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Abstract 19 

Accurately predicting peptide secondary structures remains a challenging task due to the lack 20 

of discriminative information in short peptides. In this study, we propose PHAT, a deep graph 21 

learning framework for the prediction of peptide secondary structures. The framework 22 

includes a novel interpretable deep hypergraph multi-head attention network that uses 23 

residue-based reasoning for structure prediction. Our algorithm can incorporate sequential 24 

semantic information from large-scale biological corpus and structural semantic information 25 

from multi-scale structural segmentation, leading to better accuracy and interpretability even 26 

with extremely short peptides. Our interpretable models are able to highlight the reasoning of 27 

structural feature representations and the classification of secondary substructures. We 28 

further demonstrate the importance of secondary structures in peptide tertiary structure 29 

reconstruction and downstream functional analysis, highlighting the versatility of our models. 30 

To facilitate the use of our model, we establish an online server which is accessible via 31 

http://inner.wei-group.net/PHAT/. We expect our work to assist in the design of functional 32 

peptides and contribute to the advancement of structural biology research. 33 

 34 

 35 

Keywords: peptide secondary structure prediction, hypergraph multi-head attention network, 36 

explainable deep graph learning. 37 

 38 

Introduction 39 

Peptides have recently emerged as potential therapeutic molecules against various diseases, 40 

and have garnered increasing attention due to their many advantages, including high 41 

specificity, high penetration, low production cost, and ease of manufacturing and modification 42 

[1]. Various disease-specific functional peptides have entered the global market, including 43 

antiviral peptides (AVPs), antimicrobial peptides (AMPs), and anticancer peptides (ACPs) [2-44 

4]. Specifically, a family of peptides known as cell-penetrating peptides (CPPs) has shown 45 

enormous success in the cellular uptake of therapeutic molecules [5]. Currently, over 40 cyclic 46 

peptide drugs are in clinical use, and approximately one new cyclic peptide drug is approved 47 

for clinical use each year on average [6]. Furthermore, predicting the secondary structure of 48 

bioactive peptides can provide key insights into the functional mechanisms of peptides and 49 

could serve as a basis for designing peptides with desired functions [1]. Predicting the 50 

secondary structure of peptides is an intermediate step in predicting three-dimensional (3D) 51 

or tertiary structures, all of which are essential determinants of peptide bioactivity [7]. 52 

Therefore, reliable and accurate computational methods for predicting the secondary 53 

structures of peptides are urgently needed. 54 

 55 

Many efforts have been made to predict the secondary structure of proteins through 56 

computational approaches, most of which are based on machine learning algorithms. For 57 

instance, Heffernan et al. developed a multi-task deep learning model [8] in which a long- and 58 
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short-term memory bidirectional regression neural network (LSTM-BRNNS) was constructed 59 

to capture both short-term and long-term residue interaction relationships [9]. Li et al. 60 

developed the diffusion convolutional recurrent neural network (DCRNN), a hybrid neural 61 

network that alleviates the local features derived from convolutional neural networks (CNNs) 62 

and the global features captured from stacked bi-directional gated recurrent units (BIGRU) to 63 

predict the secondary structures of proteins [10]. Similarly, Busia et al. integrated CNN and 64 

residual connections to predict the secondary structures of peptides and achieved good 65 

performance, demonstrating the importance of the primary protein sequence information in 66 

secondary structure prediction [11]. In addition to the above methods, there are many other 67 

protein secondary structure predictors, such as DeepCNF, JPRED, PROTEUS2, RaptorX, 68 

and MUfold-SSW, among others [12-17]. However, these methods are designed for the 69 

prediction of protein structures and are not applicable for secondary structure prediction due 70 

to the inherent structural differences between peptides and proteins. For example, 71 

evolutionary information is frequently integrated and used for model training in the prediction 72 

of protein secondary structures, and potential biases might be introduced when designing 73 

peptide secondary structure models due to the short length of peptides. Additionally, previous 74 

studies have demonstrated that even for identical segments of residues in proteins and 75 

peptides, their secondary structures might be quite different [1]. One possible reason is that 76 

proteins have more complex tertiary structures, which presumably leads to changes in 77 

secondary structures. Particularly, hydrophobic collapse is a major force responsible for a 78 

well-defined tertiary structure. However, this phenomenon is only applicable to proteins and 79 

not peptides [18]. Therefore, developing a peptide-specific secondary structure prediction 80 

method is urgently needed. 81 

 82 

Singh et al. [1] proposed PEP2D, the first peptide-specific secondary structure predictor that 83 

trains a random forest (RF) model with peptide sequential and evolutionary data and achieves 84 

good performance. Recently, Cao et al. [19] designed PSSP-MVIRT (Peptide Secondary 85 

Structure Prediction based on Multi-View Information, Restriction and Transfer learning) for 86 

the prediction of peptide secondary structures, employing CNNs and BIGRU to learn high-87 

latent features and introducing transfer learning to overcome the lack of training data. In 88 

addition to the aforementioned methods, there are several other peptide structure prediction 89 

methods, such as PEP-FOLD [20]. However, existing methods have several limitations. 90 

Particularly, most of them rely heavily on feature engineering to design handcrafted features, 91 

the quality of which might greatly impact the predictive performance because the feature 92 

design is based on the researchers’ prior knowledge. Additionally, existing protein-specific 93 

secondary structure prediction methods focus on long-distance dependence of sequences 94 

with hundreds of residues rather than local fragments, whereas peptide-specific methods 95 

focus more on neighborhood information among residues, thus easily ignoring global 96 

information. Ultimately, although deep learning has been successfully used in secondary 97 

structure prediction, the current methods still follow a “black box” model and lack good 98 

interpretability. These shortcomings limit our ability to predict the relationships between 99 

peptide primary sequences and their secondary structures. 100 
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 101 

In this study, we propose an innovative deep learning model called PHAT to predict peptide 102 

secondary structures. Importantly, our proposed model incorporates several novel features: (i) 103 

we introduce a powerful pre-trained protein language model [21] to transfer semantic 104 

knowledge from large-scale proteins to peptides and learn high-latent and long-term features 105 

of peptide residues. (ii) Considering the local continuity and diversity of peptide secondary 106 

structures [22, 23], we propose a novel HyperGMA (Hyper Graph Multi-head Attention 107 

network), in which we can encode peptide residues with multi-semantic secondary structural 108 

information while capturing contextual features from consecutive regions using multi-level 109 

attention mechanisms. Additionally, our constructed hypergraph effectively prevents over-110 

smoothing, which is a common issue in conventional graph networks (e.g., GCN [24], GAT 111 

[25]). (iii) To reveal the predicting mechanisms of PHAT, the transition and emission matrices 112 

were visualized in conditional random fields (CRFs) that can automatically learn a set of 113 

biologically meaningful knowledge on secondary sub-structures. This overcomes the 114 

limitations of “black-box” approaches in deep learning-based models to some extent and 115 

provides good interpretability of our PHAT model. (iv) We also demonstrated that the 116 

structural predictions obtained from our model can assist in peptide-related downstream 117 

tasks, such as the prediction of peptide toxicity [26], T-cell receptor (TCR) interactions with 118 

MHC (major histocompatibility complex)-peptide complexes [27], and protein-peptide binding 119 

sites. (v) A case study demonstrated that our PHAT can also accurately predict distance map 120 

and contact map matrices, which can be further used for the reconstruction of peptide 3-D 121 

structures. Benchmarking results indicated that the proposed PHAT significantly outperforms 122 

the state-of-the-art methods in either 3-state or 8-state secondary structure prediction, 123 

demonstrating the superiority and robustness of our model. To facilitate the use of our 124 

method, we established a code-free, interactive, and non-programmatic web interface of 125 

PHAT at http://inner.wei-group.net/PHAT/, which can lessen the programming burden for 126 

biological and biomedical researchers. 127 

 128 

Materials and methods 129 

Datasets 130 

To evaluate the effectiveness of our model, we used the same benchmark dataset commonly 131 

used as a “gold standard” dataset in several studies [19, 28]. The dataset contains 5,772 132 

secondary structures of protein data with three structural states: Helix (H), Strand (E), and 133 

Coil (C). The dataset processing process is illustrated in Figure 1A. Specifically, the protein 134 

structures are derived from X-ray crystallography, and this process is executed with a 135 

resolution of at least 2.5 Å, with no chain breaks and less than five unknown amino acids. The 136 

sequence similarity in this dataset is reduced to 25% to ensure a fair performance evaluation. 137 

Additionally, there are some sequences containing the “X” symbol, representing unnatural 138 

residues in this dataset. Following the same data pre-processing in [19], we removed the 139 

unnatural sequences including the “X” symbol, and 4,542 protein and peptide sequences 140 
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were retained. Afterward, among the remaining sequences, we selected the sequences with 141 

<100 residues lengths, finally yielding 1,285 peptide sequences as our three-structure-state 142 

dataset. The length of the sequences ranged from 30 to 99 residues. Moreover, previous 143 

studies have demonstrated that the secondary structures of protein and peptides can also be 144 

defined with eight states, including H (alpha-helix), G (3!"helix), I (π-helix), E (extended beta-145 

strand), B (isolated beta-strand), T (turns), S (bend), and others (C) [8, 29, 30]. To account for 146 

this scenario, we further constructed a new dataset of 1,060 peptide sequences, derived from 147 

the DSSP (Dictionary of Protein Secondary Structure) structure database [31].  148 

 149 

Training and testing datasets 150 

To account for the characteristics of short peptide sequences and fairly evaluate the 151 

performance of the methods, the dataset was divided into two categories: >50 residue 152 

sequences and ≤50 residue sequences. The sequences with ≤50 residues consisting of 257 153 

peptide sequences (with H of 5,294, E of 1,119, and C of 3,733) were used as the test set. 154 

The remaining 1,028 peptide sequences were used as the training dataset. For model 155 

training, we randomly selected 10% peptide sequences as our validation set from the training 156 

dataset to adjust the parameters of our model. Additionally, the training and testing datasets 157 

were labeled with the three-state secondary structures, with the sequence length of peptides 158 

ranging from 30 to 100. For the eight-structure-state dataset, we also collected 1,060 159 

sequences to re-train and test our model. The details of the datasets are summarized in 160 

Supplementary Table 1 and Supplementary Table 2. 161 

 162 

Architecture of the proposed PHAT model 163 

The overall network architecture of the PHAT model is illustrated in Figure 1B with three main 164 

modules: (i) knowledge transfer module, (ii) hypergraph embedding module, and (iii) feature 165 

fusion and classification module. Specifically, our PHAT model only takes peptide sequences 166 

as input. In module (i), to address the scarcity of peptides, our model employs and fine-tuned 167 

and pre-trained large-scale protein language model called ProtT5 for the analysis of our 168 

peptide datasets. By doing so, we can transfer rich contextual information from large-scale 169 

protein sequences to our model and learn discriminative feature embeddings of peptide 170 

sequences. In module (ii), we propose a HyperGMA (Hyper Graph Multi-head Attention 171 

network) to learn local and global features. Specifically, given a peptide sequence, our model 172 

first exploits the graph extractor to divide the peptide sequence into fragments with particular 173 

lengths as hyperedges and residue groups as hypernodes. Then, by using the hyperedges 174 

and hypernodes, we construct the hypergraph structure and pass it to the HyperGMA to 175 

integrate the sequence information of different scales in the hypergraph structure. Our model 176 

can capture both local and global features at the residue group level and peptide fragment 177 

level through the multi-scale hypergraph attention mechanism. Afterward, in module (iii), we 178 

integrate the feature embeddings from the above two channels (knowledge transfer module 179 
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and hypergraph embedding module) through an element-wise multiplication strategy. 180 

Furthermore, our model adopts Bi-LSTM (Bidirectional Long Short-Term Memory Networks) 181 

[32] to improve and optimize the feature representation ability and exploits CRFs to learn 182 

useful correlations among the sub-secondary structures. Finally, PHAT takes the resulting 183 

features from module (iii) as the input of a Viterbi algorithm and predicts the structural state to 184 

which each peptide residue belongs. 185 

 186 

 187 
 188 

Figure 1. The workflow and framework of PHAT. (A) Dataset processing. We extracted the 189 

benchmark datasets from SCRATCH-1D, where the protein and peptide structures were 190 

derived with X-ray crystallography and operated with a resolution of at least 2.5 angstroms, 191 

for three-state and eight-state secondary structures. (B) Framework of PHAT. The framework 192 

consists of three modules: (i) Knowledge transfer module, (ii) Hyper Graph embedding 193 

module, and (iii) Fusion and classification module. In Knowledge transfer module, the original 194 

sequences are encoded by a pretrained protein model to gain the features of peptide 195 

residues. In Hyper Graph embedding module, the peptide sequences are constructed into 196 

hypergraph structures and embedded by HyperGMA. In Fusion and classification module, the 197 

outputs of Knowledge transfer module and the Hyper Graph embedding module are firstly 198 

fused through the element-wise multiplication and better integrated by the Bi-LSTM. Then the 199 

output of Bi-LSTM is inputted into the CRF layer, and as a result, the secondary structure of 200 

related residues can be predicted. (C) illustrates the details of Hyper Graph embedding 201 
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module. In the part of graph extractor, peptide sequences are firstly sliced into fragments with 202 

specific length and constructed as hyperedges of the hypergraph structure. Then the 203 

hyperedges are cut into residue groups to be built as hypernodes in the hypergraph structure. 204 

Next, the hypergraph structure from graph extractor is inputted into HyperGMA to capture the 205 

multi-scale relationships in view of residue groups and peptide fragments by the multi-scale 206 

attention mechanism. (D) Online service. Our web server of PHAT is freely available to 207 

provide researchers with peptide details in three-state or eight-state secondary structures, 208 

statistical analysis, and position analysis. The predictions of our model can be applied in 209 

many downstream tasks as in Downstream Analysis. 210 

Feature embedding from the pre-trained model ProtT5 211 

Although there are some differences between proteins and peptides in terms of structure, 212 

they are similar in many aspects such as the transcription process and residue sequence 213 

composition. Therefore, we used the pre-trained model ProtT5 based on the t5-3b model [33], 214 

which was pre-trained using the UniRef50 database [34] (i.e., a database consisting of 45 215 

million protein sequences), in a self-supervised manner to transfer semantic knowledge from 216 

proteins to peptides. Its weight was pre-trained with a BERT-like mask language model 217 

denoising objective using raw protein sequences without labeling. The model can fully learn 218 

the semantic information and generate different residue features belonging to multiple 219 

expressions in different context scenarios. 220 

 221 

The original peptide sequences are fed into ProtT5, and the output vectors are extracted from 222 

many encoder blocks that are dependent on the self-attention mechanism. Each encoder 223 

block calculates the attention for each residue with all residues in the sequence, aiming to 224 

obtain the relevance and importance between every two residues. The calculation formula of 225 

the self-attention mechanism is as follows: 226 

Attention(Q, K, V) = softmax 4
QK#

5d$%&
7	 (1)	

 227 

where Q, K, and V are the query vector, key vector, and value vector of the corresponding 228 

individual residues in the peptide sequence, respectively, and d$%& is the dimension of the 229 

input key vector. 230 

Hypergraph multi-head attention networks 231 

Inspired by the previous studies for hypergraphs in natural language processing [35], we 232 

constructed a hypergraph structure by taking the peptide residue groups as nodes and the 233 

peptide fragments as edges. Based on this structure, we proposed a novel HyperGMA. 234 

Figure 1C shows the hypergraph construction process and HyperGMA architecture. (i) The 235 

peptide sequence was inputted into the graph extractor, which takes a particular length as the 236 

sliding window size and moves the sliding window to select the sequence fragments with 237 
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cross residues. (ii) The sequence fragment is divided into smaller residue groups in a similar 238 

way as in step (i) but with a smaller sliding window size. The residue groups are regarded as 239 

hypernodes and the peptide fragments are taken as the hyperedges. (iii) The structure of the 240 

hypergraph is constructed using the hyperedges and hypernodes generated from steps (i) 241 

and (ii). (iv) Then, the hypergraph structure is inputted into HyperGMA to extract the graph 242 

embeddings of the peptide sequence. 243 

 244 

The context of residues in a peptide sequence describes the language characteristics of local 245 

co-occurrence among residues, and its function in sequence representation learning has also 246 

been proved to be effective. In our model, we established two residues as a group, based on 247 

which we identified 400 types of groups. Moreover, a set of residue groups is regarded as a 248 

hyperedge, which is a sequence fragment with a specific length. This enables our model to 249 

simultaneously capture structural information both at the residue group level and peptide 250 

fragment level. Specifically, a hypergraph is defined as 𝐺 = (𝜈, 𝜀), where 𝜈 = {𝑣!, 𝑣', …	, 𝑣(} 251 

represents a set of 𝑛 nodes in the graph, and 𝜀 = {𝑒!, 𝑒', …	, 𝑒)} represents a set of 𝑚 252 

hyperedges. Moreover, the model can connect two or more nodes for any hyperedge 𝑒*. 253 

Residue group-level multi-head attention 254 

(𝑓*+)) = 	𝜎( E 𝛼*,𝑊)ℎ,+-!
.!∈0"

)	 (2)	

where 𝑘 represents the index of the residue group (hypernode) in the fragment (hyperedge) 255 

𝑒*, 𝑗 indicates the index of the fragment in edge set 𝜀, 𝑣, ∈ 𝑒* indicates that 𝑣, is contained 256 

in fragment 𝑒*, ℎ,+  is the representation of residue group (hypernode) 𝑣, at layer 𝑙, 𝜎 is the 257 

activation function 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈, 𝑊1	is the weight matrix trained in the 𝑚-head attention, and 258 

𝑚 represents the head number of multi heads. 𝛼*, is the attention coefficient of the residue 259 

group 𝑣, in the fragment 𝑒*, which can be computed by: 260 

𝛼*, =
𝑒𝑥𝑝	(𝑎)2 𝑢,)

∑ 𝑒𝑥𝑝	(𝑎)2 𝑢3).#∈0"
	 (3)	

 261 

where 𝑎)2  is a weight vector for measuring the importance of residue groups in the m-head 262 

attention, 𝑣3 ∈ 𝑒* represents that residue group 𝑣3 is contained in fragment 𝑒*, and 𝑇 means 263 

“transpose.” 𝑢, represents 𝑣, on the hypergraph defined as: 264 

𝑢, = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊)ℎ,+-!)	 (4)	
 265 

The expression (𝑓*+)) represents hyperedge 𝑒* from 𝑚-head attention at layer 𝑙. We 266 

constructed the multi-head attention mechanism, connected it, and compressed it to the 267 

desired dimension after the layer was fully connected. This structure is aimed to capture 268 

residue context information. The output 𝑓*+ represents the connected representation of 269 

hyperedge 𝑒* at layer 𝑙. 270 

 271 
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Peptide fragment-level attention 272 

With the representations of all peptide fragments (hyperedges) as {𝑓*+|∀𝑒* ∈ 𝜀4} connecting to 273 

residue group 𝑣4, we introduce the fragment level attention mechanism to capture the 274 

structural information of peptide fragments with distance interval for learning the next-layer 275 

representation of residue group 𝑣4, which is expressed as follows: 276 

ℎ4+ 	= 𝜎(E 𝛽4*𝑊5678)0(9𝑓*+
0"∈:$

)	 (5)	

where	 ℎ4+ is the output representation of residue group (hypernode) 𝑣4 (𝑣4 ∈ 𝜈) at layer 𝑙, 𝑖 277 

represents the index of the residue group (hypernode) in the node set 𝜈, all the hyperedges 278 

containing residue group 𝑣4 are in 𝜀4, and 𝑊;<=>1%?@ is a weight matrix. 𝑒* is a fragment 279 

(hyperedge) divided at a fixed length from peptide sequence, and ε4 is the set of fragments 280 

of the peptide. 281 

 282 

𝛽4* shows the attention interaction of peptide fragment (hyperedge) 𝑒* on residue group 283 

(hypernode) 𝑣4. The computing process is described below: 284 

𝛽4* =
𝑒𝑥𝑝	(𝑎5678)0(92 𝑉*)

∑ 𝑒𝑥𝑝	(𝑎5678)0(92 𝑉3)0#∈:$
	 (6)	

 285 

where 𝑎5678)0(92  is a weight vector similar to 𝑎12  but for measuring the importance of peptide 286 

fragments 287 

W<%ABCD% = (||BE!1 	WB) ∙ WC	 (7)	
 288 

𝑉* = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈([𝑊5678)0(9𝑓*+||𝑊60F4GH0ℎ4+-!])	 (8)	
 289 

|| represents the concatenation operation, ∙ is matrix multiplication, and 𝑊G is a trainable 290 

matrix for dimensional reduction. 291 

Bidirectional long short-term memory and conditional random field 292 

The secondary structural information in peptide sequences is often related to the residues in 293 

the forward and backward peptide fragments. Therefore, we implemented Bi-LSTM 294 

(Bidirectional Long Short-Term Memory Networks) to extract information from two directions 295 

in the peptide sequence. Additionally, the previously learned features from ProtT5 and 296 

HyperGMA are fused in the form of element-wise multiplication, which may introduce 297 

redundant information. Therefore, we added a layer of Bi-LSTM to better integrate them and 298 

provide a sequence-level view for the CRF layer. Bi-LSTM is a deep-learning architecture 299 

with two LSTM layers in different directions, which can capture the dependence of long-300 

distance residues, and selectively learn and forget information with corresponding importance 301 

through training [36]. Moreover, LSTM has three gate structures (inputting gate, forgetting 302 

gate, and outputting gate) and a Cell State's hiding state. In LSTM, the inputting gate is 303 
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responsible for processing the input of the current sequence position, whereas the forgetting 304 

gate controls whether the hidden cell state of the upper layer must be forgotten based on 305 

probability. The results of the forgetting gate and inputting gate will act on the cell state. Then, 306 

information from the previous sequence, the current sequence, and the cell state will be 307 

combined with the activation function and weights to obtain the output. Therefore, the model 308 

can better capture semantic information of peptide sequences and the prediction can more 309 

accurately select Bi-LSTM, as shown in Supplementary Figure 1. 310 

 311 

To the best of our knowledge, our model is the first to determine the probability of each 312 

residue belonging to specific secondary structures by adding a linear layer with the softmax 313 

function behind the Bi-LSTM, after which the label with the highest probability can be 314 

obtained. However, this will ignore the correlation among secondary structures and decrease 315 

the prediction performance. Alternatively, we chose the CRF approach, which is widely used 316 

in named entity recognition to predict secondary structures, while exploring the context-317 

related interactions between secondary structures and residue level contributions to all 318 

secondary structures. 319 

 320 

CRFs consist of emission matrices including the probability of residues occupying different 321 

secondary structure states and transition matrices including the likelihood of transferring one 322 

secondary sub-structure state to another. During the training process, the model uses the 323 

forward and backward algorithms to infer the conditional probability of the secondary 324 

structures at each position of the sequence and finally predict the secondary structure by the 325 

scoring matrices. The specific calculation process is described below. 326 

 327 

There are two kinds of feature functions. The first is referred to as the emission function, 328 

which is only related to the current position 𝑖 in the peptide sequence: 329 

𝑒+(𝑦4 , 𝑥, 𝑖)				𝑙 = 1,2, … , 𝐿	 (9)	
where 𝑥 represents all residues of the peptide, 𝑦4 represents the secondary structure at 330 

position 𝑖, and 𝐿 indicates the number of all secondary structures. 331 

 332 

The second function is defined in the context of secondary structures and is referred to as the 333 

transition function, which is related to the current structure 𝑦4 and the previous structure 334 

𝑦4-!: 335 

𝑡,(𝑦4-!, 𝑦4 , 𝑥, 𝑖)			𝑘 = 1,2, … , 𝐾	 (10)	
where 𝐾 indicates the number of all permutations of two secondary structure states, which is 336 

9 for 3-state secondary structures and 64 for 8-state secondary structures. 337 

 338 

Assuming that we have 𝐾! transition functions and 𝐾' emission functions, there are a total 339 

of 𝐾!+𝐾' feature functions. We then used the formula 𝑓,(𝑦4-!, 𝑦4 , 𝑥, 𝑖) to express them: 340 

𝑓,(𝑦4-!, 𝑦4 , 𝑥, 𝑖) = f 𝑡,(𝑦4-!, 𝑦4 , 𝑥, 𝑖)		𝑘 = 1,2, …𝐾!
𝑒+(𝑦4 , 𝑥, 𝑖)		𝑘 = 𝐾! + 𝑙,			𝑙 = 1,2, … , 𝐾'

	 (11)	

We also unified the weight coefficient 𝑓,(𝑦4-!, 𝑦4 , 𝑥, 𝑖) with wI: 341 
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𝑤, = f 𝜆, , 𝑘 = 1,2, …𝐾!
𝜇+ , 𝑘 = 𝐾! + 𝑙,			𝑙 = 1,2, … , 𝐾'

	 (12)	

where 𝜆, represents the weight coefficient of the k-th transition function and 𝜇+ represents 342 

the weight l-th coefficient of the emission function. 343 

 344 

The parametric form is simplified as: 345 

𝑃(𝑦|𝑥) =
1

𝑍(𝑥) 𝑒𝑥𝑝	E 𝑤,𝑓,(𝑦, 𝑥)
J%KJ&

,E!
	 (13)	

𝑍(𝑥) is the normalization factor: 346 

𝑍(𝑥) =E𝑒𝑥𝑝E 𝑤,𝑓,(𝑦, 𝑥)
J%KJ&

,E!L

	 (14)	

In the traditional CRF, we find that the only global transition matrix is easily affected by the 347 

noise from datasets, resulting in unstable prediction results. To solve this problem, we first 348 

arranged the outputs from Bi-LSTM into linear layers, transferring the outputs to local 349 

transition matrices with the same dimension as the global transition matrix. Then, we 350 

connected them to the global transition matrix, as using the fused transition matrices can 351 

improve the ability of our model to assess different datasets. The details of our CRF 352 

architecture are shown in Supplementary Figure 2. 353 

 354 

Model training and predicting process 355 

Training process 356 

We introduced the Bi-LSTM-CRF layer to fuse features and predict the secondary structure of 357 

peptides. In Bi-LSTM-CRF, the secondary structure label paths are constructed with the 358 

emission and transition matrices. The loss function of our model consists of two parts, the 359 

score of the real label path and the total score of all paths, with different secondary structure 360 

label combinations. The score of the real path should be the highest in all paths and the goal 361 

of our optimization is to minimize the gap between the predicted score and the real score. 362 

 363 

If a certain path is a real path and the secondary structure label sequence is the correct 364 

prediction result, then it should have the highest score of all possible paths. According to the 365 

following loss function, the parameters of our model will be updated continuously with every 366 

iteration of the training process, making the ratio of the score of the real path to the total score 367 

larger. 368 

𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔	(
𝑆607+	379N
𝑆9O97+

)	 (15)	

 369 

Assuming that the score of each possible path is 𝑆4, and there are n paths in total, then the 370 

total score of all paths is (where 𝑒 is Euler number): 371 
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𝑆9O97+ =	𝑒P% + 𝑒P& +⋯+ 𝑒P' 	 (16)	
 372 

Next, the composition of 𝑆, can be expressed as follows: 373 

𝑆, = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒	 (17)	
 374 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 = 𝑒!(R%→L%) + 𝑒'(R&→L&) +⋯+ 𝑒((R'→L')	 (18)	
 375 

The 𝑒4(R$→L$) is the score function resulting in a probability to predict the current residue 𝑥4 376 

as the secondary structure 𝑦4. 377 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 = 𝑡(F9769→L%) + 𝑡(L%→L&) +⋯+ 𝑡(L'→0(G)	 (19)	
 378 

where 𝑡B(L$→L") is the score function in support of generating the probability of transferring the 379 

secondary structure 𝑦4 to 𝑦*. 380 

 381 

Prediction process 382 

In the prediction process, the Viterbi algorithm [37] is used to obtain the secondary structure 383 

prediction. The Viterbi algorithm is a dynamic programming algorithm that uses the start and 384 

end states and the recurrence formula to gain the secondary structure labels. The input of the 385 

Viterbi algorithm consists of 𝐾 feature functions of the model, 𝐾 weights related to the 386 

functions, the observation peptide sequence 	𝑥 = (𝑥!, 𝑥', … , 𝑥(), and the number of secondary 387 

structure states 𝑚. The output of this calculation is the optimal prediction secondary structure 388 

label sequence 𝑦∗ = (𝑦!∗, 𝑦'∗, … , 𝑦(∗). The details of the prediction process of the Viterbi 389 

algorithm are described below. 390 

 391 

First, the start recursive algorithm is initialized as: 392 

𝛿!(𝑙) =E 𝑤,𝑓,(𝑦" = 𝑠𝑡𝑎𝑟𝑡, 𝑦! = 𝑙, 𝑥, 𝑖)
J

,E!
, 𝑙 = 1,2, … , 𝐿	 (20)	

𝜓!(𝑙) = 𝑠𝑡𝑎𝑟𝑡, 𝑙 = 1,2, … , 𝐿	 (21)	
where 𝐿 is the number of secondary structure labels. 393 

 394 

For 𝑖 = 1,2, … , 𝑛 − 1, the recursion formula is performed as follows: 395 

𝛿4K!(𝑙) = 𝑚𝑎𝑥
!V*VW

{𝛿4(𝑗) +E 𝑤,𝑓,(𝑦4 = 𝑗, 𝑦4K! = 𝑙, 𝑥, 𝑖)
J

,E!
} , 𝑙 = 1,2, … , 𝐿	 (22)	

𝜓4K!(𝑙) = 𝑎𝑟𝑔 𝑚𝑎𝑥
!V*VW

{𝛿4(𝑗) +E 𝑤,𝑓,(𝑦4 = 𝑗, 𝑦4K! = 𝑙, 𝑥, 𝑖)
J

,E!
} , 𝑙 = 1,2, … , 𝐿	 (23)	

 396 

When the following condition occurs, program recursion is stopped: 397 

𝑦(∗ = 𝑎𝑟𝑔	𝑚𝑎𝑥
!V*VW

𝛿((𝑗)	 (24)	

Through the backtracking algorithm, we obtain the final prediction structure: 398 
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𝑦4∗ = 𝜓4K!(𝑦4K!∗ ), 𝑖 = 𝑛 − 1, 𝑛 − 2,… ,1	 (25)	
In the end, the prediction is: 399 

𝑦∗ = (𝑦!∗, 𝑦'∗, … , 𝑦(∗)	 (26)	

Performance metrics 400 

The performance of our proposed PHAT is evaluated by the accuracy and SOV (segment 401 

overlap measure) for each secondary structure state. Acci, F1-scorei	{𝑖 represents the 402 

secondary structure element [H(Helix), E(Sheet) or C(Coil) for 3-state and H(alpha-helix), 403 

G(3!"helix), I(π-helix), E(extended beta-strand), B(isolated beta-strand), T (turns), S (bend) 404 

and others (C) for 8-state]}, the accuracy in all states (hereinafter referred to as Acc), and 405 

SOV are calculated as follows: 406 

 407 

𝐴𝑐𝑐4 =
𝐴44
𝐴4
	 (27)	

𝐴𝑐𝑐 =E𝛼4
∑ 𝐴444∈{F96HY9H60	0+0)0(9}

∑ 𝐴44∈{F96HY9H60	0+0)0(9}
	 (28)	

F1 − score4 =
2𝑃4𝑅4
𝑃4 + 𝑅4

	 (29)	

𝑀𝑎𝑐𝑟𝑜 − 𝐹1 =
∑ 𝐹1 − 𝑠𝑐𝑜𝑟𝑒44∈{F96HY9H60	0+0)0(9}

𝑛 	 (30)	

𝑆𝑂𝑉 =
∑ ∑ 𝑚𝑖𝑛	𝑜𝑣(𝑠1, 𝑠2) + 𝛿(𝑠1, 𝑠2)

𝑚𝑎𝑥	𝑜𝑣(𝑠1, 𝑠2) ∙ 𝑙𝑒𝑛(𝑠1)F44∈{F96HY9H60	0+0)0(9}

𝑁 	 (31)	

 408 

where 𝐴4 is the sum of correctly predicted residues in each state; 𝐴44 is the number of 409 

correctly predicted residues in state 𝑖; 𝛼4 is the proportion of state 𝑖 in the entire test set; 𝑃4 410 

indicates the proportion of residues correctly predicted to be 𝑖 among those predicted to be 411 

𝑖; 𝑅4 is the proportion of residues correctly predicted to be	 𝑖 among residues with the actual 412 

𝑖; 𝑠1 and 𝑠2 are segments corresponding to actual and predicted secondary structures; 413 

𝑙𝑒𝑛(𝑠1) represents the number of residues defining the segment	𝑠1; max	ov(𝑠1, 𝑠2) is the 414 

maximum length overlap of 𝑠1 and 𝑠2 for which either of the segments has a residue in 415 

state 𝑖; min	ov(𝑠1, 𝑠2) represents the length overlapping s1 segments and 𝑠2 segments. 416 

δ(𝑠1, 𝑠2) is calculated as follows: 417 

𝛿(𝑠1, 𝑠2) = 𝑚𝑖𝑛

⎩
⎪⎪
⎨

⎪⎪
⎧
(max 𝑜𝑣(𝑠1, 𝑠2) − min 𝑜𝑣(𝑠1, 𝑠2))	

(min 𝑜𝑣(𝑠1, 𝑠2))

4
𝑖𝑛𝑡�𝑙𝑒𝑛(𝑠1)�

2 7

4
𝑖𝑛𝑡�𝑙𝑒𝑛(𝑠2)�

2 7

	 (32)	

 418 

The normalization value 𝑁 is a sum of 𝑁(𝑖) over the entire set of conformational states: 419 
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𝑁 = E 𝑁(𝑖)
4∈{F96HY9H60	0+0)0(9}

	 (33)	

 420 

SOV was introduced because the segment overlap measure treats H, E, and C on an equal 421 

basis (eight-state assignment is the same). There are no arbitrary cutoffs on segment length, 422 

thus ensuring a consecutive and threshold-free assessment of prediction accuracy. 423 

 424 

Results 425 

PHAT outperforms existing methods when analyzing an independent testing set 426 

To evaluate the performance of the proposed PHAT model, we compared it with four state-of-427 

the-art methods: PROTEUS2 [14], RaptorX [16], Jpred [12], and PSSP-MVIRT [19]. The first 428 

three were designed for protein secondary structure prediction whereas the other is for 429 

peptide secondary structure prediction. To ensure a fair comparison, the models were 430 

executed and evaluated using the same independent test set. As shown in Supplementary 431 

Table 3, PHAT achieved the best performance among all of the tested methods, with an Acc 432 

of 84.07%, AccH of 89.08%, AccE of 71.76%, AccC of 80.66%, and SOV of 79.78%. 433 

Specifically, compared to other existing methods, our method delivered 1.39% to 19.26% 434 

higher SOV values (see Figure 2A and Supplementary Table 3), which is an important 435 

metric at the segment level and evaluates the overall performance of the methods. The 436 

superior SOV performance of our proposed model might be related to the context information 437 

of the peptide sequences extracted by the Bi-LSTM-CRF layer and multi-scale features 438 

captured by the hypergraph multi-head attention network. Furthermore, all methods exhibited 439 

a relatively low accuracy in the prediction of the structural state E compared to the other two 440 

states (H and C). This was due to the low proportion of E in the dataset (see Figure 2B and 441 

Supplementary Table 1). Therefore, the existing models capture more information for the H 442 

and C states, rather than E, during model training. Nevertheless, our PHAT achieved the 443 

highest accuracy at E among all of the evaluated methods. This was likely because our multi-444 

head attention mechanism is capable of capturing a more informative structural 445 

representation of E. Additionally, the comparison results in the dataset of the eight-state 446 

secondary structure shown in Supplementary Table 9 also demonstrate the outstanding 447 

performance of our method.	Therefore, we concluded that our method is more effective than 448 

Jpred, PSSP-MVIRT, PROTEUS2, and RaptorX in the prediction of peptide secondary 449 

structures, especially for AccE, Acc, and SOV. 450 

 451 
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 452 

Figure 2. The performances of our method and existing methods on independent test 453 

subsets, comparison of different encoding strategies, and visualization of different 454 

methods on one peptide: (A) SOV, macro-F1, and F1-scoreH are used as the evaluation 455 

metrics; (B) F1-scores under three sub-structures are used as the evaluation metrics. (C) 456 

SOV of four methods at the different length intervals. (D–G) represent PCA visualization 457 

results of individual features of ProtT5, HyperGMA, and the fusion features in multiplication or 458 

additive respectively; (H, J, K) represent the comparison between multiplication fusion 459 

strategy and other three strategies. (I) represents performance comparison between 460 

HyperGMA and TextCNN. (L) The visualization of predictions by our method and other two 461 

methods for the peptide with PDB ID: 2w25. 462 

 463 
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Length preference investigation for peptide secondary structure prediction 464 

Previous studies have demonstrated that the functionality of peptides (e.g., affinity) is easily 465 

affected by the length of sequences, with most bioactive peptides being normally less than 40 466 

residues long[19, 38, 39] . To investigate if our model had length biases for peptide secondary 467 

structure prediction, we further explored whether peptide length affected the performance of 468 

our model. We first divided the test set into four subsets with different length intervals ([30, 469 

35], (35, 40], (40, 45], and (45, 50]), then separately evaluated our model and existing 470 

methods using the subsets. Figure 2C and Supplementary Figure 3 show the SOV, Acc, 471 

and F1-score of the different methods for the prediction of peptide secondary structures using 472 

the aforementioned subsets. As illustrated in Supplementary Figure 3, the performance of 473 

all of the tested methods clearly decreased as the length of the sequences declined, which 474 

indicates that shorter sequences are more difficult to predict as their contextual information is 475 

less. Furthermore, as illustrated in Figure 2C, the SOV score of our method was higher than 476 

that of the other methods in almost all ranges of peptide sequence lengths. Particularly, our 477 

PHAT model exhibited an outstanding performance, with average Acc, SOV, and F1-score 478 

values up to 7.02%, 6.21%, and 3.33% higher than the runner-up PSSP-MVIRT in different 479 

sequence length intervals. These results demonstrate that our method is better at the 480 

prediction of shorter peptides. 481 

Exploration of the optimal architecture of our model 482 

To investigate the performances of our model using different encoding strategies, we 483 

compared the prediction results of different encoding strategies including the two individual 484 

feature extractors (HyperGMA and ProtT5) and their different fusion combinations. 485 

Supplementary Table 4 shows that our final element-wise multiplication strategy achieves an 486 

Acc of 84.07%, AccH of 89.08%, AccE of 71.76%, AccC of 80.66%, and SOV of 79.78%, 487 

outperforming the Acc and SOV of ProtT5 by 1.77% and 5.79% and the fused extractor in the 488 

additive strategy by 1.36% and 5.64%, respectively. Furthermore, although ProtT5 performed 489 

better than HyperGMA, the model performed better than the individual extractors and the 490 

fused extractor in the additive strategy after fusing the features from HyperGMA and ProtT5 491 

with the element-wise multiplication fusion strategy. This indicated that the different 492 

information is complementary to each other in the fusion strategy, thus effectively improving 493 

the predictive performance of the model. Moreover, it can be seen from Figure 2H-2K that 494 

the element-wise multiplication fusion strategy of HyperGMA and ProtT5 achieved better 495 

performance than the fusion strategies of TextCNN and ProtT5 in terms of Acc and SOV. 496 

 497 

To further illustrate the effect of different encoding strategies more intuitively, we visualized 498 

the distribution of feature representations in the test set, which reveals the discriminability of 499 

features for distinguishing different secondary sub-structure states through dimension 500 

reduction. In the principal component analysis (PCA) [40] in Figure 2D-2G, each point 501 

represents a site in the peptide sequence and different colors are used to distinguish the Helix 502 
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(H), Strand (E), and Coil (C) secondary structures. Compared with the two fusion strategies, 503 

the distribution of the site samples belonging to different classes in the feature space from the 504 

individual ProtT5 and HyperGMA are almost connected, making it difficult to distinguish the 505 

region for each secondary sub-structure class. Regarding the two fusion strategies, the site 506 

samples of three classes are more clearly distributed in the feature space of the multiplication 507 

fusion strategy (Figure 2F) than in the feature space of the additive fusion strategy (Figure 508 

2G). Furthermore, to avoid biases between different dimension reduction methods, we also 509 

applied another non-linear method T-SNE [41] for dimension reduction, and similar results 510 

can be seen in Supplementary Figure 3. In conclusion, our results demonstrate that our 511 

PHAT model with the multiplication fusion strategy can capture more discriminative and high-512 

quality features. 513 

 514 

The PHAT model has good interpretability in terms of extracting multi-scale features 515 

and making classifications 516 

To verify the effect of the Bi-LSTM-CRF layer in our model, we compared the performance of 517 

our model under two training strategies (Cross Entropy loss function and Bi-LSTM-CRF), and 518 

the results are shown in Supplementary Table 5. Clearly, our model with Bi-LSTM-CRF layer 519 

performed better (especially in terms of SOV) than the model using the Cross-Entropy loss 520 

function. To explain how the Bi-LSTM-CRF efficiently predicts the secondary structure at each 521 

site in the peptide sequence, we randomly selected and predicted the secondary structures of 522 

the peptide sequence with PDB ID 1edm chain B (Protein Data Bank Identity). Afterward, we 523 

chose several sites of this peptide and visualized the corresponding weights of the transition 524 

matrix and emission matrices from our model in Figure 3A. As illustrated in Figure 3A, the 525 

secondary structure labels corresponding to the highest values in the emission matrices 526 

match the real secondary structures of the residues. Moreover, the probability of transferring 527 

the labels of the current residues to the real labels of the adjacent residues was the highest in 528 

the transition matrices. 529 

 530 

To further explore the role HyperGMA of in our model, we visualized and analyzed the 531 

attention matrices from HyperGMA in Figure 3. The HyperGMA includes two main steps, the 532 

residue group level attention encoding and the peptide fragment level attention encoding. In 533 

the first step, the feature representations of peptide fragments are aggregated from the 534 

contained residue groups through the residue group level multi-head attention mechanism. 535 

The contribution of each residue group to corresponding peptide fragments is shown in 536 

Figure 3B. Moreover, Figure 3C illustrates that the peptide fragments are more likely to 537 

reflect the characteristics of specific residue groups, meaning that the peptide fragments are 538 

more strongly influenced by local information. In the second step, the feature representation 539 

of the residue group is encoded by the peptide fragments where it exists through the fragment 540 

level attention mechanism. The contribution of the peptide fragment to corresponding residue 541 
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groups is shown in Figure 3C, which indicates that a given residue group can aggregate the 542 

information from different fragments where it exists. Therefore, our model can better capture 543 

the local and global information by collecting secondary structure information at the residue 544 

group level and peptide fragment level using HyperGMA. 545 

 546 
Figure 3. The Interpretability of our model. (A) Visualization of the weights of transition 547 

matrix and emission matrix in Bi-LSTM-CRF layer. The emission matrix and transition matrix 548 

are calculated by our model. The emission matrix shows the possibilities of current site in 549 

different classes and the transition matrix indicates the possibility of the secondary structure 550 

transformation in adjacent positions. (B-C) Visualization of the attention matrices in 551 

hypergraph multi-head attention network, where B represents the attention of peptide 552 

fragments to residue groups and C represents the attention of residue groups to peptide 553 

fragments. Darker color means stronger attention. 554 

Application of our PHAT model in three peptide related downstream tasks 555 

Several experiments were conducted to verify that the secondary structures predicted by our 556 

method can be useful for downstream tasks. Figure 4A-4C shows the results of prediction of 557 

peptide toxicity, prediction of T-cell receptor interactions with MHC-peptide complexes, and 558 

prediction of protein-peptide binding sites, respectively. In Figure 4, it can be seen that when 559 

fused with the structure predictions of our PHAT model, the evaluated methods (ATSE, 560 

NetTCR-2.0, and PepBCL) achieve higher performance in terms of most metrics than without 561 

the PHAT predictions. Similar results were observed with the methods fused with structure 562 

predictions from PROTEUS2 and PSSP-MVIRT in the corresponding task. 563 

 564 
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 565 
Figure 4. Comparative results for three downstream tasks. (A) shows the results on the 566 

task of prediction of peptide toxicity. (B) shows the results on the task of prediction of T-cell 567 

receptor interactions with MHC-peptide complexes. (C) shows the results on the task of 568 

prediction of protein-peptide binding sites. (D) shows ROC curve and Precision-Recall cure of 569 

comparison experiment in ATSE. (E) and (F) show density of positive and negative examples 570 

under different confidence in prediction of peptide toxicity. (G) shows ROC curve and 571 

Precision-Recall cure of comparison experiment in NetTCR-2.0. (H) and (I) show density of 572 

positive and negative examples under different confidence in prediction of TCR interactions 573 

with MHC-peptide complexes. 574 

PHAT has an outstanding performance for aiding in predicting peptide toxicity 575 

We first used the methods (PSSP-MVIRT, PROTEUS2, and PHAT) to predict the secondary 576 

structures of the dataset in ATSE [26], a peptide toxicity predictor, and add the secondary 577 

structures from the three methods to ATSE. As shown in Figure 4D and Supplementary 578 

Table 6, ATSE with our PHAT model achieved an SN of 95.06%, SP of 93.4%, Acc of 579 

94.74%, MCC of 89.62%, AUC of 96.7% (the definition of these metrics can be found in 580 

Supplementary metrics), which constituted a 0.17%, 0.18%, 0.43%, 0.5%, and 1.1% higher 581 

performance than ATSE with PROTEUS2, and a 0.25%, 0.37%, 0.88%, 1.87%, and 0.8% 582 

higher performance than ATSE with PSSP-MVIRT, respectively. Additionally, Figure 4E-4F 583 

shows PHAT had an outstanding performance for the prediction and classification of ATSE, 584 

and there was also a general improvement over the original method. These results 585 

demonstrate the efficiency of our model to predict secondary structures to assist in peptide 586 

toxicity prediction. Particularly, the higher SOV of our method reveals that our model can 587 
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more accurately capture the integrity and continuity of secondary structures, which may 588 

explain the superior performance of our method. 589 

 590 

Secondary structure is an important determinant of toxicity [42]. However, few studies have 591 

used the secondary structure of peptides to predict peptide toxicity. Predicting the secondary 592 

structures of peptides by various methods can compensate for these limitations and build a 593 

bridge between peptide secondary structure and peptide toxicity. 594 

PHAT achieves superior performance for the prediction of T-cell receptor interactions 595 

with MHC-peptide complexes 596 

Our prediction of the secondary structure of peptides can also be applied to the study of T-cell 597 

receptor interactions with MHC-peptide complexes. Here, we used the NetTCR-2.0 method 598 

[27], which has a CNN architecture, to predict the interactions between the α/β TCR and 599 

MHC-peptide sequences and assess the effect of adding secondary structures predicted from 600 

the three methods (PSSP-MVIRT, PROTEUS2, and our PHAT). As indicated in Figure 4G 601 

and Supplementary Table 7, analysis of the NetTCR-2.0 dataset with PHAT achieved an 602 

average Acc of 94.04%, a precision of 45.54%, a recall of 78.6%, an F1-score of 57.29%, and 603 

an AUC of 92.7%, which was higher than the original method by 0.61%, 3.52%, 2.61%, and 604 

2.4%, respectively. Furthermore, our model outperformed the Acc, Precision, F1-score, and 605 

AUC of PSSP-MVIRT by 0.38%, 1.61%, 1.28%, and 1%, as well as PROTEUS2 by 0.59%, 606 

2.29%, 1.82%, and 1.3%, respectively. Moreover, Figure 4H-4I shows that PHAT achieved a 607 

better prediction of NetTCR-2.0 classification. 608 

 609 

Additionally, we found that two groups of α/β TCR sequences, which have similar sequences 610 

but different secondary structures, cannot be classified correctly using NetTCR-2.0 without 611 

adding secondary structures. Fortunately, they were accurately predicted after introducing the 612 

secondary structure features from our PHAT model. In Supplementary Figure 4, we 613 

visualized the secondary structures of the two peptide sequences predicted by our method. 614 

Therefore, our findings demonstrated that the secondary structures predicted by our method 615 

provide useful biochemical information and improve the performance of NetTCR-2.0. In 616 

conclusion, the above results can prove that our prediction of peptide secondary structures 617 

has a positive effect on promoting the accuracy of TCR tasks and provide a new direction for 618 

TCR research. 619 

PHAT exhibited competitive performance for assisting in the prediction of protein-620 

peptide binding sites 621 

Protein-peptide interactions are involved in various fundamental cellular functions and are 622 

crucial for designing new peptide drugs. To explore the effect of the secondary structures 623 
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from our model in the prediction of protein-peptide binding sites, comparison experiments with 624 

the PepBCL model were conducted [43]. Specifically, we first combined our structure 625 

predictions with the features from the PepBCL model. Then, protein-peptide binding site 626 

predictions were conducted based on a random forest machine learning method [44]. In a 627 

previous study that used the PepBCL model [36], the secondary structure from SPOT-1D-628 

Single was introduced to generate structural features, which we generated in the same way. 629 

In this context, the efficiency of our prediction can be verified by comparing secondary 630 

structures from several different sources (Supplementary Table 8). Our findings indicated 631 

that the application of peptide secondary structures predicted by our PHAT achieves 632 

significantly better performance than other methods. Some researchers have already 633 

incorporated secondary structures into their predictions. Moreover, the prediction of more 634 

accurate and continuous secondary structures may enhance the efficiency of site mining. As 635 

illustrated in Figure 4C, the features from PepBCL combined with the prediction of PHAT can 636 

achieve higher AUC and MCC than using peptide secondary structures from other methods. 637 

The visualization of two cases demonstrated that our proposed PHAT method 638 

performs better than existing methods 639 

To intuitively assess the performance of existing methods, we first randomly selected two 640 

peptide chains (PDB ID: 2w25A and 1ejbA) with experimental secondary structures, and 641 

applied different methods (PHAT, RaptorX, PSSP-MVIRT, PROTEUS2, and Jpred) for the 642 

prediction of the secondary structure of two peptides. As illustrated in Figure 2L and 643 

Supplementary Figure 5, the secondary structures from different methods were mapped into 644 

the tertiary structures, where the red area represents Helix (H), the yellow area represents 645 

Strand (E), and the green area represents Coil (C). The differences between the structures 646 

predicted by our method and the experimental ones were smaller than those of the 647 

predictions of the other methods described above. In Figure 2L, our model achieved more 648 

correct Helix (H) and Strand (E) predictions, whereas the other methods were more likely to 649 

identify the Helix (H) and Strand (E) structures as a Coil (C). Furthermore, in Supplementary 650 

Figure 5, the other four methods (RaptorX, PSSP-MVIRT, PROTEUS2, and Jpred) tended to 651 

predict the Coil (C) as Helix (H), whereas our method made more correct predictions in local 652 

consecutive sequence regions. In conclusion, our method can achieve better performance in 653 

terms of continuity and accuracy compared to the existing methods. 654 

 655 

The proposed PHAT model facilitates the construction of 3-D peptide structures 656 

 657 

To explore the potential of PHAT in capturing 3-D structure information of peptides, we used 658 

our model to predict the distance map and contact map matrices, which is an essential 659 

process in protein 3-D structure prediction. The workflow of exploration is shown in Figure 660 

5A. Specifically, our PHAT model was first trained using a secondary structure dataset to 661 

capture the 2-D structure information of the peptide. Then, a fully connected network was 662 
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added to our model and fine-tuned using the contact map dataset (the details are shown in 663 

Supplementary Table 10) to obtain the distance information of the 3-D structure. Next, we 664 

calculated the distance of each amino acid pair to construct the distance map and contact 665 

map of the peptide sequence. Compared with the experimental results from the test set, our 666 

model achieved an average variation of less than 1 Å for each amino acid pair in terms of 667 

distance map prediction. To intuitively assess the performance of our model, we visualized 668 

and compared our predictions with the state-of-the-art method trRosetta [45-47] based on the 669 

experimental results from a randomly selected peptide with PDB ID 7ve4 (Figure 5B). Our 670 

predicted contact map is more accurate in terms of contacting amino acid pairs than the one 671 

obtained with trRosetta. Additionally, our predicted distance map is closer to the experimental 672 

result than the trRosetta-generated map, indicating that our model can more accurately 673 

capture the distance between amino acids. With our predicted contact maps and distance 674 

maps, the 3-D structures of corresponding peptides can be reconstructed more realistically by 675 

folding algorithms [48-50]. In this case, we extended our prediction of the secondary structure 676 

to the contact map and distance map, thus aiding in the prediction of the peptide 3-D 677 

structure. Therefore, our PHAT model has the potential to promote the development of 678 

therapeutic molecules against various diseases, as well as the design of functional peptides 679 

[40]. 680 

 681 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.06.09.495580doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.09.495580


Figure 5. The exploration in constructing 3-D structure of peptide with our method. (A) 682 

The workflow of assisting in building 3-D peptide structure with our predicted contact and 683 

distance map matrices. (B) The visualization of contact map and distance map matrices of 684 

experimental results, trRosetta prediction and our prediction for the peptide with PDB ID: 685 

7ve4. 686 

Discussion and Conclusion 687 

In this study, we developed PHAT, a deep learning-based method for peptide secondary 688 

structure prediction, and systematically evaluated it using benchmark datasets. Compared 689 

with other methods designed for protein secondary structure prediction, our model achieved 690 

superior performance in most metrics, especially Acc[ and SOV. The conventional methods 691 

designed for the prediction of protein structure might be biased toward extracting long-692 

distance dependence within protein sequences with hundreds of residues. However, the 693 

peptides in our dataset are significantly shorter than most proteins, and therefore the 694 

neighborhood information in peptides may not be easily captured by these methods. In 695 

contrast, our method can capture more contextual information of peptide sequences through 696 

the hypergraph multi-head attention network, and can thus make more correct predictions in 697 

local consecutive sequence regions, as demonstrated by the visualization of our predictions 698 

for two peptides (PDB ID: 2w25A and 1ejbA). 699 

 700 

Similar results can be seen when comparing the peptide-specific secondary structure 701 

predictors (e.g., PSSP-MVIRT) with our method. This is likely because previous methods 702 

designed for peptides focus more on neighborhood information of peptide residues and 703 

therefore tend to ignore long-term information. In contrast, in addition to being capable of 704 

capturing contextual information, our method can obtain long-term and bio-semantic 705 

knowledge for peptide sequences by using ProtT5, a model pre-trained with millions of protein 706 

sequences, thus achieving a good prediction performance. The peptide length preference 707 

experiments for secondary structure prediction illustrated that although the prediction 708 

performance of the tested methods decreased as the length of the sequences declined, our 709 

method achieved better performance than other existing methods when analyzing shorter 710 

peptide sequences. This indicated that our model can integrate contextual information and 711 

long-term knowledge to make predictions. 712 

 713 

Moreover, to reveal the feature extraction and prediction mechanisms of our PHAT model, we 714 

visualized matrices of a hypergraph multi-head attention network (HyperGMA) and Bi-LSTM-715 

CRF, which provide good interpretability while achieving an outstanding prediction 716 

performance. Specifically, the visualization of attention matrices in HyperGMA demonstrated 717 

that our model can effectively capture the local and global features of peptides at the residue 718 

group-level and the peptide fragment-level, thus providing insights into its attention 719 

mechanisms. Similarly, the visualization of the classification layer in Bi-LSTM-CRF illustrates 720 

that CRFs can guide our model to efficiently predict the secondary structure for each site in 721 

the peptide sequences. 722 
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 723 

Furthermore, to verify the accuracy of the secondary structures predicted by our model in 724 

downstream tasks, we applied our predicted structural information to the prediction of peptide 725 

toxicity, T-cell receptor interactions with MHC-peptide complexes, and identification of protein-726 

peptide binding sites. Using the secondary structures predicted by our model enhanced the 727 

performances of these tasks, which indicated that our predicted structural information can 728 

assist in predicting more accurate properties and is complementary to sequential and 729 

evolutionary features in peptide-related downstream tasks. Additionally, to explore the 730 

potential of PHAT in capturing 3-D structural information of peptides, we applied our model to 731 

predict distance map and contact map matrices and achieved an outstanding performance, 732 

thus demonstrating that our model can help in the reconstruction of peptide 3-D structures. 733 

We also developed an online service (the workflow is shown in Figure 1D) to implement our 734 

PHAT, thus saving researchers the need to write programs or scripts. We hope that this 735 

online tool will be helpful to the research community. 736 

 737 

Although our PHAT model achieves improved performances for predicting peptide secondary 738 

structure, there is still room for improvement. For example, PHAT is meant to be used for 739 

general peptide secondary structure prediction, and therefore we focused particularly on 740 

sequences with lengths <50. However, for datasets with peptide sequences longer than 50, 741 

we cannot ensure that our method will have the same performance. Moreover, when 742 

interacting with other targets (e.g., protein, DNA, RNA, etc.), peptide sequences remain the 743 

same, but the secondary structure of the peptides may change considerably. However, our 744 

PHAT makes its predictions based on the sequence patterns and thus cannot make 745 

adjustments to account for potential molecular interactions. Therefore, we are planning to 746 

incorporate additional data such as interaction information with other targets to further 747 

improve the prediction of peptide secondary structures in different interacting scenarios. 748 
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