each respective dataset and the average of these fractions is plotted. Finally,
the average fraction of SVs found to have overlaps in all datasets (CCDG + gnomAD + 1000G) is found for each
SVTYPE and at each required reciprocal overlap fraction.

This observation highlights two important aspects when comparing SV calls across datasets.
First, since the vast majority of genetic variants in the human population are rare, most SV calls
found in these datasets are unique to those collections, and therefore, no single dataset
sufficiently represents the full spectrum of potential SVs in the general population. Second, as
opposed to SNV and INDEL variant calls, matching SV calls across datasets varies depending
on both the presence or absence of the variant as well as the required amount of overlap
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between potential matches. This additional "spatial uncertainty" illustrates the possible variability
in genomic coordinates between calls, but also the difficulty in determining whether SV calls with
overlapping coordinates represent the same or different variants (23). These observations are
not surprising given the differences in samples, sequencing, and variant calling between
datasets, but differences in read length, read depth, and insert size will also result in differing
coordinates for the same SV. Thus, trying to match observed SVs to SVs in these population
datasets is a challenge that requires special consideration, especially in the context of rare
disease.

Recognizing this obstacle, we have created SVAFotate as a tool that provides the means to
aggregate SV calls from multiple SV population datasets and create summaries of AF-relevant
data into simple annotations that are added to SV calls based on default or user-determined SV
matching criteria. Primarily, this enables the classification of SVs within a VCF (24) file as being
either common, rare, or unique to an individual dataset with respect to the thousands of
samples in published datasets. Being able to differentiate SVs based on their population
frequency enables powerful filtering strategies in the context of SVs for rare disease analysis.
Here, we describe the functionality of SVAFotate, demonstrate the effectiveness of its
annotations for filtering SV calls, and describe recommendations for using SVAFotate in rare
disease analyses.

Implementation

SVAFotate is a Python-based command line tool that annotates an input VCF file with allele
frequencies and related information from SVs reported in population-scale datasets. Two distinct
file types are required as input for SVAFotate: an input SV VCF file and an input BED (25) file
containing known or reported SV calls with accompanying AF information.

Input SV VCF File
SVAFotate has been tested on VCFs created from various SV callers and is compatible with any
VCF that includes SVTYPE (preferably END and SVLEN also) in the INFO field. All SV calls in
the VCF are internally converted into a BED format for the purposes of identifying overlapping
genomic coordinates with the SVs provided by the input BED file, and the output from
SVAFotate is returned as an annotated VCF file.

Input BED file
The motivation behind SVAFotate was to enable the comparison of unannotated SV calls and
known SVs with computed AFs from multiple population datasets, resulting in SV calls with
AF-related annotations. As a result, variants can be analyzed and prioritized based on these
population frequency annotations. With that in mind, SVAFotate requires that known population
SV calls with pertinent AF data be provided as an input file in the BED format. Provisional BED
files corresponding to the GRCh37 and GRCh38 genome reference builds have been created
by parsing and compiling SVs and their associated AF data from the CCDG, gnomAD, and
1000G datasets and can be found here:
https://github.com/fakedrtom/SVAFotate/tree/master/supporting_data/. The CCDG and 1000G
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published datasets were generated using the GRCh38 reference and thus for the provided
GRCh37 BED file, coordinates pertaining to these datasets were converted to GRCh37
coordinates using the UCSC liftover executable (https://genome.ucsc.edu/cgi-bin/hgLiftOver).
Similarly, the gnomAD dataset, which was generated using the GRCh37 reference, was
converted to GRCh38 for inclusion in the provided GRCh38 BED file. These BED files define
genomic breakpoints of reported SVs, and include additional columns detailing the allele
frequency information for each listed SV. The origin of each SV in these files, with respect to the
dataset that includes it, is listed and labeled as the SV’s source. Given that each published
dataset provides different scores, measurements, and data, in the event that certain data is
unavailable from a given dataset, those columns are still included in the BED file with a “NA”.
Researchers can also provide custom BED files from their own cohorts, as long as the structure
of the file matches SVAFotate's built-in BED file structure (Supplementary Table 1).

Identifying SV matches
SVAFotate attempts to identify matches for each SV from the input VCF with SVs in the BED file
based on congruent SVTYPEs and overlapping genomic coordinates (Figure 2a). By default,
SVAFotate considers any amount of overlap as sufficient for matching purposes, but allows for a
recommended, optional parameter which requires overlapping SVs with the same SVTYPE to
share a minimum reciprocal overlap for consideration as a match (see SVAFotate Best
Practices). In this manner, SVAFotate allows users to control the specificity with which matching
SVs are defined where higher reciprocal overlaps reflect more exact coordinate agreement
between potential matches. For each matching SV, corresponding AF metrics from the input
BED are saved with the maximum values across all matches being returned, creating
annotations that reflect the observed maximum AF (Max_AF) and other complementary
annotations (Figure 2b, Supplementary Table 2). Any individual SV from the input VCF that
does not have any matches with SVs from the input BED file, and is therefore unique with
respect to those provided SVs, is still annotated by SVAFotate, but as appropriate these
annotations will have a value of 0.
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Figure 2. Matching SVs for Annotation Creation
a. SVAFotate expects two distinct input files: an unannotated SV VCF file and a BED file which may contain SV calls
from multiple population datasets and their accompanying AF metrics. To represent the SV calls in these files,
unannotated SVs are illustrated as gray rectangles while SVs from three different datasets, such as CCDG, gnomAD,
and 1000G, are represented by green rectangles with their reported population AF included as labels. For this
example we will assume that all rectangles represent SVs of the same SVTYPE.  SVAFotate attempts to identify
matches between unannotated SVs and the SVs present in the BED file by identifying genomic coordinate overlaps
that meet user-defined criteria between SVs of the same SVTYPE. Multiple matches are possible, and all AF related
data is saved for each match. b. SVAFotate is capable of generating multiple annotations that are added to the
original VCF file and are each derived using information saved from matching the SVs. The types and variety of
annotations added to the VCF are determined by input parameters provided at the command line, but here the
example annotation added is the Max_AF (default) annotation.

Identifying matching SVs as described is more straightforward for many SVTYPEs, such as,
deletions (DELs), duplications (DUPs), and inversion (INVs), but can be more complicated for
other SVTYPEs. Insertions (INSs), for example, are often reported as a single base pair
genomic coordinate with an accompanying SVLEN that reflects the size of the insertion.
SVAFotate still matches INSs based on overlapping coordinates and shared SVTYPEs, which
generally means that INSs from the input VCF only match when their coordinates are (nearly)
the same as those in the BED file, even if the SVLENs between the potential matches differ. If
the reciprocal overlap parameter is used, SVLENs for INSs are then used to better refine the
matching INSs though differences in SVLENs may still exist between resulting INS matches.
Other even more complex SVTYPEs, including copy number variants (CNVs), may require more
specialized attention.

Results

SVAFotate offers AF-related annotations that can greatly reduce the number of putative SVs for
review in different genomic analyses. We demonstrate SVAFotate’s functionality by providing
example analyses that categorize the rarity of SV calls based on their associated AFs, as well
as illustrate how SVAFotate annotations can be used to effectively filter SVs. We also describe
optional SVAFotate parameters that generate additional annotations to further enhance SV
filtering and prioritization. Finally, we provide recommendations for applying SVAFotate in rare
disease studies.

Defining the rarity of SVs derived from CEPH families
We first highlight the utility of SVAFotate in classifying SVs based on their associated population
frequency by creating SVAFotate annotations for SV calls derived from 603 individuals
belonging to 34 multigenerational CEPH families (26). SVs were called for each individual and
then merged into a single VCF using Smoove with the GRCh38 reference genome and
parameterized as recommended in the tool’s documentation (https://github.com/brentp/smoove).
The resulting VCF reported nearly 40,000 total SV calls across all individuals with a total of
21,106 deletions, 7,021 duplications, 686 inversions, and 10,702 unclassified breakend (BND)
calls. SVAFotate annotations were then added using the provisional GRCh38 BED file
corresponding to SV calls from the CCDG, gnomAD, and 1000G SV datasets while also
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requiring a reciprocal overlap of 80% (-f 0.8). This annotation was accomplished with the
following command:

$ svafotate annotate --vcf CEPH.smoove.vcf.gz --out svafotate.vcf -f 0.8 -b

SVAFotate_core_SV_popAFs.GRCh38.bed.gz

Focusing on the deletion, duplication, and inversion calls and using the Max_AF annotation
provided by SVAFotate, each SV was classified as Common (Max_AF >= 0.05), LowFreq (0.05
> Max_AF >= 0.01), Rare (Max_AF < 0.01), or Unique (Max_AF = 0.0). We find that just
under half of all these SVs are unique or private to this CEPH dataset when compared to those
reported by CCDG, gnomAD, and 1000G (Figure 3a).

Figure 3. Frequency of CEPH SVs
a. Barplots representing the fraction of CEPH derived SVs per SVTYPE (deletions, duplications, and inversions) that
are classified as Common (Max_AF >= 0.05), LowFreq (0.05 > Max_AF >= 0.01), Rare (Max_AF < 0.01), or
Unique (Max_AF = 0.0). b. The total number of Unique SVs identified per SVTYPE (deletions, duplications, and
inversions) that are CEPH family-specific with the mean indicated as a solid, colored line.

Using this classification we identified family-specific SVs that are labeled as Unique and only
observed in a single CEPH family (Figure 3b). On average, each CEPH family harbors roughly
16 SV events that are private to that family and have no matches with any SVs of the same
SVTYPE from CCDG, gnomAD, or 1000G. Family 1328 exhibits a higher number of unique SV
events than any other family (146 total unique SVs), but is also an outlier with regards to the
family size (83 total individuals compared to the median of 14.5 individuals per CEPH family).
CEPH individuals are considered healthy with no clinically reported phenotypes so at this time
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these unique SVs are not considered as candidate variants for any specific condition. However,
this analysis demonstrates how SVAFotate may assist in identifying rare SVs that are unique to
specific families and may contribute to observed phenotypes, including rare diseases.

Using SVAFotate annotations to filter SVs in neonatal ICU cases
A primary motivation for developing SVAFotate was to enable filtering of SV calls using known
population AFs. We further demonstrate the use of SVAFotate annotations by applying them to
rare disease cases from the Utah NeoSeq Project (27), a rapid WGS protocol to provide genetic
diagnoses for critically ill infants in the University of Utah Hospital neonatal intensive care unit.
Since the inception of the Utah NeoSeq Project, SVAFotate has been used in the SV analysis
and prioritization pipeline. Here, we summarize the filtering of SVs from 22 NeoSeq cases, 19 of
which are trios (proband and both parents) and 3 are duos (proband and a single parent).

SV calling was performed using the recommended parameters for both Smoove and Manta
(28), using the GRCh38 reference genome, resulting in two SV-specific VCFs for each NeoSeq
case. Smoove VCFs featured deletions, duplications, inversions, and BNDs while Manta VCFs
included deletions, duplications, insertions, and BNDs. SVAFotate annotations were then added
to each VCF with a required 80% reciprocal overlap. This was done using the provisional
GRCh38 BED file corresponding to SV calls from the CCDG, gnomAD, and 1000G datasets. An
additional SVAFotate annotated VCF was also generated using the same parameters while
replacing the provisional BED file with a custom NeoSeq-specific GRCh38 BED file. This
custom BED file was made using the same SV calls from the CCDG, gnomAD, and 1000G
datasets, but also features SV calls and their AF related data from the aforementioned CEPH
VCF as well as both Smoove and Manta calls derived from the 1000G samples. These
additional SV calls were added to the custom BED file because they correspond to SVs derived
from the same SV callers that are employed by the NeoSeq pipeline (Smoove and Manta). The
inclusion of these additional calls should enable the identification of SVs that are more prone to
being identified by these specific SV detection tools, and thus may be more representative of
technical artifacts rather than true SV events.

For each VCF, the total number of SVs where the proband was called as heterozygous or
homozygous for the alternate allele was determined, and we then counted how many of these
SVs would be retained after imposing an AF filter that ranged between 0 and 1 using the
Max_AF annotation provided by SVAFotate. For each AF cutoff value, the fraction of filtered SVs
was determined by subtracting from one the number of retained SVs divided by the total number
of variant SVs found in the proband. As expected, the fraction of SVs that are filtered increases
as the AF cutoff is lowered (Figure 4).
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Figure 4. Filtering of NeoSeq SVs using AF cutoffs
The fraction of NeoSeq proband SV calls, per SVTYPE, that are filtered by using the Max_AF annotation added by
SVAFotate and a range of AF cutoff values. SVTYPEs are abbreviated as follows: deletions (DELs), duplications
(DUPs), inversions (INVs), and insertions (INSs). Plots on the left are SV calls derived from Smoove while the plots
on the right are from Manta. Lines that are colored represent the resulting filtered SVs using the Max_AF annotation
generated using the provisional BED file, while the gray lines represent the filtered SVs using the Max_AF annotation
created by the custom NeoSeq BED file. Each line has the maximum and minimum amount of filtered SVs observed
across all 22 NeoSeq cases analyzed plotted as a shadow surrounding the line.

For example, using an AF cutoff of 0.01 and the SVAFotate annotations added using the
provisional BED file with SVs pertaining to only the CCDG, gnomAD, and 1000G datasets, we
observe that nearly 60% of NeoSeq deletions, duplications, and inversions called by Smoove
are filtered while more than 40% of Manta derived deletions, duplications, and insertions are
removed. However, the same analysis using the custom NeoSeq BED file as an input when
generating SVAFotate annotations results in over 95% and 85% of the same Smoove and
Manta NeoSeq SV calls being filtered. These findings suggest an appreciable number of the
SVs in the Smoove and Manta VCFs are likely the result of the SV detection softwares used
rather than true SVs. Alternatively, these additionally filtered calls using the custom NeoSeq
BED file may represent problematic SVs that were identified by the CCDG, gnomAD, and
1000G efforts, but failed to meet required standards and were subsequently removed in these

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2022. ; https://doi.org/10.1101/2022.06.09.495527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.09.495527
http://creativecommons.org/licenses/by-nc-nd/4.0/


study cohorts. Altogether, these results highlight the value of adding additional SV datasets to
the provisional BED file to enable more comprehensive SV filtering.

SVAFotate Best Practices
  While SVAFotate's default settings create a foundation of annotations that facilitate SV
interpretation, we highlight additional options that provide more detailed annotations enabling
deeper analyses and variant prioritization (Table 1).

Table 1. SVAFotate Parameters and Options
Required SVAFotate parameters are listed followed by optional SVAFotate parameters with all arguments and
descriptions for each option included. Recommended optional parameters are listed in bold with accompanying
recommendations, as applicable. For full descriptions and details, please refer to the SVAFotate repo:
https://github.com/fakedrtom/SVAFotate

Based on use of SVAFotate in the previously mentioned Utah NeoSeq Project, which provides
WGS of infants in the neonatal intensive care unit at the University of Utah, we describe in
greater detail several of these optional settings and provide “best practices” for using SVAFotate
towards the filtering and prioritization of SVs, particularly in rare disease analysis.

Reciprocal overlap fraction (-f). Ideally, when identifying matches for the same structural
variants in the input VCF and those found in the BED file of known SVs, identical genomic
coordinates would be shared. However, given a multitude of variables involved in the calling of
SVs, some discrepancies in genomic breakpoints are expected even for the same event present
in multiple datasets. SVAFotate recognizes this uncertainty, and while it will identify any
overlapping SV loci, properly matching the same SV events between datasets often requires
greater similarity in the amount of overlap that exists between potential matches. By requiring a
reciprocal overlap fraction, SVAFotate is better enabled to make more precise matches and
thereby its allele frequency annotations are more representative of the measurements provided
by the input BED file. This option requires that the overlap created by each SV in a potential
match meets or exceeds a specified fraction of the total size of the SVs (Figure 5a). Based on
observations from comparing the SVs from the CCDG, gnomAD, and 1000G datasets with one
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another (Supplementary Figure 2), a reciprocal overlap fraction of at least 80% is appropriate
while still conservatively allowing some differences between potential matches.

Figure 5. Recommended SVAFotate Parameters
Each plot illustrates SVs from the input VCF as gray rectangles with colored rectangles representing SVs from
various datasets, such as CCDG, gnomAD, or 1000G. In all examples, the SVs depicted by gray and green
rectangles are of the same SVTYPE. a. Requiring a reciprocal overlap with the -f parameter specifies that SVs being
compared to one another must each have an overlap that meets a minimum fraction of the total size of the SV in
order to be counted as a match and saved for future annotations by SVAFotate. On the top, the -f parameter is not
being used and any overlap, regardless of size if being counted as a match, while on the bottom, -f is being used with
a value of 0.8 which reduces the number of matches to those with greater overlap similarity. b. The OFPs for
potential matches are calculated and listed as labels on each of the colored rectangles, representing SVs from three
different datasets. The “best” match is determined by the match with the highest OFP value and metrics specific to
that best match are saved and used for subsequent SVAFotate best annotations. If no match exists as illustrated for
the SV on the left for Dataset 3, no best annotations are added for that dataset. c. Gray rectangles represent
deletions from the input VCF and colored rectangles represent different SVTYPEs, specifically deletions (red),
duplications (blue), and inversions (purple). Matches are defined as SVs of the same SVTYPE that overlap one
another while mismatches are SVs of differing SVTYPEs that share an overlap. d. For each SV from the input VCF,
all overlaps are saved and used to determine how much of the total SV region has also been observed in the
datasets which is then reported as the SV_Cov annotation.

Extra annotations; best matches (-a best). Any given SV may have multiple potential
matches in the reference datasets, with each exhibiting differing genomic coordinates and AF
metrics. While the core functionality of SVAFotate will return the maximum values from all of
these potential matches, it is possible to also create annotations that reflect the “best” match,
per source, based on genomic coordinate similarity. This is accomplished by computing an
Overlap Fraction Product (OFP) between the input SV and all matching SVs from each source
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in the BED file. The OFP reflects the genomic similarity between matches by measuring the
amount of overlap that is shared between the matches, calculating the fraction of each SV that
the overlap covers, and then multiplying these fractions together (Supplementary Figure 3).
Resulting OFP scores will have a range between 0.0 and 1.0 where high OFP scores reflect
matching SVs that are more identical in terms of both their genomic sizes and the amount of
overlap they share. Low OFP scores suggest a larger disparity in genomic sizes between
matching SVs or a low amount of shared overlap between them (or both a discrepancy in sizes
and low overlap). By reviewing the OFP scores from all matching SVs, a best match for each
included source is determined by the matching SV with the highest OFP (Figure 5b). In the
event of multiple matches sharing the same OFP score, the matching SV with the highest
reported AF is returned as the best matching SV. Regardless of whether a reciprocal overlap is
requested at the command line or not, determining the best match will consider all genomic
overlaps. Thus, if any overlap exists for a given source reported in the BED file, regardless of its
size, this will be reflected in the resulting best annotations. We determined the best match for all
SVs by comparing the CCDG, gnomAD, and 1000G datasets to one another and observed
largely bimodal distributions for all comparisons, suggesting that most best matches are either
rather poor or quite precise (Supplementary Figure 4).

Once the best match is determined, multiple best annotations, including the OFP score for the
best match, are saved to be added to the resulting output VCF. These can be used to help
corroborate the values observed in the default annotations, but also provide more specificity
with regards to which SVs from the input BED file are resulting in the SV matches. Furthermore,
the best match allows for checking the precision of the match via the OFP annotation and the
rarity or uniqueness of the input SV can be ascertained if no best matches exist.

Extra annotations; mismatches (-a mis). By definition, SVAFotate requires matching SVs to
share the same variant type (SVTYPE; e.g., deletion, duplication, etc.), but is also equipped to
create annotations based on overlapping SVs with differing SVTYPEs when this option is used.
SVAFotate refers to such overlaps as “mismatches” and are otherwise treated the same as
traditionally matching SVs (Figure 5c). Mismatch annotations that are added include the
differing SVTYPEs identified in the mismatches and also a series of best mismatch annotations
similar to those created by the previously discussed best parameter in both methodology and
content. Similar to the best annotations, mismatches are also determined for each source
included in the input BED file.

Mismatches can reveal additional information for a given genomic region. For example, copy
number variable loci often give rise to some individuals harboring deletions with others having
duplications. On the other hand, such regions may indicate technically problematic regions for
many SV detection tools. Mismatches may also represent situations where the same SV has
been categorized differently between SV callers or datasets. For example, while some callers
may identify and label an event as an insertion, others may classify the same event as a
duplication. The mismatches annotations can be helpful in identifying such instances. Lastly,
interpreting the potential phenotypic consequence of a rare or unique SV event might be
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influenced by the presence of a common SV of another SVTYPE that the mismatch annotations
can reveal.

Observed SV Coverage (-c). While overlapping SVs may represent distinct alleles, it may be
informative to the interpretation of the possible pathogenicity of an SV if it occurs in the same
genomic region as other SVs. The observed SV coverage (SV_Cov) annotation can help reveal
these occurrences by describing the proportion of a given SV that overlaps SVs of the same
SVTYPE from the input BED file. All overlaps with the same SVTYPE from all included sources,
regardless of size, are considered when calculating this fraction and is reported as a number
ranging from 0.0 to 1.0, where high scores reflect a larger proportion of the SV being “covered”
or observed to overlap with known SVs (Figure 5d). Additionally, similar coverage annotations
that are source-specific are also added. This parameter also expects an AF cutoff value that will
omit any SVs from the input BED file that fall below this AF threshold from the calculation of
SV_Cov.

If any SVs in the BED file are exceedingly large, they may overwhelm the observed SV
coverage, reducing its utility. For example, CCDG reports an exceptionally rare deletion that is
over 61Mb in size. This event is likely to overlap with many putative deletions that likely
represent distinct SV events. Considering this may obscure meaningful coverage annotations
and interpretations, a recommended additional parameter to use alongside the observed SV
coverage option is provided with the SV size limit parameter (-l). This limits the size of SVs from
the input BED file to include when computing the observed SV coverage annotation. Given that
many excessively large SVs defined by many variant callers can be spurious, we recommend
setting the size limit to a megabase (1,000,000 bp) which will not include any SVs over that size
when computing the observed SV coverage.

Targets BED File (-t). Especially in the case of rare disease analysis, there may be particular
genomic regions (e.g., genes known to be associated with the phenotype) where an overlap
with any reported SV event would be of interest. Using this option and supplying a simple BED
file consisting of chromosome, start and end coordinates, and a column featuring a region
identifier (such as a gene name) will create a Target_Overlaps annotation that lists the
supplied region identifier for all overlaps between the SV and the regions in this BED file.
Regions of interest may include any genomic features such as candidate genes, specific exons,
promoters, enhancers, or any other set of user-determined genomic coordinates.

The following command details the use of these recommend options when using SVAFotate
with the previously described and provided BED file and results in a SVAFotate annotated VCF
named svafotate.vcf:

$ svafotate annotate --vcf input.vcf.gz --out svafotate.vcf -b

SVAFotate_core_SV_popAFs.GRCh38.bed.gz -f 0.8 -a best mis -c 0 -l 1000000 -t

targets.bed
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These SVAFotate annotations aid rare disease analysis by facilitating the identification of
variants that are rare or unique to the affected individuals. As previously demonstrated, the
default Max_AF annotation enables the classification of SVs based on their apparent rarity and
therefore serves as the primary filter for categorizing SVs as rare or unique (Max_AF < 0.01
and Max_AF = 0.0, respectively). However, there are important caveats to consider when
reviewing any SVs that have passed this initial AF filter.

First, while a single SV event may be regarded as rare, it may reside in a locus that has been
observed to harbor more commonly occurring SVs of the same SVTYPE and is thus less likely
to be causative or otherwise qualify as a candidate variant. The SV_Cov annotation can help
identify such occurrences and may serve as an additional filter. Any rare SV with an SV_Cov less
than 1.0 contains some amount of genomic space that has not been previously observed as
variable for that SVTYPE and an SV_Cov of 0.0 may be used to help identify rare SVs that are
more independent of other variants. Second, reviewing possible mismatch annotations can also
help determine how much other structural variation occurs within or near the same genomic
region. This may affect the possible functional interpretation of a rare SV, especially if those
mismatches are more common in the included datasets. Mismatch annotations also include
OFP scores which may help prioritize or exclude mismatches under review. Lastly, best match
annotations, or lack thereof, can also aid in identifying rare SVs that are in fact unique, with no
known matches of any kind to the included dataset SVs. If no best matches exist for a given SV,
then no overlaps of any kind with other SVs were found, meaning the SV is more likely to be
unique. However, if any overlaps exist, these will be reported by the best annotations, where the
exactness of the overlap is detailed in the best OFP annotation. These variants can possibly be
disregarded if the OFP is not suggestive of a good match (OFP < 0.8). Even SVs with best
annotations may still represent unique SVs provided the best OFP scores are low. Additionally,
best match annotations can help identify the source and exactness of the matches that
contribute to the AF reported by the Max_AF annotation. In this manner, the use of the Max_AF,
SV_Cov, and the mismatch and best annotations provided by SVAFotate work in combination to
better determine the rarity and uniqueness of SVs within a VCF. In most cases, filtering using
these annotations can be performed sequentially or simultaneously using available command
line tools or custom scripts.

Together, these suggestions are sensible starting points for the filtering of SVs, but depending
on the datasets used and the context of the SV analysis, they are all adjustable. SVs that do not
meet these requirements may still be considered for further review.   Once rare and unique SVs
have been determined using SVAFotate, further filtering can be done based on expected
inheritance patterns (de novo or dominant versus recessive) and other genetic features that are
commonly included via additional annotation tools. If a priori there are genomic regions of
interest, such as candidate genes, the Target_Overlaps annotation that can be included by
SVAFotate can facilitate the identification of SVs that overlap these features and may be used
as another filter. Otherwise, other gene annotation tools can enable the identification of SVs that
overlap gene coding or other genic regions. Altogether, SVAFotate annotations are
complementary to other genomic annotations and are meant to be used together in SV filtering
and analysis.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2022. ; https://doi.org/10.1101/2022.06.09.495527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.09.495527
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusions

SVAFotate is ideally suited to combining and converting data from multiple SV datasets that
contain population AF information into discrete annotations that can then be used for
categorizing the rarity of SV calls and filtering them based on AF-related expectations. This is
primarily accomplished by identifying matches based on user-defined genomic overlaps
between queried SV calls in the VCF format and known SVs with associated AF features that
are provided as a BED file. Population AF information from these matches is saved and
summarized by SVAFotate as new and easily filterable annotations in a resulting output VCF
file. SVAFotate is relatively fast, depending on the size of the input VCF and BED files, with
most runtimes completing in less than 10 minutes for moderately sized VCF files (25,000 variant
entries or less) and the provided BED files.

Rare disease analysis benefits from the ability to determine the frequency of variants in general
or specific populations. Multiple methods and datasets are available to do this for common
variant types, like SNVs and INDELs, but SVs can be more problematic in these types of
analyses. SVAFotate enables the annotation of SVs with population frequencies and other
similar data obtained from previously identified SVs. As SV datasets continue to grow and
become available, especially with accompanying population-level measurements, these can be
added to the expected SVAFotate input BED file to provide more comprehensive SV
annotations. Furthermore, SVAFotate is designed to allow for the addition of specific or custom
types of SV datasets, such as those generated using specific variant callers, to allow for precise
SV matching and subsequent filtering. This positions SVAFotate as a valuable resource for
inclusion in current and future SV analyses.

While SVAFotate is not clinically diagnostic and does not rank SV calls itself, the annotations it
creates provides the information necessary to rapidly sort through SV calls and determine their
apparent rarity with regards to known SV datasets. Filtering based on these AF metrics can
substantially reduce a given SV call set and thus, effectively prioritize SV calls, especially in the
context of rare disease analysis. Combining SVAFotate annotations with other common genetic
features, such as various gene annotations or other SV prioritization tools, can further refine this
list of SV calls resulting in manageable lists of variants for manual review and verification.

SVAFotate is an open-source software package and it is freely available. Source code and
further documentation can be found at: https://github.com/fakedrtom/SVAFotate.

Availability and requirements

Project name: SVAFotate
Project home page: https://github.com/fakedrtom/SVAFotate
Operating system(s): Platform independent
Programming language: Python
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Other requirements: None
License: MIT
Any restrictions to use by non-academics: None

List of abbreviations

AF - Allele Frequency
SV - Structural Variant
SNV - Single Nucleotide Variant
INDEL - Insertion-Deletion
WGS - Whole-Genome Sequencing
DEL - Deletion
DUP - Duplication
INV - Inversion
INS - Insertion
BND - Unclassified Breakend
OFP - Overlap Fraction Product
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